Moderne Geometrie

Abgabetermin: Montag, 18/05/2009, 12:00 Uhr

Aufgabe 16: Es sei R ein Ring, X = Spec(R) und f, $g \in R$. Zeige:

- a. $X_f \cap X_g = X_{f \cdot g}$.
- b. $X_f = \emptyset \iff f \text{ ist nilpotent.}$
- c. $X_f = X \iff f \in R^*$.
- d. $X_f \subseteq X_g$ genau dann, wenn es ein $n \geq 0$ gibt, so daß g | f^n .
- e. $X_f = X_g \iff \sqrt{\langle f \rangle} = \sqrt{\langle g \rangle}$.

Aufgabe 17: Zeige, für jeden Ring R gibt es genau einen Ringhomomorphismus $\varphi: \mathbb{Z} \longrightarrow R$. Bestimme φ^* für die Ringe $R = \mathbb{C}[x]$ und $R = \mathbb{Z}/p\mathbb{Z}[x]$, wenn p eine Primzahl ist. Sind die Abbildungen φ^* in diesen beiden Beispielen dominant?

Aufgabe 18: Es sei R ein Ring mit $\mathbb{Q}(R) = 0$ und $X = \operatorname{Spec}(R)$. Zeige, das X ist genau dann nicht zusammenhängend, wenn R ein idempotentes Element ungleich 0 und 1 besitzt.

Erinnerung: Ein topologischer Raum X heißt zusammenhängend, wenn aus X sich nicht als disjunkte Vereinigung zweier Mengen schreiben läßt, die beide offen und abgeschlossen in X sind.

Aufgabe 19: Betrachte den Ringhomomorphismus

$$\phi: \mathbb{C}[t] \longrightarrow \mathbb{C}[x,y]/\langle x^2 - y^2 \rangle \; : \; t \mapsto \overline{x}.$$

Gib Spec(R) und Spec(S) für R = $\mathbb{C}[t]$ und S = $\mathbb{C}[x,y]/\langle x^2-y^2\rangle$ und bestimme die Fasern von ϕ^* . Interpretiere das Ergebnis mittels eines Bildes über den reellen Zahlen.