Moderne Geometrie

Abgabetermin: Montag, 13/07/2009, 12:00 Uhr

Aufgabe 48: Es sei K ein Körper und \overline{K} sein algebraischer Abschluß.

Zeige, daß $\overline{K}[x_1,...,x_n]$ ganz über $K[x_1,...,x_n]$ ist.

Aufgabe 49: Sei $R \subset R'$ eine ganze Ringerweiterung und $\mathfrak{m}' \lhd \cdot R'$ sei ein maximales Ideal, so daß $\mathfrak{m} = \mathfrak{m}' \cap R \lhd \cdot R$ ebenfalls maximal ist. Ist $R'_{\mathfrak{m}'}$ dann ganz über $R_{\mathfrak{m}}$? Hinweis, betrachte $R = K[x^2 - 1]$, R' = K[x], $\mathfrak{m}' = \langle x - 1 \rangle$, und $f = \frac{1}{1 + x} \in R'_{\mathfrak{m}'}$.

Aufgabe 50: Es seien $R \subset R'$ Integritätsbereiche und $f, g \in R'[x]$ seien normierte Polynome. Zeige, wenn $f \cdot g \in Int_{R'}(R)[x]$, dann gilt auch $f, g \in Int_{R'}(R)[x]$.

Beachte, wenn wir dies auf $R=\mathbb{Z}$ und $R'=\mathbb{Q}$ anwenden, dann erhalten wir für normierte Polynomie $f,g\in\mathbb{Q}[x]$, daß aus $f\cdot g\in\mathbb{Z}[x]$ unmittelbar $f,g\in\mathbb{Z}[x]$ folgt.

Aufgabe 51: [Ringe ganzer Zahlen in quadratischen Zahlkörpern]

Es sei $d \in \mathbb{Z} \setminus \{0,1\}$ eine quadratfreie Zahl (d.h. keine Quadratzahl $a^2 \neq 1$ teilt d). Dann ist $\mathbb{Q}\big[\sqrt{d}\,\big] = \{a + b\sqrt{d} \mid a,b \in \mathbb{Q}\}$ eine Körpererweiterung von \mathbb{Q} mit $\dim_{\mathbb{Q}} \mathbb{Q}\big[\sqrt{d}\,\big] = 2$. Betrachte die *Konjugation*

$$C: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}[\sqrt{d}]: a + b\sqrt{d} \mapsto a - b\sqrt{d},$$

die Norm

$$N: \mathbb{Q} \lceil \sqrt{d} \rceil \longrightarrow \mathbb{Q}: a + b\sqrt{d} \mapsto (a + b\sqrt{d}) \cdot C(a + b\sqrt{d}) = a^2 - b^2 d,$$

und die Spur

$$\mathsf{T}:\mathbb{Q}\big[\sqrt{d}\,\big]\longrightarrow\mathbb{Q}:\alpha+b\sqrt{d}\mapsto(\alpha+b\sqrt{d})+C(\alpha+b\sqrt{d})=2\alpha.$$

Zeige:

$$\text{a. } C(x \cdot y) = C(x) \cdot C(y) \text{ und } N(x \cdot y) = N(x) \cdot N(y) \text{ für } x, y \in \mathbb{Q}\big[\sqrt{d}\,\big].$$

- b. C und T sind Q-linear.
- c. Wenn $x \in \mathbb{Q}\left[\sqrt{d}\,\right] \setminus \mathbb{Q}$, dann ist $\mu_x = (t-x) \cdot \left(t-C(x)\right) = t^2 T(x) \cdot t + N(x) \in \mathbb{Q}[t]$ das Minimalpolynom von x über \mathbb{Q} .
- d. $x \in \mathbb{Q}[\sqrt{d}]$ ist genau dann ganz über \mathbb{Z} , wenn T(x) und N(x) ganze Zahlen sind.

$$e. \ \, Int_{\mathbb{Q}\left[\sqrt{d}\right]}(\mathbb{Z}) = \mathbb{Z}[\omega_d], \, wobei \, \omega_d = \left\{ \begin{array}{ll} \sqrt{d}, & \text{ falls } d \equiv 2,3mod \, 4, \\ \frac{1+\sqrt{d}}{2}, & \text{ falls } d \equiv 1mod \, 4. \end{array} \right.$$