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Abstract. In this paper, we study tropicalisations of singular surfaces in
toric threefolds. We completely classify singular tropical surfaces of maximal-
dimensional geometric type, show that they can generically have only finitely

many singular points, and describe all possible locations of singular points.
More precisely, we show that singular points must be either vertices, or gener-
alized midpoints and barycentres of certain faces of singular tropical surfaces,
and, in some case, there may be additional metric restrictions to faces of sin-

gular tropical surfaces.

1. Introduction

This paper studies singularities of tropical surfaces in R3. The question what
the analogue of a singularity in the tropical world should be is quite natural to ask
and has consequently interested several authors recently ([3], [4], [10]). The fact
that this question is hard to answer in general makes it even more intriguing. We
define a point p in a tropical surface S to be singular if there is an algebraic surface
S̃, defined over the Puiseux-series with coefficients in C, whose tropicalisation is
S and which is singular at a point p̃ ∈ S̃ that tropicalises to p. Given a non-

degenerate lattice polytope ∆ ∈ R3, consider the family Sing(∆) ⊂ P#(∆∩Z
3)−1 of

singular hypersurfaces in the toric threefold defined by ∆ whose defining equations
have Newton polytope ∆. We assume that ∆ is non-defective, i.e. that Sing(∆)

is a hypersurface in P#(∆∩Z
3)−1, defined by a polynomial which is then called

the discriminant of ∆. The tropicalisation Trop(Sing(∆)) of Sing(∆) has been
studied in [3] and is called the tropical discriminant. While a general member of
Sing(∆) has exactly one singular point, namely a node, an analogous statement
is not true in tropical geometry. The reason is that for a given singular tropical
surface, there can be several singular tropical surfaces tropicalising to it, but such
that the respective singular points tropicalise to different points in the tropical
surface. Consequently, there are also general tropical surfaces with infinitely many
singularities. The subset of singular points of a tropical surface does not seem to
have any nice structure, in particular it is not a tropical subvariety. Examples 4.5
and 4.3 of [4] show tropical curves with infinitely many resp. two singular points.
We concentrate on singular tropical surfaces of maximal-dimensional geometric type
(see Definition 2.2 in Subsection 2.3 for a precise description). These are the singular
tropical surfaces whose parameter space is of the maximal possible dimension equal
to #(∆ ∩ Z3) − 2, which, in particular, equals the dimension of the parameter
space of singular algebraic surfaces with Newton polygon ∆. Specifically, such
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tropical surfaces have only finitely many singular points. We completely classify
these singular tropical surfaces and describe possible locations of singular points.

Our study is closely related to [4], which deals with singular tropical hypersur-
faces of any dimension. There, a more algebraic point of view is taken however: the
main result is the description of tropical singular points in terms of Euler deriva-
tives, i.e. tropical equations are given which a point must satisfy to be singular. We
concentrate more on the geometry of singular tropical surfaces.

Our paper can be viewed as a sequel to [10], where we studied tropical plane
curves with a singular point. The main result of [10] is the classification of singular
tropical curves of maximal-dimensional geometric type. A singular point of a tropi-
cal curve of maximal-dimensional geometric type is either a “crossing” of two edges,
or a three-valent vertex of multiplicity 3, or it is a point on an edge e of weight two
which has equal distance to the two vertices of e (or which satisfies a similar metric
condition respectively). To derive this result, we used the following methods: we
considered the family of algebraic curves in a toric surface with a singularity in a
fixed point. This family is defined by linear equations, and so its tropicalisation is
a Bergman fan which can be described in terms of weight classes of flags of flats
of the corresponding matroid ([6], [1]). We studied the possible weight classes and
classified the corresponding tropical curves. Fixing a different point in the torus
yields a shift of the Bergman fan (see Remark 3.1 and 3.2 of [10]).

Here, we apply the same methods to the family of algebraic surfaces in a toric
threefold with a singularity in a fixed point. While the basic ideas we use are the
same as in [10], the classification becomes much more complicated and we have
to establish and use various facts about lattice polytopes. Also, we concentrate
purely on tropical surfaces with only finitely many singularities (contrary to our
classification in the curve case in [10]). Our main result is the classification in
Theorem 1.2 below. Such a classification is not possible in higher dimensions (see
Remark 1.6). Theorem 1.1 tells us for which tropical surfaces there are only finitely
many singularities. For more details and notation, see Section 4.

Theorem 1.1
Let ∆ ⊂ Rn be a non-degenerate convex lattice polytope and denote by A = ∆∩Zn

the lattice points of ∆. Let Fu(x) = maxm∈A{um+m ·x}, x ∈ Rn, define a generic
(see Definition 3.6) singular tropical hypersurface S. Assume the dual marked sub-
division corresponds to a cone of codimension c in the secondary fan. Then the set
of singular points in S is a union of finitely many polyhedra of dimension c − 1.

In the following classification below, we thus want to restrict to the case c = 1 of
generic tropical surfaces S whose dual marked subdivision corresponds to a cone of
codimension 1 in the secondary fan. (Not all cones of codimension 1 in the secondary
fan correspond to singular tropical surfaces. We do not give a complete classification
but restrict to cones of maximal-dimensional geometric type.) It follows that the
dual marked subdivision contains a unique circuit and that every marked polytope
in the subdivision which does not contain the circuit is a simplex (see Remark 2.1).
We can conclude from Lemma 3.1 of [4] that every singular point of S is contained
in the cell of S dual to the circuit.
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In addition, we make the assumption that the tropical surface is of maximal-
dimensional geometric type (see Definition 2.2 in Subsection 2.3). In this case, the
singular tropical surface uniquely defines a codimension one cone of the secondary
fan, and, in the dual marked subdivision, all lattice points of ∆ are marked. Our
main result is a complete classification of such singular tropical surfaces and of
possible locations of their singular points.

Notice that some codimension 1 cones of the secondary fan do not appear in
our classification: these correspond to singular tropical surfaces which are not of
maximal-dimensional geometric type. In this case the cone cannot be uniquely
restored out of the tropical surface, and the singular locus has positive dimension.

In what follows we will usually consider polytopes only up to integral unimodular
affine transformations which we refer to as IUA-equivalence.

Theorem 1.2
Let Fu = max(i,j,k)∈A{u(i,j,k) + ix + jy + kz} define a singular tropical surface
S. We assume that S is generic (see Definition 3.6) and dual to a marked subdi-
vision T = {(Q1,A1), . . . , (Qk,Ak)} (see Subsection 2.3) of maximal-dimensional
geometric type. Assume the dual subdivision corresponds to a cone of codimension
1 in the secondary fan. Then every marked polytope (Qi,Ai) in T which does not
contain the circuit is a simplex, and S contains only finitely many singular points.
Their possible locations and dual polytopes, classified up to IUA-equivalence, are as
follows:

(E)(A) (B) (C) (D)

Figure 1. The possible circuits.

(a) If the circuit is of dimension 3 (Cases (A) and (B) in Figure 1), the dual
cell is a vertex V of S and this vertex is the only singular point.

(a.1): Either V is adjacent to six edges and nine 2-dimensional polyhedra.
Then the dual polytope is IUA-equivalent to a pentatope with vertices
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, p, q) with p and q coprime
(Case (A) in Figure 1, see also Figure 2).

(a.2): Or V is adjacent to four edges and six 2-dimensional polyhedra,
just as a smooth vertex (Case (B) in Figure 1, see also Figure 3). How-
ever, if we define the multiplicity of a vertex of a tropical hypersurface
analogously to the case of tropical curves as the lattice volume of the
corresponding polytope in the dual subdivision, then it follows that V is
a vertex of higher multiplicity. More precisely, the multiplicity can be
4,5,7,11,13,17,19 or 20. The dual is IUA-equivalent to a tetrahedron
with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and, resp., (3, 3, 4), (2, 2, 5),
(2, 4, 7), (2, 6, 11), (2, 7, 13), (2, 9, 17), (2, 13, 19), or (3, 7, 20).

(b) If the circuit is of dimension 2 (Cases (C) and (D) in Figure 1), the dual
cell is an edge E. We have the following cases:
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Figure 2. Case (a.1), a singular tropical surface dual to (A) with
the singular point marked.

Figure 3. Case (a.2), a singular tropical surface dual to (B) with
the singular point marked.

(b.1): The dual of E is IUA-equivalent to a triangle with vertices ma =
(0, 0, 0), mc = (0, 1, 2) and md = (0, 2, 1), i.e. E is adjacent to three
2-dimensional cells of S (Case (C) in Figure 1). Each end vertex of
E is adjacent to four edges and six 2-dimensional polyhedra, just as a
smooth vertex.

(b.1.1): E is bounded and there is a singularity at the midpoint of E or
at points which divide E with the ratio 3 : 1 (see Figure 4). Or, E is
unbounded and there is a singularity whose distance from the vertex of
E depends on six coefficients of the tropical polynomial (see Equation
(2) in Subsection 4.3.2).

(b.1.2): A bounded edge E admits finitely many (bounded or unbounded)
extensions to a virtual edge with a singularity at the positions described
in (b.1.1) (see Figure 5). (Subsection 4.3.2 explains the term virtual
edge).

(b.2): E is dual to a quadrangle, i.e. adjacent to four 2-dimensional cells
of S (Case (D) in Figure 1, see also Figure 6). E must be bounded and
its end vertices are each adjacent to five edges and eight 2-dimensional
cells. S contains a unique singular point which is the midpoint of E.

(c) If the circuit is of dimension 1 (Case (E) in Figure 1), then the dual is a
2-dimensional cell of S.
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Figure 4. A singular point which divides the edge E either in the
midpoint or with ratio 3 : 1, and dual subdivisions (case (b.1.1)).

(c.1) If this cell is a triangle or trapeze, there is a singular point at the weighted
barycentre resp. generalised midpoint, see Subsection 4.5 below (for an im-
age see Example 1.3).

(c.2) An arbitrary 2-dimensional cell admits finitely many extensions to a triangle
or a trapeze, with a singularity at the position described in (c.1).

Subsection 4.5 referred to in statement (c) of Theorem 1.2 contains a classifica-
tion of the possible shapes of the cell dual to the circuit and explains the terms
weighted barycentre and generalised midpoint.

Example 1.3
A tropical surface S can have several singularities, since there may be several sin-
gular surfaces tropicalising to S with different images for their singular point. We
give here an example for this behaviour. Consider the polynomials

f = (1−3t5 −3t8)+(−2+ t5) ·z + z2 + t8 ·
1

xy
+(t5 + t8) ·y +(2t5 + t8) ·x− t5 ·x2yz
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Figure 5. A tropical surface with a singularity as in case (b.1.2)
and its dual subdivision. The edge with the singular point can
be extended to an unbounded edge containing only the vertex V .
The singular point is at distance d from V , where d depends on
the coefficients involving the two vertices V and V ′.

Figure 6. Case (b.2), a dual subdivision with circuit (D) and the
corresponding singular tropical surface with the singular point
marked.

and

g = (1− 3t6 + 3t8)− (2 + t8) · z + z2 + t8 ·
1

xy
+ (t5 − t7) · y + (t5 − 2t7) ·x + t5 ·x2yz

over the field of Puiseux series. They both tropicalise to the tropical polynomial

Fu = max{0, z, 2z,−8 − x − y,−5 + y,−5 + x,−5 + 2x + y + z}

with u = (0, 0, 0,−8,−5,−5,−5) and define thus the same tropical surface S. More-
over, both V (f) and V (g) are singular, however, V (f) is singular in (1, 1, 1) which
tropicalises to G = (0, 0, 0), while V (g) is singular in (t, t, 1) which tropicalises to
H = (−1,−1, 0). Thus S has two singular points on the quadrangle dual to the
circuit formed by (0, 0, 0), (0, 0, 1), and (0, 0, 2). The quadrangle is shown in Figure
7, and G = 1

3 · (A + B − E) and H = 1
3 · (C + D + E) are weighted barycentres of

the vertices A and B respectively C and D with the virtual vertex E in the sense of
Theorem 1.2 and Subsection 4.5 (see also Remark 3.7 and Examples 4.5 and 4.7).
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Figure 7. Two singular points on a tropical surface as weighted barycentres.

Theorem 1.2 gives necessary conditions for the geometry of a singular tropical
surface. We can also formulate a sufficient condition, which follows from Lemma
2.4 and the classification:

Theorem 1.4
Let Fu = max(i,j,k)∈A{u(i,j,k) + ix + jy + kz} define a tropical surface S dual to a
marked subdivision of maximal-dimensional geometric type. Assume that the dual
subdivision corresponds to a cone of codimension 1 in the secondary fan, and its
unique circuit is one of the IUA-types shown in Figure 1. Then S is a singular
tropical surface if

• either the circuit is of type (A) or (B),
• or the circuit is of type (C), (D), or (E) and it does not lie on the boundary

of ∆,
• or the circuit is of type (C), lies on ∂∆ and it is the base of a pyramid P

of the dual subdivision such that vol(P ) = 9 and P $ ∆,
• or the circuit is of type (E), lies on ∂∆, and ∆ contains 3 more points as

described in Proposition 4.4 below, or 4 more points as described in Section
4.6 below.

Furthermore, let p ∈ S be a point in the cell dual to the circuit, and assume p
satisfies conditions (a), (b) or (c) of Theorem 1.2 above. Then S is the tropicaliza-
tion of an algebraic surface with a singularity tropicalizing to p if and only if after
shifting S such that p becomes the origin (and accordingly adding lineality vectors
to the coefficients u such that they become equal along the circuit, see Section 3) the
flag of subsets F(u) (see Subsection 2.4) either is a flag satisfying the conditions of
Lemma 2.4, or is in the boundary of such a flag.

Note that Theorems 1.2 and 1.4 together give a complete classification of maximal-
dimensional geometric tropical surfaces and their singular points, and both the
necessary and sufficient criteria are easy to verify in any concrete example.

For circuits of type (C), the singularity condition may impose non-local geometric
conditions. Non-local here means that they involve cells of the tropical surface
which are not faces of the cell dual to the circuit. The following example presents
such a situation.
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Example 1.5
Let us consider the point configuration A with ma = (0, 0, 0), mb = (0, 1, 1), mc =
(0, 1, 2), md = (0, 2, 1), me = (1, 1, 1), mf = (3, 0, 2) and mg = (−1, 1, 0), and a
tropical surface S defined by a tropical polynomial Fu, u = (ua, ub, . . . , ug). We
assume that ua = ub = uc = ud ≥ ue, uf , ug, or equivalently, we assume that the
edge E dual to the circuit satisfies y = z = 0. From Theorem 1.2 and Subsection
4.3.2 can conclude that S can be singular at the point p which divides E with ratio
3 : 1, or at the point q whose position is determined by Equation (2), or at the

point r with coordinates (
ug−ue

2 , 0, 0). (The point r is the midpoint of an extension
of E to a virtual edge, see Subsection 4.3.2.) For the points q and r, the position
of the singular point is not locally determined, i.e. it is not determined purely by
the linear forms in Fu corresponding to the part of the subdivision which is dual
to the edge E and its end points, but it involves the vertex V ′ of S determined by
the polytope ma,md,me,mf (see also Figure 5).

We now want to specify the sufficient conditions we observe in Theorem 1.4 in
this situation in order to decide which of the points p, q or r is a singular point
of the tropical surface. If we move p to the origin, this corresponds to adding the
vector

ue−uf

2 · (0, 0, 0, 0, 1, 3,−1) to the coefficient vector (ua, ub, uc, ud, ue, uf , ug).
The new coefficients satisfy the conditions of Lemma 2.4 if and only if the new g-
coefficient is smaller than the new e and f -coefficients which became equal. This is
the case if and only if 2ue > ug + uf . Moving the point r to the origin corresponds

to adding the vector
ug−ue

2 · (0, 0, 0, 0, 1, 3,−1). The new coefficients satisfy the
conditions if and only if the new f -coefficient which equals is smaller than the new
g and e-coefficients, which again is the case if and only if 2ue > ug + uf . Thus S is
singular at both points p and r if and only if 2ue ≥ ug + uf .

Moving the point q to the origin corresponds to adding the vector
ug−uf

2 ·
(0, 0, 0, 0, 1, 3,−1) to the coefficient vector. The new coefficient vector satisfies the
conditions of Lemma 2.4 if and only if 2ue < ug + uf . Thus q is a singular point of
S if and only if 2ue ≤ ug +uf . If 2ue = ug +uf then q = r and the coefficient vector
is in the boundary of three weight classes satisfying the conditions of Lemma 2.4.
In any case, we either have one or two singular points, depending on the coefficients
of u.

Remark 1.6
The classification is closely related to the study of ∆-equivalence classes of marked
subdivisions (see Section 11.3 of [8]), since by Theorem 1.1 of [3], the tropical
discriminant (which equals the codimension one subfan of the secondary fan that
groups maximal dimensional cones of the secondary fan into ∆-equivalence classes)
equals the Minkowski sum of the tropicalisation of the family of curves with a
singularity in a fixed point and its lineality space. This explains why the dual
marked subdivisions of maximal-dimensional geometric singular tropical surfaces
correspond to codimension one cones of the secondary fan which separate two non-
∆-equivalent maximal cones (see 11.3.10 of [8] for the smooth case): understanding
the combinatorial types of singular tropical hypersurfaces is equivalent to under-
standing ∆-equivalence classes. Since understanding ∆-equivalence classes combi-
natorially is an open problem for dimension larger than 3, this connection restricts
further generalizations of Theorems 1.2 and 1.4 to higher dimensions.
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This paper is organised as follows. In Section 2 the basic notions will be intro-
duced, most prominently the tropicalisation Trop(Ker(A)) of the family of surfaces
in a given toric threefold which are singular at (1, 1, 1). We also explain how
Trop(Ker(A)) comes in a natural way with a fan structure induced by the matroid
associated to A, and we describe the full-dimensional cones of this fan as weight
classes associated to flags of flats (see Lemma 2.4). It is well known from [3] that
the secondary fan of the point configuration corresponding to A is the Minkowski
sum of Trop(Ker(A)) and the lineality space. In Section 3 we reconsider how the
Minkowski sum of a cone in Trop(Ker(A)) with the lineality space can lie in cones
of the secondary fan, and we use this to introduce the notion of a generic singular
surface as well as to prove Theorem 1.1. Section 4 is devoted to the classification of
generic singular tropical surfaces of maximal-dimensional geometric type, and the
classification works along the classification of weight classes in Lemma 2.4. For the
classification also polytopes with certain properties have to be classified, and the
corresponding classification results can be found in Section 4 too.

1.1. Acknowledgements. We would like to thank Christian Haase for useful dis-
cussions. The images were obtained with the aid of Polymake [7], Javaview [13],
jReality [9], tropicalinsect [2], xfig and texdraw. The authors were supported by
the Hermann-Minkowski Minerva Center for Geometry at the Tel Aviv University,
and by the DFG-grant MA 4797/3-1 as part of the priority program SPP 1489.
The third author was also supported by the Israeli Science Foundation grant no.
448/09. We would like to thank an anonymous referee for valuable comments on a
first draft of this paper.

2. Notations and basic facts

In this section, we fix notations and collect basic properties of the family of
surfaces with a singularity in a fixed point and its tropicalisation, the Bergman
fan of the corresponding linear ideal. The content of this section is parallel to
Sections 1, 2 and 3.1 of [10], only now we deal with surfaces instead of curves. We
omit proofs in this section, since they are all straightforward generalisations of the
corresponding statements in [10].

2.1. The family of surfaces with a singularity in a fixed point. Fix a
non-degenerate convex lattice polytope ∆ ⊂ R3 and denote by A = ∆ ∩ Z3 =
{m1, . . . ,ms} the lattice points of ∆. For any field K there is a toric threefold
TorK(∆) associated to ∆ and it comes with the tautological line bundle L∆ gener-
ated by the global sections {xiyjzk : (i, j, k) ∈ A}. The torus (K∗)3 is embedded
in TorK(∆) via

ΨA : (K∗)3 −→ PA
K

: (x, y, z) 7→
(

xiyjzk | (i, j, k) ∈ A
)

and inside the torus the elements in the linear system |L∆| are defined by the
equations

fa =
∑

(i,j,k)∈A

a(i,j,k) · x
i · yj · zk = 0

with a = (a(i,j,k) | (i, j, k) ∈ A) ∈ (PA
K)∗. |L∆| contains a nonempty linear subsys-

tem Sing
p
(∆) of surfaces with a singularity at the point p = (1, 1, 1). The equations
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for this subsystem are the linear equations

fa(p) = 0,
∂fa

∂x
(p) = 0,

∂fa

∂y
(p) = 0,

∂fa

∂z
(p) = 0,

or equivalently we can say that the family Sing
p
(∆) is the kernel of the 4×s matrix

A =

(

1 . . . 1
m1 . . . ms

)

.

Notice that A is just the matrix of the point configuration A, after raising the
points to the {t = 1}-plane in R4, if we choose the coordinates (t, x, y, z) on R4.

2.2. Tropicalisations. Let K denote the field of Puiseux series and val the val-
uation sending a Puiseux series to the smallest exponent. For an ideal I ⊂
K[x±

1 , . . . , x±
n ] = K[x±] determining a variety V = V (I) ⊂ (K∗)n we define the

tropicalisation of V to be

Trop(V ) := {(− val(x1), . . . ,− val(xn)) | (x1, . . . , xn) ∈ V (I)},

i.e. we map V componentwise with the negative of the valuation map and take the
topological closure in Rn.

We consider tropicalisations in two situations:

• The tropicalisation of Sing
p
(∆) = ker(A): The linear space V = ker(A)

is defined by linear equations over Q. Trop(V ) is the so-called Bergman
fan of I ([6], [1]). We will study the Bergman fan Trop(ker(A)) further in
Subsection 2.4. Note, since the linear generators of A are homogeneous,
we will consider Trop(V ) modulo the vector space spanned by (1, . . . , 1).
That is, we consider Trop(Sing

p
(∆)) = Trop(Ker(A)) as a fan in Rs−1 =

RA/(1, . . . , 1).
• The tropicalisation of a surface V (fa) with a ∈ Sing

p
(∆): This is an ex-

ample of a tropical hypersurface. If V is a hypersurface defined by f =
∑

amx
m, then its tropicalisation equals the locus of non-differentiability of

the tropical polynomial

trop f : Rn −→ R : x 7→ max{− val(am) + m · x}

by Kapranov’s Theorem (see [5, Theorem 2.1.1]).

Let us first study the hypersurface case more closely.

2.3. Tropical hypersurfaces and dual marked subdivisions. Tropical hyper-
surfaces are dual to marked subdivisions T = {(Q1,A1), . . . , (Qk,Ak)} (where the
Qi are polytopes and the Ai marked integer points, see [8, Definition 7.2.1] resp.
[10, Section 2]). We define the type of a marked subdivision to be the subdivision,
i.e. the collection of Qi without the markings.

For a finite subset A of the lattice Zd we denote by RA the set of vectors indexed
by the lattice points in A. A point u ∈ RA induces a regular (or coherent) marked
subdivision of ∆ by considering the convex hull of

{

(m,um)
∣

∣ m ∈ A} ⊂ Rd ×R (1)

in Rd+1, and projecting the upper faces onto Rd. A lattice point m is marked if the
point (m,um) is contained in one of the upper faces. We say two points u and u′ in
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RA are equivalent if and only if they induce the same regular marked subdivision
of ∆. This defines an equivalence relation on RA whose equivalence classes are the
relative interiors of convex cones. The collection of these cones is the secondary fan
of ∆.

Regular marked subdivisions of ∆ are dual to tropical hypersurfaces (see e.g.
[12, Prop. 3.11]). Given a point u ∈ RA it defines a tropical hypersurface SF as
the locus of non-differentiability of the tropical polynomial

Fu = max{um + m · x | m ∈ A},

and it defines a regular subdivision of ∆. Each k-dimensional polytope in the
subdivision is dual to a d − k-dimensional orthogonal polyhedron of the tropical
hypersurface.

For tropical surfaces dual to a marked subdivision of a polytope in R3, this
means more precisely:

• each 3-dimensional polytope in the subdivision is dual to a vertex of the
tropical surface;

• each 2-dimensional face in the subdivision is dual to an edge of the tropical
surface, which is perpendicular to the plane spanned by the 2-dimensional
face;

• each edge of the subdivision is dual to a perpendicular 2-dimensional poly-
hedron of the tropical surface. The weight of a 2-dimensional polyhedron
of the tropical surface is defined to be #(e ∩ Z3) − 1, where e is the dual
edge in the marked subdivision.

The duality implies that we can deduce the type of the marked subdivision from
the tropical hypersurface SF , but not the markings. To deduce the markings, we
need to know the coefficients um.

Obviously, the vector (1, . . . , 1) is contained in the lineality space of the secondary
fan. Therefore we can mod out this vector and consider the resulting fan in Rs−1 =
RA/(1, . . . , 1) with s = #A. We have seen above that every point u in RA defines
a tropical hypersurface via the tropical polynomial Fu = max{um + m · x}. Of
course, adding 1 to each coefficient um does not change the tropical hypersurface
associated to this polynomial. Hence if we consider RA as a parametrising space
for tropical hypersurfaces, it makes sense to mod out the linear space spanned by
(1, . . . , 1), and we will do so in what follows. By abuse of notation, we call the fan
in Rs−1 that we get from the secondary fan in this way also the secondary fan.

The identification of RA with Rs, s = #A, is done by fixing an ordering of the
elements of A, say m1, . . . ,ms. When referring to an element u ∈ RA = Rs we will
sometimes refer to the coordinates of u as um with m ∈ A and sometimes simply
as ui with i = 1, . . . , s. This should not lead to any ambiguity.

Remark 2.1
A cone in the secondary fan of codimension one contains exactly one circuit, i.e.
a set of lattice points that is affinely dependent but such that each proper subset
is affinely independent. A circuit in 3-space consists either of the 5 vertices of a
pentatope such that each subset of 4 vertices spans the space (A), or of the four
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vertices of a simplex and an interior point (B), or of 4 points in a plane as in (C)
resp. (D), or of 3 points on a line (E), as depicted in Figure 8.

(E)(A) (B) (C) (D)

Figure 8. Circuits in 3-space.

Definition 2.2
Given a tropical surface S, we have seen above that it is dual to a type α =
{Q1, . . . , Qk} of a marked subdivision. We call α also the type of the tropical
surface. We can parametrise all tropical surfaces of a given type by an unbounded
polyhedron in R3·v, where v denotes the number of vertices of S. We associate
a point in R3·v to a tropical surface by collecting all coordinates of vertices. The
polyhedron is defined by equations and inequalities that we can deduce from the
type and that tell us which vertices are connected by an edge of which direction. We
define the dimension dim(α) of a type α to be the dimension of this parametrising
polyhedron. If the tropical surface S is singular and dim(α) = #(∆∩Z3)−2, which
is the maximal possible value for singular tropical surfaces with Newton polytope
∆, we say that S is of maximal-dimensional geometric type.

For the following lemma recall that we consider the secondary fan of ∆ as a fan
in RA/(1, . . . , 1).

Lemma 2.3
Given a marked subdivision T = {(Ql,Al)} of ∆ of type α, we have

dim(α) ≤ dim(CT ),

where CT denotes the cone of the secondary fan corresponding to T . Equality holds
if and only if in T all lattice points of ∆ are marked, i.e. if

⋃

l Al = ∆ ∩Z3.

The proof is analogous to Lemma 2.5 of [10].

Since many tropical polynomials can induce the same tropical surface, the sec-
ondary fan is not the parameter space for tropical surfaces. However, singular
tropical surfaces of maximal-dimensional geometric type are parametrized by the
union of (the interior of) codimension one cones of the secondary fan which corre-
spond to dual marked subdivisions with all lattice points marked. This feature also
explains our interest in singular tropical surfaces of maximal-dimensional geometric
type.

2.4. The tropicalisation of Sing
p
(∆) = ker(A). We use the following known

results about the tropicalisation of linear spaces ([18], § 9.3, [6], [1]). The trop-
icalisation of the linear space ker(A) depends only on the matroid M associated
to A as follows: we define M by its collection of circuits, which are minimal sets
{i1, . . . , ir} ⊂ {1, . . . , s} such that the columns bi1 , . . . , bir

of a Gale dual B of A



TROPICAL SURFACE SINGULARITIES 13

are linearly dependent. A Gale dual is a matrix B whose rows span the kernel of
A. Given u ∈ Rs, let F(u) denote the unique flag of subsets

∅ =: F0 $ F1 $ . . . $ Fk $ Fk+1 := {1, . . . , s}

such that
ui < uj ⇐⇒ ∃ l : i ∈ Fl−1 and j 6∈ Fl−1.

In particular,
ui = uj ⇐⇒ ∃ l : i, j ∈ Fl \ Fl−1.

The weight class of a flag F is the set of all u such that F(u) = F .

A flag F is a flag of flats of the Gale dual B of A respectively of the associated
matroid M if the linear span of the vectors {bj | j ∈ Fi} contains no bk with k /∈ Fi.
As before, the vectors bj denote the columns of B. It follows from Theorem 1 of
[1] resp. Theorem 4.1 of [6] that the Bergman fan of a matroid M is the set of all
weight classes of flags of flats of M .

As a consequence, we can study Trop(ker(A)) by studying weight classes of flags
of flats of a Gale dual of A. Note that since A is a 4 × s-matrix, maximal flags of
flats can be identified with flags of s − 4 subspaces Vi ⊂ Rs−4:

{0} $ V1 $ . . . $ Vs−4,

where each Vi is generated by a subset of the column vectors bj of the Gale dual
B of A indexed by the set Fi, and the vectors {bj | j ∈ Fi} are all the column
vectors of the Gale dual that are contained in the subspace Vi. In particular,
Fs−4 = {1, . . . , s}. We set F ′

i := Fi \ Fi−1. Each F ′
i must of course consist of at

least one element j. Since we have s vectors in total, we have 4 “extra” vectors
that can a priori belong to any of the F ′

i . In the next lemma, we show how the four
extra vectors can be spread.

Lemma 2.4
With the notation from above, for each flag of flats F = F(u) of a Gale dual B of
A we have either

(a) #F ′
i = 1 for all i = 1, . . . , s − 5 and #F ′

s−4 = 5, or
(b) #F ′

s−4 = 4 and there is a j ∈ {1, . . . , s − 5} with #F ′
j = 2, or

(c) #F ′
s−4 = 3 and there is a j ∈ {1, . . . , s − 5} with #F ′

j = 3, or
(d) #F ′

s−4 = 3 and there are i < j ∈ {1, . . . , s − 5} with #F ′
i = #F ′

j = 2.

In each case, the lattice points corresponding to the indices in F ′
s−4 form a circuit.

In the first case, this is a circuit of type (A) or (B) as in Remark 2.1, in the second
case of type (C) or (D), and in the third and fourth case of type (E).

In the second case, all points mr with r ∈ F ′
l , l > j, are on the same plane as

the four points of F ′
s−4, and none of the points with r ∈ F ′

j is on this plane.

In the third case, all points mr with r ∈ F ′
l , l > j, are on the same line as the

three points of F ′
s−4, and each choice of two of the points in F ′

j spans the space
together with the three points of F ′

s−4.

In the fourth case, all points mr with r ∈ F ′
l , l > j, are on the same line as the

three points of F ′
s−4, and all points mr with r ∈ F ′

l , j > l > i, are on the same
plane as the three points of F ′

s−4 and the two points of F ′
j, and the two points of F ′

i

do not lie on this plane.
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The proof is a straightforward generalisation of Lemma 3.7 of [10]. Note that
with this Lemma we describe only interior points of cones corresponding to weight
classes of top dimension in Trop(ker(A)). The analogous statement to Remark 3.8
of [10] holds true as well: for any circuit and any choice of points satisfying the affine
dependencies as above we can find a corresponding weight class in Trop(ker(A)).
That means that whenever the coefficients of a tropical polynomial meet one of the
above conditions, it lifts to a polynomial over K defining a surface with singularity
at (1,1,1).

3. The tropical discriminant revisited

For x ∈ Rn arbitrary, denote by p
x
∈ (K∗)n a point with val(p

x
) = x, and con-

sider the family Sing
p

x

(∆) of surfaces with a singularity in p
x
. Its tropicalisation

Trop(Sing
p

x

(∆)) does not depend on the choice of p
x
. Moreover, it follows from

Remark 3.2 of [10] that it is a shift of Trop(Sing
p
(∆)) = Trop(ker(A)) by a vector

which we denote by v(x) whose coordinates in Rs/(1, . . . , 1) are given by the scalar
products of the m ∈ A with x.

If we let x vary over all points in Rn, it follows that v(x) varies over all points
in the rowspace of the matrix A in Rs/(1, . . . , 1). In the following, we denote the
rowspace of A in Rs/(1, . . . , 1) by L. Notice that L also equals the lineality space
of the secondary fan.

Notation 3.1
Let v : Rn → L denote the linear map sending x to v(x) = (m · x)m∈A as above.
Notice that v is a bijective linear map between vector spaces of dimension n.

This illustrates the equality Trop(ker(A))+rowspace(A) = Trop(Sing(∆)) which
is proved in Theorem 1.1 of [3]. Since we assume that ∆ yields a non-defective
point configuration, it follows from [8], 10.1.2, that Trop(Sing(∆)) is a subfan of
the codimension-one-skeleton of the secondary fan. Therefore it comes with a nat-
ural fan structure given by the secondary fan. Since it equals Trop(ker(A)) +
rowspace(A), it also comes with a natural fan structure by weight classes of the
lattice of flats of the matroid of A. In general, these two fan structures are not
compatible — cones can overlap, cut through cones, be smashed to lower dimen-
sion etc. In the following, we define the notion of a generic tropical surface and
restrict our results in Theorems 1.1 and 1.2 to generic surfaces — these are surfaces
for which the two fan structures locally around the coefficient vector u are best
compatible. The set of generic surfaces is of top dimension.

Notation 3.2
For a point u ∈ Rs/(1, . . . , 1), we set C(u) the unique cone of the secondary fan
with u ∈ relint(C(u)). Notice that C(u) = C(u + l) for every l ∈ L.

Definition 3.3
We call a weight class C, i.e. a cone of Trop(ker(A)), defective if there exists a point
u ∈ C + L with dim(C + L) < dim(C(u)).
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Remark 3.4
If C is a weight class and u ∈ C such that C(u) has codimension one in the
secondary fan, then C is defective if and only if span(C) ∩ L 6= {0}.

Example 3.5
We consider the point configuration A = {ma,mb, . . . ,mh} with

ma = (0, 0, 0), mb = (0, 0, 1), mc = (0, 0, 2), md = (0, 1, 0),
me = (0,−1, 0), mf = (1, 0, 0), mg = (1, 1, 0), mh = (−1, 0, 0)

and we consider the weight class

C = {xma
= xmb

= xmc
> xmd

= xme
> xmf

= xmg
> xmh

}.

The corresponding subdivision of the polytope ∆ is shown in Figure 9. For a point

Figure 9. A subdivision corresponding to a defective weight class.

u in the weight class C, the corresponding cone C(u) in the secondary fan is of
codimension one. However, the intersection of span(C) with the lineality space in
R8/(1, . . . , 1) is 1-dimensional, since it contains the vector (0, 0, 0, 0, 0,−1,−1, 1).
This shows that the weight class is defective.

Indeed, the weight class C shares a facet with each of the two weight classes

C ′ = {xma
= xmb

= xmc
> xmd

= xme
> xmf

= xmh
> xmg

}

and
C ′′ = {xma

= xmb
= xmc

> xmd
= xme

> xmg
= xmh

> xmf
}.

The span of each of these two weight classes intersects the lineality space transver-
sally. The cone C(u) from above is just the union

(C + L) ∪ (C ′ + L) ∪ (C ′′ + L),

where actually C + L is not needed, since it is a face of both C ′ + L and C ′′ + L.
This is thus an example that a full-dimensional weight class in Trop(Ker(A)) may
lead to a lower dimensional cone in the tropical discriminant of A which lies in the
interior of a full-dimensional cone of the tropical discriminant.
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Note that in this example the point configuration A itself is not defective, how-
ever the subset consisting of points ma,mb,mc,md,me,mf is.

Assume C is a non-defective weight class, then C + L is contained in cones of
the secondary fan of dimension equal to dim(C + L) or less. The set of all u ∈ C
with dim(C + L) > dim(C(u)) is obviously of smaller dimension than dimC.

We now define the notion of a generic tropical surface. We choose this definition
in such a way that if we decompose the coefficient vector u of a generic surface as
v + l with v ∈ Trop(ker(A)) and l ∈ L, and C is the weight class of Trop(ker(A))
containing v in its relative interior, then all dimensions are as expected, i.e. C is of
top dimension and dim(C + L) = dimC(u).

Definition 3.6
We call a point u ∈ Trop(Ker(A)) + L ⊆ Rs/(1, . . . , 1) in the tropical discrim-
inant of A generic if it lies outside the locus formed by C + L, where a cone
C of Trop(Ker(A)) either is defective, or is not of the top dimension, or satisfies
dim(C+L) > dim(C(v)). The singular tropical hypersurface defined by the tropical
polynomial Fu is then also called generic.

From the above, it is obvious that the set of generic points in the tropical dis-
criminant is of top dimension.

Note that in Theorem 1.2 we consider generic surfaces whose dual marked subdi-
vision is of codimension one in the secondary fan. For defective point configurations,
such surfaces do not exist.

Proof of Theorem 1.1:
Let u ∈ Trop(Sing(∆)) be generic. It follows from the definition of genericity
that we can write u as a sum v + l with v ∈ Trop(ker(A)) and l ∈ L, such that
the weight class C of Trop(ker(A)) which contains v in its relative interior is top-
dimensional and satisfies dim(C + L) = dim(C(v)). Assume C(v) = C(u) is a cone
of codimension c of the secondary fan. Notice that the representation of u as a
sum as above is not unique. Firstly, there might be several weight classes C in
Trop(ker(A)) such that we can write u as the sum of a vector in C and a vector in
L. Secondly, even if we fix one cone C, there might be several representations of u
as the sum of a vector in this C and a vector in L. For now, let us fix one weight
class C which allows a representation of u as u = v + l with v ∈ C and l ∈ L.

Since dim Trop(ker(A)) = s − 1 − (n + 1) (where s = #A) and v ∈ C is in a top-
dimensional weight class, we have dim(C +L) = dim(C)+dim(L)−dim(span(C)∩
L) = s−1−(n+1)+n−dim(span(C)∩L) = dim(C(v)) = s−1−c, where span(C)
denotes the smallest linear space containing C. It follows that dim(span(C)∩L) =
c−1. Therefore there exists a c−1-dimensional polyhedron in H ⊂ C such that for
all h ∈ H we have v+h ∈ C. We can thus write v also as v = (v+h)−h, where the
first summand is in C and the second summand is in L, and these are all possibilities
to represent v as a sum of a vector in C plus a vector in L. Consequently, we can
write u as u = (v+h)+(l−h) and again, these are all possibilities to represent u as
a sum of a vector in C and a vector in L. It follows that Fu defines a tropical surface
which is singular at all points xl−h, where xl−h ∈ Rn denotes the preimage of the
bijective linear map sending x ∈ Rn to v(x) = (m ·x)m∈A from Notation 3.1. Since
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the map v−1 maps the c − 1-dimensional polyhedron l − H to a c − 1-dimensional
polyhedron, it follows that all singular points of the surface of Fu that we get by
decomposing u as a sum of a vector in C and a vector in L lie in a c−1-dimensional
polyhedron. As we have seen above there may be several (but finitely many) weight
classes C in Trop(ker(A)) such that we can write u as the sum of a vector in C
and a vector in L, and it thus follows that the set of singular points of the tropical
surface defined by Fu is a finite union of c − 1-dimensional polyhedra. �

Remark 3.7
Recall again Example 1.3 where we had a surface S with two singular points. These
two singular points arise because we can interpret the coefficient vector u of the
tropical polynomial defining S in two ways as a sum of a vector in a weight class
of Trop(ker(A)) and a vector in the lineality space. The two weight classes are
different. The point configuration in question corresponds to the matrix

A =









1 1 1 1 1 1 1
0 0 0 −1 0 1 2
0 0 0 −1 1 0 1
0 1 2 0 0 0 1









,

and the singular point G = (0, 0, 0) on Fu with

u = (0, 0, 0,−8,−5,−5,−5) ∈ Trop(Ker(A))

comes from the weight class containing u. However, we can also write u as

u = (0, 0, 0,−6,−6,−6,−8) + (0, 0, 0,−2, 1, 1, 3) = v + l

where

l = (0, 0, 0,−1, 0, 1, 2) + (0, 0, 0,−1, 1, 0, 1) = (0, 0, 0,−2, 1, 1, 3)

belongs to the lineality space of the secondary fan of the point configuration and
v belongs to some other weight class. The corresponding singular point on S is
H = (−1,−1, 0), since we have added once the vector of x-coordinates and once
the vector of y-coordinates to the weight vector v in the weight class in order to
get u. This corresponds to shifting the whole surface (determined by Fv, which is
singular at 0) by (−1,−1, 0) (see also 3.1 and before). Examples 4.5 and 4.7 give
further explanations concerning this example.

This shows that even if the point u in the tropical discriminant is generic, the
surface corresponding to u may have more than one singular point.

4. The classification

Now, using the preparation from Section 2, we prove Theorem 1.2. In partic-
ular, we consider the points u ∈ Trop(Sing(∆)) which are generic in the sense of
Definition 3.6, and which in addition satisfy dim(C(u)) = s−2, where C(u) is as in
Notation 3.2. In addition, we work in the situation where the dual marked subdi-
vision as in Subsection 2.3 has all lattice points marked (see Lemma 2.3). Since we
can always write u = v + l for some a ∈ Trop(ker(A)) and l ∈ rowspace(A), just as
in the proof of Theorem 1.1 above, we can classify the singularities of the tropical
surface defined by Fv with v ∈ Trop(ker(A)) first, and then investigate how the
shift to Fu effects the location of the singular points. We thus have to consider all
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different types of weight classes as in Lemma 2.4, and the corresponding possible
types of circuits. It turns out that in most cases we do not have to worry about
the shift when passing from Fv to Fu, since we describe the location of the singular
point relative to other points in the surface, e.g. as the midpoint of an edge. This
midpoint is of course shifted accordingly.

4.1. Weight class as in Lemma 2.4(a), circuit (A) of Remark 2.1. Let
u ∈ Trop(ker(A)) be in a weight class as in Lemma 2.4(a), and assume F ′

s−4 =
{a, b, c, d, e}. Consider the marked subdivision defined by u as in Subsection 2.3.
As the heights of the points ma,mb,mc,md and me are biggest, it follows that the
convex hull spanned by these points is a polytope of the subdivision. Let us first
assume that this polytope is a circuit of type (A) as in Remark 2.1. The vertex
of the tropical surface dual to this pentatope is at the point (x, y, z) where the
maximum is attained by the corresponding five terms of trop{um +m · (x, y, z)}, in
particular the five terms are equal at this vertex. That means, we can set the five
terms equal and solve for x, y and z to get the position of the vertex. But since the
coefficients are all equal, we get x = y = z = 0 when solving. Notice that (0, 0, 0)
is the tropicalisation of the singular point (1, 1, 1).

Since we require that all lattice points are marked, this polytope cannot contain
any lattice point besides these five. By Theorem 3.5 of [17], a pentatope which
does not contain any lattice point besides its five vertices are IUA-equivalent to the
tuple of points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, p, q) with p and q coprime.
It is a bipyramid.

It follows that in this situation the node of the tropical surface is at a vertex
with six adjacent edges and nine adjacent 2-dimensional polyhedra.

This settles case (a.1) of Theorem 1.2.

4.2. Weight class as in Lemma 2.4(a), circuit (B) of Remark 2.1. As above,
it follows that the singular point (0, 0, 0) is dual to the convex hull of ma,mb,mc,md

and me. This is a vertex of the tropical surface with four adjacent edges and
six 2-dimensional polyhedra, just as a smooth vertex. However, if we define the
multiplicity of a vertex of a tropical hypersurface analogously to the case of tropical
curves as the lattice volume of the corresponding polytope in the dual subdivision,
then it follows that the singular point is a vertex of higher multiplicity. More
precisely, the multiplicity can be 4,5,7,11,13,17,19 or 20. This follows from the
classification of 3-dimensional tetrahedra with one interior lattice point (and no
other lattice points besides the vertices) (see [16], Theorem 7). Since we require
that all lattice points are marked, the tetrahedron which is the convex hull of
ma,mb,mc,md and me has to be of this form. The classification states that such a
tetrahedron is IUA-equivalent to one of the following eight: it has vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0) and, respectively, (3, 3, 4), (2, 2, 5), (2, 4, 7), (2, 6, 11), (2, 7, 13),
(2, 9, 17), (2, 13, 19), or (3, 7, 20). This settles case (a.2) of Theorem 1.2.

4.3. Weight class as in Lemma 2.4(b), circuit (C) of Remark 2.1. Let
F ′

s−4 = {a, b, c, d} and F ′
j = {e, f}.
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4.3.1. Assume that in the subdivision, me and mf both form a pryamid with the
triangle spanned by ma,mb,mc and md as base. In particular, me and mf must lie
on different sides of the plane spanned by ma, mb, mc and md. Since there are no
other circuits, and we require that all lattice points in ∆ are marked, both of these
pyramids contain no further lattice points.

Lemma 4.1
Let four lattice points ma,mb,mc and md in an affine plane in R3 form a circuit
of type (C) as in Remark 2.1. Let me be a fifth lattice point that forms a pyramid
with this circuit as base and assume this pyramid contains no further lattice points.
Then me has integral distance 1 or 3 from the plane spanned by the circuit.

Proof:
We can assume that the plane spanned by ma,mb,mc and md is the x = 0-plane,
and, using a suitable automorphism of Z2, we can bring these four points to (0, 0),
(−1,−1), (−2,−1) and (−1,−2). Denote the triangle spanned by these points by
T . Also we assume without restriction that the x-coordinate of me is positive.
We have to show that it is then either 1 or 3. Consider a lattice point m with
x-coordinate 1 and let Cm be the cone with vertex m and spanned by the rays m,
m − (0,−2,−1) and m − (0,−1,−2). Intersect this cone with the plane x = k for
some choice of k > 1 (see Figure 10).

C

x = 0 x = 1 x = k

m

Figure 10. The cone Cm.

For any lattice point in Cm ∩ {x = k} ∩ Z3, consider the pyramid that this point
forms with T as base. This pyramid will contain the point m. If we move m by a
step of integer length 1, the triangle Cm ∩ {x = k} is shifted by k. Compared to T
the triangle Cm∩{x = k} is grown by a factor of k−1. Of course, we can also move
m to a point with a different x-coordinate, this will add more triangles (smaller
in size) such that for each point inside a triangle we know that the corresponding
pyramid contains another lattice point. We show that for k 6= 3 the shifted triangles
cover all lattice points with x-coordinate k. It follows that any pyramid with T as
base and with a vertex with x-coordinate k 6= 1, 3 contains another lattice point.
Figure 11 shows the plane {x = k} with the k-shifts of the triangle Cm ∩ {x = k}.
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Figure 11. The shifts of the triangle Cm ∩ {x = k} on the plane
{x = k}.

Let us compute the vertices of the right shaded region which is not yet covered by
a triangle. Assume the left most vertex of the top right triangle has coordinates
(1, 1) in the plane, then it follows that the coordinates of the vertices of the shaded
region are (2k

3 − 1, k
3 ), (2k

3 + 1, k
3 + 1) and (2k

3 , k
3 − 1). Independently of k, this is a

triangle of lattice area 3, with the point (2k
3 , k

3 ) as midpoint from which we reach
the three vertices by a lattice step to the left, down, and to the upper right. This
triangle has an interior lattice point if and only if k is divisible by 3. In this case,
the lattice point is (2k

3 , k
3 ) (see Figure 12).

k ≡ 0 mod 3 k ≡ 1 mod 3 k ≡ 2 mod 3

Figure 12. The non-covered region for different values of k.

Analogously, we can compute the vertices of the left shaded region and see that it
has an interior lattice point if and only if k is divisible by 3, and then this lattice
point has coordinates (k

3 , 2k
3 ). It follows that for any k which is not divisible by 3

the k-shifts of the triangle Cm ∩{x = k}∩Z3 cover already all lattice points. That
is, any pyramid with T as base and with a vertex with x-coordinate which is not
divisible by 3 contains another lattice point with x-coordinate 1.

If k is divisible by 3, then a pyramid with a vertex with coordinates (k, 2k
3 + ik, k

3 +

jk) or (k, k
3 + ik, 2k

3 + jk) where i, j ∈ Z does not contain a lattice point with

x-coordinate 1. Here, we take the effect of the k-shifts of Cm ∩ {x = k} ∩ Z3 on
the shaded regions into account. Let us now assume that k = 3l · h, where h 6= 1
and 3 ∤ h. Now move m to a point with x-coordinate 3l. It follows using the same
arguments as above that any pyramid with base T and a vertex with x-coordinate
k contains a lattice point with x-coordinate 3l. Next assume that k = 3l, l ≥ 2.
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Using m with x-coordinate 1 as before we see that the only possibilities to get a
pyramid which does contain a lattice point with x-coordinate 1 are that the vertex
has (y, z)-coordinates divisible by 3l−1 and not by 3l. Using m with x-coordinate 3
we see that the only possibilities to get a pyramid which does not contain a lattice
point with x-coordinate 3 are that the vertex has (y, z)-coordinates divisible by
3l−2 and not by 3l−1. As there is no vertex which satisfies both it follows that any
pyramid with a vertex with x-coordinate k = 3l, l ≥ 2, contains a lattice point
with x-coordinate 1, or it contains a lattice point with x-coordinate 3. In any case,
it contains another lattice point. It follows that the x-coordinate of the vertex me

can only be 1 or 3. �

Remark 4.2
There are vertices me with integral distance 1 and 3 to the plane containing the
circuit of type (C) of Remark 2.1 such that the pyramid formed by the circuit and
me contains no further lattice points, e.g. the convex hull of the points (0, 1, 0),
(0, 0, 1), (0, 2, 2) and (3, 0, 2), or the convex hull of the points (0, 0, 0), (0, 1, 2),
(0, 2, 1) and (1, 0, 0).

Now solve the equations given by the tropical polynomial to get the positions
of the two vertices corresponding to the two pyramids. The x-coordinates of me

and mf can either be the negative of each other, or one can be 3 and the other
−1. Since ma,mb,mc and md have biggest and equal height, it follows that the
edge dual to the convex hull of ma,mb,mc and md satisfies the equations y = 0
and z = 0. If λ = uma

is the biggest weight (the weight of ma,mb,mc and md),
and µ = ume

is the weight of me and mf , it follows that the vertex dual to the
pyramid with vertex me is at (µ − λ, 0, 0) (resp. (1

3 · (µ − λ), 0, 0)) and the vertex

dual to the pyramid with vertex mf is at (λ − µ, 0, 0) (resp. (1
3 · (λ − µ), 0, 0)). It

follows that the singular point (0, 0, 0) is either exactly in the middle of the edge
dual to the convex hull of ma,mb,mc and md, or subdivides the edge into parts
whose distances have ratio 1:3. This explains the first cases of (b.1) in Theorem
1.2.

4.3.2. Assume that at most one of the points me and mf forms a pryamid with
the triangle spanned by ma, mb, mc and md as base. As before, assume that
ma = (0, 0, 0), mb = (0, 1, 1), mc = (0, 2, 1) and md = (0, 1, 2). Any point m
that forms a pryamid with the triangle as base must have the absolute value of the
x-coordinate 1 or 3 due to Lemma 4.1, since otherwise we would get extra lattice
points, contradicting our assumption that the plane is of maximal-dimensional geo-
metric type. If m is a point different from me and mf but with x-coordinate 1 or
−1, then it cannot form a pryamid with the triangle as base since its coefficient is
too low. Thus we can conclude without restriction that in this situation, there is a
pryamid with the triangle as base and with a vertex m with x-coordinate 3.

Assume that me does not form a pryamid with the triangle as base. We now
determine the possible x-coordinates of me. We have seen already that then there
is a pryamid with vertex m with x-coordinate 3. Because µ = ume

is the second
biggest coefficient, the x-coordinate of me must be smaller than 3. It cannot be
2 however, since then by Lemma 4.1 the pryamid formed by me and the triangle
contains further lattice points. Even if this pryamid is not part of the subdivision,
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these additional lattice points would be contained in the convex body spanned by
m, me and the triangle. Because of their coefficients smaller µ, they cannot be
marked points of the subdivision, contradicting our assumption that the surface
is of maximal-dimensional geometric type. With the same arguments, me cannot
have x-coordinate −2 or smaller −3. It follows that it must have the absolute value
of the x-coordinate 1.

There are a priori several possibilities for weight classes as in Lemma 2.4(b) from
which our subdivision can arise. In order to determine these possibilities, we have
to decompose the coefficient vector u ∈ Trop(Sing(∆)) of our tropical polynomial
as a sum v + l where v is in a feasible weight class and l is in the rowspace of
A. Assume we have already added vectors of the rowspace to u to achieve that
the four points of the circuit have equal and biggest coefficients. Next we add a
multiple of the vector of x-coordinates to make two coefficients of points outside
the plane of the circuit equal and second biggest, the two points me and mf . To
all points with x-coordinate one, we add the same value by adding the multiple of
this rowspace vector. Thus there is a unique point with x-coordinate ±1 which is
a candidate to be me resp. mf — the one with the biggest coefficient after adding
rowspace vectors that make the coefficients of the circuit equal. Candidates for me

and mf are now points with x-coordinate ±3 that form a pryamid with the triangle
as base, and points with x-coordinate ±1 whose coefficient is biggest after adding
rowspace vectors to make the coefficients of the circuit equal. Also, me and mf must
have different x-coordinates since otherwise the weight class would not intersect the
corresponding weight class transversely which contradicts our assumption that u is
generic (see Definition 3.6).

We therefore have the following four possibilities for weight classes (without
restriction):

• Let m with x-coordinate 3 form a pryamid with the triangle, and let me

be a point with x-coordinate one. Let mf with x-coordinate −1 form a
pryamid with the triangle.

• Let m with x-coordinate 3 form a pryamid with the triangle, and let me

be a point with x-coordinate one. Let mf with x-coordinate −3 form a
pryamid with the triangle.

• Let m1 with x-coordinate 3 and m2 with x-coordinate −3 form a pryamid
with the triangle. Let me be a point with x-coordinate 1 and mf with
x-coordinate −1.

• Let m = mf with x-coordinate 3 form a pryamid with the triangle, and let
me be a point with x-coordinate one.

In each of the four cases, the rowspace of A intersects the corresponding weight
class transversely, and so there is at most one solution to decompose u as a sum.
The decomposition must be possible in at least one of the cases.

The fourth case has to be treated separately. Note that the fourth case is the
only one which can also arise if the edge dual to the triangle is unbounded.

In the first three cases, we introduce the notion of a virtual edge dual to the
triangle. This virtual edge is just as the actual edge dual to the triangle contained
in the line y = z = 0, however it ends at points whose x-coordinates differ from the
actual x-coordinates of the vertices dual to the pryamids adjacent to the triangle.
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For a fixed weight class, i.e. for a fixed choice of me and mf as above, we define
the virtual vertex corresponding to me to be the vertex dual to the pryamid formed
by the triangle and me (even though this pryamid is not part of the subdivision).
In the third case, we also define the virtual vertex of mf analogously. The virtual
edge connects the virtual vertex of me with the (virtual or actual) vertex of mf .
Note that the virtual edge contains the actual edge. It follows from the previous
Subsection that in the first and third case, the singular point is the midpoint of
the virtual edge while in the second case, it subdivides the virtual edge with ration
1 : 3.

Let us treat the first case exemplarily with more details. Denote by λ the co-
efficient of ma, mb, mc and md, by µ the coefficient of me and mf and by ν
the coefficient of the point m which forms a pryamid with the triangle. We have
ν < µ < λ. The virtual vertex of me has coordinates (λ−µ, 0, 0), the actual vertex
— i.e. the vertex corresponding to the pryamid formed by m and the triangle —
has coordinates (λ−ν

3 , 0, 0). Since me has x-coordinate 1 and m has x-coordinate 3

but forms a pryamid with the triangle, we must have µ < 2λ+ν
3 . This shows that

the virtual edge is indeed longer than E.

In the fourth case, we cannot describe the location of the singular point as some
sort of midpoint as in the earlier cases, a description which does not change when
we shift. When we solve for the position of V as before, and denote by λ = uma

the
highest weight, i.e. the coefficient of the four points ma, . . . ,md, and by µ = ume

the
coefficient of me and mf , then as before we get ( 1

3 · (λ−µ), 0, 0) for the coordinates

of V . The singular point is at (0, 0, 0) which is a point of distance λ−µ
3 from V .

This distance will not change of course when we shift, however the coefficients λ
and µ are going to be changed by adding a vector in the rowspace of A. Since there
is a unique way of writing u as a sum of a vector in the weight class and a vector
in the rowspace, we can in fact solve for the vector in the rowspace which we need.
By our choice of coordinates for the point configuration, we can deduce that we
need to add the vector of y-coordinates in the rowspace (umb

−umc
)-times and the

vector of z-coordinates (umb
− umd

)-times. Then the four new coefficients of the
circuit are equal, we have

λ = uma

= umd
+ (umb

− umc
) + 2 · (umb

− umd
)

= umd
+ 2 · (umb

− umc
) + (umb

− umd
)

= umb
+ (umb

− umc
) + (umb

− umd
).

If M denotes the multiple of the x-vector that we add, then M has to satisfy the
equality

µ = umf
+ (umb

− umc
) · mfy + (umb

− umd
) · mfz + 3 · M

= ume
+ (umb

− umc
) · mey + (umb

− umd
) · mez + M

where mfy is the second coordinate of mf etc., so that then the new coefficients of
me and mf are also equal. So we can solve for M and then express the distance



24 HANNAH MARKWIG, THOMAS MARKWIG, AND EUGENII SHUSTIN

λ−µ
3 of the singular point from V as

λ − µ

3
=

uma

3
−

(ume

2
−

umf

6

)

− (umb
− umc

) ·
(mey

2
−

mfy

6

)

− (umb
− umd

) ·
(mez

2
−

mfz

6

)

.
(2)

This settles case (b.1) of Theorem 1.2.

4.4. Weight class as in Lemma 2.4(b), circuit (D) of Remark 2.1. Let
F ′

s−4 = {a, b, c, d}, F ′
j = {e, f}, and assume first that me and mf lie on differ-

ent sides of the plane spanned by ma,mb,mc and md. Since the two points me

and mf have the biggest heights of points outside the plane, it follows that both
form a pyramid with ma,mb,mc and md in the subdivision. By assumption both
pyramids cannot have any lattice point besides the five vertices. It follows from
Lemma 3.3 of [17] that the lattice distance of both points to the plane is one. Now
solve the equations given by the tropical polytope to get the positions of the two
vertices corresponding to the two pyramids. Without restriction, we can assume
that ma,mb,mc and md lie in the x = 0-plane, it follows that the x-coordinate of
me is −1 and the x-coordinate of mf is 1. Since ma,mb,mc and md have biggest
and equal height, it follows that the edge dual to the convex hull of ma,mb,mc and
md satisfies the equations y = 0 and z = 0. If λ = uma

is the biggest weight (the
weight of ma,mb,mc and md), and µ = ume

is the weight of me and mf , it follows
that the vertex dual to the pyramid with vertex me is at (µ−λ, 0, 0) and the vertex
dual to the pyramid with vertex mf is at (λ − µ, 0, 0). The singular point (0, 0, 0)
is thus exactly in the middle of the edge dual to the convex hull of ma,mb,mc and
md.

Now assume me and mf lie on the same side of the plane spanned by ma,mb,mc

and md. It follows from Lemma 3.3 of [17] again that none of these two points can
have an integral distance larger than one to the plane, or it would form a pyramid
with interior lattice points. Thus both me and mf have integral distance one, and
form a “triangular roof ” with ma,mb,mc and md. Again, then the dual subdivision
does not correspond to a cone of codimension 1 of the secondary fan, and we do not
consider the situation. pyramid with base ma,mb,mc and md. We can again solve
for the position of vertex dual to this pyramid and get (ν − λ, 0, 0). The singular
point is on an edge ending at a vertex V1 adjacent to 5 edges and 9 2-dimensional
polyhedra and at a vertex V2 with 5 adjacent edges and 8 2-dimensional polyhedra,
and its distance to V2 is bigger or equal to its distance to V1. This settles case (b.2)
of Theorem 1.2.

4.5. Weight class as in Lemma 2.4(c), circuit (E) of Remark 2.1. With
the notation from Lemma 2.4(c) let F ′

s−4 = {a, b, c} and F ′
j = {d, e, f}. We may

assume that ma = (0, 0, 0), mb = (0, 0, 1), and mc = (0, 0, 2). We then distinguish
two cases. Either there is no plane containing the z-axis such that md, me and mf

are all on one side of the plane, or there is such a plane.

4.5.1. Assume there is no plane through the z-axis with md, me, and mf all on
the same side of the plane. In a first step we want to classify the possible poly-
topes spanned by ma, . . . ,mf , and then we will see how the corresponding tropical
surfaces look like locally at the singular point.
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Lemma 4.3
Let P = conv

(

(0, 0, 0), (0, 0, 2),m,m′
)

with m,m′ ∈ Z3 be a 3-dimensional lattice
polytope such that

P ∩Z3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2),m,m′}. (3)

Projecting P orthogonally onto the xy-plane we get a triangle T which contains
no interior lattice point and where the edges with vertex (0, 0) contain no relative
interior point.

Proof:
We denote by π : P −→ R2 : (x, y, z) 7→ (x, y) the orthogonal projection onto the
xy-plane, so that T = π(P ).

Applying a suitable coordinate change in Gl3(Z) we may assume that m′ = (0, β′, γ′)
and m = (α, β, γ) with β′ > 0. If β′ > 1 then π−1(0, 1) is a line segment of Eu-
clidean length at least one and it thus contains a lattice point in contradiction to
(3). Applying a coordinate change again we can assume 0 ≤ β < α. Since β′ = 1
the edge of T connecting the vertex (0, 0) with (0, β′) has no relative interior point.
If β = 0 or β = 1 the statement holds obviously, since then T is a triangle of
lattice height one (see Figure 13). Note here that for β = 0 necessarily α = 1 since
otherwise above π−1(1, 0) would contain an interior lattice point.

Figure 13. Lattice triangles of lattice height one.

We may therefore assume

m′ = (0, 1, γ′) and m = (α, β, γ) with 2 ≤ β < α. (4)

Moreover, we must have gcd(α, β) = 1, since α = k · d and β = l · d with d ≥ 2
would imply that π−1(k, l) is a line segment of lattice length at least one and thus
contains a lattice point in contradiction to (3), see Figure 14. Therefore, also the

(0, 0, 0)

(0, 0, 1)

(0, 0, 2)

(α, β, γ)
π−1(k, l)

Figure 14. π−1(k, l) contains a lattice point.

edge of T connecting vertex (0, 0) with (α, β) has no relative interior point, and if
we divide α by β with remainder we get

α = q · β + r with 1 ≤ r ≤ β − 1 and q ≥ 1. (5)

The triangle T can be described by inequalities as follows

T =

{

(x, y)
∣

∣

∣ x ≥ 0, y ≥
β

α
· x, y ≤

β − 1

α
· x + 1

}

,
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which ensures that

(q, 1) ∈ T.

We now want to show that

π−1(q, 1) ∩Z3 6= ∅,

which will be a contradiction to (3).

An easy computation shows that

π−1(q, 1) =

{(

q, 1,
q · γ + r · γ′ + z

q · β + r

)

∣

∣

∣ 0 ≤ z ≤ 2 · q · (β − 1)

}

,

and we have to show that there is a 0 ≤ z ≤ 2 · q · (β − 1) such that

q · β + r
∣

∣ (q · γ + r · γ′) + z. (6)

We consider first the special case β = 2. Then necessarily r = 1 and there is of
course a 0 ≤ z ≤ 2 · q such that q · β + r = 2 · q + 1 divides (q · γ + γ′) + z.

Next we consider the special case (q, r) = (1, β − 1), and we have to check if
q · β + r = 2 · β − 1 divides (γ + (β − 1) · γ′) + z for some 0 ≤ z ≤ 2 · β − 2, which is
obviously the case.

For the general case we may now assume that β ≥ 3 and (q, r) 6= (1, β − 1). Taking
(4) and (5) into account it follows that

β ≥ 2 +
r

q
,

or equivalently

2 · q · (β − 1) ≥ q · β + r.

But then, there is definitely a 0 ≤ z ≤ 2 · q · (β − 1) such that (6) is satisfied.

So the case 2 ≤ β < α cannot occur, and this finishes the proof. �

Proposition 4.4
Let P be a lattice polytope which is the convex hull of a circuit of type (E) and three
additional lattice points m, m′ and m′′ such that any two of these together with the
circuit span R3, P contains only the given six lattice points, and there is no plane
through the z-axis such that m, m′ and m′′ are all on the same side of the plane,
see Figure 15.

Then the circuit is given up to IUA-equivalence by (0, 0, 0), (0, 0, 1), and (0, 0, 2),
and the lattice points m, m′, and m′′ satisfy the conditions in exactly one of the
following cases:

(a) m = (0, 1, γ), m′ = (1, 0, γ′), and m′′ = (−1,−1, γ′′) with γ, γ′, γ′′ ∈ Z

arbitrary.
(b) m = (0, 1, γ), m′ = (2, 1, γ′), and m′′ = (−1,−1, γ′′) with γ, γ′, γ′′ ∈ Z such

that γ 6≡ γ′ (mod 2).
(c) m = (0, 1, γ), m′ = (3, 1, γ′), and m′′ = (−1,−1, γ′′) with γ, γ′, γ′′ ∈ Z such

that γ 6≡ γ′ (mod 3) and γ′ 6≡ γ′′ (mod 2).
(d) m = (0, 1, γ), m′ = (3, 1, γ′), and m′′ = (−3,−2, γ′′) with γ, γ′, γ′′ ∈ Z such

that γ 6≡ γ′ 6≡ γ′′ 6≡ γ (mod 3).
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Figure 15. A lattice polytope P as in Proposition 4.4 with subdivision.

Proof:
It is clear that the circuit (E) is IUA-equivalent to (0, 0, 0), (0, 0, 1), and (0, 0, 2).
If we denote by π : P −→ R2 : (x, y, z) 7→ (x, y) the projection onto the xy-plane
then π(P ) is a triangle which decomposes into three triangles π(P ) = T ∪ T ′ ∪ T ′′

as in Lemma 4.3, see Figure 16. Lemma 4.3 therefore implies that (0, 0) is the only

T ′

T ′′
T

Figure 16. π(P ) = T ∪ T ′ ∪ T ′′ decomposes as a union of three triangles.

interior lattice point of π(P ). Lattice polygons with exactly one interior lattice
point have been classified up to IUA-equivalence, see e.g. [15] or [14], and among
them are exactly five triangles as shown in Figure 17, where the interior lattice
point is (0, 0). Applying a Z-linear coordinate change we may therefore assume

T1 T2 T3 T4 T5

Figure 17. The five lattice triangles with one interior lattice point.

that π(P ) is one of these five triangles. In each of the cases it remains to check
whether there exist polytopes P that project to the triangle and what restrictions
this poses on the third component of the lattice points m, m′, and m′′. Actually,
the only obstruction is that above the relative interior lattice points on the edges
of the triangles there should be no lattice point in P . If such an edge has k relative



28 HANNAH MARKWIG, THOMAS MARKWIG, AND EUGENII SHUSTIN

interior lattice points and the z-coordinates of the vertices of the edge differ by l,
then some of the relative interior lattice points lifts to a lattice point if and only if
k + 1 and l are not coprime. Therefore, T1, . . . , T4 lead to the four cases mentioned
in the statement of the proposition. For T5 we would need points m = (0, 1, γ),
m′ = (4, 1, γ′), and m′′ = (−2,−1, γ′′) such that each of the differences γ − γ′,
γ − γ′′ and γ′ − γ′′ is coprime to two. That is obviously not possible, so that T5

cannot be the projection of any P . �

In order to understand how the tropicalisation of the singular point locally
looks like in the case we are considering, assume first that the subdivision con-
tains a polytope as considered in Proposition 4.4, and it is subdivided into the
three polytopes ∆1 = conv(ma,mc,md,me), ∆2 = conv(ma,mc,md,mf ) and
∆3 = conv(ma,mc,me,mf ), see Figure 15. The circuit {ma,mb,mc} is then dual to
a triangle in the tropical surface whose vertices are dual to ∆1, ∆2, and ∆3, see Fig-
ure 18. We assume as before that ma = (0, 0, 0), mb = (0, 0, 1) and mc = (0, 0, 2).

Figure 18. The triangle in the tropical surface dual to the circuit.

Recall that we can project P to the (x, y)-plane and obtain three triangles T , T ′

and T ′′ as in Figure 16. The midpoint is (0, 0). Denote the coordinates of the
three vertices by (r1, s1), (r2, s2) and (r3, s3). Let us use the tropical polynomial to
solve for the coordinates (x, y, z) of the three vertices dual to ∆1, ∆2, and ∆3. By
assumption the heights associated to the lattice points satisfy uma

= umb
= umc

and umd
= ume

= umf
, and we set u = uma

−umd
. For any i = 1, 2, 3, the equation

u+z = u has to be satisfied, so any of the three vertices has z-coordinate 0. In fact,
the whole triangle dual to the circuit satisfies z = 0. So we only have to solve for
the (x, y)-coordinates of the vertices. For any choice of (i, j) = (1, 2), (2, 3) or (3, 1),
the vertex dual to the polytope which projects to the triangle spanned by (0, 0),
(ri, si) and (rj , sj) has to satisfy the equations u = rix + siy and u = rjx + sjy,
which are solved by (x, y) = 1

risj−sirj
· (sju − siu, riu − rju). Now assign to each

of the vertices the area of the projection of the dual polytope, i.e. (risj − sirj), as
weight. Then it follows that the weighted sum of the three vertices is (0, 0, 0), i.e.
the singular point. Thus, the singular point tropicalises precisely to the weighted
barycentre of the triangle dual to the circuit. Figure 19 depicts this situation for
the case that the projection is the triangle T3 of Figure 17.

If the subdivision locally around the circuit contains further lattice points, the
local picture may look more complicated. However, the circuit {ma,mb,mc} is still
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A

B
C

T3

A

B

C

3·A+2·B+C
3

Figure 19. T3 = π(∆) and the dual triangle in the tropical surface
showing (0, 0, 0) as the weighted barycentre 3·A+2·B+C

3 .

dual to a polygon Q in the {z = 0}-plane. Moreover, in the subdivision there will
still be polytopes which contain conv(ma,mc,md) respectively conv(ma,mc,me)
respectively conv(ma,mc,mf ) as a facet. Therefore, the polygon Q will have three
edges dual to these facets. If one computes the intersection points of the lines
through these edges, one gets three points A, B, and C which would be dual to
the polytopes ∆i. This extension of the cell forms a virtual triangular cell, and the
tropicalisation of the singular point is still the weighted sum of the three points A,
B and C, see Figure 20.

Q

A

B

C

(0, 0, 0)

Figure 20. The origin as a generalised weighted barycentre.

Example 4.5
A concrete example for this behaviour is the singular point H = (−1,−1, 0) on the
tropical surface in Example 1.3. We have seen in Remark 3.7 which weight class
corresponds to the point H = (−1,−1, 0). We have

ma = (0, 0, 0), mb = (0, 0, 1), mc = (0, 0, 2),
md = (−1,−1, 0), me = (0, 1, 0), mf = (1, 0, 0),

and one further point mg = (1, 2, 1). The circuit ma,mb,mc corresponds then
to quadrangle ABCD (see Figure 21, where the vertices C = (5,−13, 0) and
D = (−13, 5, 0) correspond to the polytopes ∆C = conv{ma,mc,md,me} re-
spectively ∆D = conv{ma,mc,md,mf} in the subdivision. The polytope ∆E =
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D

C

A

B

E

H

Figure 21. The singular point as barycentre.

conv{ma,mc,me,mf}, however, is not part of the subdivision due to the presence
of mg with an appropriate height. However, ∆E defines a virtual point E = (5, 5, 0),
which is the intersection of the two lines determined by the facets conv{ma,mc,me}
and conv{ma,mc,mf} of ∆C respectively ∆D, and

H =
1

3
· (C + D + E)

is the barycentre of this virtual triangle in the tropical surface.

4.5.2. Assume there is a plane through the z-axis with md, me, and mf all on
the same side of the plane. Again we first want to classify the possible polytopes
spanned by ma, . . . ,mf , and then we will see how the corresponding tropical sur-
faces look like locally at the singular point.

Proposition 4.6
Let P be a lattice polytope which is the convex hull of a circuit of type (E) and three
additional lattice points m, m′, and m′′ such that any two of these together with the
circuit span R3, P contains only the given six lattice points, and there is a plane
through the z-axis such that m, m′ and m′′ are all on the same side of the plane,
see Figure 26.

Then the circuit is given up to IUA-equivalence by (0, 0, 0), (0, 0, 1), and (0, 0, 2),
and the lattice points m, m′, and m′′ (up to reordering) satisfy the conditions in
exactly one of the following cases:

(a) m = (−1, 0, γ), m′ = (0, 1, γ′), and m′′ = (α′′, 1, γ′′) with α′′ ≥ 1, γ ∈ Z

arbitrary and gcd(γ′′ − γ′, α′′) = 1.
(b) m = (α, 1, γ), m′ = (α + l, 1, γ + k), and m′′ = (α + 2 · l, 1, γ + 2 · k) with

α, γ ∈ Z arbitrary and gcd(l, k) = 1.
(c) m = (α, 1, γ), m′ = (α′, 1, γ′), and m′′ = (α′′, 1, γ′′) with

det

(

α′ − α α′′ − α
γ′ − γ γ′′ − γ

)

= ±1.

Proof:
Up to IUA-equivalence we may assume that the circuit is (0, 0, 0), (0, 0, 1), and
(0, 0, 2). Projecting ∆ to the xy-plane the points π(m), π(m′), and π(m′′) lie in
one half plane. Due to the assumptions on ∆ no two of these points lie on the
same line through the origin, and ordering these lines by their angle clockwise we
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may assume up to reordering that the points π(m), π(m′), and π(m′′) come in this
order, see Figure 22 for possible configurations.

π(m)

π(m′) π(m′′) π(m) π(m′) π(m′′)

Figure 22. π(∆) with the separating hyperplane.

We should note here first that in π(∆) the point π(m′) cannot be an interior point
of conv

(

(0, 0), π(m), π(m′′)
)

, since otherwise conv
(

(0, 0, 0), (0, 0, 2),m,m′′
)

will be
in the subdivision of ∆ which therefore satisfies the assumptions on Lemma 4.3,
but π(m′) would violate these assumptions. It is then natural to distinguish the
two cases that either π(m′) is on the line segment connecting π(m) and π(m′′),
i.e. π(∆) is a triangle as shown on the right hand side of Figure 22, or π(∆) is
a quadrangle as shown on the left hand side of Figure 22. In any case, applying
Lemma 4.3 to the convex hull of the circuit and two of the further lattice points
m, m′, and m′′, we see that each of the points π(m), π(m′), and π(m′′) has lattice
distance one from the origin.

Let us first consider the case that π(∆) is a triangle. Up to IUA-equivalence we
may assume that the line through π(m), π(m′), and π(m′′) is parallel to the x-axis,
i.e. π(m) = (α, β), π(m′) = (α′, β), and π(m′′) = (α′′, β) with α < α′ < α′′. By
Lemma 4.3 the triangle conv

(

(0, 0), π(m), π(m′′)
)

has no interior lattice point and
the number of lattice points on the boundary is α′′ −α + 2, so that Pick’s Formula
implies β = 1.

π(m) = (α, 1) π(m′) = (α′, 1)
π(m′′) = (α′′, 1)

Figure 23. The normal form of π(∆) when it is a triangle.

This case now subdivides into two subcases, namely, that the points m, m′, and
m′′ lie on a line, respectively that they form a triangle. If the three points lie on
a line, then m′ must be the midpoint of the line segment from m to m′′ and the
line segment contains no further lattice point. Thus, gcd

(

α′′ − α, γ′′ − γ
)

= 2 is
the only obstruction that has to be satisfied, and we are thus in Case (b) of the

proposition with l = α′′
−α
2 and k = γ′′

−γ
2 . If the three points m, m′, and m′′ form

a triangle, then the only obstruction to the condition that ∆ contains no further
lattice points is that this triangle should have lattice area one. This is precisely the
condition of Case (c) in the proposition.

It remains to consider the case that π(∆) is a quadrangle. As in the proof of
Lemma 4.3, up to IUA-equivalence, m′ = (0, 1, γ′) and m′′ = (α′′, β′′, γ′′) with
0 ≤ β′′ < α′′. Moreover, since the triangle T = conv

(

(0, 0), π(m′), π(m′′)
)

contains
no interior lattice point due to Lemma 4.3 Pick’s Formula implies that β′′ ∈ {0, 1},
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and if β′′ = 1 then necessarily α′′ = 1, since the lattice distance from π(m′′) to the
origin is one. See Figure 24.

T
T

Figure 24. Possible configurations for the triangle T =
conv

(

(0, 0), π(m′), π(m′′)
)

.

Let us now consider the case β′′ = 1 in more detail. The point π(m) = (α, β) has
to lie below the line {y = 1} and above the line {α · y = x}. Thus 0 ≥ β > α, and
applying Pick’s Formula once again we find β = 0, and then necessarily α = −1.
Analogously, we get in the case β′′ = 0 that β′′ = 1 and α ≥ 1. That is, π(∆) is
one of the quadrangles shown in Figure 25.

(α′′, 1)
(α, 1)

Figure 25. The normal forms of π(∆) when it is a quadrangle.

Obviously, reflecting at the plane {x = 0} and exchanging m and m′′ the two
possible configuration types are equivalent, so that we may assume that β = 1. We
thus have m = (−1, 0, γ), m′ = (0, 1, γ′), and m′′ = (α′′, 1, γ′′). Only above the line
segment joining π(m′) and π(m′′) there could be an additional lattice point in ∆
if the coordinates γ′ and γ′′ are chosen inappropriately, and the condition to avoid
this is gcd(γ′′ − γ′, α′′) = 1. We are thus in Case (a) of the proposition, and this
finishes the proof. �

We now have to see how the tropical surface looks locally at the tropicalisation
of the singular point, i.e. locally at (0, 0, 0). As in Subsection 4.5.1 we want to
restrict first to the case where the Newton polytope ∆ is just the convex hull of
ma, . . . ,mf , and in the notation of Proposition 4.6 we may assume that md = m,
me = m′, and mf = m′′. Moreover, we will consider the Case (a) in Proposition
4.6 first. In the subdivision of ∆ there will be exactly two polytopes which contain
the circuit ma, mb, and mc, namely ∆A = conv(ma,mb,mc,md,me) and ∆B =
conv(ma,mb,mc,me,mf ), see Figure 26. The subdivision may contain a third
polytope conv(ma,md,me,mf ) respectively conv(mc,md,me,mf ) which does not
contain the circuit, and which consequently will not matter for the singular point.

The tropicalisation of the singular point will then be contained in the plane
segment dual to the circuit. This segment will be unbounded, but it has two vertices
A and B which are dual the polytopes ∆A and ∆B . Moreover, if we consider
the lines through the line segments which are dual to conv(ma,mb,mc,md) and
conv(ma,mb,mc,mf ) respectively, then these will intersect in a point C which is
dual to the polytope conv(ma,mb,mc,md,mf ) which is not part of the subdivision.
Anyway, if we assign to the points A, B, and C as weights the lattice area of
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Figure 26. Possible subdivisions of ∆.

the corresponding triangle in π(∆), e.g. B gets as weight the lattice area α′′ of
conv

(

(0, 0), (0, 1), (α′′, 1)
)

, and if we moreover consider the weight of C negatively,
since C lies outside the plane segment, then the tropicalisation of the singular point
is the weighted sum of A, B, and C. In the normal form a simple computation gives

A = (−u, u, 0), B = (0, u, 0) and C = (−u, (1+α′′)·u, 0), and A+α′′
·B−C
3 = (0, 0, 0).

We could thus interpret the tropicalisation of the singular point as a virtual weighted
barycentre of the virtual triangle ABC.

A
B

C

A + α′′ · B − C

Figure 27. The singular point at the virtual barycentre.

In our classification we need not consider the Case (b) in 4.6, since there the
weight class C in Trop(Ker(A)) corresponding to this situation is defective be-
cause span(C) intersects the lineality space in the vector corresponding to the y-
coordinates of the point configuration.

The Case (c) in Proposition 4.6 differs from Case (a) by the fact that the points
A, B, and C all coincide, and that the plane segment corresponding to the circuit
has only one vertex. However, it remains true that the tropicalisation of the singular
point is the weighted sum of A, B, and C.

Finally, if the Newton polytope contains further points the situation becomes
more complicated. The polytopes ∆A and ∆B might be subdivided further, and
consequently the vertices A and B might be cut off, similar to the situation de-
scribed in Figure 20. As in Subsection 4.5.1 we can still identify the virtual points
A, B, and C and their weighted sum is the tropicalisation of the singular point.

Example 4.7
A concrete example for this behaviour is the singular point G = (0, 0, 0) on the
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tropical surface in Example 1.3. Here

ma = (0, 0, 0), mb = (0, 0, 1), mc = (0, 0, 2),
md = (1, 2, 1), me = (0, 1, 0), mf = (1, 0, 0),

and one further point mg = (−1,−1, 0). Note that the points md,me,mf are all
on the same side of the plane x+y = 0 through the circuit. The circuit ma,mb,mc

corresponds then to quadrangle ABCD (see Figure 28, where the vertices A =

D

C

A

B

E

G

Figure 28. The singular point as barycentre.

(0, 5, 0) and B = (5, 0, 0) correspond to the polytopes ∆A = conv{ma,mc,md,me}
respectively ∆B = conv{ma,mc,md,mf} in the subdivision. The polytope ∆E =
conv{ma,mc,me,mf}, however, is not part of the subdivision and defines only a
virtual point E = (5, 5, 0), which is the intersection of the two lines determined by
the facets conv{ma,mc,me} and conv{ma,mc,mf} of ∆A respectively ∆B . In this
situation and

G =
1

3
· (C + D − E)

is the virtual weighted barycentre of this virtual triangle in the tropical surface.
Note here, that the virtual vertex E comes with a negative weight since it lies
outside the plane segment dual to the circuit even if we only consider the points
ma, . . . ,mf . Note also, that the plane segment dual to the circuit is bounded due
to the presence of the additional point mg.

4.6. Weight class as in Lemma 2.4(d), circuit (E) of Remark 2.1. Let
F ′

s−4 = {a, b, c}, F ′
j = {d, e} and F ′

i = {f, g}. We assume without restriction that
ma = (0, 0, 0), mb = (0, 0, 1) and mc = (0, 0, 2). Dual to this circuit is then as before
a 2-dimensional polyhedron satisfying z = 0. We know that in this situation, the
points md and me lie in a plane with the line {x = y = 0}, we can assume that
this plane satisfies y = 0. Let us first assume that md and me lie on different sides
of the line, i.e. we assume that md has positive x-coordinate and me has negative
x-coordinate. Then the triangle with vertices ma, mc and md (resp. me) will be
a face of a polytope in the subdivision. If md or me had integral distance bigger
one from the circuit, this face would contain extra lattice points, contradicting our
assumption that the surface is of maximal-dimensional geometric type. It follows
that md has x-coordinate 1 and me has x-coordinate −1. Also, the triangle spanned
by ma, mc and mf (resp. mg) are faces of the subdivision and thus mf and mg

must have integral distance one to the plane {y = 0}. Let us first assume mf

has y-coordinate 1 and mg has y-coordinate −1. Assume first that the subdivision
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locally contains only the polytopes conv(ma,mc,md,mf ), conv(ma,mc,me,mf ),
conv(ma,mc,md,mg) and conv(ma,mc,me,mg). Then corresponding to this part
of the subdivision we have a quadrangle on the surface. Let us solve for the (x, y)-
coordinates of the four vertices. Assume md = (1, 0, γ), me = (−1, 0, γ′), mf =
(α, 1, γ′′) and mg = (α′,−1, γ′′′). Let us denote by u = uma

−umd
the difference of

the weights of ma and md and by w = umd
− umf

the difference of the weights of
md and mf . Then the coordinates of the four vertices are A = (u,w + (1 − α)u),
B = (−u,w + (1 + α)u), C = (u,−w + (α′ − 1)u) and D = (−u,−w − (1 + α′)u).
That is, the quadrangle is a trapeze with the singular point (0, 0, 0) = A+B+C+D

4
as its midpoint, as depicted in Figure 29 on the left.

Figure 29. The trapeze with the singular point as its midpoint,
and the more general situation.

If the subdivision contains more polytopes than just these four locally around
the circuit, then we get a polygon with more sides. The four edges of the trapeze
are still present, and the singular point is still the midpoint. We can thus extent
the cell to a virtual trapeze cell. This more general situation is depicted in Figure
29 on the right.

If md and me are on the same side of the circuit in the plane {y = 0}, then they
must both be of integral distance one, and they form a quadrangle with the circuit
which is a face of the subdivision. Thus the dual subdivision does not correspond to
a cone of the secondary fan of codimension 1, and we do not consider the situation.
Analogously, if mf and mg are on the same side of the plane {y = 0}, they must
both have integral distance one to {y = 0}. However, since the edge connecting mf

and mg and the circuit do not need to lie in a plane, it may be that only one of
the points mf or mg forms a facet of the subdivision with the circuit. In this case,
the dual subdivision corresponds to a cone of codimension 1. However, since the
span of the corresponding weight class intersects the rowspace of A non-trivially
(both contain the vector of x-coordinates of the points m ∈ A), this weight class is
defective and we do not consider the situation.
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