Mathematik für Informatik 1: Analysis

Abgabetermin: Freitag, 22.12.2023, 10:00

Aufgabe 37:

(a) Bestimme für **zwei** der folgenden Mengen jeweils die Menge aller ihrer Häfungspunkte:

(1)
$$A = \{x \in \mathbb{Q} \mid x^2 < 2\}.$$

(2)
$$B = \mathbb{N}$$
.

(3)
$$C = \left\{ (-1)^n + \left(\frac{-1}{n}\right)^n \mid n \in \mathbb{N} \right\}.$$

- (b) Gib ein Beispiel für eine Menge, die genau drei Häufungspunkte hat.
- (c) Bestimme **zwei** der folgenden Grenzwerte oder zeige, daß sie nicht existieren:

(1)
$$\lim_{x\to 3} \frac{x^3-9x}{x-3}$$
.

(3)
$$\lim_{x\to\infty} \sqrt{\frac{2x^3+5x}{(x+1)^3}}$$
.

(2)
$$\lim_{x\to 5} \frac{2x^4+x^3-3x^2+4}{x^2-5}$$
.

(4)
$$\lim_{x\to\infty}\sqrt{x+\sqrt{x}}-\sqrt{x}.$$

Aufgabe 38:

(a) Entscheide, ob die folgende Funktion in a = -2 stetig ist

$$f: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto egin{cases} rac{4x^2+x+1}{1-x}, & \text{falls } x < -2, \\ |x-1|, & \text{falls } x \geq -2. \end{cases}$$

(b) Bestimme eine reelle Zahl b, so daß die folgende Funktion stetig ist:

$$f: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto \begin{cases} x^2 - b, & \text{falls } x < 0, \\ \sqrt{x} + b, & \text{falls } x \ge 0. \end{cases}$$

Aufgabe* **39:** Es sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ eine Funktion und $(x_n)_{n \in \mathbb{N}}$ eine beschränkte Folge in \mathbb{R} , so daß die Folge $(f(x_n))_{n \in \mathbb{N}}$ konvergiert.

- (a) Zeige durch ein Beispiel, daß die Folge $(x_n)_{n\in\mathbb{N}}$ nicht konvergieren muß.
- (b) Zeige, wenn f stetig und streng monoton ist, dann ist $(x_n)_{n\in\mathbb{N}}$ konvergent.

Aufgabe* **40:** Zeige, ist $f:[0,1] \longrightarrow \mathbb{R}$ eine stetige Funktion mit f(0)=f(1). Zeige, dann gibt es ein $\alpha \in [0,\frac{1}{2}]$ mit $f(\alpha)=f(\alpha+\frac{1}{2})$.

Hinweis, betrachte die Hilfsfunktion $g:\mathbb{R}\longrightarrow\mathbb{R}:x\mapsto f(x)-f(x+\frac{1}{2}).$

Präsenzaufgabe 1: Löse die folgenden Gleichungen für $x \in \mathbb{R}$:

- (a) $\log_2(x) \log_2(x 6) = 3$.
- (b) $4^x + 4 = 2^{x+2} + 2^x$.