LECTURE NOTES IN MODERN GEOMETRY

THOMAS MARKWIG

1 RINGS AND MODULES

C) Euclidean Rings, PID’s and UFD’s
1.23 Definition

Let R be an integral domain, r, 7" € R.

a. r divides r' if and only if
dteR 1 =t-r

if and only if

We denote this by r | .

b. r is wrreducible if and only if
0#r¢ R and (r=s-t = s€R" or t€R").
c. ris prime if and only if
O#r¢R" and (r|s-t = r|s or r|t)
if and only if
(0) # (r) is a prime ideal.
d. r and 7’ are associated if and only if
JueR :r=1r"-u

if and only if

(r) = (r').

1.24 Example a. If r is prime, then r is irreducible.

Proof: If r = s- ¢, then r | s- ¢, and since r is prime we thus may assume r | s.
Hence there is a u € R such that s = u - r, and therefore r = r - u - t. Cancelling

out the non-zerodivisor  we get 1 = u - t, that is, t € R*. [l

b. If r and s are irreducible and r | s, then r and s are associated.
1
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Proof: If r | s, then s = r - t for some t € R. But since s is irreducible, ¢ or r
must be a unit. Since r is irreducible, it is not a unit. Thus ¢ is a unit, and r

and s are associated. O

c. If R =7 is the ring of integers, then:
p is irreducible <= p is prime <= p is a prime number.
d. If R = K[x], where K is a field, then by Proposition 1.30:
p is prime <= p is an irreducible polynomial.
e. If R = K|[[z]], where K is a field, then by Proposition 1.30:
p is prime < p is irreducible < p = - x for some unit u < ord(p) = 1.
1.25 Definition

Let R be an integral domain.

a. R is a Fuclidean ring if and only if there is a function v : R\ {0} — IN such that
Vabe R\{0} 3¢greR :a=q-b+rwithr=00r0<v(r) <v().

We call this decomposition of a a division with remainder (short: DwR) of a

with respect to b.

b. R is a principle ideal domain (short: PID) if and only if every ideal in R is
principle.

c. Ris a unique factorisation domain (short: UFD) or factorial if and only if every
0+#r € R\ R is a product of finitely many prime elements.

1.26 Example a. R = Z is a Euclidean ring with v(z) = |z| due to the usual DwR
in Z.

b. R = KJz|, where K is a field, is a Euclidean ring with v(f) = deg(f) by
Proposition 1.27.

c. Re {K][[z]], R{z},C{z} | K is a field}, is a Euclidean ring with v(f) = ord(f).

Proof: Given a,b € R we can write them uniquely as a = u - 2™ respectively
b=wv-a™ for some units u,v € K|[z]]* and where n = ord(a) and m = ord(b).
If n < m, then a = 0-b+ a is the desired decomposition, while if n > m, then
a=(u-z"™ - v71) - b+0is. O

d.-R=Zi]={x+i-y|x,y € Z} < C is a Euclidean ring with v(z +1i-y) =
|z +iyl* = 2 + 2.
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Proof: Let a,b € Z[i], b # 0, be given. Then the complex number § = u +i-v
for some real numbers u,v € R. Approximating u and v by integers we find
m,n € Z such that [u —m| < 1 and |v — n| < 3. Setting ¢ :=m +i-n € Z[i]
and 7 :=a — ¢ - b € Z]i] we have

v(r) =la— g = [b]* - ((w—m)*+ (v —n)*) < 5 - o] <v(b)

1

-2

and a=¢q-b+r. O
1.27 Proposition (Division with Remainder)

Let R be a ring, f =Y 1 fix',g = > i g:ix" € R[x] such that f,, # 0 # gp.
a. Then Ik >0, q,r € R[x] such that f¥-g=q- f+r and deg(r) < deg(f).

b. If R is an ID and f,, € R*, then there are unique q,r € R[z]| such that g = q-f+r
and deg(r) < deg(f).

Proof: a. We do the proof by induction on m = deg(g).
Note, if m = n = 0, then we are done with £ = 1, ¢ = g and r = 0, and if
0<m<n,wemayset k=0,¢g=0and r=g.

We thus may assume that m > 0 and n < m. Set
g =l g—gm-2" " f

Then deg(g’) < deg(g) = m and by induction there are ¢/,7" € R[x] and k' > 0
such that

¢ f+r =0 g =g = g2 f
and deg(r') < deg(f). This implies
f g = (d £ g ™)
and we are done setting k =k + 1, ¢=¢ + f* - gp - 2™ ™, and r = 1",

b. The existence of the decomposition follows from a., since f,, is invertible. As for

the uniqueness suppose that
g=q-f+r=q f+7
with ¢, ¢',r,7" € R[z] and deg(r), deg(r") < deg(f). Then
deg(q —¢') - deg(f) = deg(r’ —r) < max{deg(r), deg(r)} < deg(f),

which implies that ¢ — ¢’ = 0. But then ¢ = ¢’ and hence r = 7’.

1.28 Theorem
If R is a Fuclidean ring, then R is a PID.
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Proof: Let 0 # I < R be an ideal. Then there is a 0 # a € I such that v(a) is
minimal. We claim that I = (a), where “2” is clear.

Let b € I, then there are ¢,r € R such that b=¢-a+r and r =0 or v(r) < v(a).
Since r = b — ¢ -a € I and v(a) was minimal, we conclude that » = 0. Thus
b=gq-ac€ (a). O

1.29 Corollary

Z, Z[i], K[z], K[[z]], R{z} and C{z} are PID’s.
1.30 Proposition

Let R be a PID and 0 # r € R.

a. 1 is irreducible if and only if (r) < -R.

b. If r is irreducible, then r is prime.

c. Spec(R) = m — Spec(R) U {(0)}.

Proof: a. Assume first that r is irreducible. If (r) C (s) C R, then there is a
t € R such that » = s-¢. Since r is irreducible either s is a unit or ¢ is. But
thus (s) = R or (s) = (r), and hence (r) is maximal.

Assume now that (r) is maximal. If r = s-¢, then (r) C (s) C R and by
assumption either (r) = (s) or (s) = R. In the first case t must be a unit, in

the latter case s must be. In any case, this implies that r is irreducible.

b. If r is irreducible, then by a. (r) is a maximal ideal. Thus it is a prime ideal,

and therefore r is a prime element.

c. It suffices to show that every non-zero prime ideal is maximal. But if 0 #
P € Spec(R), then P = (r), since R is a PID. Thus r must be prime and
we have already seen that every prime element is irreducible. By a. therefore
P € m — Spec(R).

O

1.31 Example
Let R = Z[\/—5 = {a: +y-v-=> ‘ x,y € Z}. We claim that 3 € R is irreducible,
but not prime. In particular, R is no PID and the converse of Proposition 1.30 b. is

in general wrong.
Show first that R* = {1,—1} = {r € R | |r|> = 1}. For thislet r = x4+ y-/-5 € R*
be given, and let s € R be its inverse. Then

L=lres*=r|* |s] = (2" +5-y°) - s,

and since |s|*> > 1 it follows that 22 = 1 and y* = 0. Hence r € {1, —1}.
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We next show that 3 is irreducible. Suppose that 3 = r-s with r = x4y-/—5,s € R*.

In particular |r|? and |s|? are integers strictly greater than one and thus

9=3" = |r- s = |rf? - |sf

implies that 2% 4+ 5y* = |r|? = |s|?> = 3. This is, however, a contradiction to z,y € Z.
We finally show that 3 is not a prime. Note that

319=(2+vV-5)-(2-V-5).

Suppose that 3 | (2 + \/—5) in R, then there is an r = x + y - v—5 € R such that
3-r=2+4+/—5 and hence

9-|r>=12++v-5*=09.

This implies that °+5y* = |r|*> = 1 and hence r € {1, —1}, which clearly contradicts
the fact that 3-r =2+ +/—5. Thus 3 f (2 + \/—5), and similarly 3 / (2 — \/—5).

This, however, shows that 3 is not a prime.

1.32 Corollary
If R is a PID, then R is a UFD.

Proof: Let M = {(r) | 0 # r € R\ R*,r is not a finite product of irreducibles}.
Suppose that M # . If

(r1) C (ra) C (rg) C ...

is a chain in M, then
[o.¢]

I=Jor)<anr

i=1
is an ideal in R. Since R is a PID we have I = (s) for some s € R. But then there
is some 7 such that s € (r;) and thus I = (s) C (r;) C I. This shows [ = (r;) € M
is an upper bound of this chain in M.

By Zorn’s Lemma there must be a (r) € M which is maximal in M. Since (r) € M
we know that r is not irreducible. Thus there are s,t € R\ R* such that r = s - ¢.
This implies

(r) ; (s) and (r) ; (t).

Due to the maximality of (r) we conclude that (s), (t) € M. In particular, there are
irreducible elements py, ..., Pk, q1,...,q € Rsuchthat s=p;---prandt=¢q ...q.
But then

r=s-t=pi-Dp-q---qQ
is a product of finitely many irreducible elements in contradiction to (r) € M.
Hence M = () and each 0 # r € R\ R* is a finite product of irreducible elements.

By Proposition 1.30 it thus is also a finite product of prime elements and R is
factorial. O]
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1.33 Corollary
Z, 7.i], Klz|, K[[z]], R{z} and C{z} are UFD’s.
1.34 Proposition

The following statements are equivalent:

a. R is a UFD.

b. Every 0 # r € R\ R* is a finite product of irreducible elements and every

wrreducible element is prime.

c. Every 0 #r € R\ R* is a finite product of irreducible elements in a unique way,
e ifr=pi-pr=q---q with p; and g; irreducible for all i, then k =1 and

there is a permutation o € Sym(k) such that p; and g, ) are associated.

Proof: Let us first show that a. implies b.. We have already seen that any prime
element is irreducible. Thus if R is a UFD and 0 # r € R\ R*, then r is a finite
product of irreducible elements. It remains to show that if r is irreducible, then r
is prime. However, since R is a UFD we can write » = py - - - pi, for prime elements
pi, and since r is irreducible and the p; are no units, we conclude that £ = 1 and
r = pp is prime.

We next show that b. implies c.. Let r =py---pr = q1 - - - ¢, with p; and ¢; irreducible
and assume that £ is the minimal number such that r can be decomposed into k
irreducible factors. We show by induction on k that & = [ and that o € Sym(k)
exists as claimed. If k = 1, then r = p; = ¢; - - - q; is irreducible and since the ¢; are

no units we conclude I =1 and r = p; = ¢;. If kK > 1, then

PelDi k=@ a,

and since py, is prime we conclude that py | ¢; for some i. Since p and ¢; are both
irreducible, they must be associated, i.e. ¢; = u - px for some unit u. W.lLo.g. we

may assume ¢ = [ (this means applying a suitable o to the indices). Thus

DLl DRl = @ QU

and by induction we are done by induction.
Let us finally show that c. implies a.. It suffices to show that every irreducible
element is prime. Let p be irreducible and p | s-¢. By assumption s and ¢ can be

decomposed uniquely into products of irreducible elements, say

s=pi1-pr and t=pgy1--pr

Thus p | p1---p;, and uniqueness implies the p must be associated some p;. In

particular p | p; and thus divides s or t. [l

1.35 Definition
Let R be a UFD and rq,...,r, € R.
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a. We call g € R a greatest common divisor (short: ged) of ry, ..., ry if and only if
glry VYi=1,...,k and (t|r;, Vi=1,....k = t]|g)
if and only if
g|ri Yi=1,...,k and A p irreducible such that p | % Vi=1,...,k.
Notation: ged(ry,...,rx) = {g € R | g is a greatest common divisor of ry,..., 7}

Obviously, 1 € ged(ry,...,r,) if and only if ged(ry,...,7) = R*, and in this

case we say that the r; have no common divisor.

b. We call | € R a lowest common multiple (short: lem) of r1, ..., 7y if and only if
ri|l Yi=1,....k and (r;|t Vi=1,....k = []1),

and in case k = 2 this holds if and only if

T T

ri,re | I and € ged(ry, re).

Notation: lem(ry,...,7¢) = {l € R |l is a lowest common multiple of 71, ..., r}.

1.36 Remark
If R is a PID, then:

geged(ry,...,ry) <= (g)=(r,...,1%)

and
l€lem(ry,...,ry) <= ()= {(r)N...N0{rg).
Proof: The proof is an easy exercise using the definition and induction on k. [
1.37 Lemma
Let R be an ID.
a. R[z|* = R*.

b. If r € R is irreducible in R, it is irreducible in R[z].
c. If r € R is prime in R, it is prime in Rx].
Proof: a. Clearly, R* C R[z]*. Let therefore f € R[z|*. Then there is a g € R[x]
such that f-¢g =1, and by the degree formula we have
0 = deg(1) = deg(f - g) = deg(f) + deg(9).
This implies f,g € R, and therefore f € R*.

b. If r = st for s,t € R[z], then by the degree formula in integral domains we

have

0 = deg(r) = deg(s) + deg(t).
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This implies that s and ¢ must be constant polynomials, i.e. s, € R. But r is
irreducible in R, thus s € R* = R[z]* or t € R* = R[z|* and we are done.

c. Let | st =30 (S0, sitii) - % where s = 37 szt t = S0 tia' € R[a]
and where we set s; = 0 =t; if i > m or j > n. Suppose that r [ s and r /1.
Since r € R this implies that there are ¢, j such that r /s, and r [ t;. Let i
respectively jo be minimal with the property that r / s;, and r / t;,. Since
r | s-tand r is constant r divides every coefficient of s - ¢, in particular

10+Jo

r | Z Sy tkfl-
=0

But by the choice of ig and j, we know that r divides every summand except
possibly s;, - tj,, which then implies that r divides this one as well. However, r
is prime and must therefore divide s;, or ¢;, in contradiction to the choice of i
and jo. This finishes the proof.

O

1.38 Theorem (Lemma of Gauf})
If R is a UFD, then R[z| is a UFD.

Proof: Let 0 # f =", fiz" € R[z]\ R[z]* and d € ged(fo,..., fn). Since R is a
UFD and taking Lemma 1.37 into account there are ¢y, ...,q € R irreducible in R
and hence in R[z]| such that

We define f! = % and f' = 5 = >, fiz". Note that then the f/ have no common
divisor, i.e.

ged(fo, -+ fr) = ™.
We first of all show that there are irreducible elements py, ..., p, € R[z] such that
f = p1---pr by induction on n = deg(f) = deg(f’). If n =0 then f =d € R and
we are done by (1). Thus we may assume that n > 0. In case f’ is irreducible, we
have f =d- f' = pi---pr - [’ is a product of finitely many irreducible polynomials
in R[z]. It remains to consider the case where f’ is not irreducible. In that case
f' = g - h where neither g € R[z]* nor h € R[z]* is a unit. By the degree formula

over integral domains we have

n = deg(f) = deg(g) + deg(h).

Suppose that deg(g) = 0, then g € R and hence ¢ divides the coefficients of f’,
ie. gl fl,... fl. But since they do not have a common divisor, this implies g | 1,
ie. g € R* = R[z]*, in contradiction to our assumption. Thus deg(g) > 0, and
analogously deg(h) > 0, which implies deg(g), deg(h) < n. By induction g and h do
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factorise in a finite product of irreducible elements as well as d does by (1), hence
so does f=d-g-h.

By Proposition 1.34 it remains to show that each irreducible polynomial f € R[x]
is actually prime. We postpone this to Lemma 3.15, since we need the notion of the

quotient field of R which we have not yet introduced. O]

1.39 Corollary
If K is a field, then K|xy,...,x,] is a UFD.

1.40 Corollary
Rlx] is a PID if and only if R is a field.

In particular, K|xy,...,,] is not a PID once n > 2.

Proof: If R is a field we have seen in Corollary 1.29 that R[z] is a PID.

For the converse consider the R-algebra homomorphism
@ Rla] = R: [ f(0).

By the Homomorphism Theorem we have R[z]/ker(y) = R, and since R is an
integral domain this implies that ker(y) must be a prime ideal. However, ker(y) is
not the zero ideal, since z € ker(y), and hence by Proposition 1.30 it is indeed a
maximal ideal. Thus R = R[z|/ker(y) is a field. O

1.41 Theorem
Zlw) ={a+b-w|abeZ} <C, withw =2 € C, is a PID, but it is not
FEuclidean.

The proof of this theorem needs some preparation.

1.42 Proposition
Let R be an ID.
Then R is a PID if and only if there exists a function a: R — IN such that

Vae ROZbe Rst. b fa JuveR : a0) <alua—vb) < ald).

You may consider ua — vb as a greatest common divisor of a and b, so that the
existence of a basically means that the ideal (a,b) is principle and generated by a

greatest common divisor.

Proof: Let us first assume R is a PID, and hence by Corollary 1.32 it is a UFD.
We now define o : R — IN by

0, if r =0,
a(r) =< 1, if r € R*,
1+k ifr=py---p, with p; irreducible.
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Given a,b € R with 0 #b fa we choose g € ged(a,b). Then by definition
a(0) =0 < a(g) < a(b),

and by Remark 1.36 we have
{9) = {a,b).

This, however, implies that ¢ = a - u — b - v for suitable u,v € R.

Let us now assume that the desired function « exists, and let 0 # I < R be given.
We may choose 0 # b € I with «(b) minimal, and we claim I = (b). Suppose there
is some a € I\ (b), then b fa and by assumption there are u,v € R such that

a(0) < a(ua — vb) < a(b).

In particular, 0 # wa — vb € I in contradiction to the assumption that «(b) is
minimal. Thus I = (b). O

1.43 Proposition

Let R be a Euclidean ring via v : R\{0} — N, let 0 # p € R\ R* with v(p) minimal,
and let T : R — R/(p) : a — @ be the residue map. Then the following statements
hold:

a. p is prime and K := R/(p) is a field.
b. If a € R, then there are q,v € R such thata =q-p+r withr =0 orr € R*.
c. m(R*) = K*.

Proof: Let a € R be given. Since R is Euclidean there exists ¢, € R such that
a=q-p+r with r =0 or v(r) < v(p). By the choice of p this implies r = 0 or
r € R*, which proves b..

Moreover, m(a) = 7(r) = 0 or 7(a) = w(r) € n(R*) C K*, since units are mapped

to units by ring homomorphisms. Since 7 is surjective we get
K=nR)={0}un(R") C{0}UK" =K,

and thus K = {0} U K*, which implies that 7(R*) = K*, that is c., and that K is a
field. But then (p) <-R and p must be prime element, which finally proves a.. [

1.44 Proof of Theorem 1.41 (see [Bru00] p. 90f.): For a+bw € Z[w] with a,b €
7. we define N : R — IN by

2 4

We first of all show that R* = {1, -1} = {x € R | N(z) = 1}. For this suppose
that 1 =z -y for x = a+ bw,y € R. Then

2 2
N(a+bw) = |a+ bw|* = (a+9) —|—19-b—:a2+ab+5b2€]N.

1= [z |y|?
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where both factors are natural numbers. This implies that

b\ > b2
1=|z]>=N(z) = (a—|—§) +19-Z,

and thus b = 0 and (a + g)z =1,ie. b=0and a € {1,-1}.
We next claim that 2 and 3 are irreducible in R. Suppose that 2 = z -y for
=a+bw,y € R\ R*, then

4=z’ |y* = N(z) - N(y),
and N(z), N(y) > 1. Both being natural numbers this implies

2=N(y) =N(x) = <a+g)2+19-§.

But then b*> = 0 and hence b = 0, which gives a®> = 2 for an integer a. Thus we
have derived the desired contradiction, and 2 is irreducible. The proof for 3 works
analogously.
Next we show that R is not Euclidean. Suppose R was Euclidean. Then we may
choose p € R as in Proposition 1.43 and we deduce with the notation from that
proposition

|R/(p)| = |K| < [R"|+1=3.
Since R/(2) = {6, 1,v/—19,1 + \/—19} has four elements we know that p # 2.

Thus there are elements ¢, € R such that 2 = ¢ - p + r and, since 2 is irreducible,
r # 0, which implies that » € R* = {1,—1} is a unit. If r =1, then 1 = ¢-p in

contradiction to p being prime. If r = —1, then 3 = ¢ - p, and since 3 is irreducible

we get (3) = (p). However,
R/(3) = {6, 1,2,/—19,1+ /19,2 + \/—19}

in contradiction to the fact that K has only 3 elements. This shows that R cannot

be Euclidean.

We claim that

2
x
u-——v| <lI,
Y

where the calculations are done in €. Note that actually & € Qw], that is

(2) Vez,yeR:0#y fx JuveR :0<

dd',b,a,b,q,s € Z with 0<a<q,0<b<s,1¢€ged(a,q)and 1 € ged(b, s)

such that = — (a’ + E) + (b’ + é) cw.
Yy q S
If we now find u’,v" € R such that

/ (a b ) /
uw-l-—+-—w)—-v
q s

0< < 1,
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then u =u' and v =o' +u' - (@’ + ' - w) works, since

A (2 + b -w) +u' - (a' +0 W)=V = (a0 w) = (2 + b -w) —v'.
Y q s q S

We may, therefore, assume that o’ = b’ = 0.

If b =0, then we are done by © = 1 and v = 0. Thus we may assume b # 0.

If ¢ /s, then s-a # 0 (mod ¢), and there exists 0 < d < ¢ and ¢ € Z such that

sa = cq + d. Thus

2 2

ﬁ—I—bw—c—bw
q

x
s-— — (c+ bw
" ( )

q

2 ‘ d

where the right hand side is strictly between 0 and 1. Thus we are done with u = s
and v = c+ bw.

If ¢ | s and s > 2, then, since s and b have no common divisor, there exists an m € Z
such that m-b =1 (mod s). Thus

ma  mb aq 1
— t+— w=(l+— |+ |k+-) w
q S as S

for suitable [, k, ay, ay € Z such that ‘Z—;| < % Setting u = m and v = [ 4+ kw we get

2 2

CL1+1 1+\/—19
S

(05} 2

(w1 2+19_a§+a1+20
 \ay 25 452 a}  ags  4s?

U-——v
Yy

and we are done.

Finally, if ¢ | s and s = 2, then ¢ =s=2and £ = % or £ = HT“’ In the first case
Yy Yy

we set v = 1+ w and v = —2 4 w, in the second case we set u = w and v = =2 + w.

So, in any case we have

and we are done.
We conclude that (2) holds, which implies that &« = N is a function as required in
Proposition 1.42; and thus R is a PID. ]

1.45 Remark
For the following results see [Bru00], Chapter 8-10, and [ScS88], pp. 154ff, p. 168
Exercise 40, p. 167 Exercise 31c. and p. 186 Exercise 23.

a. K = Q[z]/(f) with deg(f) = 2 if and only if K = Q[v/d] for some squarefree
de Z\{0,1}. If f =2®+ax +b, then d = & — b is its discriminant,
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b. If d is such a squarefree number, then Z[w,| = {a € Q[\/c_l} ’a is integral over Z}

for
Vd, ifd=2,3 (mod 4),
Wy =
! %E, if d =1 (mod 4).

c. Zwg| is a UFD if and only if it is a PID.
d. If d < —1, then
(i) Z|wg)isa UFDifand onlyifd € {—1,—-2,-3,—7,—11,—19, —43, —67, —163}.
(ii) Z]wg) is a UFD if and only if d € {—1, -2, -3, -7, —11}.
e. Rlx,y]/{x* +y* + 1) is a PID, but not Euclidean.
1.46 Remark
We have seen (Theorem 1.41 and Corollaries 1.39 and 1.40) that
R is Fuclidean =— Risa PID = R isa UFD,

and that neither of the converses holds!
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