Vorkurs Mathematik

Aufgaben zum Themenkomplex Zahlbereiche

1) Die natürlichen, die ganzen, die rationalen und die reellen Zahlen

Aufgabe 1: Kürze die folgenden rationalen Zahlen vollständig:

$$\frac{4}{8}$$
, $-\frac{36}{42}$, $\frac{-39}{81}$, $\frac{15}{-25}$.

Aufgabe 2: Ordne die folgenden rationalen Zahlen der Größe nach an:

$$\frac{9}{11}$$
, $\frac{37}{45}$, $\frac{121}{78}$, $\frac{178}{222}$, $\frac{76}{88}$.

Aufgabe 3: Berechne die folgenden rationalen Zahlen:

$$\frac{18}{17} + \frac{9}{2}$$
, $\frac{11}{5} \cdot \frac{7}{15}$, $\frac{18}{17} - \frac{9}{2}$, $\frac{11}{5} + \frac{7}{15}$.

Aufgabe 4: Es seien $0 \neq a, b \in \mathbb{Z}$ zwei ganze Zahlen. Mit welchen der folgenden Zahlen stimmt $q = \frac{1}{a} - \frac{1}{b}$ für jede Wahl von a und b überein:

$$r = \frac{1}{a - b}$$
, $s = \frac{ab}{a + b}$, $t = \frac{b - a}{ab}$, $u = \frac{a - b}{ab}$.

Aufgabe 5: In einem elektrischen Netzwerk gilt für den Widerstand R zweier hintereinander geschalteter Widerstände R_1 und R_2 (siehe Abbildung 1)

$$R = R_1 + R_2$$
.

Abbildung 1: Hintereinander geschaltete Widerstände $R = R_1 + R_2$

Analog gilt für den Widerstand R zweier parallel geschalteter Widerstände R_1 und R_2 (siehe Abbildung 2)

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
.

Gib eine Formel für den Widerstand R der Schaltung in Abbildung 3 in Form eines Bruches an.

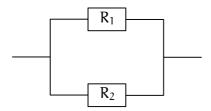


Abbildung 2: Parallel geschaltete Widerstände $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

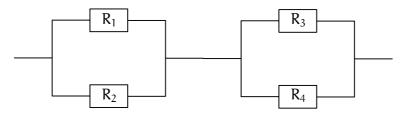


Abbildung 3: Berechne den Gesamtwiderstand der Schaltung.

Aufgabe 6: Rechne nach, daß die Menge $K = \{0, 1\}$ mit der in den folgenden Tabellen definierten Addition und Multiplikation ein Körper ist, d.h. den Körperaxiomen (A1-4), (M1-4) und (DG) genügt:

Zeige außerdem, daß K kein angeordneter Körper sein kann, d.h. es gibt keine Anordung der Zahlen 0 und 1 so, daß für je drei Zahlen $x,y,z\in K$ die folgenden Regeln gelten:

$$x < y \implies x + z < y + z$$

und

$$x < y, 0 < z \implies x \cdot z < y \cdot z.$$

Aufgabe 7: Schreibe die Menge

$$A = \{x \in \mathbb{R} \mid |x - 2| > 0 \text{ und } |x - 1| \le 10\}$$

als Vereinigung von Intervallen.

Aufgabe 8: Finde eine obere und eine untere Schranke für die Menge

$$A = \left\{ \frac{x}{2} - \frac{x^2}{3} + \frac{x^3}{6} \mid x \in [-1, 1] \right\}$$

durch Abschätzen des Betrags

$$\left|\frac{x}{2} - \frac{x^2}{3} + \frac{x^3}{6}\right|.$$

Aufgabe 9: Bestimme Supremum, Infimum, Maximum und Minimum (sofern sie existieren) der folgenden Mengen:

a.
$$A = \{x \in \mathbb{R} \mid |x - 3| > 1\} \cap \{x \in \mathbb{R} \mid x^2 < 16\}.$$

b.
$$B = \left\{ n + \frac{(-1)^n}{n} \mid n \in \mathbb{N} \right\}$$
.

c.
$$C = \left\{ \frac{m+n}{m \cdot n} \mid m, n \in \mathbb{N} \right\}$$
.

Aufgabe 10: Seien $A, B \subseteq \mathbb{R}$ Teilmengen, so daß sup(A) und sup(B) existieren. Wir setzen

$$A + B := \{a + b \mid a \in A, b \in B\}.$$

Begründe, weshalb $\sup(A + B)$ existiert und $\sup(A + B) = \sup(A) + \sup(B)$ gilt.

Aufgabe 11: Zeige, für je zwei reelle Zahlen $x,y \in \mathbb{R}$ mit 0 < x < y gibt es eine natürliche Zahl $n \in \mathbb{N}$, so daß $y < n \cdot x$ gilt.

Aufgabe 12: Zeige, für jede positive reelle Zahl $0 < \varepsilon \in \mathbb{R}$ gibt es eine natürliche Zahl n, so daß $0 < \frac{1}{n} < \varepsilon$.

Aufgabe 13: Zeige, zwischen je zwei verschiedenen reellen Zahlen liegt eine rationale.

Aufgabe 14: Wo liegt der Fehler beim folgenden Beweis für die Aussage 1 = 2?

$$x := 1 \text{ und } y := 2$$

$$\Rightarrow x + y = 3 \qquad | \cdot (x - y)|$$

$$\Rightarrow x^2 - y^2 = 3x - 3y \qquad | + (y^2 - 3x)|$$

$$\Rightarrow x^2 - 3x = y^2 - 3y \qquad | + \frac{9}{4}|$$

$$\Rightarrow x^2 - 3x + \frac{9}{4} = y^2 - 3y + \frac{9}{4} \qquad | \text{ Binomischer Lehrsatz}$$

$$\Rightarrow (x - \frac{3}{2})^2 = (y - \frac{3}{2})^2 \qquad | \sqrt{\dots}|$$

$$\Rightarrow x - \frac{3}{2} = y - \frac{3}{2} \qquad | + \frac{3}{2}|$$

$$\Rightarrow x = y \qquad | \text{ Einsetzen von } x = 1, y = 2$$

$$\Rightarrow 1 = 2$$

Aufgabe 15: Wo liegt der Fehler beim folgenden Beweis für die Aussage 1 = 2?

$$x := 1$$
 $| \cdot x$
 $\Rightarrow x^2 = x$ $| -1$
 $\Rightarrow x^2 - 1 = x - 1$ $| 3$. Binomische Formel
 $\Rightarrow (x - 1) \cdot (x + 1) = x - 1$ $| : (x - 1)$
 $\Rightarrow x + 1 = 1$ $| Einsetzen von x = 1$
 $\Rightarrow 2 = 1$

Aufgabe 16: Zeige, zwei positive reelle Zahlen $x,y \in (0,\infty)$ erfüllen stets die Ungleichung

$$\frac{x}{y} + \frac{y}{x} \ge 2$$
.

Für welche Werte von x und y gilt die Gleichheit?

2) Vollständige Induktion

Aufgabe 17: Zeige durch Induktion nach n, für $1 \neq q \in \mathbb{R}$ und $n \geq 0$ gilt stets

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}.$$

Aufgabe 18: Zeige durch Induktion nach n, für $x \in \mathbb{R}$ mit $x \ge -1$ und $0 \le n \in \mathbb{Z}$ gilt stets

$$(1+x)^n \ge 1 + n \cdot x.$$

Aufgabe 19: Zeige durch Induktion nach n die Formel

$$\sum_{k=1}^{n} k^3 = \frac{n^2 \cdot (n+1)^2}{4}.$$

Aufgabe 20: Zeige, daß Zahlen der Form $n^3 + 5n$ für $n \in \mathbb{N}$ durch 6 teilbar sind.

Aufgabe 21: Beweise die Pascalsche Gleichung

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

für nicht-negative ganze Zahlen $n, k \ge 0$ durch direktes Nachrechnen.

Aufgabe 22: Begründe, weshalb die folgende Gleichung für alle $n \in \mathbb{N}$ richtig ist:

$$\sum_{k=0}^{n} (-1)^k \cdot \binom{n}{k} = 0.$$

3) Die komplexen Zahlen und der Fundamentalsatz der Algebra

Aufgabe 23: Bestimme für die folgenden komplexen Zahlen z den Realteil, den Imaginärteil, das Argument, den Betrag, das komplex Konjugierte und das multiplikative Inverse:

$$z = \frac{4i}{1+i}$$
 bzw. $z = \frac{(2+2i)^7}{(1-i)^3}$.

Aufgabe 24: Berechne für die komplexen Zahlen z = 1 - i und w = 1 + 3i die Zahl

$$\frac{z}{\overline{w}-z^2}$$

Aufgabe 25: Die Zahl $0 \neq z \in \mathbb{C}$ habe das Argument α und den Betrag r. Bestimme Re(z), Im(z), \overline{z} , z^{-1} und z^n für $n \in \mathbb{N}$.

Aufgabe 26: Skizziere in der komplexen Zahlenebene die Mengen

$$A = \{z \in \mathbb{C} \mid \operatorname{Re}(z) + \operatorname{Im}(z) = 1\}$$

und

$$\mathbf{B} = \left\{ z \in \mathbb{C} \mid |z - \mathbf{i}| = |z - 1| \right\}$$

sowie

$$C = \{z \in \mathbb{C} \mid |z - i - 1| < 2\}.$$

Aufgabe 27: Bestimme alle komplexen Zahlen, die der Gleichung

$$\frac{z-3}{z-i} + \frac{z-4+i}{z-1} = 2 \cdot \frac{-1+2i}{z^2 - (1+i) \cdot z + i}$$

genügen.

Aufgabe 28: Zerlege die Polynomfunktion $f(x) = x^4 + x^3 + 2x - 4$ in Linearfaktoren.

Aufgabe 29: Bestimme Real- und Imaginärteil der Lösungen der beiden quadratischen Gleichungen

$$z^2 - 4iz + 4z - 8i = 0$$

und

$$z^2 + 2 \cdot (1 + i) \cdot z = 1 - 2i$$
.

Aufgabe 30: Zeige, daß eine Polynomfunktion vom Grad $\mathfrak n$ in $\mathbb C$ höchstens $\mathfrak n$ verschiedene Nullstellen haben kann.