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Abstract

We generalise the notion of Gröbner fan to ideals in RJtK[x1, . . . , xn] for
certain classes of coefficient rings R and give a constructive proof that the
Gröbner fan is a rational polyhedral fan. For this we introduce the notion of
initially reduced standard bases and show how these can be computed in finite
time. We deduce algorithms for computing the Gröbner fan, implemented in
the computer algebra system Singular. The problem is motivated by the
wish to compute tropical varieties over the p-adic numbers, which are the
intersection of a subfan of a Gröbner fan as studied in this paper by some
affine hyperplane, as shown in a forthcoming paper.
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1. Introduction

Gröbner fans of ideals I in the polynomial ring over a field were first intro-
duced and studied by Mora and Robbiano in [1] as an invariant associated to
the ideal. The Gröbner fan of I is a convex rational polyhedral fan classify-
ing all possible leading ideals of I w.r.t. arbitrary global monomial orderings
and encoding the impact of all these orderings on the ideal. It provides an
interesting link between commutative algebra and convex geometry, opening
the rich tool box of the latter for the first. Moreover, tropical varieties, which
have gained lots of interest recently, can be described often as subcomplexes
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of certain Gröbner fans and can be computed that way. The latter is the
main motivation for our paper, as we explain further down.

Mora and Robbiano describe in their paper an algorithm to compute the
Gröbner fan. The underlying structure was then used efficiently by Col-
lart, Kalkbrenner and Mall in [2] to transform a standard basis w.r.t. one
global monomial ordering into a standard basis w.r.t. another one by passing
through several cones of the Gröbner fan. At a common facet of two cones a
local change of the standard basis was necessary making use of the fact that
the monomial orderings of the neighbouring cones can be seen as a refine-
ment of a common partial ordering on the monomials. Their methods were
later refined by many others (see e.g. [3, 4, 5, 6, 7]).

For homogeneous ideals the Gröbner fan is complete and Sturmfels showed
in [8] that it is the normal fan of a polytope, the state polytope of I. If the
ideal is not homogeneous the Gröbner fan is in general neither complete, nor
is the part in the positive orthant the normal fan of a polyhedron, as was
shown by Jensen in [9].

Since the notion of the Gröbner fan turned out to be so powerful in the
polynomial ring it was in the sequel generalised to further classes of rings.
Assi, Castro-Jiménez and Granger (see [10]) and Saito, Sturmfels and Taka-
yama (see [11]) studied an analogue of the Gröbner fan for ideals in the
ring of algebraic differential operators. In a subsequent paper the first three
authors generalised the notion to the ring of analytic differential operators
(see [12]), proving that the equivalence classes of weight vectors yet again
are convex rational polyhedral cones. Bahloul and Takayama (see [13, 14])
then show that these cones glue to give a fan and they give an algorithm
to compute this fan. They show that their techniques apply to ideals in the
subrings of convergent or formal power series over a field and treat this case
explicitly. This leads to the notion of the local standard fan which covers
the negative orthant and whose cones characterise the impact of the local
monomial orderings on the ideal in the power series ring.

Even though the approach is algorithmical, it cannot be applied in prac-
tice right away, since the computation of the standard cones heavily relies
on the computation of a reduced standard basis, which even for polynomial
input data in general contains power series and is not feasible in practice. If
the input data is polynomial Bahloul and Takayama, therefore, propose to
homogenise the ideal, compute the Gröbner fan with the usual techniques
and then to cut down the additional variable again. This will lead to a re-
finement of the actual local standard fan, but for each pair of neighbouring
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cones one can check with a standard basis computation, if the cones should
be glued in the local standard fan. Since the number of fulldimensional cones
in the refined fan may be larger by an order of magnitude, this approach is
very expensive.

In our paper we address a situation which in some respects is more general
and in some is much more specialised than the above. It is motivated by a
very particular application that we have in mind, the computation of tropical
varieties over the p-adic numbers. These appear as the intersection of a
subfan of the Gröbner fans studied in this paper with an affine hyperplane
(see [15]). Here we lay the theoretical and the algorithmical foundation for
this approach to compute tropical varieties over the p-adic numbers, leading
to the only currently available software for computing these varieties.

In this paper we allow as coefficient domain a ring R satisfying some
additional technical properties which ensure that standard bases over R can
be computed (see Page 2 and [16]). We then consider x-homogeneous ideals I
in the mixed power series polynomial ring RJtK[x] = RJtK[x1, . . . , xn], that is,
we consider one local variable and any finite number of global variables. We
then define the Gröbner fan of I as usual with some necessary adjustments.
The main theoretical result of this paper shows that the Gröbner fan is
indeed a rational polyhedral fan covering all of the half space R≤0 ×Rn (see
Theorem 3.19). For the theory the generators of I may be arbitrary power
series in the local variable, for the practice we restrict to input data which is
polynomial in t as well as in x, but homogeneity is only required w.r.t. x. A
major point when it comes to actually computing the Gröbner fans is that
restricting to one local variable allows us to replace reduced standard bases
by the weaker notion of initially reduced standard bases. We show that these
are sufficiently strong to let us read off the Gröbner cones (see Section 3),
yet weak enough to be computable for polynomial input data with a finite
number of steps at the same time in important cases.

Note that for polynomial input data we could have followed the approach
of Bahloul and Takayama (see [13, 14]) by homogenising first, cutting down
and gluing cones. However, not only is the gluing very costly, the Gröbner
fan of the homogenised ideal has way more cones and these have plenty
more facets that have to be traversed. For a simple tropical linear space
in an example we have 20 full-dimensional cones without homogenisation
and 1393 for the homogenised ideal, and the number of facets that have to
be traversed has increase by a factor way larger than 100. Thus, already
computing the Gröbner fan of the homogenised ideal is much more expensive
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than computing the Gröbner fan of I directly via our approach.
In Section 2 we introduce the basic notions used throughout the paper

and we show that also in our situation there are only finitely many possible
leading ideals. Section 3 is devoted to proving that the Gröbner fan is a
rational polyhedral fan. We provide a constructive approach for the Gröbner
cones using initially reduced standard bases. In Section 4 we present algo-
rithms to reduce standard bases initially in finite time under some additional
hypotheses on R and the ideal (see Page 23), and in Section 5 we finally
provide algorithms to compute Gröbner fans of x-homogeneous ideals, where
for the latter we follow the lines of [17]. The algorithms are implemented in
and distributed with Singular and they complement the software package
gfan (see [18]) by Jensen which is specialised in computing Gröbner fans for
ideals in polynomial rings and their tropical varieties.

2. Basic notions

Throughout this paper we assume that R is a noetherian ring and that
linear equations in R are solvable, that is, for any choice of c1, . . . , ck ∈ R
we can decide the ideal membership problem b ∈ 〈c1, . . . , ck〉, if applicable
represent b as b = a1 · c1 + · · · + ak · ck, and compute a finite generating set
of the syzygy module syzR(c1, . . . , ck). The most important example that
we have in mind is the ring of integers. For further classes of interesting
examples see [16, Ex. 1.2]. Due to [16] this assumption ensures that in the
mixed power series polynomial ring

RJtK[x] := RJtK[x1, . . . , xn],

with a single variable t, standard bases exist and are computable in finite
time and with polynomial output, if the ideal is generated by polynomials.

We represent an element f of RJtK[x] in the usual multiindex notation as

f =
∑
β,α

cα,β · tβxα

with β ∈ N and α = (α1, . . . , αn) ∈ Nn where xα = xα1
1 · · ·xαnn , and we

sometimes represent it as

f =
∑
α

gα · xα
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with
gα =

∑
β

cα,β · tβ ∈ RJtK

as an element in the polynomial ring in x over the ring RJtK. We then
call f x-homogeneous if all monomials xα have the same degree, and we
call an ideal I ERJtK[x] x-homogeneous if it is generated by x-homogeneous
elements. In what follows we will construct Gröbner fans of x-homogeneous
ideals I ERJtK[x] as fans on the closed half space R≤0 × Rn.

Let us now fix some standard notation used in the context of standard
bases and Gröbner fans. We denote by

Mon(t,x) =
{
tβ · xα

∣∣ β ∈ N, α ∈ Nn}
the multiplicative semigroup of monomials in the variables t and x. A
monomial ordering on Mon(t,x) is a total ordering > which is compati-
ble with the semigroup structure on Mon(t,x), and we call it t-local if 1 > t.
The least monomial tβxα w.r.t. a t-local monomial ordering > occuring in
0 6= f ∈ RJtK[x] is called the leading monomial LM>(f) = tβxα of f , the
corresponding coefficient is its leading coefficient LC>(f) = cβ,α, the term
LT>(f) = LC>(f) · LM>(f) is its leading term and tail>(f) = f − LT>(f)
its tail, and we set LT>(0) = 0. We call the ideal

LT>(I) := 〈LT>(f) | f ∈ I〉ER[t,x]

the leading ideal of I w.r.t. >. Note, that it is an ideal generated by terms,
but in general not by monomials, since R is only a ring. However, as in
the case of base fields the number of possible leading ideals w.r.t. t-local
monomial orderings is finite, which will essentially imply that the Gröbner
fan of I has only finitely many cones. The proof of is an adaptation of the
proof of [19, Thm. 4.1].

Proposition 2.1
Any x-homogeneous ideal I ERJtK[x] has only finitely many leading ideals.

Proof. Observe that an element g ∈ RJtK[x] has only finitely many possible
leading terms, since there are only finitely many distinct monomials in x and
a leading term w.r.t. a t-local monomial ordering has to have minimal power
in t.

Now assume there are infinitely many leading ideals. For each leading
ideal J , let >J be a t-local monomial ordering such that LT>J (I) = J . Set
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∆0 := {>J | J leading ideal of I}, so that different orderings in ∆0 yield
different leading ideals. By our assumption, ∆0 is infinite.

Let G1 ⊆ I be a finite x-homogeneous generating set of I and set Σ1 to
be the union of all potential leading terms of elements of G1. Then Σ1 is
finite and hence, by the pigeonhole principle, there must be infinitely many
monomial orderings ∆1 ⊆ ∆0 which agree on Σ1. [16, Cor. 2.8] now implies
that if G1 ⊆ I was a standard basis for one of them, it would be a standard
basis for all of them. As this cannot be the case, given an ordering >1 ∈ ∆1

there must be an element g2 ∈ I such that LT>1(g2) /∈ J1 := 〈LT>1(g) | g ∈
G1〉 with J1 being independent from the ordering chosen.

Since I is x-homogeneous, we may choose g2 to be x-homogeneous. More-
over, by computing a determinate division with remainder w.r.t. G1 and >1,
we may assume that no term of g2 lies in J1 (see e.g. condition (DD2) in [16,
Alg. 1.13]). In particular,

LT>(g2) /∈ J1 := 〈LT>(g) | g ∈ G1〉 for any ordering > ∈ ∆1.

Setting G2 := G1∪{g2}, we can repeat the entire process, and find an infinite
subset of monomial orderings ∆2 ⊆ ∆1 such that G2 is either a standard basis
for all of them or for none of them. Consequently, there is a g3 ∈ I such that
LT>(g3) /∈ J2 := 〈LT>(g) | g ∈ G2〉 for all monomial orderings > ∈ ∆2. We
thus obtain an infinite chain of strictly ascending ideals J1 ( J2 ( . . ., which
contradicts the ascending chain condition of our noetherian ring R[t,x].

A weight vector w = (w0, . . . , wn) ∈ R<0 × Rn induces a partial ordering
on Mon(t,x) via

tβxα ≥ tδxγ :⇐⇒ w · (β, α) ≥ w · (δ, γ),

where “·” denotes the canonical scalar product. Any monomial ordering >
on Mon(t,x) can be used as a tie breaker to refine this partial ordering to a
t-local monomial ordering >w. Given w ∈ R<0 × Rn we denote by

inw(f) =
∑

w·(β,α) maximal

cβ,α · tβxα ∈ R[t,x]

the initial form of f w.r.t. w and by

inw(I) = 〈inw(f) | f ∈ I〉ER[t,x]
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the initial ideal of I.
Initial ideals of I can be used to define an equivalence relation on the

space of weight vectors R<0 × Rn, by setting

w ∼ v :⇐⇒ inw(I) = inv(I).

We denote the closure the equivalence class of a weight vector w ∈ R<0×Rn
in the Euclidean topology by

Cw(I) := {v ∈ R<0 × Rn | inv(I) = inw(I)} ⊆ R≤0 × Rn,

and call it an interior Gröbner cone of I. We then call the intersection of
Cw(I) with the boundary,

C0
w(I) := Cw(I) ∩ ({0} × Rn),

a boundary Gröbner cone of I, and given any t-local monomial ordering >,
we set

C>(I) := {v ∈ R<0 × Rn | inv(I) = LT>(I)} ⊆ R≤0 × Rn.

Finally, we refer to the collection

Σ(I) := {Cw(I) | w ∈ R<0 × Rn} ∪ {C0
w(I) | w ∈ R<0 × Rn},

of all cones as the Gröbner fan of I. It is this object whose properties we
want to study and that we want to compute.

Example 2.2
Consider the principal ideal I = 〈g〉 E ZJtK[x, y] with g = tx2 + xy + ty2.
Because inw(I) = 〈inw(g)〉 for any w ∈ R<0×R2 and g is (x, y)-homogeneous,
it is easy to see that every Gröbner cone of I is invariant under translation by
(0, 1, 1). Its Gröbner fan divides the weight space R≤0×R2 into three distinct
maximal Gröbner cones, see Figure 1. Note that the two red maximal cones
intersect each other solely in the boundary {0}×R2, while the third maximal
cone intersects the boundary in codimension 2.

3. The Gröbner fan

This section is devoted to the study of the Gröbner fan of an x-homoge-
neous ideal I in RJtK[x]. We will show that it is a rational polyhedral fan
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R · (0, 1, 1)

C0
(−1,1,1)(I)

=

C(−1,1,0)(I)

〈xy〉

〈tx2〉 〈ty2〉
C(−1,0,1)(I)

〈tx2 + xy〉 〈xy + ty2〉

C(−1,1,1)(I)

C0
(−1,1,0)(I) C0

(−1,0,1)(I)

Figure 1: Σ(〈tx2 + xy + ty2〉) projected along R · (0, 1, 1)

(see Theorem 3.19), i.e. it is a finite collection of rational polyhedral cones
containing all faces of each cone in the collection and such that the intersec-
tion of each two cones in the collection is a face of both. For this we introduce
the notion of an initially reduced standard basis of I w.r.t. a t-local monomial
ordering, and show how such a standard basis can be used to read off the
Gröbner cone Cw(I) (see Proposition 3.13). All proofs in this section, except
that of Proposition 3.3, are constructive, so that we end up with algorithms
to compute Gröbner cones, provided that we can compute initially reduced
standard bases.

Let us first recall that a standard basis of an ideal I E RJtK[x] w.r.t. a
t-local monomial ordering > is a finite subset G of I, such the leading terms
of its elements w.r.t. > generate the leading ideal of I. A standard basis of
I is automatically a generating set of I. A standard basis G of I is called
reduced if no term of the tail of any element of G is in LT>(I) and if it is
minimal, i.e. LT>(I) cannot be generated by any proper subset of the set
of leading terms of G. Observe that we forego any kind of normalisation of
the leading coefficients that is normally done in polynomial rings over fields.
By [16, Alg. 4.2] reduced standard bases of x-homogeneous ideals in RJtK[x]
exist. However, even if the ideal I is generated by polynomials in R[t,x] the
elements in a reduced standard of I will in general be power series in t. We,
therefore, now introduce a weaker notion.

Definition 3.1 (Initially reduced standard bases)
Let > be a t-local monomial ordering on Mon(t,x), and let G,H ⊆ RJtK[x] be
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finite subsets where G = {g1, . . . , gk} with gi =
∑

α∈Nn gi,α · xα, gi,α ∈ RJtK.

1. G is reduced w.r.t. H, if no term of tail>(gi) lies in LT>(H) for any i.

2. We call G initially reduced w.r.t. H, if the set

G′ :=
{
g′i :=

∑
α∈N

LT>(gi,α) · xα
∣∣∣ i = 1, . . . , k

}
,

is reduced w.r.t. H, i.e. no term of tail>(g′i) is in LT>(H) for any i.

3. We call a standard basis G initially reduced, if it is minimal and initially
reduced w.r.t. itself.

Example 3.2
Obviously, any reduced standard basis is initially reduced. The converse
is false, since G = {1 − t} is initially reduced w.r.t. any t-local monomial
ordering, but it is not reduced.

Proposition 3.3 (Existence of initially reduced standard bases)
Any x-homogeneous ideal in RJtK[x] has an initially reduced standard basis
w.r.t. any t-local monomial ordering.

Proof. By [16, Alg. 4.2] reduced standard bases exist.

Algorithm 4.2 in [16] does not produce the basis G in finite time, even if
the input data is polynomial. The question, how to achieve this, is postponed
to Section 4, where we treat a case of particular interest for the computation
of tropical varieties over the p-adic numbers (see [15]). Instead we will now
use initially reduced standard bases to give a constructive proof that the
Gröbner fan of an x-homogeneous ideal indeed yields a polyhedral fan.

Lemma 3.4
Let G be an initially reduced standard basis of the x-homogeneous ideal I E
RJtK[x] w.r.t. a t-local monomial ordering >. Then for all w ∈ R<0×Rn we
have

inw(I) = LT>(I) ⇐⇒ ∀g ∈ G : inw(g) = LT>(g).

Proof. ⇒ Let g ∈ G. Then inw(g) ∈ inw(I) = LT>(I). Writing g =∑
α∈Nn gα · xα with gα ∈ RJtK, note that the only terms of g which can

occur in inw(g) are of the form LT>(gα) · xα for some α ∈ Nn. And since
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our leading ideal is naturally generated by terms, these terms of inw(g) also
lie in LT>(I). Because G is initially reduced, we see that the only term of
g which can occur in inw(g) is LT>(g), i.e. inw(g) = LT>(g).

⇐ It is clear that inw(I) ⊇ LT>(I). For the converse, it suffices to show
inw(f) ∈ LT>(I) for all f ∈ I. For that, consider the weighted ordering >w

with weight vector w and tiebreaker >, and note that G is also a standard
basis w.r.t. that ordering. Hence any f ∈ I will have a weak division with
remainder 0 w.r.t. G and >w:

u · f = q1 · g1 + . . .+ qk · gk.

The weighted monomial ordering ensures, that there is no cancellation of
highest weighted degree terms on the right hand side, and that 1 is amongst
the highest weighted degree terms in u. Taking the initial form w.r.t. w on
both sides then yields:

inw(u) · inw(f) = inw(qi1) · inw(gi1) + . . .+ inw(qil) · inw(gil)

= inw(qi1) · LT>(gi1) + . . .+ inw(qil) · LT>(gil) ∈ LT>(I)

for the 1 ≤ i1 < . . . < il ≤ k whose terms contribute to the highest weighted
degree. Now since LT>(I) is generated by terms, any term of inw(u) · inw(f)
is contained in it. In particular, that means inw(f) ∈ LT>(I).

Example 3.5
Consider the ideal

〈g1 = x− t3x+ t3z − t4z, g2 = y − t3y + t2z − t4z〉E ZJtK[x, y, z]

and the weighted ordering >=>v on Mon(t, x, y, z) with weight vector v =
(−1, 3, 3, 3) ∈ R<0×R3 and t-local lexicographical ordering x > y > z > 1 > t
as tiebreaker.

Since g1 and g2 already form an initially reduced standard basis, the set
whose Euclidean closure yields C>(I) is, due to Lemma 3.4 given by

{w ∈ R<0 × R3 | inw(g1) = x, inw(g2) = y}.

Hence it is cut out by the following two systems of inequalities:

inw(g1) = x ⇐⇒


degw(x) > degw(t3x)

degw(x) > degw(t3z)

degw(x) > degw(t4z)

⇐⇒


0 > w0 (∗)
w1 > 3w0 + w3

w1 > 4w0 + w3 (∗)
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and

inw(g2) = y ⇐⇒


degw(y) > degw(t3y)

degw(y) > degw(t2z)

degw(y) > degw(t4z)

⇐⇒


0 > w0 (∗)
w2 > 2w0 + w3

w2 > 4w0 + w3. (∗)

The inequalities marked with (∗) are redundant, which is why the terms
from which they arise are ignored in the definition of initial reducedness.
Figure 2 shows an image in which we restrict ourselves to the affine sub-
space {w0 = −1, w3 = 1}. Because the set is invariant under translation by
(0, 1, 1, 1), no information is lost by doing so.

w1

w2

(−1, 0, 0, 1)

{w1 > −3 + 1}

−2

{w2 > −2 + 1}
−1 inw(g1) = x

inw(g2) = y + t2z

inw(g2) = y
inw(g1) = x

R<0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 2: C>(I) having the structure of a polyhedral cone

Also note that while the weight vectors on the Euclidean boundary may
not induce initial forms of g1 and g2 coinciding to the leading terms, the
initial forms still contain the leading terms.

Lemma 3.6
Let G be an initially reduced standard basis of the x-homogeneous ideal I E
RJtK[x] w.r.t. a t-local monomial ordering >. Then for all w ∈ R<0×Rn we
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have
w ∈ C>(I) ⇐⇒ ∀g ∈ G : LT>(inw(g)) = LT>(g).

Proof. SupposeG = {g1, . . . , gk}. Similar to Example 3.5, Lemma 3.4 implies
that the set {w ∈ R<0 × Rn | inw(I) = LT>(I)} is cut out by a system of
strict inequalities of the form:

degw(LT>(gi)) > degw(tail>(gi)), i = 1, . . . , k.

Note that each line, despite gi ∈ RJtK[x], only yields a finite amount of
minimal inequalities, since higher degrees of t yield redundant inequalities.
Therefore, its Euclidean closure C>(I) is given by a system of inequalities of
the form

degw(LT>(gi)) ≥ degw(tail>(gi)), i = 1, . . . , k,

which is equivalent to LT>(gi) occuring in inw(g) and translates to the con-
dition in the claim.

We can use this result to generalise the statement of Lemma 3.4 to weight
vectors in the boundary of C>(I).

Lemma 3.7
Let > be a t-local monomial ordering and let IERJtK[x] be an x-homogeneous
ideal. Then for all w ∈ C>(I), w ∈ R<0 × Rn, we have

LT>(inw(I)) = LT>(I).

Proof. Let G be an initially reduced standard basis of I w.r.t. >. Since
LT>(inw(g)) = LT>(g) for all g ∈ G by Lemma 3.6, we have

LT>(I) = 〈LT>(g) | g ∈ G〉 Lem.
=
3.6
〈LT>(inw(g)) | g ∈ G〉 ⊆ LT>(inw(I)).

For the opposite inclusion, we can again consider the weighted ordering >w.
Given any h ∈ inw(I) with h = inw(f) for some f ∈ I, this f has a weak
division with remainder 0 w.r.t. G = {g1, . . . , gk} under >w:

u · f = q1 · g1 + . . .+ qk · gk.

Because no cancellation of highest weighted degree terms occurs on the right,
taking the initial forms on both sides yields:

inw(u) · inw(f) = inw(qi1) · inw(gi1) + . . .+ inw(qil) · inw(gil)
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for the 1 ≤ i1 < . . . < il ≤ k whose terms contribute to the highest weighted
degree. Moreover, LT>(inw(u)) = LT>w(u) = 1. Therefore taking the leading
terms on both sides produces:

LT>(inw(f)) = q′i1 · LT>(inw(gi1)) + . . .+ q′il · LT>(inw(gil))

Lem.
=
3.6

q′i1 · LT>(gi1) + . . .+ q′il · LT>(gil) ∈ LT>(I),

where we abbreviated q′ij := LT>(inw(qij)) for j = 1, . . . , l.

Combining the previous lemmata we deduce how initially reduced stan-
dard bases of restrict to initially reduced standard bases of initial ideals.

Proposition 3.8
Let G be an initially reduced standard basis of the x-homogeneous ideal I E
RJtK[x] w.r.t. a t-local monomial ordering >. Then for all w ∈ C>(I) with
w0 < 0 the set

H := {inw(g) | g ∈ G}

is an initially reduced standard basis of inw(I) w.r.t. the same ordering.

Proof. By the previous Lemmata, we have

LT>(inw(I))
Lem.
=
3.7

LT>(I) = 〈LT>(g) | g ∈ G〉 Lem.
=
3.6
〈LT>(inw(g)) | g ∈ G〉,

and therefore H is a standard basis of inw(I). Moreover, because G was
initially reduced, so is H.

Example 3.9
Given the same ideal and ordering as in Example 3.5, g1 and g2 form an ini-
tially reduced standard basis. Because w := (−1, 2,−1, 1) ∈ C>(I), Proposi-
tion 3.8 implies that the initial ideal inw(I) has the initially reduced standard
bases {inw(g1), inw(g2)} = {x, y + t2z}. As we go over all weight vectors in
C>(I) in the affine subspace, we obtain four distinct initial ideals as illus-
trated in Figure 3.

Corollary 3.10
Any x-homogeneous ideal I E RJtK[x] has only finitely many distinct initial
ideals. In particular, I has only finitely many Gröbner cones.
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w1

w2

−2

−1

{x, y}

{x, y + t2z}

{x + t3z, y}

{x + t3z, y + t2z}

(−1, 2,−1, 1)

R<0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 3: standard bases of initial ideals with various weights

Proof. Note first that due to Lemma 3.6 every weight vector w is contained in
C>(I) for some t-local monomial ordering>, just choose any refinement>w of
the partial ordering induced by w. By Proposition 3.8 the initial ideal inw(I)
is determined by any initially reduced standard basis of I w.r.t. >. Since
by Proposition 2.1 there are only finitely many distinct C>(I), it suffices to
argue why a fixed C>(I) can only lead to finitely many distinct initial ideals
inw(I), since this implies that there are only finitely many Cw(I) and hence
only finitely many C0

w(I).
To this end note that an arbitrary element g =

∑
α∈Nn gαx

α ∈ RJtK[x]
with gα ∈ RJtK has only finitely many distinct initial forms. Consider a
weight vector w ∈ R<0 ×Rn, and let > be a t-local monomial ordering. The
initial forms of g w.r.t. > are of the form

inw(g) =
∑
α∈Λ

LT>(gα) · xα

for a finite set Λ ⊆ {α ∈ Nn | gα 6= 0}. Thus a fixed initially reduced standard
basis of I w.r.t. > admits by Proposition 3.8 only finitely many choices for
generating sets of initial ideals inw(I) and hence only finitely many initial
ideals.
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The next proposition allows us to read off the inequalities and equations
of the Gröbner cones, from which we can derive the remaining properties
needed to show that they form a polyhedral fan.

Proposition 3.11
Let G be an initially reduced standard basis of the x-homogeneous ideal I E
RJtK[x] w.r.t. a t-local monomial ordering > and let w ∈ C>(I) with w0 < 0.
Then for all v ∈ R<0 × Rn we have

inv(I) = inw(I) ⇐⇒ ∀g ∈ G : inv(g) = inw(g).

Proof. ⇐ For g ∈ G note that

LT>(inv(g)) = LT>(inw(g))
Lem.
=
3.6

LT>(g),

thus v ∈ C>(I), again by Lemma 3.6. This allows us to use Proposition 3.8,
which says that inw(I) and inv(I) share a common standard basis, therefore
they must coincide.

⇒ Let g ∈ G. On the one hand, Lemma 3.6 implies that LT>(g) is a term
of inw(g). On the other hand,

LT>(inv(g)) ∈ LT>(inv(I)) = LT>(inw(I))
Lem.
=
3.7

LT>(I).

But because G is initially reduced, the only term of g occurring in inv(g)
and LT>(I) is LT>(g). Thus LT>(g) is also a term of inv(g).

Now consider inw(g) − inv(g) ∈ inw(I) = inv(I). Our previous arguments
show that LT>(inw(g)− inv(g)) 6= LT>(g). However, because

LT>(inw(g)− inv(g)) ∈ LT>(inw(I))
Lem.
=
3.7

LT>(I),

it is another term of inw(g) or inv(g) in LT>(I), which must be 0.

Example 3.12
Consider the same ideal and ordering as in Example 3.5 and Example 3.9,
where g1 = x− t3x+ t3z − t4z and g2 = y − t3y + t2z − t4z form an initially
reduced standard basis.

For w = (−1, 2,−1, 1) ∈ C>(I) we have by Proposition 3.11:

inw′(I) = inw(I) = 〈x, y + t2z〉 ⇐⇒

{
inw′(g1) = x,

inw′(g2) = y + t2z.
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Therefore, its equivalence class of weight vectors w′ ∈ R<0 × R3 such that
inw′(I) = inw(I) is determined by the following system of inequalities and
equations:

inw′(g1) = x ⇐⇒


degw′(x) > degw′(t

3x)

degw′(x) > degw′(t
3z)

degw′(x) > degw′(t
4z)

⇐⇒


0 > w′0
w′1 > 3w′0 + w′3
w′1 > 4w′0 + w′3

inw(g2) = y+t2z ⇐⇒


degw′(y) > degw′(t

3y)

degw′(y) = degw′(t
2z)

degw′(y) > degw′(t
4z)

⇐⇒


0 > w′0
w′2 = 2w′0 + w′3
w′2 > 4w′0 + w′3

In particular, its Euclidean closure, the Gröbner cone Cw(I), is the face of
C>(I) cut out by the hyperplane {w′2 = 2w′0 + w′3}.

In fact, Proposition 3.11 implies that C>(I) is stratified by equivalence
classes of weight vectors as Figure 3 already suggested. Each class is an open
polyhedral cone whose Euclidean closure yields a face of C>(I).

Proposition 3.13
For any x-homogeneous ideal I E RJtK[x] and for any w ∈ R<0 × Rn, the
Gröbner cones Cw(I) and C0

w(I) are closed rational polyhedral cones.

Proof. Let > be a t-local weighted monomial ordering w.r.t. a weight vector
w, and let G be an initially reduced standard basis of I w.r.t. >.

Suppose G = {g1, . . . , gk} with gi =
∑

β,α cα,β,i · tβxα. Let Λi be the finite
set of exponent vectors with minimal entry in t,

Λi := {(β, α) ∈ N× Nn | α ∈ Nn, β = min{β′ ∈ N | cα,β′,i 6= 0}} .

Similar to Example 3.12, Proposition 3.11 implies that the equivalence class
of w, {v ∈ R<0×Rn | inv(I) = inw(I)}, is cut out by a system of inequalities
and equations

v · (β, α) > v · (δ, γ), for all (β, α), (δ, γ) ∈ Λi with w · (β, α) > w · (δ, γ),

v · (β, α) = v · (δ, γ), for all (β, α), (δ, γ) ∈ Λi with w · (β, α) = w · (δ, γ).

Therefore, the equivalence class forms a relative open polyhedral cone con-
tained in the open lower half space R<0 × Rn and its closure Cw(I) yields a
closed polyhedral cone in the closed lower half space R≤0×Rn. In particular,
C0
w(I) = Cw(I) ∩ ({0} × Rn) is also a closed polyhedral cone.
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Corollary 3.14
Let I E RJtK[x] be an x-homogeneous ideal and let w ∈ R<0 × Rn. Then
any face τ ≤ Cw(I) with τ * {0} × Rn coincides with the closure of the
equivalence class of any weight vector in its relative interior.

In particular, each face τ ≤ Cw(I) is a Gröbner cone of the form τ =
Cv(I) or τ = C0

v (I) for some v ∈ Cw(I) and each face τ ≤ C0
w(I) is a

Gröbner cone of the form τ = C0
v (I) for some v ∈ Cw(I).

Proof. Consider again the system of inequalities and equations that cut out
Cw(I) in the proof of the previous Proposition 3.13, which we obtained from
the sets of exponent vectors Λ1, . . . ,Λk of an initially reduced standard basis
w.r.t. a weighted ordering >w.

A face τ ≤ Cw(I) is cut out by supporting hyperplanes, on which some
of the inequalities above become equations. Assuming that τ * {0} × Rn,
all weight vectors in the relative interior yield the same initial forms on
g1, . . . , gk ∈ G, since they satisfy the same equations and inequalities on
the exponent vectors Λ1, . . . ,Λk. This implies that they belong to the same
equivalence class whose closure is then τ . In particular, τ = Cv(I).

And any face τ ≤ C0
w(I) ≤ Cw(I) can be cut out by a supporting hy-

perplane which also cuts out a face Cv(I) ≤ Cw(I). It is then clear that
τ = C0

v (I).

Proposition 3.15
Let I E RJtK[x] be an x-homogeneous ideal and let Cu(I) and Cv(I) be two
interior Gröbner cones of I such that Cu(I) ∩ Cv(I) * {0} × Rn. Then
Cu(I) ∩ Cv(I) is an interior Gröbner cone and it is a face of both.

Proof. By Proposition 3.13, both Cu(I)∩ (R<0×Rn) and Cv(I)∩ (R<0×Rn)
can be decomposed into a union of equivalence classes, and hence so can
(Cu(I) ∩ Cv(I)) ∩ (R<0 × Rn) 6= ∅.

Let k := dim(Cu(I) ∩ Cv(I)). Then the intersection contains exactly one
equivalence class of dimension k: If there were none, then the intersection
would be covered by a collection of lower dimensional open cones of which
there are, however, only finitely many by Corollary 3.10. If there were more
than one, then that would contradict Proposition 3.13, which states that
the closure of each equivalence class yields a distinct face of both Cu(I) and
Cv(I), and no two k-dimensional faces of a polyhedral cone may be cut out
by the same k-dimensional supporting hyperplane.
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So let w be in the maximal equivalence class in Cu(I) ∩ Cv(I). Taking
the Euclidean closure, we necessarily have Cw(I) = Cu(I) ∩ Cv(I), and, by
Corollary 3.13, it is a face of both Cu(I) and Cv(I).

Note that the proposition above falls a bit short in proving that the
intersection of two Gröbner cones yields a face of both, as it only covers
Gröbner cones with an intersection in the open part of the lower halfspace.
To cover the remaining intersection, we need some results on recession fans.

Definition 3.16
Let IERJtK[x] be an x-homogeneous ideal and w ∈ R<0×Rn. For an interior
Gröbner cone Cw(I) let C−1

w (I) denote the intersection

C−1
w (I) := Cw(I) ∩ ({−1} × Rn).

It is a polytope whose recession cone is defined to be the set of all weight
vectors in R≤0 × Rn under whose translation it is closed,

rec(C−1
w (I)) := {v ∈ R≤0 × Rn | v + C−1

w (I) ⊆ C−1
w (I)}.

Note that C−1
w (I) ⊆ {−1} ×Rn necessarily implies rec(C−1

w (I)) ⊆ {0} ×Rn.

Proposition 3.17
Let I ERJtK[x] be an x-homogeneous ideal.

1. The collection {C−1
w (I) | w ∈ R<0 × Rn} is a polyhedral complex whose

support is the affine hyperplane {−1} × Rn.

2. For any weight vector w ∈ R<0 × Rn, C0
w(I) = rec(C−1

w (I)).

3. The collection {C0
w(I) | w ∈ R<0×Rn} is a polyhedral fan whose support

is the boundary hyperplane {0} × Rn.

Proof. 1. follows from Proposition 3.13, Corollary 3.14 and Proposition 3.15.
2. is clear, and 3. follows from [20, Cor. 3.10].

We can now supplement the missing intersections in Proposition 3.15.

Corollary 3.18
Let I E RJtK[x] be an x-homogeneous ideal and let u, v ∈ R<0 × Rn. Then
the intersections C0

u(I) ∩ C0
v (I), C0

u(I) ∩ Cv(I) are boundary Gröbner cones
of I and they are faces of the intersected cones.
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Proof. Since the boundary Gröbner cones form a polyhedral fan by Proposi-
tion 3.17, the intersection C0

u(I) ∩ C0
v (I) is a face of both. In particular, by

Corollary 3.14, there is a weight vector w ∈ R<0 × Rn with

C0
u(I) ∩ C0

v (I) = C0
w(I).

And for the intersection of a boundary Gröbner cone and an interior Gröbner
cone, note that

C0
u(I) ∩ Cv(I) = C0

u(I) ∩ C0
v (I) = C0

w(I).

We are now able to prove the main theoretical result of the paper.

Theorem 3.19
Let I ERJtK[x] be an x-homogeneous ideal, then the Gröbner fan

Σ(I) = {Cw(I) | w ∈ R<0 × Rn} ∪ {C0
w(I) | w ∈ R<0 × Rn}

is a rational polyhedral fan with support R≤0 × Rn.

Proof. Proposition 3.13 shows that each Gröbner cone is a polyhedral cone,
while Corollary 3.14 proves that each face of a Gröbner cone is again a
Gröbner cone. Proposition 3.15 and Corollary 3.18 infer that the intersection
of two Gröbner cones is a face of each, and Corollary 3.10 shows that there
are only finitely many of them.

Example 3.20
Consider the following ideal generated by polynomials

〈2x+ 2y, t+ 2〉E ZJtK[x, y].

Now because the ideal is generated by elements in Z[t, x, y], one might be
tempted to believe that restricting ourselves to the polynomial ideal

〈2x+ 2y, t+ 2〉E Z[t, x, y],

might allow us to work with weight vectors R≥0 × R2 with positive weight
in t, obtain similar results about the existence of a Gröbner fan there and
patch the two Gröbner fans in R≤0 × R2 and in R≥0 × R2 together.

While the existence of a Gröbner fan in the positive halfspace is true
for our specific example, note that the two Gröbner fans cannot be glued
together to a polyhedral fan on R× R2, as illustrated in Figure 4.
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〈2〉

〈2x, t〉 〈2y, t〉

〈2x + 2y, t〉

?? ??

R× R2 ∩ {wx = wy}

Figure 4: Σ(〈2x + 2y, t + 2〉) on R× R2...?

As demonstrated in Example 3.12 and used in the proof of Proposi-
tion 3.13, Proposition 3.11 allows us to read of the inequalities and equations
of a Gröbner cone from an initially reduced standard basis. This can be done
as described in the following algorithm.

Algorithm 3.21 (Inequalities and equations of a Gröbner cone)

Input: (H,G,>), where for an x-homogeneous ideal I and an undetermined
weight vector w ∈ R<0 × Rn

1. > a t-local monomial ordering such that w ∈ C>(I),

2. G = {g1, . . . , gk} an initially reduced standard basis of I w.r.t. >,

3. H = {h1, . . . , hk} with hi = inw(gi).

Output: (A,B), a pair of matrices

A ∈ Mat(lA × (n+ 1),R), B ∈ Mat(lB × (n+ 1),R)

such that

Cw(I) = {v ∈ R≤0 × Rn | A · v ∈ (R≥0)lA and B · v = 0 ∈ RlB}.

1: for i = 1, . . . , k do

20



2: Suppose gi =
∑

β,α cα,β,i · tβxα and LM>(g) = tδxγ.
3: Construct the set of exponent vectors with minimal entry in t,

Λi := {(β, α) ∈ N× Nn | α ∈ Nn, β = min{β′ ∈ N | cα,β′,i 6= 0}} .

4: Construct a set of vectors that will yield the inequalities,

Ωi := {(δ, γ)− (α, β) ∈ R× Rn | (α, β) ∈ Λi, (α, β) 6= (δ, γ)} .

5: Let A be a matrix whose row vectors consist of
⋃k
i=1 Ωi.

6: for i = 1, . . . , k do
7: Suppose hi =

∑
β,α dα,β,i · tβxα.

8: Construct the set of exponent vectors with minimal entry in t,

Λ′i := {(β, α) ∈ N× Nn | α ∈ Nn, β = min{β′ ∈ N | dα,β′,i 6= 0}} .

9: Construct a set of vectors that will yield the equations,

Θi := {a− b ∈ R× Rn | a, b ∈ Λ′i} .

10: Let B be a matrix whose row vectors consist of
⋃k
i=1 Θi.

11: return (A,B).

We close the section with an example which shows why it is important
that the standard basis is initially reduced in order to determine the corre-
sponding Gröbner cone. It is an example abiding to the special assumptions
on R and I considered in Section 4 (see Page 23).

Example 3.22
Let RJtK[x] = ZJtK[x, y, z] and let >=>v be a weighted ordering with weight
vector v = (−1, 1, 1, 1) ∈ R<0 × R3 and the t-local lexicographical ordering
x > y > 1 > t as tiebreaker. We consider the ideal

I = 〈g0 = 2− t, g1 = x+ t2y + t3z, g2 = y + tx+ t2z〉E ZJtK[x, y, z],

to illustrate that the initial reduction of the standard basis ist important
for determining the inequalities and equations of the corresponding Gröbner
cone (see Algorithm 3.21).

Note that the generating set is a standard basis w.r.t. >, but it is not
yet initially reduced as the terms t2y in g1 and tx in g2 still lie in LT>(I) =
〈2, x, y〉. Consequently, these two terms yield meddling inequalities, so that

C := {w ∈ R<0 × R3 | inw(gi) = inv(gi) for i = 0, 1, 2} ( Cv(I).
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Ignoring g0, as it yields no non-trivial inequalities in R≤0 × R3, C is the
polyhedral cone given by the inequalities (see Figure 5)

inw(g1) = x ⇐⇒

{
degw(x) ≥ degw(t2y)

degw(x) ≥ degw(t3z)
⇐⇒

{
w1 ≥ 2w0 + w2

w1 ≥ 3w0 + w3

inw(g2) = y ⇐⇒

{
degw(y) ≥ degw(tx)

degw(y) ≥ degw(t2z)
⇐⇒

{
w2 ≥ w0 + w1

w2 ≥ 2w0 + w3

w1

w2

(−1, 0, 0, 1)

{w1 > −2 + w2}{w1 > −3 + 1}

−2 (−1, 2, 0, 1)

R≤0 × R3 ∩ {w0 = −1, w3 = 1}

w1

w2

(−1, 0, 0, 1)

{w2 > −1 + w1}

{w2 > −2 + 1}
−1

(−1, 2, 0, 1)

R≤0 × R3 ∩ {w0 = −1, w3 = 1}

Figure 5: inequalities given by inw(g1) = x resp. inw(g2) = y

Clearly, w := (−1, 2, 0, 1) 6∈ C, even though inw(I) = inv(I), since

inw(g1 − t2 · g2) = inw(x− t3x+ t3z − t4z) = x,

inw(g2 − t · g1) = inw(y − t3y + t2z − t4z) = y,

implying that w ∈ Cv(I). Replacing {g1, g2} with the initially reduced stan-
dard basis {g1−t2 ·g2, g2−t·g1}, we see that we are replacing the unnecessary
inequalities above, induced by t2y and tx, with the redundant inequalities of
Example 3.5, induced by t3x, t3y and t4z.

4. Initially reduced standard bases

In this section, we present an algorithm for the initial reduction of a
polynomial x-homogeneous standard basis in finite time. For the sake of
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simplicity, we will restrict ourselves to a special case which is of particular
interest for the computation of tropical varieties over the p-adic numbers
(see [15]), though the basic ideas behind the algorithm can be generalised.

Throughout this section we assume that K is some field with non-trivial
discrete valuation, K its residue field, Rν its discrete valuation ring, p ∈ Rν a
uniformising parameter and R ⊂ Rν a dense noetherian subring with p ∈ R.
Both K and Rν are assumed to be complete, so that we have exact sequences

0 〈p− t〉 ·RJtK〈p−t〉[x] RJtK〈p−t〉[x] K[x] 0,

0 〈p− t〉 ·RJtK[x] RJtK[x] Rν [x] 0.
t 7−→ p

and R/〈p〉 = K. Moreover, we still require that linear equations in R are
solvable, so that standard bases in RJtK[x] exist and are computable. If
R = Z is the ring of integers, p ∈ Z a prime number and K = Qp the field
of p-adic numbers, all properties are fulfilled (see [15] for further interesting
examples). We then fix the preimage I ERJtK[x] of some homogeneous ideal
in K[x], which in particular implies that I is x-homogeneous and p− t ∈ I.
It is our aim to provide an algorithm which computes an initially reduced
standard basis of I w.r.t. some t-local monomial ordering > on Mon(t,x),
provided that the ideal I is generated by polynomials. See Example 3.22 for
an example.

This section has a simple monolithic structure. Because our ideals are
all x-homogeneous, the problems that commonly arise when lacking a well-
ordering actually root in the inhomogeneity in t alone. It turns out that these
problems can be circumvented by reducing w.r.t. p − t diligently. Hence we
begin with an algorithm dedicated to that. Next, we continue with an algo-
rithm for reducing a set of elements of the same x-degree w.r.t. themselves
and p− t. Having all elements sharing the same x-degree makes the inhomo-
geneity in t easy to handle. Using it, we construct an algorithm for reducing
a set of elements of the same x-degree w.r.t. themselves, p − t and another
set of elements of strictly lower x-degree. This is the part in which the dif-
ficulty of our lack of well-ordering becomes apparent. We then conclude the
section with Algorithm 4.6 for computing an initially reduced standard basis
by reducing a standard basis w.r.t. itself.
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Algorithm 4.1 ((p− t)-Reduce)

Input: (g,>), where > is a t-local monomial ordering and g ∈ R[t,x] x-
homogeneous.

Output: g′ ∈ R[t,x] x-homogeneous with 〈p − t, g′〉 = 〈p − t, g〉 E R[t,x],
LT>(g′) = LT>(g) and initially reduced w.r.t. p− t under >.

1: Suppose g =
∑

α gα · xα with gα ∈ R[t] and LT>(g) = LT>(gγ) · xγ.
2: Set g′ := gγ · xγ and g′′ := g − gγ · xγ, so that g = g′ + g′′.
3: while g′′ 6= 0 do
4: Suppose g′′ =

∑
α g
′′
α · xα with g′′α ∈ R[t] and LT>(g′′) = LT>(g′′γ) · xγ.

5: if p | LT>(g′′γ) then
6: Let l := max{m ∈ N | pm divides LT>(g′′γ)} > 0.

7: Set g′′ := g′′ − LT>(g′′γ )

pl
· (pl − tl).

8: else
9: Set g′ := g′ + g′′γ · xγ and g′′ := g′′ − g′′γ · xγ.

10: return g′

Proof. Termination: We need to show that g′′ = 0 eventually. Since all
changes to g′′ during a single iteration of the while loop happen at a distinct
monomial in x, namely that of LM>(g′′), we may assume for our argument
that all terms of g′′ have the same monomial in x. Suppose, in the beginning
of an iteration,

g′′ = (ci1t
i1 + . . .+ cij · tij) · xγ with i1 < . . . < ij.

Now if p - LT>(ci1), then g′′ will be set to 0 in Step 9 and the algorithm
terminates. If p | LT>(ci1), we substitute the term ci1 · ti1xγ by the term
ci1/p

l · ti1+lxγ in Step 7, increasing the minimal t-degree strictly.
Let νp(c) := max{m ∈ N | pm divides c} denote the p-adic valuation on

R, so that l = νp(ci1), and consider the valued degree of g′′ defined by

max{νp(ci1) + deg(ti1), . . . , νp(cij) + deg(tij)}.

This is a natural upper bound on the t-degree of our substitute, and hence
also for the t-degree of all terms in our new g′′.

If the monomial of the substitute, ti1+lxγ, does not occur in the original
g′′, then this upper bound remains the same for our new g′′. If it does occur
in the original g′′, then this valued degree might increase depending on the
sum of the coefficients, however the number of terms in g′′ strictly decreases.
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Because g′′ has only finitely many terms to begin with, this upper bound
may therefore only increase a finite number of times. And since the minimal
t-degree is strictly increasing, if g′′ is not set to 0, our algorithm terminates
eventually.

Correctness: It is clear that g′ remains polynomial and x-homogeneous.
And the only term of g′ that might be divisible by LT>(p−t) = p is LT>(g′) =
LT>(g), since all other terms passed the check in Step 5 negatively. Hence
g′ is initially reduced w.r.t. p− t under >.

With this, we can begin formulating an algorithm for initially reducing a
set of elements which are x-homogeneous of same degree in x.

Algorithm 4.2 (initial reduction, same degree in x)

Input: (G,>), where> is a t-local monomial ordering andG = {g1, . . . , gk} ⊆
R[t,x] a finite subset such that

1. g1, . . . , gk x-homogeneous of the same x-degree,

2. LC>(gi) = 1 for i = 1, . . . , k,

3. LM>(gi) 6= LM>(gj) for i 6= j.

Output: G′ = {g′1, . . . , g′k} ⊆ R[t,x] such that

1. g′1, . . . , g
′
k x-homogeneous of the same x-degree,

2. LT>(g′i) = LT>(gi) for i = 1, . . . , k,

3. G′ initially reduced w.r.t. itself and p− t,
4. 〈p− t, g1, . . . , gk〉 = 〈p− t, g′1, . . . , g′k〉ERJtK[x].

1: for i = 1, . . . , k do
2: Run gi := (p− t)-Reduce(gi, >).
3: Reorder G = {g1, . . . , gk} such that LM>(g1) > . . . > LM>(gk), and

suppose

gi :=
∑
α∈N

gi,α · xα with gi,α ∈ RJtK and LT>(gi) = tβixαi .

4: for i = 1, . . . , k − 1 do
5: for j = i+ 1, . . . , k do
6: if gj,αi 6= 0 then
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7: Set
gj :=

gi,αi
tβi
· gj −

gj,αi
tβi
· gi.

8: Run gj := (p− t)-Reduce(gj, >).
9: for i = 1, . . . , k − 1 do

10: for j = i+ 1, . . . , k do
11: if tβj | gi,αj then
12: Set

gi :=
gj,αj
tβj
· gi −

gi,αj
tβj
· gj.

13: Run gi := (p− t)-Reduce(gi, >).
14: return G′ = {g1, . . . , gk}.

Proof. For the correctness of the instructions note that, by definition and
because > is t-local, gj,αj is divisible by tβj and gi,αi is divisible by tβi in
Step 7. From the assumption in Step 11 it follows that gi,αj in Step 12
will be divisible by tβj . Observe that due to the reordering in Step 3 and
LM>(gj,αi) · xαi being a monomial in gj we have for i < j:

tβi · xαi = LM>(gi) > LM>(gj) > LM>(gj,αi) · xαi .

Now since > is t-local, tβi divides LM>(gj,αi), hence also gj,αi .
It is clear that the algorithm terminates since it only consists of a finite

number of steps, and, for the correctness, that the output is x-homogeneous,
polynomial and generates the same ideal as the input.

Next, we show that the leading terms of the gi are preserved. Observe that
in Step 7 we have LM>(

gi,αi
tβi

) = 1 by definition and LM>(
gj,αj
tβi

) < 1 by the
previous argument. Due to the assumption that LC>(gi) = LC>(gi,αi) = 1
we therefore have

LT>(gj) = LT>

(gi,αi
tβi
· gj
)

and
LM>(gj) > LM>(gj,αi) · xαi = LM>

(gj,αi
tβi
· gi
)
.

In Step 12 we similarly have LM>(
gj,αj

tβj
) = 1 and LM>(

gi,αj

tβj
) ≤ 1, thus

LT>(gi) = LT>

(gj,αj
tβj
· gi
)

and
LM>(gi) > LM>(gi,αj) · xαj = LM>

(gi,αj
tβj
· gj
)
.
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On the whole, the leading terms of the g1, . . . , gk remain unchanged.
The output is initially reduced w.r.t. p− t. For that note that p does nei-

ther divide the leading terms as they are monic nor the latter terms because
every element of the output was sent through the Algorithm 4.1.

To see that the output G′ is initially reduced w.r.t. itself, observe that
the first pair of nested for loops eliminates all terms in gj with xαi for i < j.
In particular, each gj is initially reduced w.r.t. g1, . . . , gj−1.

Additionally, it will stay reduced w.r.t. g1, . . . , gj−1 in the second pair of
nested for loops, because gj+1, . . . , gk contain no monomial xαi , i < j, either.

Moreover, once gi is initially reduced w.r.t. gj for i < j in Step 12, re-
ducing it initially w.r.t. say gj+1 will not change that out of two reasons.
First, gj+1 contains no term with xαj , hence adding a multiple of it to gi is
unproblematic. Secondly, LT>(gj,αj/t

βj) = 1, which means multiplying gi by
it will not change LT>(gi,αj). So if tβj does not divide gi,αj before, because
gi is initially reduced w.r.t. gj, it does not divide gi,αj after as well.

This shows that the constant changes to gi in the second pair of nested
for loops are unproblematic. Once gi has been initially reduced w.r.t. gj, it
will stay that way while being reduced initially w.r.t. gj+1, . . . , gk.

Example 4.3
Let p = 2 and consider the set G = {g1, g2, g3} ⊆ ZJtK[x1, x2, x3] with

g1 := x2
1 + tx2

2 − t2x2
3,

g2 := x2
2 + tx2

1 + tx2
3 + t2x2

3 = x2
2 + tx2

1 + (t+ t2)x2
3,

g3 := t3x2
3 + t4x2

1 + t4x2
2 + t5x2

2 = t3x2
3 + t4x2

1 + (t4 + t5)x2
2,

and the weighted ordering>=>w on Mon(t,x) with weight vector (−1, 1, 1, 1) ∈
R<0 ×R3 and the t-local lexicographical ordering with x1 > x2 > x3 > 1 > t
as tiebreaker.

We can illustrate the process with the aid of the following 3× 3-matrix:1 t −t2
t 1 t+ t2

t4 t4 + t5 t3

 .

The entry in position (i, j) contains the RJtK-coefficient of gi w.r.t. the x-
monomial in the leading term of gj.
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In the first pass, we begin by taking g1 and reducing g2 and g3 w.r.t. it.
To eliminate the term tx2

1 in g2 and t4x2
1 in g3 we set

g2 := g2 − t · g1 = (x2
2 + tx2

1 + tx2
3 + t2x2

3)− t · (x2
1 + tx2

2 − t2x2
3)

= (1− t2) · x2
2 + (t+ t2 + t3) · x2

3,

g3 := g3 − t4 · g1 = (t3x2
3 + t4x2

1 + (t4 + t5)x2
2)− t4 · (x2

1 + tx2
2 − t2x2

3)

= (t3 + t6) · x2
3 + t4 · x2

2.

Note that both g2 and g3 remain initially reduced w.r.t. 2− t.

g1 g2 g31 t −t2
0 1− t2 t+ t2 + t3

0 t4 t3 + t6


Next, we take g2 and reduce g3 w.r.t. it, i.e.

g3 := (1− t2) · g3 − t4 · g2

= (1− t2) · ((t3 + t6)x2
3 + t4x2

2)− t4 · ((1− t2)x2
2 + (t+ t2 + t3)x2

3)

= (t3 − 2t5 − t7 − t8) · x2
3.

And even though g3 contains a term divisible by 2, it still remains initially
reduced w.r.t. 2− t.

g1 g2 g31 t −t2
0 1− t2 t+ t2 + t3

0 0 t3 − 2t5 − t7 − t8


This concludes our first pass. For the second pass, we begin by taking g1

and reducing it w.r.t. first g2 and then g3. Reducing g1 w.r.t. g2 yields

g1 := (1− t2) · g1 − t · g2

= (1− t2) · (x2
1 + tx2

2 − t2x2
3)− t · ((1− t2)x2

2 + (t+ t2 + t3)x2
3)

= (1− t2) · x2
1 + (−2t2 − t3) · x2

3
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and reducing that w.r.t. 2− t we obtain

g1 := g1 − (−t2 − t3)x2
3 · (2− t) = (1− t2) · x2

1 − t4x2
3.

Reducing g1 w.r.t. g3 yields,

g1 := (1− 2t2 − t4 − t5) · g1 − t · g3 = (1− 2t2 − t4 − t5)(1− t2)x2
1

= (1− 3t2 + t4 − t5 + t6 + t7) · x2
1,

which is initially reduced w.r.t. 2− t.

g1 g2 g31− 3t2 + t4 − t5 + t6 + t7 0 0
0 1− t2 t+ t2 + t3

0 0 t3 − t6 − t7 − t8


Finally, note that while g2 has a term t3x2

3 divisible by the leading term t3x3

of g3, it is still initially reduced w.r.t. g3. This concludes our second pass and
we obtain the initially reduced set

g1 = (1− 5t2 + 3t4 − t5 + t6 + t7) · x2
1,

g2 = (1− t2) · x2
2 + (t+ t2 + t3) · x2

3,

g3 = (t3 − 2t5 − t7 − t8) · x2
3.

Observe that it is possible to reduce the number of terms at the cost of the
coefficient size, by substituting p for some of the t. One alternative initially
reduced set with the same leading monomials as above would therefore be

g1 := 165 · x2
1, g2 := −3 · x2

2 + 7t · x2
3 and g3 := −55t3 · x2

3.

Next, we need to discuss how to reduce a set H of x-homogeneous ele-
ments of the same degree in x w.r.t. themselves and a set G of x-homogeneous
elements of lower degree. The simplest way is multiplying the elements of G
up to the same degree in x as the elements of H in all possible combinations
and using Algorithm 4.2 on the resulting set. This resembles a brute force
method in which we directly summon the worst case scenario to be resolved.
A more sophisticated method multiplies the elements of G up to the same
degree in x as the elements of H when they are needed. In the optimal case,
we can reduce the complexity drastically with this strategy, in the worst case
we are only delaying the inevitable.
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Algorithm 4.4 (initial reduction, step by step)

Input: (G,H,>), where > a t-local monomial ordering, H = {h1, . . . , hk}
and G finite subsets of R[t,x] such that

1. h1, . . . , hk are x-homogeneous of the same x-degree d,

2. all g ∈ G are x-homogeneous of x-degree less than d,

3. LC>(hi) = 1, for i = 1, . . . , k, and LC>(g) = 1 for all g ∈ G,

4. LM>(hi) 6= LM>(hj) for i 6= j,

5. LM>(hi) /∈ 〈LM>(g) | g ∈ G〉 for i = 1, . . . , k.

Output: H ′ = {h′1, . . . , h′k} ⊆ R[t,x] such that

1. h′1, . . . , h
′
k are x-homogeneous of the same x-degree d,

2. LT>(h′i) = LT>(hi) for i = 1, . . . , k,

3. H ′ initially reduced w.r.t. G and itself,

4. 〈p− t, G,H〉 = 〈p− t, G,H ′〉ERJtK[x].

1: Reduce H initially using Algorithm 4.2 and set E = ∅.
2: Suppose hi =

∑
α∈Nn hi,α · xα with hi,α ∈ RJtK, create the disjoint union

T := {(LT>(hi,α) · xα, i) | α ∈ Nn and LT>(hi,α) · xα < LT>(hi)},

a working list of terms to be checked for potential reduction w.r.t. G.
3: while T 6= ∅ do
4: Pick (s, i) ∈ T with LM>(s) maximal.
5: if LT>(g) | s for some g ∈ G then

6: Pick g ∈ G, LT>(g) | s, and set E := E ∪
{

LM>(s)
LM>(g)

· g
}

.

7: Reduce H ∪ E initially using Algorithm 4.2.
8: Update the working list:

T := {(LT>(hi,α) · xα, i) | α ∈ Nn and LM>(hi,α) · xα < LM>(s)}.

9: else
10: Set T := T \ {(hi, s)}.
11: return H
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Proof. For the termination note that in each iteration of the while loop ei-
ther the set of extra polynomials E increases or the working list T decreases.
Also because each s is chosen to be maximal, each other term in the working
list T with the same x-monomial must have a higher t-degree and is there-
fore eliminated alongside s in the initial reduction of H ∪ E. Because the
updated T only includes relevant terms smaller than s, the x-monomial of s
is effectively eliminated in all working lists to follow. Hence each elements of
E will always have a distinct x-monomial which is of degree d. Thus E has
a maximal size after which the algorithm will terminate in a finite number
of steps.

For the correctness of the instructions, observe that H ∪ E satisfies the
conditions for Algorithm 4.2 by assumption. For the correctness of the out-
put, it is obvious that the leading terms of H are preserved, that H is initially
reduced w.r.t. itself and that its elements are x-homogeneous as well as poly-
nomial. To show that H is initially reduced w.r.t. G, observe that, apart
from the terms eliminated, any term altered in the initial reduction of H ∪E
is strictly smaller than s. Because s was chosen to be maximal, the updated
working list therefore contains all relevant terms that have been altered or
that have yet to be checked for reduction. Thus in the output any relevant
term has been negatively checked for divisibility by an element of G.

Remark 4.5
Note that in Step 6 of Algorithm 4.4, we multiply g by a power of t even
though it is not necessary for correctness. The reason is as follows:

Recall Algorithm 4.2, which consists of two big nested for loops. In the
first pass from Step 4 to 8 we take each gi, i = 1, . . . , k − 1, and reduce all
gj, i < j, w.r.t. it. In the second pass from Step 9 to 13 we take each gi,
i = 1, . . . , k − 1, and reduce it w.r.t. all gj, i < j.

Now suppose we enter the Algorithm withH∪{g}, whereH = {h1, . . . , hk}
is already initially reduced w.r.t. itself and p− t. Suppose furthermore

LM>(h1) > . . . > LM>(hl) > LM>(g) > LM>(hl+1) > . . . > LM>(hk).

By assumption, taking each hi, i = 1, . . . , l, and reducing all hj, i < j,
w.r.t. it is obsolete. The first necessary action is reducing g w.r.t. h1, . . . , hl.

h1 h2 . . . hl g hl+1 . . . hk−1 hk
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Next, we consider the hi, i = l + 1, . . . , k. Each hi is already reduced
w.r.t. h1, . . . , hl and remains so after reducing it w.r.t. g, as the x-monomials
of their leading monomials were already completely eliminated in g previ-
ously. Hence we may reduce each hi, i = l + 1, . . . , k, w.r.t. g without
inducing the need of reducing them w.r.t. h1, . . . , hl again.

h1 h2 . . . hl g hl+1 . . . hk−1 hk

However, g might contain a term with monomial t2x, which might not
be reducible w.r.t. LT>(hj) = t3x, but if g is multiplied by t while reducing
another element w.r.t. it, we do create a term that is reducible. Thus, we
need to reduce each hi, i = l + 1, . . . , k w.r.t. hj, j = l + 1, . . . , i again and
this concludes our first pass.

h1 h2 . . . hl g hl+1 . . . hk−1 hk

For the second pass, taking each hi, i = 1, . . . , l, and reducing it w.r.t. all
hj, j = i + 1, . . . , l, is unnecessary. The first necessary step is to take each
hi, i = 1, . . . , l, and reduce it w.r.t. the newly added g. Similar to a previous
step, each hi remains reduced w.r.t. all hj, j = i+ 1, . . . , l.

h1 h2 . . . hl g hl+1 . . . hk−1 hk

Afterwards, while each hi remains reduced w.r.t. all hj, j = i + 1, . . . , l,
it nonetheless needs to be reduced w.r.t. hl+1, . . . , hk again.

h1 h2 . . . hl g hl+1 . . . hk−1 hk

Next in the second pass, we take g and reduce it w.r.t. hl+1, . . . , hk.
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h1 h2 . . . hl g hl+1 . . . hk−1 hk

And finally, we take each hi, i = l+1, . . . , k−1 and reduce it w.r.t. all hj,
i < j, as reducing them w.r.t. g earlier might have broken their reducedness
property.

h1 h2 . . . hl g hl+1 . . . hk−1 hk

It can be seen that a position of g more to the right minimises the num-
ber of reductions needed. This implies that LM>(g) should be as small as
possible, and since its monomial in x is fixed, this means that it should have
as high a degree in t as possible.

Note that increasing the degree in t to increase performance is not risk-
free a priori. For example, suppose we had a g ∈ G with LT>(g) = x and we
were to add t5y · g to E in order to reduce a term with monomial t5xy. Then
any subsequent term with monomial t4xy would require adding an additional
multiple of g to E. However, since our working list T is worked off in an
order induced by a t-local monomial ordering >, any later s′ picked in Step 4
with the same monomial in x necessarily has to have a higher degree in t.
Thus this cannot happen in our algorithm.

With Algorithm 4.4, writing an algorithm for computing an initially re-
duced standard basis becomes a straightforward task. All we need to adhere
is to proceed x-degree by x-degree while repeatedly applying the previous
algorithm.

Algorithm 4.6 (initially reduced standard basis)

Input: (F,>), where F ⊂ I an x-homogeneous, polynomial generating set
of I containing p− t.

Output: G ⊆ I an x-homogeneous, polynomial and initially reduced stan-
dard basis of I.

1: Compute an x-homogeneous standard basis G′′ of I = 〈F 〉 with [16,
Alg. 2.16 or Alg. 3.8].

2: Set G′ := ∅.
3: for g ∈ G′′ with p - LT>(g) do
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4: if LC>(g) 6= 1 then
5: Since 1 ∈ 〈LC>(g), p〉, find a, b ∈ R such that

1 = a · LC>(g) + b · p.

6: Set
g := a · g + b · LM>(g) · (p− t),

so that LC>(g) = 1.
7: Set G′ := G′ ∪ {g}.
8: Minimise the standard basis G′ by gradually removing elements g ∈ G

with LM>(g′) | LM>(g) for some g′ ∈ G, g′ 6= g.
9: Set G := ∅

10: while G′ 6= ∅ do
11: Set

d := min{degx(g) | g ∈ G′},
H ′ := {g ∈ G′ | degx(g) = d},
G′ := {g ∈ G′ | degx(g) > d}.

12: Reduce H ′ initially w.r.t. G, p − t and itself using Algorithm 4.4 and
let H be the output of that initial reduction.

13: Set G := G ∪H.
14: return G ∪ {p− t}.

Proof. It is clear that G is a standard basis of I, as we are merely normalising
the leading coefficients of the standard bases G′′. It is also obvious that G is
polynomial and x-homogeneous. The initial reducedness of G follows from
the correctness of Algorithm 4.4.

5. How to compute the Gröbner fan

In this section, we describe algorithms for computing the Gröbner fan of
an ideal IERJtK[x] as in our convention on Page 4, provided that we are able
to compute initially reduced standard bases where needed. While computing
a Gröbner fan can be as seemingly simple as computing maximal Gröbner
cones C>(I) w.r.t. random monomial orderings > until the whole weight
space R≤0×Rn is filled, sensible algorithms avoid computing initially reduced
standard bases of I from scratch. The algorithms in this section are adjusted

34



versions of the algorithms found in Chapter 4 of Jensen’s dissertation [21] (see
also [17]), though some of the ideas involved originate in Collart, Kalkbrenner
and Mall’s work on the Gröbner walk [2].

We start with an algorithm for computing witnesses of weighted homo-
geneous elements in initial ideals, which can then be used to lift standard
bases of initial ideals to initially reduced standard bases of the original ideal.
Adding in some statements about the perturbation of initial ideals, we obtain
an algorithm which allows us to flip initially reduced standard bases of one
ordering to initially reduced standard bases of an adjacent ordering. This
algorithm can then be used to construct the Gröbner fan, requiring us to
compute the standard basis of I from scratch only once.

Note that all polynomial computations in our algorithms, if given poly-
nomial input, terminate and return polynomial output themselves, provided
that we are able to initially reduce a standard basis as e.g. in Algorithm 4.6.

Algorithm 5.1 (Witness)

Input: (h,H,G,>), where

• > a weighted t-local monomial ordering on Mon(t,x),

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of I w.r.t. >,

• H = {h1, . . . , hk} with hi = inw(gi) for some w ∈ C>(I) with w0 < 0,

• h ∈ inw(I) weighted homogeneous w.r.t. w.

Output: f ∈ I such that inw(f) = h
1: Use [16, Alg. 1.13] to compute a homogeneous determinate division with

remainder w.r.t. >,

({q1, . . . , qk}, r) = HDDwR(h, {h1, . . . , hk}, >),

so that h = q1 · h1 + . . .+ qk · hk and r = 0.
2: return f := q1 · g1 + . . .+ qk · gk

Proof. By Proposition 3.8, H is a standard basis of inw(I), therefore the
division of h will always yield remainder 0.

Since h, h1, . . . , hk are weighted homogeneous w.r.t. w, so are q1, . . . , qk.
Hence

inw(f) = inw(q1) · inw(g1)︸ ︷︷ ︸
=q1·h1

+ . . .+ inw(qk) · inw(gk)︸ ︷︷ ︸
=qk·hk

= h.
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Also note that the division with remainder will always terminate, as the
weighted degree cannot become arbitrarily small since the ideal inw(I) is
homogeneous in x and weighted homogeneous overall.

As announced, we immediately obtain an algorithm which allows us to
lift a standard basis of an initial ideal to an initially reduced standard basis
of I, assuming we have a standard basis of I w.r.t. an adjacent ordering at
our disposal.

Algorithm 5.2 (Lift)

C>(I)

G standard basis

H standard basis

C>′(I)

G′ standard basis

H ′ standard basisw

Figure 6: lift of standard bases

Input: (H ′, >′, H,G,>), where

• > a weighted t-local monomial ordering on Mon(t,x) with weight vec-
tor in R<0 × Rn,

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of I w.r.t. >,

• H = {h1, . . . , hk} with hi = inw(gi) for some w ∈ C>(I) with w0 < 0,

• >′ a t-local monomial ordering such that w ∈ C>(I) ∩ C>′(I),

• H ′ ⊆ inw(I) a weighted homogeneous standard basis w.r.t. >′.

Output: G′ ⊆ I, an initially reduced standard basis of I w.r.t. >′.
1: Set G′′ := {Witness(h,H,G,>) | h ∈ H ′}.
2: Reduce G′′ initially w.r.t. >′ and obtain G′.
3: return G′.
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Proof. Consider a witness g := Witness(h,w,G,>) for some h ∈ H ′. Then,
by Lemma 3.6, we have LT>′(g) = LT>′(inw(g)) = LT>′(h), and thus

〈LT>′(g) | g ∈ G′′〉 = 〈LT>′(h) | h ∈ H ′〉 = LT>′(inw(I))
Lem.
=
3.7

LT>′(I).

Thus G′′ is a standard basis of I w.r.t. >′ and G′ is even initially reduced.

Example 5.3
Consider again the ideal from Example 3.5

I = 〈g1 = x− t3x+ t3z − t4z, g2 = y − t3y + t2z − t4z〉E ZJtK[x, y, z]

and the weighted monomial ordering >=>v on Mon(t, x, y, z) with weight
vector v = (−1, 3, 3, 3) ∈ R<0 × R3 and the t-local lexicographical ordering
such that x > y > z > 1 > t as tiebreaker. We have already seen that

C>(I) = {w ∈ R<0 × Rn | w1 ≥ 3w0 + w3 and w2 ≥ 2w0 + w3}.

Picking w = (−1, 2,−1, 1) in a facet of C>(I), Proposition 3.8 implies

inw(I) = 〈inw(g1), inw(g2)〉 = 〈x, y + t2z〉.

It is easy to see that {x, y + t2z} is a standard basis of inw(I) regardless
which monomial ordering is chosen. Since using Algorithm 5.1 on inw(g1)
and inw(g2) yields g1 and g2 respectively, Algorithm 5.2 therefore implies
that {g1, g2} is also a standard basis for the adjacent monomial ordering >′

on the other side of the facet containing w.
Moreover, since >′ has to induce a different leading ideal by definition,

and the leading terms of g1 and g2 w.r.t. >′ have to occur in their initial
forms by Lemma 3.6, we see that the adjacent leading ideal is 〈x, t2z〉.

An easy way to construct orderings adjacent to > is by connecting two
weight vectors in series, the first a weight vector lying on a facet and the
second an outer normal vector of the facet.

Proposition 5.4
Let > be a t-local monomial ordering, w ∈ C>(I) with w0 < 0 and v ∈ Rn+1.
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Let >(w,v) denote the t-local monomial ordering given by

tβ · xα >(w,v) t
β′ · xα′ :⇐⇒

(β, α) · w > (β′, α′) · w,
or (β, α) · w = (β′, α′) · w and (β, α) · v > (β′, α′) · v,
or (β, α) · w = (β′, α′) · w and (β, α) · v = (β′, α′) · v

and tβ · xα > tβ
′ · xα′ .

Then w = C>(I) ∩ C>(w,v)
(I) and for ε > 0 sufficiently small

w + ε · v ∈ C>(w,v)
(I).

In particular for these ε we have inw+εv(I) = inv(inw(I)).

Proof. By definition we have LT>(w,v)
(g) = LT>(w,v)

(inw(g)) for any g ∈
RJtK[x], which implies w ∈ C>(w,v)

(I) by Lemma 3.6.
Next, let G be an initially reduced standard basis of I w.r.t. that ordering.

Observe that every g ∈ G,

g = . . . . . . . . . . . . . . .︸ ︷︷ ︸
inw(g)

+ . . . . . . . . . . . . . . .︸ ︷︷ ︸
rest

,

has a distinct degree gap between the terms of highest weighted degree and
the rest. As the weighted degree varies continuously under the weight vector,
choosing ε > 0 sufficiently small ensures that the (w+ε ·v)-weighted degrees
of the terms in inw(g) remain higher than those of the rest. Thus inw+ε·v(g)
is the sum of those terms of inw(g) that have maximal v-weighted degree, i.e.
inw+ε·v(g) = inv(inw(g)). In particular, we have

LT>(w,v)
(inw+ε·v(g)) = LT>(w,v)

(g),

and hence w + ε · v ∈ C>(w,v)
(I) by Lemma 3.6 again.

The final claim now follows from Proposition 3.8:

inw+ε·v(I)
Prop.
=
3.8
〈inw+ε·v(g) | g ∈ G〉 = 〈inv(inw(g)) | g ∈ G〉 Prop.

=
3.8

inv(inw(I)).

With this easy method of constructing adjacent orderings, we are now
able to write an algorithm for flipping initially reduced standard bases.
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C>(I)

G standard basis

C>′(I)

G′ standard basis

w

v

H standard basis

Figure 7: flip of standard bases

Algorithm 5.5 (Flip)

Input: (G,H, v,>), where

• > a weighted t-local monomial ordering on Mon(t,x) with weight vec-
tor in R<0 × Rn,

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of I w.r.t. >,

• H = {h1, . . . , hk} with hi = inw(gi) for some relative interior point
w ∈ C>(I) on a lower facet τ ≤ C>(I), τ * {0} × Rn and w0 < 0.

• v ∈ R× Rn an outer normal vector of the facet τ .

Output: (G′, >′), where >′ is an adjacent t-local monomial ordering with

τ = C>(I) ∩ C>′(I) and C>(I) 6= C>′(I),

and G′ ⊆ I is an initially reduced standard basis w.r.t. >′.
1: Compute a standard basis H ′ of 〈H〉 = inw(I) w.r.t. >(w,v).
2: Set G′ := Lift(H ′, >(w,v), H,G,>).
3: return (G′, >(w,v))

Proof. By our Lifting Algorithm 5.2, G′ is an initially reduced standard basis
of I w.r.t. >(w,v). The remaining conditions follow from Proposition 5.4.

Example 5.6
Consider the ideal

I := 〈2− t, xy2 − t2y3, x2 − t3y2〉E ZJtK[x, y]
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and the weighted monomial ordering >=>u on Mon(t, x, y) with weight vec-
tor u := (−1, 1, 1) ∈ R<0 ×R2 and t-local lexicographical ordering such that
x > y > 1 > t as tiebreaker. An initially reduced standard basis of I is then
given by

G := {2− t, xy2 − t2y3, x2 − t3y2, t3y4}.

The maximal Gröbner cone C>(I) ⊆ R≤0×R2 is determined by the inequal-
ities

(wt, wx, wy) ∈ C>(I) ⇐⇒

{
wx + 2wy ≥ 2wt + 3wy

2wx ≥ 3wt + 2wy

⇐⇒

{
wx ≥ 2wt + wy

2wx ≥ 3wt + 2wy

It is easy to see how w := (−4, 1, 7) is contained in C>(I). In fact, it lies on
its boundary since 2wx = 3wt + 2wy = 2. Then v := (3, 5, 1) ∈ R3 is an outer
normal vector, as even for small ε > 0

2(wx + ε · vx)︸ ︷︷ ︸
2+10ε

� 3(wt + ε · vt)︸ ︷︷ ︸
−12+9ε

+ 2(wy + ε · vy)︸ ︷︷ ︸
14+2ε

.

An initially reduced standard basis of inw(I) is then given by

H := {inw(g) | g ∈ G} = {2, xy2, x2 − t3y2, t3y4},

and computing a standard basis of inw(I) w.r.t. the ordering >(w,v) yields

H ′ := {2, xy2, t3y2 − x2, x3},

which can then be lifted to a standard basis of I w.r.t. the same ordering
>(w,v) that is adjacent to >

G′ = {2− t, xy2 − t2y3, t3y2 − x2, x3 − t5y3}.

The Gröbner fan algorithm is a so-called fan traversal algorithm. We
start with computing a starting cone and repeatedly use Algorithm 5.5 to
compute adjacent cones until we obtain the whole fan. The whole process
is commonly illustrated on a bipartite graph as shown in Figure 8. This
bipartite graph also satisfies the so-called reverse search property, which can
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σ1

σ2

σ3

τ3

τ2

τ1

maximal cones facets

σ0

σ1

σ2

τ1

τ2

τ0

Figure 8: The bipartite graph of a Gröbner fan Σ(〈x + y + z〉)

be used for further optimisation. See Chapter 3.2 in [21] for more information
about the reverse search property of Gröbner fans.

Note that since the Gröbner fan spans the whole weight space R≤0×Rn,
each lower facet is contained in exactly two maximal cones. That means,
traversing a facet τ ≤ C>(I) of a Gröbner cone C>(I) can be omitted if τ is
contained in a maximal Gröbner cone that was already computed.

Algorithm 5.7 (Gröbner fan)

Input: F ⊆ I ERJtK[x] an x-homogeneous generating set.
Output: ∆, the set of maximal cones in the Gröbner fan Σ(I) of I.

1: Pick a random weight u ∈ R<0 ×Rn and a t-local monomial ordering >.
2: Compute an initially reduced standard basis G of I w.r.t. >u.
3: Construct the maximal Gröbner cone C>u(I) = C(LT>u(G), G,>u) using

Algorithm 3.21.
4: Initialise the Gröbner fan Σ := {C>u(I)}.
5: Initialise a working list L := {(G,>u, C>u(I))}.
6: while L 6= ∅ do
7: Pick (G,>u, C>u(I)) ∈ L.
8: for all facets τ ≤ C>u(I), τ * {0} × Rn do
9: Compute a relative interior point w ∈ τ .

10: if w /∈ C>′(I) for all C>′(I) ∈ Σ \ {C>u(I)} then
11: Compute an outer normal vector v of τ .
12: Set H := {inw(g) | g ∈ G}.
13: Compute (G′, >′) := Flip(G,H, v,>u) using Algorithm 5.5.
14: Construct the adjacent cone C>′(I) = C(LT>′(G

′), G′, >′).
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15: Compute a relative interior point u′ ∈ C>′(I), so that G′ is a
standard basis w.r.t. >u′ and C>′(I) = C>u′ (I).

16: Set Σ := Σ ∪ {C>′u(I)}.
17: Set L := L ∪ {(G′, >u′ , C>u′ (I)}.
18: Set L := L \ {(G,>u, C>u(I))}.
19: return ∆

Example 5.8
For an easy but clear example, consider the ideal

I := 〈x+ z, y + z〉E ZJtK[x, y, z].

Because it is weighted homogeneous w.r.t. (−1, 0, 0, 0) ∈ R<0 × R3 and
(0, 1, 1, 1) ∈ {0}×R3, its Gröbner fan is closed under translation by (−1, 0, 0, 0)
and invariant under translation by (0, 1, 1, 1). We therefore, concentrate on
weight vectors on the hyperplane {0} × R2 × {0}, since any other weight
vector in the closed lower halfspace can be generated out of them via the
translations.

Looking only at potential leading terms of the generators, one might be
led to believe that the Gröbner fan Σ(I) restricted to {0} × R2 × {0} is of
the form as shown in Figure 9

(0, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0)

〈x, y〉〈z, y〉

〈x, z〉〈z〉

Figure 9: The Gröbner fan Σ(I) restricted to {0} × R2 × {0}

Let us use our algorithm to see why this is not the case. We start with a
random weight vector u, say u = (0, 1, 1, 0), and a random t-local monomial
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ordering > to be used as tiebreaker. Then {x + z, y + z} already is an
initially reduced standard basis w.r.t. >u, leading terms underlined, so that
by Lemma 3.6

w′ ∈ Cu(I) ⇐⇒

{
degw′(x) ≥ degw′(z) = 0,

degw′(y) ≥ degw′(z) = 0.

Hence, Cu(I) is the upper left quadrant of the image above, with two facets
available for the traversal. Picking τ to be the upper ray of Cu(I), w =

〈x, y〉

Figure 10: The first cone in the restricted Gröbner fan

(0, 0, 1, 0) a relative interior point inside it and v = (0,−1, 0, 0) an outer
normal vector on it, we see that inw(x+z) = z+x and inw(y+z) = y already
form an initially reduced standard basis of inw(I) w.r.t. >(w,v). Therefore,
this standard basis of inw(I) lifts again to the very same standard basis
{z + x, y + z} of I for the adjacent ordering.

However that standard basis is not initially reduced anymore, and a quick
calculation yields the initially reduced standard basis {z+x, y−x} and hence

w′ ∈ C>(w,v)
(I) ⇐⇒

{
0 = degw′(z) ≥ degw′(x),

degw′(y) ≥ degw′(x).

Let τ be the lower ray of our new Gröbner cone (see Figure 11), w =
(0,−1,−1, 0) a relative interior point and v = (0, 1,−1, 0) an outer normal
vector. We see that in(z + x) = z and inw(y − x) = −x+ y already form an
initially reduced standard basis of inw(I) w.r.t. >(w,v), which is why it will
lift again to the same standard basis {z + x,−x + y} of I for the adjacent
ordering.

As before, this standard basis is not initially reduced anymore, and a
quick calculation yields the initially reduced standard basis {z + y,−x+ y},

43



〈x, y〉

〈z, y〉

Figure 11: The first two cones in the restricted Gröbner fan

which means

w′ ∈ C>(w,v)
(I) ⇐⇒

{
0 = degw′(z) ≥ degw′(y),

degw′(x) ≥ degw′(y).

Figure 12 then shows how the Gröbner fan Σ(I) actually looks like. The

〈x, y〉

〈z, y〉

〈z, x〉

Figure 12: The Gröbner fan Σ(I) restricted to {0} × R2 × {0}

misconception at the beginning of the example was due to the oversight that
inw(x + z) = inw(y + z) = z do not generate inw(I), because {x + z, y + z}
is no initially reduced standard basis for >w.
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Remark 5.9
As we have already remarked, our main interest lies in the computation of
tropical varieties over the p-adic numbers (see e.g. Section 4). For this we
assume that R = Z and I contains the polynomial p− t for some prime num-
ber p. At the beginning of this section we have mentioned that the traversal
algorithm has the advantage that a standard basis of the ideal has to com-
puted from scratch only once. All intermediate steps comprise of computing
standard bases of initial ideals (see Algorithm 5.5), which are much simpler
since they are weighted homogeneous, and lifting those via computing stan-
dard representations (see Algorithm 5.1). A priori, all these computations
are computations over the integers as base ring, which is more expensive than
computing over base fields. However, all the initial ideals involved contain
the prime number p = inw(p− t), and hence most computations can actually
be done over the finite field Z/〈p〉. This reduces the overall cost drastically.
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module, J. Pure Appl. Algebra 150 (1) (2000) 27–39.

[11] M. Saito, B. Sturmfels, N. Takayama, Gröbner Deformations of Hyper-
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