
LECTURE NOTES IN MODERN GEOMETRY

THOMAS MARKWIG

1 Rings and Modules

C) Euclidean Rings, PID’s and UFD’s

1.23 Definition

Let R be an integral domain, r, r′ ∈ R.

a. r divides r′ if and only if

∃ t ∈ R : r′ = t · r

if and only if

〈r′〉 ⊆ 〈r〉.

We denote this by r | r′.

b. r is irreducible if and only if

0 6= r 6∈ R∗ and (r = s · t ⇒ s ∈ R∗ or t ∈ R∗).

c. r is prime if and only if

0 6= r 6∈ R∗ and (r | s · t ⇒ r | s or r | t)

if and only if

〈0〉 6= 〈r〉 is a prime ideal.

d. r and r′ are associated if and only if

∃ u ∈ R∗ : r = r′ · u

if and only if

〈r〉 = 〈r′〉.
1.24 Example a. If r is prime, then r is irreducible.

Proof: If r = s · t, then r | s · t, and since r is prime we thus may assume r | s.

Hence there is a u ∈ R such that s = u · r, and therefore r = r · u · t. Cancelling

out the non-zerodivisor r we get 1 = u · t, that is, t ∈ R∗.

b. If r and s are irreducible and r | s, then r and s are associated.
1
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Proof: If r | s, then s = r · t for some t ∈ R. But since s is irreducible, t or r

must be a unit. Since r is irreducible, it is not a unit. Thus t is a unit, and r

and s are associated.

c. If R = Z is the ring of integers, then:

p is irreducible ⇐⇒ p is prime ⇐⇒ p is a prime number.

d. If R = K[x], where K is a field, then by Proposition 1.30:

p is prime ⇐⇒ p is an irreducible polynomial.

e. If R = K[[x]], where K is a field, then by Proposition 1.30:

p is prime ⇔ p is irreducible ⇔ p = u · x for some unit u ⇔ ord(p) = 1.

1.25 Definition

Let R be an integral domain.

a. R is a Euclidean ring if and only if there is a function ν : R\{0} → N such that

∀ a, b ∈ R \ {0} ∃ q, r ∈ R : a = q · b + r with r = 0 or 0 ≤ ν(r) < ν(b).

We call this decomposition of a a division with remainder (short: DwR) of a

with respect to b.

b. R is a principle ideal domain (short: PID) if and only if every ideal in R is

principle.

c. R is a unique factorisation domain (short: UFD) or factorial if and only if every

0 6= r ∈ R \ R∗ is a product of finitely many prime elements.

1.26 Example a. R = Z is a Euclidean ring with ν(z) = |z| due to the usual DwR

in Z.

b. R = K[x], where K is a field, is a Euclidean ring with ν(f) = deg(f) by

Proposition 1.27.

c. R ∈ {K[[x]],R{x},C{x} | K is a field}, is a Euclidean ring with ν(f) = ord(f).

Proof: Given a, b ∈ R we can write them uniquely as a = u · xn respectively

b = v · xm for some units u, v ∈ K[[x]]∗ and where n = ord(a) and m = ord(b).

If n < m, then a = 0 · b + a is the desired decomposition, while if n ≥ m, then

a = (u · xn−m · v−1) · b + 0 is.

d. R = Z[i] = {x + i · y | x, y ∈ Z} ≤ C is a Euclidean ring with ν(x + i · y) =

|x + iy|2 = x2 + y2.
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Proof: Let a, b ∈ Z[i], b 6= 0, be given. Then the complex number a
b

= u + i · v
for some real numbers u, v ∈ R. Approximating u and v by integers we find

m,n ∈ Z such that |u − m| ≤ 1
2

and |v − n| ≤ 1
2
. Setting q := m + i · n ∈ Z[i]

and r := a − q · b ∈ Z[i] we have

ν(r) = |a − qb|2 = |b|2 ·
(

(u − m)2 + (v − n)2
)

≤ 1

2
· |b|2 < ν(b)

and a = q · b + r.

1.27 Proposition (Division with Remainder)

Let R be a ring, f =
∑n

i=0 fix
i, g =

∑m

i=0 gix
i ∈ R[x] such that fn 6= 0 6= gm.

a. Then ∃ k ≥ 0, q, r ∈ R[x] such that fk
n · g = q · f + r and deg(r) < deg(f).

b. If R is an ID and fn ∈ R∗, then there are unique q, r ∈ R[x] such that g = q ·f+r

and deg(r) < deg(f).

Proof: a. We do the proof by induction on m = deg(g).

Note, if m = n = 0, then we are done with k = 1, q = g and r = 0, and if

0 ≤ m < n, we may set k = 0, q = 0 and r = g.

We thus may assume that m > 0 and n ≤ m. Set

g′ := fn · g − gm · xm−n · f.

Then deg(g′) < deg(g) = m and by induction there are q′, r′ ∈ R[x] and k′ ≥ 0

such that

q′ · f + r′ = fk′

n · g′ = fk′+1
n · g − fk′

n · gm · xm−n · f

and deg(r′) < deg(f). This implies

fk′+1
n · g =

(

q′ + fk′

n · gm · xm−n
)

· f + r′,

and we are done setting k = k′ + 1, q = q′ + fk′

n · gm · xm−n, and r = r′.

b. The existence of the decomposition follows from a., since fn is invertible. As for

the uniqueness suppose that

g = q · f + r = q′ · f + r′

with q, q′, r, r′ ∈ R[x] and deg(r), deg(r′) < deg(f). Then

deg(q − q′) · deg(f) = deg(r′ − r) ≤ max{deg(r), deg(r′)} < deg(f),

which implies that q − q′ = 0. But then q = q′ and hence r = r′.

1.28 Theorem

If R is a Euclidean ring, then R is a PID.
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Proof: Let 0 6= I � R be an ideal. Then there is a 0 6= a ∈ I such that ν(a) is

minimal. We claim that I = 〈a〉, where “⊇” is clear.

Let b ∈ I, then there are q, r ∈ R such that b = q · a + r and r = 0 or ν(r) < ν(a).

Since r = b − q · a ∈ I and ν(a) was minimal, we conclude that r = 0. Thus

b = q · a ∈ 〈a〉.

1.29 Corollary

Z, Z[i], K[x], K[[x]], R{x} and C{x} are PID’s.

1.30 Proposition

Let R be a PID and 0 6= r ∈ R.

a. r is irreducible if and only if 〈r〉 � ·R.

b. If r is irreducible, then r is prime.

c. Spec(R) = m − Spec(R) ∪ {〈0〉}.

Proof: a. Assume first that r is irreducible. If 〈r〉 ⊆ 〈s〉 ⊆ R, then there is a

t ∈ R such that r = s · t. Since r is irreducible either s is a unit or t is. But

thus 〈s〉 = R or 〈s〉 = 〈r〉, and hence 〈r〉 is maximal.

Assume now that 〈r〉 is maximal. If r = s · t, then 〈r〉 ⊆ 〈s〉 ⊆ R and by

assumption either 〈r〉 = 〈s〉 or 〈s〉 = R. In the first case t must be a unit, in

the latter case s must be. In any case, this implies that r is irreducible.

b. If r is irreducible, then by a. 〈r〉 is a maximal ideal. Thus it is a prime ideal,

and therefore r is a prime element.

c. It suffices to show that every non-zero prime ideal is maximal. But if 0 6=
P ∈ Spec(R), then P = 〈r〉, since R is a PID. Thus r must be prime and

we have already seen that every prime element is irreducible. By a. therefore

P ∈ m − Spec(R).

1.31 Example

Let R = Z
[√

−5
]

=
{

x + y ·
√
−5

∣

∣ x, y ∈ Z
}

. We claim that 3 ∈ R is irreducible,

but not prime. In particular, R is no PID and the converse of Proposition 1.30 b. is

in general wrong.

Show first that R∗ = {1,−1} = {r ∈ R | |r|2 = 1}. For this let r = x+y ·
√
−5 ∈ R∗

be given, and let s ∈ R be its inverse. Then

1 = |r · s|2 = |r|2 · |s|2 = (x2 + 5 · y2) · |s|2,

and since |s|2 ≥ 1 it follows that x2 = 1 and y2 = 0. Hence r ∈ {1,−1}.
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We next show that 3 is irreducible. Suppose that 3 = r·s with r = x+y·
√
−5, s 6∈ R∗.

In particular |r|2 and |s|2 are integers strictly greater than one and thus

9 = 32 = |r · s|2 = |r|2 · |s|2

implies that x2 +5y2 = |r|2 = |s|2 = 3. This is, however, a contradiction to x, y ∈ Z.

We finally show that 3 is not a prime. Note that

3 | 9 =
(

2 +
√
−5

)

·
(

2 −
√
−5

)

.

Suppose that 3 |
(

2 +
√
−5

)

in R, then there is an r = x + y ·
√
−5 ∈ R such that

3 · r = 2 +
√
−5 and hence

9 · |r|2 = |2 +
√
−5|2 = 9.

This implies that x2+5y2 = |r|2 = 1 and hence r ∈ {1,−1}, which clearly contradicts

the fact that 3 · r = 2 +
√
−5. Thus 3 6 |

(

2 +
√
−5

)

, and similarly 3 6 |
(

2 −
√
−5

)

.

This, however, shows that 3 is not a prime.

1.32 Corollary

If R is a PID, then R is a UFD.

Proof: Let M = {〈r〉 | 0 6= r ∈ R \ R∗, r is not a finite product of irreducibles}.
Suppose that M 6= ∅. If

〈r1〉 ⊆ 〈r2〉 ⊆ 〈r3〉 ⊆ . . .

is a chain in M, then

I =
∞
⋃

i=1

〈ri〉 � R

is an ideal in R. Since R is a PID we have I = 〈s〉 for some s ∈ R. But then there

is some i such that s ∈ 〈ri〉 and thus I = 〈s〉 ⊆ 〈ri〉 ⊆ I. This shows I = 〈ri〉 ∈ M
is an upper bound of this chain in M.

By Zorn’s Lemma there must be a 〈r〉 ∈ M which is maximal in M. Since 〈r〉 ∈ M
we know that r is not irreducible. Thus there are s, t ∈ R \ R∗ such that r = s · t.
This implies

〈r〉 $ 〈s〉 and 〈r〉 $ 〈t〉.
Due to the maximality of 〈r〉 we conclude that 〈s〉, 〈t〉 6∈ M. In particular, there are

irreducible elements p1, . . . , pk, q1, . . . , ql ∈ R such that s = p1 · · · pk and t = q1 . . . ql.

But then

r = s · t = p1 · · · pk · q1 . . . ql

is a product of finitely many irreducible elements in contradiction to 〈r〉 ∈ M.

Hence M = ∅ and each 0 6= r ∈ R \ R∗ is a finite product of irreducible elements.

By Proposition 1.30 it thus is also a finite product of prime elements and R is

factorial.
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1.33 Corollary

Z, Z[i], K[x], K[[x]], R{x} and C{x} are UFD’s.

1.34 Proposition

The following statements are equivalent:

a. R is a UFD.

b. Every 0 6= r ∈ R \ R∗ is a finite product of irreducible elements and every

irreducible element is prime.

c. Every 0 6= r ∈ R \R∗ is a finite product of irreducible elements in a unique way,

i.e. if r = p1 · · · pk = q1 · · · ql with pi and qi irreducible for all i, then k = l and

there is a permutation σ ∈ Sym(k) such that pi and qσ(i) are associated.

Proof: Let us first show that a. implies b.. We have already seen that any prime

element is irreducible. Thus if R is a UFD and 0 6= r ∈ R \ R∗, then r is a finite

product of irreducible elements. It remains to show that if r is irreducible, then r

is prime. However, since R is a UFD we can write r = p1 · · · pk for prime elements

pi, and since r is irreducible and the pi are no units, we conclude that k = 1 and

r = p1 is prime.

We next show that b. implies c.. Let r = p1 · · · pk = q1 · · · ql with pi and qi irreducible

and assume that k is the minimal number such that r can be decomposed into k

irreducible factors. We show by induction on k that k = l and that σ ∈ Sym(k)

exists as claimed. If k = 1, then r = p1 = q1 · · · ql is irreducible and since the qi are

no units we conclude l = 1 and r = p1 = q1. If k > 1, then

pk | p1 · · · pk = q1 · · · ql,

and since pk is prime we conclude that pk | qi for some i. Since pk and qi are both

irreducible, they must be associated, i.e. qi = u · pk for some unit u. W.l.o.g. we

may assume i = l (this means applying a suitable σ to the indices). Thus

p1 · · · pk−1 = q1 · · · ql−1 · u−1,

and by induction we are done by induction.

Let us finally show that c. implies a.. It suffices to show that every irreducible

element is prime. Let p be irreducible and p | s · t. By assumption s and t can be

decomposed uniquely into products of irreducible elements, say

s = p1 · · · pk and t = pk+1 · · · pl.

Thus p | p1 · · · pl, and uniqueness implies the p must be associated some pi. In

particular p | pi and thus divides s or t.

1.35 Definition

Let R be a UFD and r1, . . . , rk ∈ R.
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a. We call g ∈ R a greatest common divisor (short: gcd) of r1, . . . , rk if and only if

g | ri ∀ i = 1, . . . , k and (t | ri ∀ i = 1, . . . , k =⇒ t | g)

if and only if

g | ri ∀ i = 1, . . . , k and 6 ∃ p irreducible such that p | ri

g
∀ i = 1, . . . , k.

Notation: gcd(r1, . . . , rk) = {g ∈ R | g is a greatest common divisor of r1, . . . , rk}.
Obviously, 1 ∈ gcd(r1, . . . , rk) if and only if gcd(r1, . . . , rk) = R∗, and in this

case we say that the ri have no common divisor.

b. We call l ∈ R a lowest common multiple (short: lcm) of r1, . . . , rk if and only if

ri | l ∀ i = 1, . . . , k and (ri | t ∀ i = 1, . . . , k =⇒ l | t),

and in case k = 2 this holds if and only if

r1, r2 | l and
r1 · r2

l
∈ gcd(r1, r2).

Notation: lcm(r1, . . . , rk) = {l ∈ R | l is a lowest common multiple of r1, . . . , rk}.
1.36 Remark

If R is a PID, then:

g ∈ gcd(r1, . . . , rk) ⇐⇒ 〈g〉 = 〈r1, . . . , rk〉

and

l ∈ lcm(r1, . . . , rk) ⇐⇒ 〈l〉 = 〈r1〉 ∩ . . . ∩ 〈rk〉.

Proof: The proof is an easy exercise using the definition and induction on k.

1.37 Lemma

Let R be an ID.

a. R[x]∗ = R∗.

b. If r ∈ R is irreducible in R, it is irreducible in R[x].

c. If r ∈ R is prime in R, it is prime in R[x].

Proof: a. Clearly, R∗ ⊆ R[x]∗. Let therefore f ∈ R[x]∗. Then there is a g ∈ R[x]

such that f · g = 1, and by the degree formula we have

0 = deg(1) = deg(f · g) = deg(f) + deg(g).

This implies f, g ∈ R, and therefore f ∈ R∗.

b. If r = s · t for s, t ∈ R[x], then by the degree formula in integral domains we

have

0 = deg(r) = deg(s) + deg(t).
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This implies that s and t must be constant polynomials, i.e. s, t ∈ R. But r is

irreducible in R, thus s ∈ R∗ = R[x]∗ or t ∈ R∗ = R[x]∗ and we are done.

c. Let r | s · t =
∑m+n

k=0

(
∑k

l=0 sltk−l

)

·xk where s =
∑m

i=0 six
i, t =

∑n

i=0 tix
i ∈ R[x]

and where we set si = 0 = tj if i > m or j > n. Suppose that r 6 | s and r 6 | t.

Since r ∈ R this implies that there are i, j such that r 6 | si and r 6 | tj. Let i0

respectively j0 be minimal with the property that r 6 | si0 and r 6 | tj0 . Since

r | s · t and r is constant r divides every coefficient of s · t, in particular

r |
i0+j0
∑

l=0

sl · tk−l.

But by the choice of i0 and j0 we know that r divides every summand except

possibly si0 · tj0 , which then implies that r divides this one as well. However, r

is prime and must therefore divide si0 or tj0 in contradiction to the choice of i0

and j0. This finishes the proof.

1.38 Theorem (Lemma of Gauß)

If R is a UFD, then R[x] is a UFD.

Proof: Let 0 6= f =
∑n

i=0 fix
i ∈ R[x] \ R[x]∗ and d ∈ gcd(f0, . . . , fn). Since R is a

UFD and taking Lemma 1.37 into account there are q1, . . . , ql ∈ R irreducible in R

and hence in R[x] such that

(1) d = q1 · · · ql.

We define f ′
i = fi

d
and f ′ = f

d
=

∑n

i=0 f ′
ix

i. Note that then the f ′
i have no common

divisor, i.e.

gcd(f ′
0, . . . , f

′
n) = R∗.

We first of all show that there are irreducible elements p1, . . . , pk ∈ R[x] such that

f = p1 · · · pk by induction on n = deg(f) = deg(f ′). If n = 0 then f = d ∈ R and

we are done by (1). Thus we may assume that n > 0. In case f ′ is irreducible, we

have f = d · f ′ = p1 · · · pk · f ′ is a product of finitely many irreducible polynomials

in R[x]. It remains to consider the case where f ′ is not irreducible. In that case

f ′ = g · h where neither g ∈ R[x]∗ nor h ∈ R[x]∗ is a unit. By the degree formula

over integral domains we have

n = deg(f) = deg(g) + deg(h).

Suppose that deg(g) = 0, then g ∈ R and hence g divides the coefficients of f ′,

i.e. g | f ′
0, . . . f

′
n. But since they do not have a common divisor, this implies g | 1,

i.e. g ∈ R∗ = R[x]∗, in contradiction to our assumption. Thus deg(g) > 0, and

analogously deg(h) > 0, which implies deg(g), deg(h) < n. By induction g and h do
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factorise in a finite product of irreducible elements as well as d does by (1), hence

so does f = d · g · h.

By Proposition 1.34 it remains to show that each irreducible polynomial f ∈ R[x]

is actually prime. We postpone this to Lemma 3.15, since we need the notion of the

quotient field of R which we have not yet introduced.

1.39 Corollary

If K is a field, then K[x1, . . . , xn] is a UFD.

1.40 Corollary

R[x] is a PID if and only if R is a field.

In particular, K[x1, . . . , xn] is not a PID once n ≥ 2.

Proof: If R is a field we have seen in Corollary 1.29 that R[x] is a PID.

For the converse consider the R-algebra homomorphism

ϕ : R[x] → R : f 7→ f(0).

By the Homomorphism Theorem we have R[x]/ ker(ϕ) ∼= R, and since R is an

integral domain this implies that ker(ϕ) must be a prime ideal. However, ker(ϕ) is

not the zero ideal, since x ∈ ker(ϕ), and hence by Proposition 1.30 it is indeed a

maximal ideal. Thus R ∼= R[x]/ ker(ϕ) is a field.

1.41 Theorem

Z[ω] = {a + b · ω | a, b ∈ Z} ≤ C, with ω = 1+
√
−19

2
∈ C, is a PID, but it is not

Euclidean.

The proof of this theorem needs some preparation.

1.42 Proposition

Let R be an ID.

Then R is a PID if and only if there exists a function α : R → N such that

∀ a ∈ R, 0 6= b ∈ R s.t. b 6 | a ∃ u, v ∈ R : α(0) < α(ua − vb) < α(b).

You may consider ua − vb as a greatest common divisor of a and b, so that the

existence of α basically means that the ideal 〈a, b〉 is principle and generated by a

greatest common divisor.

Proof: Let us first assume R is a PID, and hence by Corollary 1.32 it is a UFD.

We now define α : R → N by

α(r) =











0, if r = 0,

1, if r ∈ R∗,

1 + k if r = p1 · · · pk with pi irreducible.
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Given a, b ∈ R with 0 6= b 6 | a we choose g ∈ gcd(a, b). Then by definition

α(0) = 0 < α(g) < α(b),

and by Remark 1.36 we have

〈g〉 = 〈a, b〉.

This, however, implies that g = a · u − b · v for suitable u, v ∈ R.

Let us now assume that the desired function α exists, and let 0 6= I � R be given.

We may choose 0 6= b ∈ I with α(b) minimal, and we claim I = 〈b〉. Suppose there

is some a ∈ I \ 〈b〉, then b 6 | a and by assumption there are u, v ∈ R such that

α(0) < α(ua − vb) < α(b).

In particular, 0 6= ua − vb ∈ I in contradiction to the assumption that α(b) is

minimal. Thus I = 〈b〉.

1.43 Proposition

Let R be a Euclidean ring via ν : R\{0} → N, let 0 6= p ∈ R\R∗ with ν(p) minimal,

and let π : R → R/〈p〉 : a 7→ a be the residue map. Then the following statements

hold:

a. p is prime and K := R/〈p〉 is a field.

b. If a ∈ R, then there are q, r ∈ R such that a = q · p + r with r = 0 or r ∈ R∗.

c. π(R∗) = K∗.

Proof: Let a ∈ R be given. Since R is Euclidean there exists q, r ∈ R such that

a = q · p + r with r = 0 or ν(r) < ν(p). By the choice of p this implies r = 0 or

r ∈ R∗, which proves b..

Moreover, π(a) = π(r) = 0 or π(a) = π(r) ∈ π(R∗) ⊆ K∗, since units are mapped

to units by ring homomorphisms. Since π is surjective we get

K = π(R) = {0} ∪ π(R∗) ⊆ {0} ∪ K∗ = K,

and thus K = {0} ∪K∗, which implies that π(R∗) = K∗, that is c., and that K is a

field. But then 〈p〉 � ·R and p must be prime element, which finally proves a..

1.44 Proof of Theorem 1.41 (see [Bru00] p. 90f.): For a+bω ∈ Z[ω] with a, b ∈
Z we define N : R → N by

N(a + bω) = |a + bω|2 =

(

a +
b

2

)2

+ 19 · b2

4
= a2 + ab + 5b2 ∈ N.

We first of all show that R∗ = {1,−1} = {x ∈ R | N(x) = 1}. For this suppose

that 1 = x · y for x = a + bω, y ∈ R. Then

1 = |x|2 · |y|2
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where both factors are natural numbers. This implies that

1 = |x|2 = N(x) =

(

a +
b

2

)2

+ 19 · b2

4
,

and thus b2 = 0 and
(

a + b
2

)2
= 1, i.e. b = 0 and a ∈ {1,−1}.

We next claim that 2 and 3 are irreducible in R. Suppose that 2 = x · y for

= a + bω, y ∈ R \ R∗, then

4 = |x|2 · |y|2 = N(x) · N(y),

and N(x), N(y) > 1. Both being natural numbers this implies

2 = N(y) = N(x) =

(

a +
b

2

)2

+ 19 · b2

4
.

But then b2 = 0 and hence b = 0, which gives a2 = 2 for an integer a. Thus we

have derived the desired contradiction, and 2 is irreducible. The proof for 3 works

analogously.

Next we show that R is not Euclidean. Suppose R was Euclidean. Then we may

choose p ∈ R as in Proposition 1.43 and we deduce with the notation from that

proposition

|R/〈p〉| = |K| ≤ |R∗| + 1 = 3.

Since R/〈2〉 =
{

0, 1,
√
−19, 1 +

√
−19

}

has four elements we know that p 6= 2.

Thus there are elements q, r ∈ R such that 2 = q · p + r and, since 2 is irreducible,

r 6= 0, which implies that r ∈ R∗ = {1,−1} is a unit. If r = 1, then 1 = q · p in

contradiction to p being prime. If r = −1, then 3 = q · p, and since 3 is irreducible

we get 〈3〉 = 〈p〉. However,

R/〈3〉 =
{

0, 1, 2,
√
−19, 1 +

√
−19, 2 +

√
−19

}

in contradiction to the fact that K has only 3 elements. This shows that R cannot

be Euclidean.

We claim that

(2) ∀ x, y ∈ R : 0 6= y 6 | x ∃ u, v ∈ R : 0 <

∣

∣

∣

∣

u · x

y
− v

∣

∣

∣

∣

2

< 1,

where the calculations are done in C. Note that actually x
y
∈ Q[ω], that is

∃ a′, b′, a, b, q, s ∈ Z with 0 ≤ a < q, 0 ≤ b < s, 1 ∈ gcd(a, q) and 1 ∈ gcd(b, s)

such that
x

y
=

(

a′ +
a

q

)

+

(

b′ +
b

s

)

· ω.

If we now find u′, v′ ∈ R such that

0 <

∣

∣

∣

∣

u′ ·
(

a

q
+

b

s
· ω

)

− v′

∣

∣

∣

∣

< 1,
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then u = u′ and v = v′ + u′ · (a′ + b′ · ω) works, since

u · x
y
−v = u′ ·

(

a

q
+

b

s
· ω

)

+u′ ·(a′+b′ ·ω)−v′−u′ ·(a′+b′ ·ω) = u′ ·
(

a

q
+

b

s
· ω

)

−v′.

We may, therefore, assume that a′ = b′ = 0.

If b = 0, then we are done by u = 1 and v = 0. Thus we may assume b 6= 0.

If q 6 | s, then s · a 6≡ 0 (mod q), and there exists 0 < d < q and c ∈ Z such that

sa = cq + d. Thus
∣

∣

∣

∣

s · x

y
− (c + bω)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

sa

q
+ bω − c − bω

∣

∣

∣

∣

2

=

∣

∣

∣

∣

d

q

∣

∣

∣

∣

2

where the right hand side is strictly between 0 and 1. Thus we are done with u = s

and v = c + bω.

If q | s and s > 2, then, since s and b have no common divisor, there exists an m ∈ Z

such that m · b ≡ 1 (mod s). Thus

ma

q
+

mb

s
· ω =

(

l +
a1

a2

)

+

(

k +
1

s

)

· ω

for suitable l, k, a1, a2 ∈ Z such that
∣

∣

a1

a2

∣

∣ ≤ 1
2
. Setting u = m and v = l + kω we get

∣

∣

∣

∣

u · x

y
− v

∣

∣

∣

∣

2

=

∣

∣

∣

∣

a1

a2

+
1

s
· 1 +

√
−19

2

∣

∣

∣

∣

2

=

(

a1

a2

+
1

2s

)2

+
19

4s2
=

a2
1

a2
2

+
a1

a2s
+

20

4s2

≤ 1

4
+

1

6
+

20

36
=

35

36
< 1,

and we are done.

Finally, if q | s and s = 2, then q = s = 2 and x
y

= ω
2

or x
y

= 1+ω
2

. In the first case

we set u = 1 + ω and v = −2 + ω, in the second case we set u = ω and v = −2 + ω.

So, in any case we have
∣

∣

∣

∣

u · x

y
− v

∣

∣

∣

∣

2

=

∣

∣

∣

∣

−1

2

∣

∣

∣

∣

2

=
1

4
< 1,

and we are done.

We conclude that (2) holds, which implies that α = N is a function as required in

Proposition 1.42, and thus R is a PID.

1.45 Remark

For the following results see [Bru00], Chapter 8–10, and [ScS88], pp. 154ff, p. 168

Exercise 40, p. 167 Exercise 31c. and p. 186 Exercise 23.

a. K = Q[x]/〈f〉 with deg(f) = 2 if and only if K = Q
[
√

d
]

for some squarefree

d ∈ Z \ {0, 1}. If f = x2 + ax + b, then d = a2

4
− b is its discriminant.
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b. If d is such a squarefree number, then Z[ωd] =
{

a ∈ Q
[
√

d
] ∣

∣a is integral over Z
}

for

ωd =

{ √
d, if d ≡ 2, 3 (mod 4),

1+
√

d
2

, if d ≡ 1 (mod 4).

c. Z[ωd] is a UFD if and only if it is a PID.

d. If d ≤ −1, then

(i) Z[ωd] is a UFD if and only if d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

(ii) Z[ωd] is a UFD if and only if d ∈ {−1,−2,−3,−7,−11}.

e. R[x, y]/〈x2 + y2 + 1〉 is a PID, but not Euclidean.

1.46 Remark

We have seen (Theorem 1.41 and Corollaries 1.39 and 1.40) that

R is Euclidean =⇒ R is a PID =⇒ R is a UFD,

and that neither of the converses holds!
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