Elementare Zahlentheorie

Abgabetermin: Mittwoch, 28/05/2014, 10:00

Aufgabe 13: Es sei φ die eulersche φ -Funktion. Welche Aussagen sind wahr? (Bitte begründen!)

- a. Für alle $a, b \in \mathbb{N}$ gilt $a > b \Rightarrow \varphi(a) > \varphi(b)$.
- b. Für alle $a \in \mathbb{N}$ gilt $\phi(2a) \ge \phi(a)$.
- c. Für alle $a \in \mathbb{N}$ gilt $\varphi(a) \mid \varphi(a^2)$.
- d. Es gibt ein $k \in \mathbb{N}$, so dass für alle $n \in \mathbb{N}$ gilt $\varphi(n+k) > \varphi(n)$.

Aufgabe 14:

a. Zeige, daß jede Mersennsche Zahl $M_q=2^q-1$ mit $q\in\mathbb{P}$ eine Pseudoprimzahl zur Basis 2 ist, d.h.

$$M_{q} \mid (2^{M_{q}} - 2).$$

b. Zeige: Sind für $\mathfrak{m} \in \mathbb{N}$ die Zahlen $6\mathfrak{m}+1$, $12\mathfrak{m}+1$ und $18\mathfrak{m}+1$ Primzahlen, so ist

$$n = (6m + 1)(12m + 1)(18m + 1)$$

eine Carmichael-Zahl, d.h. $a^n \equiv a \pmod{n}$ für alle $a \in \mathbb{Z}$.

Aufgabe 15: Zeige: Läßt sich eine natürliche Zahl n auf zwei verschiedene Arten als Summe zweier Quadratzahlen schreiben, das heißt, gilt $n = x^2 + y^2 = z^2 + w^2$ mit $\{x^2, y^2\} \neq \{z^2, w^2\}$, so ist n keine Primzahl.

Hinweis: Zeige:

- a. O.B.d.A. kann man $x \equiv z \pmod{2}$ und $y \equiv w \pmod{2}$ voraussetzen.
- b. Die Gleichungen

$$\frac{x+z}{2} = ac$$
, $\frac{z-x}{2} = bd$, $\frac{y+w}{2} = cb$, $\frac{y-w}{2} = ad$

haben ganzzahlige Lösungen a, b, c, d.

c.
$$n = (a^2 + b^2)(c^2 + d^2)$$

Aufgabe 16: Es sei $2 \neq p \in \mathbb{P}$, $k \in \mathbb{Z}_{>0}$ und $a \in \mathbb{Z}$ eine Primitivwurzel modulo p^k . Zeige:

- a. Ist a ungerade, so ist a eine Primitivwurzel modulo $2 \cdot p^k$.
- b. Ist a gerade, so ist $a + p^k$ eine Primitivwurzel modulo $2 \cdot p^k$.