Elementare Zahlentheorie

Abgabetermin: Donnerstag, 17/04/2008, 12:00

Fernstudenten reichen alle Aufgaben ein und ersetzen den hier angegebenen Abgabetermin durch den ihnen mitgeteilten. Für alle anderen Studenten sind die die Aufgaben 3 und 4 Präsenzaufgaben, deren Lösung nicht eingereicht werden muß.

Aufgabe 1: Es seien $g, z_1, \ldots, z_k \in \mathbb{Z}$, $k \geq 2$. Wir nennen g einen *größten gemeinsamen Teiler* von z_1, \ldots, z_k , wenn

- $g \mid z_i$ für alle i = 1, ..., k und
- für alle $h \in \mathbb{Z}$ mit $h \mid z_i$ für alle i = 1, ..., k gilt $h \mid g$.

Mit $ggT(z_1,...,z_k)$ bezeichnen wir die Menge der größten gemeinsamen Teiler von $z_1,...,z_k$.

Zeige:

- a. $g \in ggT(z_1, ..., z_k)$ genau dann, wenn $g \in ggT(ggt(z_1, z_2), z_3, ..., z_k)$.
- b. $g \in ggT(z_1, ..., z_k)$ genau dann, wenn $\langle g \rangle_{\mathbb{Z}} = \langle z_1, ..., z_k \rangle_{\mathbb{Z}}$.
- c. Ist $g\in ggT(z_1,\ldots,z_k),$ so ist $ggT(z_1,\ldots,z_k)=\{g,-g\}.$
- d. $\prod_{p\in\mathbb{P}} \mathfrak{p}^{min\{n_p(z_1),\dots,n_p(z_k)\}} \in ggT(z_1,\dots,z_k).$

Aufgabe 2: Ist $f \in \mathbb{Z}[t]$ ein Polynom und sind $a, b, n \in \mathbb{Z}$ ganze Zahlen mit $a \equiv b \pmod{n}$, so ist $f(a) \equiv f(b) \pmod{n}$.

Aufgabe 3: Sind $z_1, \ldots, z_n \in \mathbb{Z}$ mit $z_i \equiv 1 \pmod{4}$, so gilt $z_1 \cdots z_n \equiv 1 \pmod{4}$.

Aufgabe 4: Ist (p, p + 2) ein Primzahlzwillingspaar mit $p \ge 5$, so ist $p \equiv 5 \pmod{6}$.