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Abstract. We show how tropical varieties of ideals I E K[x] over a field K

with non-trivial valuation can always be traced back to tropical varieties of ideals

π−1I E RJtK[x] over some dense subring R in its ring of integers. Moreover, for

homogeneous ideals, we present algorithms on how the latter can be computed in

finite time, provided that π−1I is generated by elements in R[t, x]. While doing

so, we also comment on the computation of the Gröbner polytope structure and

p-adic Gröbner bases using our framework.

1. Introduction

Tropical varieties are commonly described as combinatorial shadows of their alge-

braic counterparts. Explicit computation of tropical varieties is not only of interest

for practical applications, but also of theoretical importance on many occassions

[24, 12, 3, 8]. However, computing tropical varieties is an algorithmically highly chal-

lenging task, requiring sophisticated techniques from computer algebra and convex

geometry.

The first techniques were developed by Bogart, Jensen, Speyer, Surmfels and Thomas

[4], who focused on homogeneous ideals over C with the trivial valuation, which al-

lowed them to rely on classical Gröbner basis methods. Furthermore, the authors

showed that, under sensible conditions, their techniques can be used over the field

of Puiseux series C{{t}} with its natural valuation, by regarding t as a variable in

the polynomial ring instead of a uniformizing parameter in the coefficient ring. The

inhomogeneity of the resulting ideal in C[t, x] can be worked around through homog-

enization and dehomogenization. In order to adapt these techniques to the field of

p-adic numbers and the p-adic valuation, Chan and Maclagan adapted the classical

theory of Gröbner bases [7] to take the valuation on the ground field into account,

instead of solely relying on monomial orderings.

In this article, in Section 2, we discuss another approach to compute tropical vari-

eties over an arbitrary field with valuation, which can be regarded as a generalisation
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of the trick used for C{{t}}. For that, we combine the existing notions of tropical

varieties over power series [27, 1, 22] with the concept of tropical varieties over co-

efficient rings [19, Section 1.6]. Compared to [7], the approach relies on existing

standard basis theory, which not only allows us to exploit the highly optimized im-

plementations that exist in established computer algebra systems such as Singular

[9] or Macaulay2 [10], it also connects us to a highly active field of research.

Moreover, in Section 3, we improve on the techniques in [4] by avoiding homoge-

nization and dehomogenization. We also touch upon the topic on how to compute

p-adic Gröbner bases in our framework. In Section 4 we present the algorithms for

computing tropical varieties and in Section 5 we touch upon possible optimizations

that are exclusive to non-trivial valuations.

We are not addressing issues on computational complexity as in [26, 17]. All al-

gorithms in this article are implemented in the Singular library tropical.lib

[15], relying on the gfanlib interface gfan.lib [14, 16] for computations in convex

geometry. They are publicly available as part of the official Singular distribution.

2. Tracing tropical varieties to a trivial valuation

The aim of this section is to show how tropical varieties over valued fields can be

traced back to tropical varieties over integral power series. The linchpin of the

section is to show that initial ideals over valued fields can be described through

initial ideals over integral power series, the remaining results then follow naturally

from this. To fix the notation, we will begin by recalling some very basic notions in

tropical geometry that are of immediate relevance to us.

Convention 2.1

For the remainder of the article, fix a complete field K with non-trivial discrete

valuation ν : K → R ∪ {∞} and a uniformizing parameter p ∈ K. Let OK be its

ring of integers and let K denote its residue field. Let R ≤ OK be a dense, noetherian

subring. By Cohen’s Structure Theorem, we have two exact sequences

0 〈p− t〉 ·RJtK〈p−t〉 RJtK〈p−t〉 K 0,

0 〈p− t〉 ·RJtK RJtK OK 0.
t 7−→ p

π

Moreover, fix a multivariate polynomial ring K[x] = K[x1, . . . , xn]. By abuse of

notation, we will also use π to refer to both the map RJtK[x]→ OK [x] as well as the

composition RJtK[x]→ OK [x] ↪→ K[x].

Example 2.2 (p-adic numbers)

The most important example is the field K := Qp of p-adic numbers with OK := Zp
the ring of p-adic integers. Then R := Z ≤ Zp is a natural dense subring, which is
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computationally easy to work over. The exact sequences in Convention 2.1 merely

reflect the presentation of p-adic integers as power series in p:

0 〈p− t〉 · ZJtK〈p−t〉[x] ZJtK〈p−t〉[x] Qp[x] 0,

0 〈p− t〉 · ZJtK[x] ZJtK[x] Zp[x] 0.
t 7−→ p

π

Example 2.3

Given the choice of R ≤ OK in Convention 2.1, choosing R := OK is always possible.

However, in many examples there are natural choices for R, which are computation-

ally much easier to handle than OK itself:

(1) K = k((t)) the field of Laurent series over a field k with OK = kJtK the ring of

power series over k, R = k[t] and p = t; e.g. k = Fq with q a prime power, as

used in [24, Section 7] or [18], or k = Q as considered in [4], see Example 2.15.

(2) Finite extensions K of Qp and Fq((t)), i.e. all local fields with non-trivial valua-

tion, and also all higher dimensional local fields.

(3) OK any completion of a localization of a Dedekind domain R at a prime ideal

P ER, p ∈ P a suitable element. Note that p does not need to generate P and

hence OK need not be the completion with respect to the ideal generated by p,

e.g. R = Z[
√
−5], P = 〈2, 1 +

√
−5〉 and p = 2.

(4) For an odd choice of R, consider K := Q(s)((t)) so that OK = Q(s)JtK. Set

R := S−1Q[s, t], where S := Q[s, t]\ (〈t−1, s〉∪〈x〉) is multiplicatively closed as

the complement of two prime ideals. Then R is a non-catenarian, dense subring

of OK .

Definition 2.4 (initial forms, initial ideals, tropical varieties over valued fields)

For a polynomial f =
∑

α∈Nn cα · xα ∈ K[x] and a weight vector w ∈ Rn, we define

the initial form of f with respect to w to be:

inν,w(f) :=
∑

w·α−ν(cα)
maximal

cα · p−ν(cα) · xα ∈ K[x].

For any subset I ⊆ K[x] and a weight vector w ∈ Rn, we define the initial ideal of

I with respect to w to be:

inν,w(I) := 〈inν,w(f) | f ∈ I〉E K[x].

We refer to the set of weight vectors for which the initial ideal contains no monomial

as the tropical variety of I,

Tν(I) := {w ∈ Rn | inν,w(I) monomial free} .

Theorem 2.5 (Structure Theorem for Tropical Varieties, [19, Theorem 3.3.5])

Let I EK[x] define an irreducible subvariety in (K∗)n of dimension d. Then Tν(I)
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is the support of a pure polyhedral complex of same dimension that is connected in

codimension 1.

Remark 2.6

Note that [19] only focuses on the connectivity in codimension 1 in the characteristic

0 case. A general proof can be found in a work by Cartwright and Payne [5].

Next, we will introduce tropical varieties in RJtK[x], and show how a certain class

of them relates to tropical varieties in K[x]. In particular, we will note that those

tropical varieties in RJtK[x] are pure and connected in codimension 1. We begin by

introducing initial forms and initial ideals in RJtK[x] and show how they can be used

to describe their pendants in K[x].

Definition 2.7 (initial forms, initial ideals)

Given an element f =
∑

β,α cα,β · tβxα ERJtK[x] and a weight vector w ∈ R<0 ×Rn,

we define the initial form of f with respect to w to be

inw(f) :=
∑

w·(β,α) maximal

cαt
βxα ∈ R[t, x].

Given an ideal I E RJtK[x] and a weight vector w ∈ R<0 × Rn, we define the initial

ideal of I with respect to w to be:

inw(J) := 〈inw(f) | f ∈ J〉ER[t, x].

This can be thought of as a natural extension of Definition 2.4 with trivial valuation

on the coefficients. Note that we only allow weight vectors with negative weight in

t, so that our result lies in a polynomial ring.

Example 2.8 (p-adic numbers)

Let us consider the example in [6, Chapter 3.6], the ideal

I = 〈2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉EQ3[x1, . . . , x4]

over the 3-adic number Q3, so that

π−1I = 〈3− t, 2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉E ZJtK[x],

and the weight vector (−1, w) ∈ R<0 ×R4, w := (1, 11, 3, 19). A short computation

yields

in(−1,w)(π
−1I) = 〈3, x2

1, tx1x3x4, t
3x1x

2
2x3, t

4x1x
4
2, t

3x4
3x

2
4〉,

and the similarity to the initial ideal of I under the 3-adic valuation is no coincidence:

inν3,w(I) = 〈x2
1, x1x3x4, x1x

2
2x3, x1x

4
2, x

4
3x

2
4〉E F3[x].

Proposition 2.9

For any ideal I EOK [x] and any weight vector w ∈ Rn, we have:

in(−1,w)(π−1I)|
t=1

= inν,w(I),



COMPUTING TROPICAL VARIETIES 5

where (·) denotes the canonical projection (·) : R[x]→ K[x].

Proof. ⊇: Any term s ∈ OK [x] is of the form s = (
∑

β cβp
β) · xα with p - cβ for all

β ∈ N. Then the element s′ := (
∑

β cβt
β) · xα ∈ RJtK[x] is a natural preimage of it

under π for which we have

inν,w(s) = cβ0 · xα = in(−1,w)(s′)|t=1
, where β0 = min{β ∈ N | cβ 6= 0}.

And because the valued weighted degree in OK [x] and the weighted degree in

RJtK[x] coincide,

degw(xα)− val(
∑

β cβp
β) = deg(−1,w)(

∑
β cβ · tβxα),

this implies any f ∈ OK [x] has a preimage f ′ ∈ RJtK[x] under π such that

inν,w(f) = in(−1,w)(f ′)|t=1
,

simply by applying the above argument to each of its terms.

⊆: Once again consider a term s =
∑

β cβp
β · xα ∈ OK [x] with p - cβ for all β ∈ N.

Then any preimage of it under π is of the form s′ =
∑

β cβt
βxα + r for some

r ∈ 〈t− p〉.
If deg(−1,w)(r) > deg(−1,w)(

∑
β cβt

βxα), we would have

in(−1,w)(s′)|t=1
= in(−1,w)(r)|t=1

= 0,

since in(−1,w)(r) ∈ in(−1,w)〈p− t〉 = 〈p〉.
And if deg(−1,w)(r) < deg(−1,w)(

∑
β cβt

βxα), we would have

in(−1,w)(s′)|t=1
= in(−1,w)(

∑
β cβt

βxα)|t=1 = cβ0 · xα

= inν,w(
∑

β cβp
β · xα) = inν,w(s),

where β0 := min{β ∈ N | cβ 6= 0}.
Now suppose deg(−1,w)(r) = deg(−1,w)(

∑
β cβt

βxα). First observe that because t

is weighted negatively, there can be no cancellation amongst the highest weighted

terms of r and the terms of
∑

β cβt
βxα, as the terms of

∑
β cβt

βxα are not divisible

by p, unlike the terms of the highest weighted terms of r. Therefore, we have

in(−1,w)(s′)|t=1
= in(−1,w)(

∑
β cβt

βxα)|t=1︸ ︷︷ ︸
=inν,w(

∑
β cβp

β · xα)

+ in(−1,w)(r)|t=1︸ ︷︷ ︸
=0

= inν,w(s).

Either way, we always have in(−1,w)(s′)|t=1
∈ 〈inν,w(s)〉 for any arbitrary preimage

s′ ∈ π−1(s), and, as before, the same hence holds true for any arbitrary element

f ∈ OK [x]. �

Corollary 2.10

For any ideal I EK[x] and any weight vector w ∈ Rn, we have:

in(−1,w)(π−1I)|
t=1

= inν,w(I).
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Proof. Follows from inν,w(I) = inν,w(I ∩ OK [x]). �

With our previous considerations, we can define tropical varieties of ideals in RJtK[x]

and show how some of them relate to tropical varieties of ideals in K[x].

Definition 2.11 (tropical variety)

For an ideal I ERJtK[x] we define its tropical variety to be

T (I) = {w ∈ R<0 × Rn | inw(I) monomial free} ⊆ R≤0 × Rn,

where (·) denotes the closure in the euclidean topology.

Example 2.12

Unlike over coefficient fields, initial ideals over coefficient rings may be devoid of

monomials tβxα, β ∈ N and α ∈ Nn while containing terms c · tβxα, c /∈ R∗.

Consequently, tropical varieties over rings need not be pure.

Consider the principal ideal generated by g := x + y + 2z ∈ ZJtK[x, y, z]. Figure 1

shows the intersection of its tropical variety with an affine subspace of codimension 2.

Because g is homogeneous in x, y, z, its tropical variety is invariant under translation

by (0, 1, 1, 1), and since t does not occur in g, it is also closed under translation

by (−1, 0, 0, 0). Hence, the remaining points are then uniquely determined up to

symmetry.

(−1, 0, 0, 0)
(−1, 1, 1, 0)

inw(I) = 〈x〉
contains monomial

inw(I) = 〈y〉
contains monomial

inw(I) = 〈2z〉
monomial free

Figure 1. T (〈x+ y + z2〉) ∩ {wt = −1, wz = 0}

Since in(−1,−1,−1,0)(g) = 2z is no monomial, the entire lower left quadrant is included

in our tropical variety, while the two other maximal cones are not. However, because

in(−1,1,1,0)(g) = x + y is no monomial either, the edge containing it is also part of

our tropical variety. Therefore, the tropical variety cannot be the support of a pure

polyhedral complex. Note, however, that I is not the type of ideal we are interested

in, i.e. the type of ideal occurring in the following theorem.

Theorem 2.13

Let I EK[x] be an ideal. The projection R≤0×Rn → Rn induces a natural bijection

T (π−1I) ∩ ({−1} × Rn)
∼−→ Tν(I)

(−1, w1, . . . , wn) 7−→ (w1, . . . , wn).
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Proof. For the bijection, we show that

inν,w(I) monomial free ⇐⇒ in(−1,w)(π
−1I) monomial free.

⇒: Assume that in(−1,w)(π
−1I)ERJtK[x] contains a monomial tβxα. Then, by Corol-

lary 2.10, we have inν,w(I) = in(−1,w)(π−1I)|
t=1

, which means inν,w(I) must contain

the monomial xα ∈ K[x].

⇐: Assume that inν,w(I)E K[x] contains a monomial xα. Then, by Corollary 2.10,

in(−1,w)(π
−1I) must contain an element of of the form xα + (t − 1) · r + p · s, for

some r, s ∈ R[t, x]. Recall that p lies in in(−1,w)(π
−1I), therefore so does p · s, and

hence we have xα + (t− 1) · r ∈ in(−1,w)(π
−1I).

Let r = rl + . . . + r1 be a decomposition of r into its (−1, w)-homogeneous layers

with deg(−1,w)(r1) < . . . < deg(−1,w)(rl). For sake of simplicity, we now distinguish

between three cases:

1. deg(−1,w)(x
α) ≥ deg(−1,w)(rl): Set g1 := r − r1 = rl + . . .+ r2. Then

xα + (t− 1) · r = xα + (t− 1) · (g1 + r1) = xα + (t− 1) · g1 − r1︸ ︷︷ ︸
higher weighted degree

+ t · r1.

Hence xα + (t− 1) · g1 − r1, t · r1 ∈ in(−1,w)(π
−1I) and, more importantly,

t · (xα + (t− 1) · g1 − r1) + t · r1 = txα + (t− 1)t · g1 ∈ in(−1,w)(π
−1I),

effectively shaving off the r1 layer. We can continue this process by setting g2 :=

g1 − r2 = rl + . . .+ r3. Then

txα + (t− 1)t · g1 = txα + (t− 1)t · (g2 + r2)

= txα + (t− 1)t · g2 − t · r2︸ ︷︷ ︸
higher weighted degree

+t2 · r2.

Hence txα + (t− 1)t · g2 − t · r2, t
2 · r2 ∈ in(−1,w)(π

−1I) and, as above,

t · (txα + (t− 1)t · g2 − t · r2) + t2 · r2

= t2xα + (t− 1)t2 · g2 ∈ in(−1,w)(π
−1I)

removing the r2 layer. Eventually, we obtain tlxα ∈ in(−1,w)(π
−1I).

2. deg(−1,w)(x
α) ≤ deg(−1,w)(r1): Set g1 := r − rl = rl−1 + . . .+ r1. Then

xα + (t− 1) · r = xα + (t− 1) · (g1 + rl) = xα + (t− 1) · g1 + t · rl︸ ︷︷ ︸
lower weighted degree

−rl.

Thus rl, x
α + (t− 1) · g1 + t · rl ∈ in(−1,w)(π

−1I) and, more importantly,

xα + (t− 1) · r1 + t · g1 − t · g1 = xα + (t− 1) · r1 ∈ in(−1,w)(π
−1I),

shaving off the the rl layer this time. Continuing this pattern eventually yields

xα ∈ in(−1,w)(π
−1I).
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3. deg(−1,w)(r1) < deg(−1,w)(x
α) < deg(−1,w)(rl): In this case we can use a combina-

tion of the steps in the previous cases to see ti ·xα ∈ in(−1,w)(π
−1I) for the 1 ≤ i ≤ k

such that deg(−1,w)(ri−1) < deg(−1,w)(x
α) ≤ deg(−1,w)(ri).

In either case, we see that in(−1,w)(π
−1I) contains a monomial. �

Corollary 2.14

If I EK[x] defines an irreducible subvariety of (K∗)n of dimension d, then T (π−1I)

is the support of a pure polyhedral fan of dimension d+ 1 connected in codimension

one.

Example 2.15

Let K := Q((u)) be the field of Laurent series, equipped with is natural valuation

νu, and let I EK[x, y] be the principal ideal generated by (x+ y+ 1) · (u2x+ y+u).

Then Tνu(I) is the union of two tropical lines, one with vertex at (0, 0) and one with

vertex at (1,−1). Setting R := Q[t] ⊆ QJtK = OK , Proposition 2.9 implies that for

any weight vector w = (wt, wx, wy) ∈ R<0 ×R2 in the lower open halfspace we have

w ∈ T (π−1I) ⇐⇒
(
wx
|wt|

,
wy
|wt|

)
∈ Tνu(I).

Hence T (π−1I) is as shown in Figure 2, the cone over Tνu(I). The polyhedral

complex consists of 6 rays and 8 two-dimensional cones in a way that the intersection

with the affine hyperplane yields a highlighted polyhedral complex, Tνu(I).

{−1} × R2

(0, 0, 0)

Figure 2. T (π−1I) as cone over Tνu(I)

Example 2.16

Consider I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉EQ2[x1, . . . , x4], whose preimage is

given by

π−1I = 〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2− t〉E ZJtK[x1, . . . , x4].

The tropical variety of the preimage is combinatorially of the form shown in Fig-

ure 3 and is invariant under the one-dimensional subspace generated by (0, 1, 1, 1, 1).

Hence each of the six vertices represents a two-dimensional cone and each of the five

edges represents a three-dimensional cone.

Intersected with the affine hyperplane {−1} × R4, we obtain a polyhedral complex

as shown in Figure 4, any vertex of Figure 3 in {0}×R4 becoming a point at infinity.
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(−1, 1,−1, 1,−1)

(−2,−1, 1,−1, 1)

(0,−3, 1, 1, 1)

(0, 1, 1,−3, 1)

(0, 1,−3, 1, 1)

(0, 1, 1, 1,−3)

Figure 3. T (〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4, 2− t〉)

<

<

>

>

(1,−1, 1,−1)

1
2
(−1, 1,−1, 1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Figure 4. Tν2(〈x1 − 2x2 + 3x3, 3x2 − 4x3 + 5x4〉)

3. Tracing Gröbner complexes to a trivial valuation

In this section, we show how the Gröbner complexes of ideals in K[x] can be traced

back to the Gröbner fans of ideals in RJtK[x]. We will show how the Gröbner fan

induces a refinement of the Gröbner complex and how to determine whether two

integral Gröbner cones map to the same valued Gröbner polytope. For the latter,

we will need to delve into some basics in Gröbner bases. We close this section with

a remark on p-adic Gröbner bases as introduced by Chan and Maclagan [7].

Definition 3.1 (Gröbner polyhedra, Gröbner complexes over valued fields)

For a homogeneous ideal IEK[x] and a weight vector w ∈ Rn we define its Gröbner

polytope to be

Cν,w(I) := {v ∈ Rn | inν,v(I) = inν,w(I)} ⊆ Rn,

where (·) denotes the closure in the euclidean topology. We will refer to the collection

Σν(I) := {Cν,w(I) | w ∈ Rn} as the Gröbner complex of I.

Theorem 3.2 (Gröbner complex, [19, Theorem 2.5.3])

Let I E K[x] be a homogeneous ideal. Then all Cν,w(I) are convex polytopes and

Σν(I) is a finite polyhedral complex.

Definition 3.3

For an x-homogenous ideal I E RJtK[x], i.e. an ideal generated by elements which

are homogeneous if considered as polynomials in x with coefficients in RJtK, and a

weight vector w ∈ R<0 × Rn we define its Gröbner cone to be

Cw(I) := {v ∈ R<0 × Rn | inv(I) = inw(I)},

where (·) denotes the closure in the euclidean topology. We will refer to the collection

Σ(I) := {Cw(I), Cw(I) ∩ {0} × Rn | w ∈ R<0 × Rn} as the Gröbner fan of I.
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Proposition 3.4 ([20], Theorem 3.19)

Let IERJtK[x] be an x-homogeneous ideal. Then all Cw(I) are polyhedral cones and

Σ(I) is a finite polyehdral fan.

Corollary 3.5

The map {−1} × Rn ∼−→ Rn, (−1, w) 7−→ w is compatible with the Gröbner fan

Σ(π−1I) and the Gröbner complex Σν(I), i.e. it maps the restriction of a Gröbner

cone C(−1,w)(π
−1I) ∩

(
{−1} × Rn

)
into a Gröbner polytope Cν,w(I).

Proof. Follows directly from Proposition 2.9. �

Note that it may very well happen that several cones are mapped into the same

Gröbner polytope, i.e. that the image of the restricted Gröbner fan is a refinement

of the Gröbner complex (see Example 3.10).

We will now recall the notion of initially reduced standard bases of ideals in RJtK[x]

from [21] and how they determine the inequalities and equations of Gröbner cones

as shown in [20]. We will then use them to decide whether two Gröbner cones are

mapped to the same Gröbner polytope and, by doing so, show that no separate

standard basis computation is required for it.

Definition 3.6 (initially reduced standard bases)

Fix the t-local lexicographical ordering > such that x1 > . . . > xn > 1 > t.

Given a weight vector w ∈ R<0 × Rn we define the weighted ordering >w to be

tβxα >w t
δxγ :⇐⇒ w · (β, α) > w · (δ, γ) or

w · (β, α) = w · (δ, γ) and tβxα > tδxγ.

For g ∈ RJtK[x], the leading term LT>w(g) is the unique term of g with maximal

monomial under >w and for I E RJtK[x], the leading ideal LT>w(I) is the ideal

generated by the leading terms of all its elements. A finite subset G ⊆ I is called a

standard basis of I with respect to >w, if the leading terms of its elements generate

LT>w(I).

Suppose G = {g1, . . . , gk} with gi =
∑

α∈Nn gi,α · xα, gi,α ∈ RJtK. We call G initially

reduced, if the set

G′ :=
{∑
α∈N

LT>(gi,α) · xα
∣∣∣ i = 1, . . . , k

}
⊆ R[t, x],

is reduced in the classical sense.

Proposition 3.7 ([20, Algorithm 4.6])

Let I ERJtK[x] be an x-homogeneous ideal and w ∈ R<0×Rn a weight vector. Then

an initially reduced standard basis G of I with respect to >w exists.

Moreover, if I can be generated by elements in R[t, x], then G can be computed in

finite time.
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Proposition 3.8 ([20, Proposition 3.8, 3.11])

Let I ERJtK[x] be an x-homogeneous ideal, let w ∈ R<0×Rn be a weight vector and

let G an initially reduced standard basis of I with respect to >w. Then the set of its

initial forms {inw(g) | g ∈ G} is an initially reduced standard basis of inw(I) with

respect to >w, and the Gröbner cone of I around w is given by

Cw(I) = {v ∈ R<0 × Rn | inv(g) = inw(g) for all g ∈ G}.

We now show that our standard bases of π−1IERJtK[x] yield Gröbner bases of initial

ideals of I EK[x], allowing us to immediately decide whether two Gröbner cones of

the former are mapped to the same Gröbner polytope of the latter.

Corollary 3.9

Let I EK[x] be a homogeneous ideal, let w ∈ Rn be a weight vector and let G be an

initially reduced standard basis of π−1I with respect to the weighted ordering >(−1,w).

Then {
in(−1,w)(g)|t=1

∣∣∣ g ∈ G}
is a standard basis of inν,w(I) with respect to the fixed lexicographical ordering >

restricted to monomials in x.

Proof. By Proposition 3.8, the set in(−1,w)(G) := {in(−1,w)(g) | g ∈ G} is an initially

reduced standard basis of in(−1,w)(π
−1I) with respect to >(−1,w). And because it is

homogeneous with respect to weight vector (−1, w), it is also an initially reduced

standard basis with respect to >. By choice of >, the set in(−1,w)(G)|t=1 remains

a standard basis of in(−1,w)(π
−1I)|t=1 with respect to the restriction of > to mono-

mials in x. And since p ∈ in(−1,w)(G)|t=1, in(−1,w)(G)|
t=1

is a standard basis of

in(−1,w)(π−1I)|
t=1

with respect to the restriction of >. �

Example 3.10

Consider the preimage π−1IEZJtK[x, y, z] of the ideal I = 〈2y+x, z2+y2〉EQ2[x, y, z]

and the two weight vectors w = (1, 3, 7), v = (1, 10, 5) ∈ R3. Fix a lexicographical

tiebreaker > with x > y > z > 1 > t.

The initially reduced standard basis of π−1I under >(−1,w) and >(−1,v) are the fol-

lowing two sets respectively (initial forms underlined):

G(−1,w) = {2− t, ty + x, z2 + y2}, G(−1,v) = {2− t, ty + x, xy − tz2, t2z2 + x2, y2 + z2},

yielding the following Gröbner basis of inν,w(I) and inν,v(I) under >:

Gw = {y, z2}, Gv = {y, xy, z2, y2}.

One immediately sees that both initial ideals coincide, meaning that the two Gröbner

cones C(−1,w)(π
−1I) and C(−1,v)(π

−1I) are mapped to the same Gröbner polytope

Cν2,w(I) = Cν2,v(I).
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Remark 3.11 (homogenization and dehomogenization)

A lot of effort has been put into developing algorithms for computing Gröbner cones

Cw(I) for x-homogeneous ideals I E RJtK[x] and weight vectors w ∈ R<0 × Rn in

[20] which terminate in finite time in case I can be generated by elements in R[t, x],

avoiding the necessity to use homogenization and dehomogenization techniques as

described in [4, Lemma 1.1], which are known to refine the Gröbner fan structure

in general.

The most prominent phenomenon showing the refinement is the non-regular Gröbner

fan in [13, Theorem 1]. Note that Gröbner fans of homogeneous ideals are known

to be regular, as they are the normal fans of the state polytopes [25, Theorem 2.5].

The non-regular Gröbner fan Σ(I) arises from the inhomogeneous ideal

I := 〈x1x3x4 + x2
1x3 − x1x2, x1x

2
4 − x3, x1x

4
4 + x1x3〉EQ[x1, . . . , x4]

and hence is restricted to the positive orthant R4
≥0. However, once homogenized

it yields a regular Gröbner fan Σ(Ih) living in R5, whose restriction to {0} × R4
≥0

refines Σ(I).

Remark 3.12 (p-adic Gröbner bases)

A Gröbner basis of an ideal I E K[x] over valued fields with respect to a weight

vector w ∈ Rn is by [19, Section 2.4] a finite generating set whose initial forms

generate the initial ideal inν,w(I). Observe that Corollary 3.9 implies that such a

Gröbner basis can be computed by projecting an initially reduced standard basis of

π−1I ERJtK[x] under the monomial ordering >w via π to K[x].

Figure 5 shows timings of the Macaulay2 Package GroebnerValuations from

Andrew Chan [10, 7], a toy-implementation of a p-adic Matrix-F5 algorithm by

Tristan Vaccon in Sage [23, 28] and the standard basis engine of Singular over

integers under mixed orderings [9]. The examples are:

Cyclic(n): In Q2[x0, . . . , xn], the cyclic ideal in the variables x1, . . . , xn, homoge-

nized using the variable x0, and weight vector (1, . . . , 1).

Katsura(n): In Q2[x0, . . . , xn], the Katsura ideal in the variables x1, . . . , xn, ho-

mogenized using the variable x0, and weight vector (1, . . . , 1).

Chan: In Q3[x0, . . . , xn], the ideal 〈2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉
and weight vector (−1,−11,−3,−19) taken from [6, Chapter 3.6].

All computations were aborted after exceeding either 1 CPU day or 16 GB memory.

Note that the computations in Sage were done up to a finite precision of p50 and

that the correctness of the result could only be verified for the examples for which

either Macaulay2 or Singular finished.

4. Computation of tropical varieties

In this section, we present an algorithm for computing the tropical variety of an x-

homogeneous ideal IERJtK[x], provided it is pure and connected in codimension one,
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Examples Macaulay2 Sage Singular

Cyclic(4) 1 10 1

Cyclic(5) - - 1

Cyclic(6) - - -

Katsura(3) 1 1 1

Katsura(4) - 10 1

Katsura(5) - 190 1

Katsura(6) - 2900 -

Chan 1 4 -

Figure 5. Timings in seconds unless aborted

as is the case for all preimages of ideals inK[x] under π. All algorithms in this section

are straight-forward modification of the techniques developed by Bogart, Jensen,

Speyer, Sturmfels and Thomas for tropical varieties of homogeneous polynomial

ideals over ground fields with trivial valuation, which is why proofs are omitted and

instead references to [4] are added.

Before we begin, we quickly note that the computation of tropical hypersurfaces is

simple:

Algorithm 4.1 (TropHypersurface, [4, Algorithm 4.3])

Input: g =
∑

β,α cα,β · tβxα, g 6= 0.

Output: ∆, collection of maximal dimensional cones in R≤0 × Rn such that

T (g) := T (〈g〉) =
⋃
σ∈∆ σ.

1: Construct the finite set of exponent vectors with minimal entry in t,

Λ :=

{
(β, α) ∈ N× Nn

∣∣∣∣ α ∈ Nn with cα,β′ 6= 0 for some β′ ∈ N
β = min{β′ ∈ N | cα,β′ 6= 0}

}
.

2: Construct the normal fan of its convex hull

∆ := NormalFan(Conv(Λ)).

3: return {σ ∈ ∆ | σ ∩ R<0 × Rn 6= ∅ and dim(σ) = n}.
The computation of general tropical varieties on the other hand works in three steps:

(1) Finding a first maximal Gröbner cone Cw(I) ⊆ T (I), Alg. 4.7.

(2) Given Cu(I) ⊆ T (I) of codimension one, describe T (I) around Cu(I), Alg. 4.13.

(3) Given Cw(I) ⊆ T (I) maximal, compute an adjacent Cv(I) ⊆ T (I), Alg. 4.2.

of which (3) is a generalisation of the well-known flip of Gröbner bases, which we

will simply cite from [20] without going into any algorithmic details:
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Algorithm 4.2 (Flip, [20, Algorithm 5.5])

Input: (G,H, v,>w), where

• >w a weighted monomial ordering with weight vector w ∈ R<0 × Rn,

• v an outer normal vector of Cw(I),

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of an x-homogeneous

ideal I w.r.t. >w,

• H = {h1, . . . , hk} with hi = inw(gi).

Output: (G′, >w′), where

• Cw′(I) adjacent to Cw(I) in direction v, i.e. Cw′(I) = Cw+ε·v(I) for ε > 0

sufficiently small,

• G′ ⊆ I an initially reduced standard basis w.r.t. >w′ .

To show how to find a first maximal dimensional Gröbner cone on T (I), we need to

introduce the homogeneity space, since the starting cone algorithm works inductively

over the codimension of it, and we have to recall the lift of standard bases, which

we will again cite from [20] without going into any algorithmic details. The latter

allows us to lift a standard basis of an initial ideal into a standard basis of the

original ideal, useful for avoiding unnecessary standard basis computations.

Definition 4.3 (homogeneity space)

Given an x-homogeneous ideal I ERJtK[x], we define the homogeneity space of I (or

of T (I)) to be the intersection of all its lower Gröbner cones, i.e. Gröbner cones of

the form Cw(I) for some w ∈ R<0 × Rn,

C0(I) :=
⋂

w∈R<0×Rn
Cw(I).

Example 4.4

Note that our definition of homogeneity space C0(I) differs from the natural lineality

space C0(I) of tropical varieties over fields with trivial valuation. In general, our

C0(I) is neither a linear subspace nor is it the set of all vectors with respect to whom

the ideal is weighted homogeneous. Consider the principal ideal

I = 〈(1 + t) · x+ (1 + t) · y〉E ZJtK[x, y],

whose Gröbner Fan splits the weight space R≤0 × R2 into two maximal cones, see

Figure 6, and whose homogeneity space is given by

C0(I) = {(wt, wx, wy) ∈ R≤0 × Rn | wx = wy}.

Clearly, C0(I) is no subspace and we have (−1, 0, 0) ∈ C0(I) despite the ideal not

being weighted homogeneous with respect to it. This effect is caused by the terms

tx and ty in the generator, which do not appear in any initial form and hence

have no influence on C0(I), yet still exist and thus prevent I from being weighted

homogeneous with respect to any weight vector in the interior of C0(I).
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C0(I) = {wx = wy}

{0} × R2

R · (0, 1, 1)

Figure 6. C0(〈(1 + t) · x+ (1 + t) · y〉)

We follow up our observation in Example 4.4 with the following Lemma, which

shows that the homogeneity space behaves properly in the case which is of interest

to us:

Lemma 4.5

Let I ERJtK[x] be an x-homogeneous ideal and w ∈ R<0×Rn a weight vector. Then

C0(inw(I)) = {v ∈ R<0 × Rn | inv inw(I) = inw(I)} = Lin(Cw(I)) ∩ (R≤0 × Rn).

Proof. The second equality follows directly from the perturbation of initial ideals,

i.e. it follows from the fact that for any v ∈ R<0×Rn we have inv inw(I) = inw+ε·v(I)

for ε > 0 sufficiently small [20, Proposition 5.4]. It remains to show the first equality.

The ⊇ inclusion can be shown in a similar fashion: Suppose v ∈ R<0×Rn such that

inv(inw(I)) = inw(I). Then for any u ∈ R<0 × Rn we have

inv+ε·u(inw(I)) = inu(inv(inw(I))) = inu(inw(I)),

showing that v+ ε ·u ∈ Cu(inw(I)) for any ε > 0 sufficiently small. As Cu(inw(I)) is

closed by definition, this implies v ∈ Cu(inw(I)). This shows that v is contained in

every lower Gröbner cone of inw(I), and hence also in their intersection C0(inw(I)).

For the ⊆ inclusion, consider v ∈ C0(inw(I)) ∩ (R<0 × Rn), so that v ∈ Cu(inw(I))

for all u ∈ R<0 × Rn. In particular, v ∈ Cw(inw(I)) which is the middle set by

definition. �
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Algorithm 4.6 (Lift, [20, Algorithm 5.2])

Input: (H ′, >′, H,G,>), where

• > a weighted t-local monomial ordering on Mon(t, x) with weight vector in

R<0 × Rn,

• G = {g1, . . . , gk} ⊆ I an initially reduced standard basis of an x-homogeneous

ideal I w.r.t. >,

• H = {h1, . . . , hk} with hi = inw(gi) for some w ∈ C>(I) with w0 < 0,

• >′ a t-local monomial ordering such that w ∈ C>(I) ∩ C>′(I),

• H ′ ⊆ inw(I) a weighted homogeneous standard basis w.r.t. >′.

Output: G′ ⊆ I, an initially reduced standard basis of I w.r.t. >′.

Algorithm 4.7 (TropStartingCone, [4, Algorithm 4.12])

Input: (G,>w), where G is an initially reduced standard basis of an x-homogeneous

ideal I with respect a weighted ordering >w, w ∈ R<0 × Rn.

Output: (Cw′(I), G′, >w′), where Cw′(I) ⊆ T (I) maximal dimensional and G′ an

initially reduced standard basis of I with respect to the weighted ordering >w′ .

1: if dim(I) = dim(C0(I)) then return (C0(I), G,>)

2: Find a weight vector w ∈ (T (I) \ C0(I)) ∩ (R<0 × Rn).

3: Compute an initially reduced standard basis G′′ of I with respect to >w.

4: Set H ′′ := {inw(g) | g ∈ G′′}.
5: Rerun

(Cw′
0
(I), G′0, >

′
0) = TropStartingCone(H ′′, >w).

6: Let >′ be the weighted ordering with weight vector w and tiebreaker >′0.

7: Lift G′0 to an initially reduced standard basis G′ of I:

G′ = Lift(G′0, >
′, H ′′, G′′, >w).

8: Construct the corresponding Gröbner cone Cw′(I) := C(H ′, G′, >′).

9: return (Cw′(I), G′, >′)

Example 4.8

Let I E ZJtK[x1, . . . , x4] be the preimage from Example 2.8,

I = 〈3− t, 2x2
1 + 3x1x2 + 24x3x4, 8x

3
1 + x2x3x4 + 18x2

3x4〉.

A short calculation reveals that dim(T (I)) = dim(I) = 3 > 1 = dim(C0(I)) with

C0(I) = R · (0, 1, 1, 1, 1).

Picking w := (−2,−1, 1, 5,−5) ∈ T (I), the initial ideal inw(I) is generated by

{3, tx3x4 − tx1x2 + x2
1, tx1x

2
2 − x2

1x2 − t3x1x2x3 + t2x2
1x3}.

Another short calculation reveals dim(inw(I)) = 3 > 2 = dim(C0(inw(I))) with

C0(inw(I)) = R≥0 · w + R · (0, 1, 1, 1, 1).
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Picking v := (6,−11, 11,−1, 1) ∈ T (I), the initial ideal inv inw(I) is generated by

{3, tx3x4 − tx1x2, x2x3x4 − t2x1x2x3}.

And since dim(inv inw(I)) = 3 = dim(C0(inv inw(I))) with

C0(inv inw(I)) = R≥0 · (−1, 1,−1, 1,−1) + R · (0, 1, 0, 0, 1) + R · (0, 0, 1, 1, 0),

the recursions end.

C0(I)

w

v

C0(inw(I))

C0(inv inw(I))

1 = dim(C0(I)) < dim(C0(inw(I))) < dim(C0(inv inw(I))) = dim T (I) = 3

Figure 7. computing a tropical starting cone recursively

This shows that w + ε · v ∈ T (I) for ε > 0 sufficiently small. Together with the

one-dimensional C0(I), this determines a maximal, three-dimensional Gröbner cone

in our tropical variety, see Figure 7.

Two centrals tools necessary to describe the tropical variety around one of its codi-

mension one cells are generic weight vectors and tropical witnesses.

Definition 4.9 (multiweights and generic weights)

Given weight vectors w ∈ R<0 × Rn and v1, . . . , vd ∈ R × Rn, we define the initial

form of an element g ∈ RJtK[x] with respect to the multidegree (w, v1, . . . , vd) to be

in(w,v1,...,vd)(g) = invd . . . inv1 inw(g),

and we define the initial ideal of I ERJtK[x] with respect to (w, v1, . . . , vd) to be

in(w,v1,...,vd)(I) = invd · · · inv1 inw(I) = 〈in(w,v1,...,vd)(g) | g ∈ I〉.

Also, still fixing the lexicographical ordering > with x1 > . . . > xn > 1 > t from

Definition 3.6, we define the multiweighted ordering >(w,v1,...,vk) to be

tβ · xα >(w,v1,...,vk) t
δ · xγ ⇐⇒ either :

• w · (β, α) > w · (δ, γ) or

• w · (β, α) = w · (δ, γ) and there exists an 1 ≤ l ≤ d with

vi · (β, α) = vi · (δ, γ) for all 1 ≤ i < l and vl · (β, α) > vl · (δ, γ) or

• w · (β, α) = w · (δ, γ) and vi · (β, α) = vi · (δ, γ) for all 1 ≤ i ≤ d

and tβ · xα > tδ · xγ.

Moreover, given a polyhedral cone σ ⊆ R≤0×Rn of dimension d with σ * {0}×Rn

and a point w ∈ relint(σ) (note that w ∈ R<0 × Rn necessarily), we call a weight
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vector u ∈ σ generic around w, if for all open neighbourhoods U around w there

exists a weight vector u′ ∈ U ∩ σ not lying on any Gröbner cone of dimension lower

than d such that inu′(π
−1I) = inu(π

−1I).

Algorithm 4.10 (inσ,w(G), generic initial ideal around a weight)

Input: (σ,w,G), where

(1) σ ⊆ R≤0 × Rn, a polyhedral cone with σ * {0} × Rn,

(2) w ∈ relint(σ) a relative interior point,

(3) G ⊆ I a generating set of an x-homogeneous ideal I ERJtK[x].

Output: (H ′, G′, >′) = in(σ,w)(G), where

(1) >′:=>u for a weight vector u ∈ σ generic around w,

(2) G′ an initially reduced standard basis of I with respect to >′,

(3) H ′ = {inu(g) | g ∈ G′}.

1: Choose a basis v1, . . . , vd of the linear span of σ.

2: Pick a t-local monomial ordering > on Mon(t, x).

3: Compute an initially reduced standard basis G′ of I = 〈G〉 w.r.t. >(w,v1,...,vd).

4: Set H ′ := {in(w,v1,...,vd)(g) | g ∈ G′}
5: return (H ′, G′, >(w,v1,...,vd)).

Definition 4.11

Let IERJtK[x] and let u ∈ R<0×Rn be such that Cu(I) * T (I). We call an element

f ∈ I a tropical witness of Cu(I) if inv(f) is a monomial for all v ∈ Relint(Cu(I)).

Algorithm 4.12 (TropWitness, [4, Algorithm 4.7])

Input: (m,H,G,>), where

(1) >w a weighted monomial ordering for some w ∈ R<0 × Rn,

(2) G = {g1, . . . , gk} an initially reduced standard basis of an x-homogeneous

ideal I ERJtK[x] with respect to >w,

(3) H = {h1, . . . , hk} with hi = inw(gi),

(4) m ∈ inw(I) a monomial.

Output: f ∈ I, a tropical witness of Cw(I).

1: Compute a standard representation m = q1 · h1 + . . . + qk · hk, i.e. no term of

qi · hi lies in 〈LM>(hj) | j < i〉 for all 1 ≤ i ≤ k.

2: return q1 · g1 + . . .+ qk · gk.

Algorithm 4.13 (TropStar, [4, Algorithm 4.8])

Input: G, the generating set of an x-homogeneous ideal IERJtK[x] with dim T (I) =

dimC0(I) + 1.

Output: ∆, a collection of maximal dimensional polyhedral cones in R≤0 × Rn

covering T (I).
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1: Compute the common refinement of all tropical hypersurfaces, throwing away

cones in {0} × Rn,

∆ := {σ ∈
∧
g∈G TropHypersurface(g) | σ ∩ R<0 × Rn 6= ∅}.

2: Set L := ∆.

3: while L 6= ∅ do

4: Pick σ ∈ L maximal and w ∈ relint(σ).

5: Compute an initial ideal with respect to a weight w ∈ σ generic around w:

(H ′, G′, >′) = in(σ,w)(G).

6: if inu(I) = 〈H ′〉 contains a monomial s 6= 0 then

7: Compute a tropical witness g := TropicalWitness(s,H ′, G′, >′).

8: Set

G := G ∪ {g}, ∆ := ∆ ∧ T (g), L := L ∧ T (g).

9: continue

10: Suppose w = (wt, wx) ∈ R<0 × Rn, set wneg := (wt,−wx) ∈ R<0 × Rn.

11: if wneg ∈ σ then

12: Redo Steps 5 to 9 with w := wneg.

13: Set L := L \ {σ}.
14: return ∆

Example 4.14

Consider the ideal I E ZJtK[x1, . . . , x4] generated by

g0 := 3, g1 := tx3x4 − tx1x2 + x2
1, g2 := tx1x

2
2 − x2

1x2 − t3x1x2x3 + t2x2
1x3,

which is 3-dimensional with C0(I) = Cone((−2,−1, 1, 5,−5)) + R · (0, 1, 1, 1, 1).

Figure 8 illustrates the combinatorial structure of T (g0) ∩ T (g1) ∩ T (g2).

(−2,−1, 1, 5,−5)

(0, 0, 0, 1,−1)

(0, 1,−3,−3, 5)

(0, 1, 1, 1,−3)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

σ

Figure 8. combinatorial structure of Trop(g0) ∩ T (g1) ∩ T (g2)

One cone σ that can be seen to be contained in the intersection is

σ := Cone((0, 0, 0,−1, 1)︸ ︷︷ ︸
=:w1

, (0, 1, 1, 1,−3)︸ ︷︷ ︸
=:w2

) + C0(I),
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because we have

g1 = tx3x4

inw2 (g1)︷ ︸︸ ︷
−tx1x2 + x2

1︸ ︷︷ ︸
inw1 (g1)

, g2 =

inw1 (g2)︷ ︸︸ ︷
tx1x

2
2 − x2

1x2−t3x1x2x3 + t2x2
1x3︸ ︷︷ ︸

inw2 (g2)

,

so that for any weight w ∈ σ, inw(g1) contains at least the binomial −tx1x2 + x2
1

and inw(g2) contains at least the binomial tx1x2 − x2
1x2. In particular, neither are

monomials. However, it can be shown that, for

g3 := tx2x3x4 + t2x2
1x3 − t3x1x2x3 ∈ I and w := (−1, 1, 2, 2, 0) ∈ σ,

inw(g3) = tx2x3x4 is a monomial, which implies that σ * T (I) (not that we would

have expected otherwise considering dim(σ) = 4 > 3 = dim(T (I))). Figure 9

illustrates the combinatorial structure of
⋂3
i=0 T (gi), red highlighting all weights

that have been eliminated through the intersection with T (g3).

(−2,−1, 1, 5,−5)

(0, 0, 0, 1,−1)

(0, 1,−3,−3, 5)

(0, 1, 1,−3, 1)

(0, 1, 1, 1,−3)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

σ′

Figure 9. combinatorial structure of
⋂3
i=0 T (gi)

Continuing, the following cone can be seen to be contained in the intersection of the

tropical varieties of g0, . . . , g3,

σ′ := Cone((0, 1, 1,−3, 1)︸ ︷︷ ︸
=:w1

, (0, 1, 1, 1,−3)︸ ︷︷ ︸
=:w2

) + C0(I),

since

g1 = tx3x4

inw1 (g1), inw2 (g1)︷ ︸︸ ︷
−tx1x2 + x2

1 , g2 =

inw1 (g2)︷ ︸︸ ︷
tx1x

2
2 − x2

1x2−t3x1x2x3 + t2x2
1x3︸ ︷︷ ︸

inw2 (g2)

,

g3 = tx2x3x4

inw3 (g3)︷ ︸︸ ︷
+t2x2

1x3 − t3x1x2x3︸ ︷︷ ︸
inw1 (g3)

.

However, setting

g4 := tx2x3x4 − t3x2
3x4 ∈ I and w′ := (−1, 3, 4, 5, 0) ∈ σ′,
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inw′(g4) = tx2x3x4 is a monomial. Hence, we have again σ′ * T (I) and Figure 10

illustrates the combinatorial structure of
⋂4
i=0 T (gi). Further calculations will yield

that indeed T (I) =
⋂4
i=0 T (gi).

(−2,−1, 1, 5,−5)

(0, 1,−3,−3, 5)

(0, 1, 1, 1,−3)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

Figure 10. combinatorial structure of
⋂4
i=0 T (gi)

Tropical varieties with one-codimensional homogeneity space are important as they

describe general tropical varieties locally around a codimension one cone.

Example 4.15

Consider again the ideal IEZJtK[x1, . . . , x4] from Example 2.8 and 4.8 generated by

3− t, 8tx3x4 + tx1x2 + 2x2
1, tx1x

2
2 + 2x2

1x2 + 2t3x1x2x3 + 4t2x2
1x3 − 64tx3

1.

For any weight vector inside T (I), say w = (−2,−1, 1, 5,−5), T (inw(I)) describes

T (I) locally around w, see Figure 11. In particular, if w lies on a Gröbner cone of

codimension 1, we have

dimC0(inw(I))
Lem.
=
4.5

dimCw(I) = dim T (I)− 1 = dim T (inw(I))− 1,

which allows us to compute T (inw(I)) using Algorithm 4.13.

w
(−1, 0,−1, 1, 0) (−1, 0, 1, 3,−4)

(0, 1,−3, 1, 1)(0, 1, 1, 5,−7)

(0, 0, 0,−1, 1)

(0,−1, 1, 1,−1)

w

(0, 1,−3,−3, 5)

(0, 1, 1, 1,−3)

(0,−1, 1, 1,−1)

Figure 11. T (I) and T (inw(I))
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Combining Algorithms 4.7, 4.13 and 4.2, we obtain an algorithm to compute the

tropical variety of a general ideal, provided it is pure and connected in codimension

one.

Algorithm 4.16 (Trop, [4, Algorithm 4.11])

Input: (Ginput, >input), where for an x-homogeneous ideal I E RJtK[x] with T (I)

pure and connected in codimension one:

• >input is a weighted monomial ordering,

• Ginput an initially reduced standard basis of I with respect to >input.

Output: ∆ = {Cw(I) | Cw(I) ∈ T (I) maximal}, so that

T (I) =
⋃
Cw(I)∈∆ Cw(I).

1: Compute a starting cone

(Cw(I), G,>) = TropStartingCone(Ginput, >input).

2: Initialize ∆ := {Cw(I)}.
3: Initialize a working list L := {(G,>,Cw(I))}.
4: while L 6= ∅ do

5: Pick (G,>,Cw(I)) ∈ L.

6: for all facets τ ≤ Cw(I), τ * {0} × Rn do

7: Compute a relative interior point u ∈ τ .

8: Set H := {inu(g) | g ∈ G}.
9: Compute the tropical star

∆star = TropStar(H).

10: for θ ∈ ∆star do

11: Compute a relative interior point v ∈ θ.
12: if Cu+ε·v(I) /∈ ∆ for ε > 0 sufficiently small then

13: Flip the standard basis to the adjacent ordering

(G′, >′) := Flip(G,H, v,>).

14: Set H ′ := {in(u,v)(g) | g ∈ G′}.
15: Construct the adjacent Gröbner cone

Cw′(I) := C(H ′, G′, >′).

16: Set

∆ := ∆ ∪ {Cw′(I)} and L := L ∪ {(G′, >′, Cw′(I))}.

17: Set L := L \ {(G,>,Cw(I))}.
18: return ∆.
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Example 4.17 (tropical traversal)
For a visual example of Algorithm 4.16 at work, consider the 3-dimensional ideal

I = 〈4x2 + xy + 16y2 + xz + 8z2, 2− t〉
= 〈t2x2 + xy + t4y2 + xz + t3z2︸ ︷︷ ︸

=:g

, 2− t〉 ∈ ZJtK[x, y, z].

As inw(2 − t) = 2 for all w ∈ R<0 × R3, it suffices to solely focus on g. For the

starting cone, we begin with weight vector w = (−3,−10, 1, 0) ∈ R<0 × R3, since

inw(g) = xy + t3z2 is no monomial. In fact, its initial form is binomial, hence

the only weight vectors v such that inw+εv(g) is no monomial are the v such that

inw+εv(g) = inw(g), or in other words v ∈ Cw(I). This shows that Cw(I) is a

maximal cone in the tropical variety.

v1 v2

Note that all Gröbner cones are invariant under trans-

lation by (0, 1, 1, 1). Hence the 3-dimensional Gröbner

cone Cw(I) is spanned by two rays, which are generated

by v1 = (−2,−7, 1, 0) and v2 = (−1,−3, 0, 0) respectively. This can be seen from

their respective initial forms, which gain one additional term compared to inw(g),

inv1(g) = xy + t4y2 + t3z2 and inv2(g) = xy + xz + t3z2. We have thus finished

computing a starting cone and identified its two facets, which we need to traverse.

v1,3
v1,1

v1,2

If we pick one of the facets, say the one generated by v1,

we see that its tropical star consists of three rays. One

ray points in the direction v1,3 = (0, 0,−2,−1) so that

inv1+ε·v1,3(g) = xy + t3z2 = inw(g), which undoubtedly

points into our starting cone. Another ray points in the

direction v1,2 = (0, 0, 1, 1) so that inv1+ε·v1,2(g) = t4y2 + t3z2. The last ray points in

the direction v1,1 = (0, 0, 0,−1) so that inv1+ε·v1,1(g) = xy + t4y2.

v1 v2

v3

v4

Continuing with direction v1,2 = (0, 0, 1, 1), to whose side

lies the closure of equivalence class such that inw′(g) =

t4y2 + t3z2, we see that the other ray of the maxi-

mal Gröbner cone is generated by v3 = (0, 0, 1, 1) with

inv3(g) = t4y2 + t3z2. The ray lies on the boundary of the

maximal Gröbner cone because it lies on the boundary

of the lower halfspace.

Continuing with the direction v1,1 = (0, 0, 0,−1), which is the closure of the equiva-

lence class such that inw′(g) = xy + t4y2, we get that the other ray of the maximal

Gröbner cone is v4 = (0, 0, 0,−1) with inv4(g) = t2x2 + xy + t4y2.

v2,3
v2,2

v2,1

Because both v3 and v4 lie on the boundary of

the lower halfspace, the only facet left to tra-

verse is the one generated by v2. The tropical

star around v2 consists of three rays. One ray

points in the direction of v2,1 = (0, 1, 0, 0) so that
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inv2+ε·v2,1(g) = xy + xz. Another ray points in

the direction of v2,2 = (0, 0,−1, 0) so that inv2+ε·v2,2(g) = xz + t3z2. The final ray

points in the direction of v2,3 = (0, 0, 2, 1) so that inv2+ε·v2,3(g) = xy+ t3z2 = inw(g),

this is the vector pointing into our starting cone.

v1 v2

v3

v4

v6

v5

Continuing in the direction of v2,1, the other ray

of the maximal Gröbner cone is generated by

v5 = (−1, 2, 0, 0) as inv5(g) = t2x2 + xy + xz.

And continuing in the direction of v2,2, the other

ray is generated by v6 := (0, 0,−1, 0) as inv6(g) =

t2x2 + xz + t3z2.

Because v6 lies on the boundary of the lower half-

space, v5 generates the only facet left to traverse. A quick glance at the initial forms

imply that it is connected to the facets generated by v4 and v6, as it has two terms

in common with each of them.

v1 v2

v3

v4

v6

v5

We obtain that T (I) is covered by a polyhe-

dral fans which, modulo the homogeneity space

R · (0, 1, 1, 1), has 6 rays, of which the ones gen-

erated by v1, v2, v5 lie in the interior of the lower

halfspace R≤0×Rn, while the ones generated by

v3, v4, v6 lie on its boundary.

The 6 rays are pairwise connected via 7 edges.

The edges connecting (v1, v3), (v1, v4), (v2, v6) and (v4, v5) intersect the boundary

in codimension one, while the cones connecting (v1, v2) and (v2, v5) intersect the

boundary in codimension 2, which has to be the homogeneity space.

Example 4.18 (dependency on the valuation)

Consider the ideal from Example 2.16, I := 〈x1−2x2 + 3x3, 3x2−4x3 + 5x4〉EQ[x].

Figure 12 shows its tropical varieties for all possible valuations on Q. Regardless

of the valuation, all tropical varieties share the same recession fan, as was proven

by Gubler [11]. The latter is also necessarily the tropical variety under the trivial

valuation. Note that for p sufficiently large, the tropical varieties under νp coincides

with the tropical variety under the trivial valuation. This is because p is simply

too large for p− t to matter in any of our standard basis calculations. These p are

referred to as good primes while other p are referred to as bad primes in the theory

of modular techniques [2].

Example 4.19 (independency of the valuation, Singular output)

Consider the following ideal of Grassmann-Plücker relations for Grass(2, 5),

I := 〈x1x5 − x0x7 − x2x4, x1x6 − x0x8 − x3x4, x2x6 − x0x9 − x3x5,

x2x8 − x1x9 − x3x7, x5x8 − x4x9 − x6x7〉E Q[x0, . . . , x9].
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>

(1,−1, 1,−1)

1
2
(−1, 1,−1, 1)

(−3, 1, 1, 1)

(1, 1,−3, 1)

(1,−3, 1, 1)

(1, 1, 1,−3)

Tν2(I)

<

<

>

>

1
2
(−1,−1, 1, 1)

1
2
(1, 1,−1,−1)

(−3, 1, 1, 1)

(1,−3, 1, 1)

(1, 1,−3, 1)

(1, 1, 1,−3)

Tν3(I)

1
4
(−1,−1,−1, 3)

<

<

>

>

(−3, 1, 1, 1)

(1,−3, 1, 1)

(1, 1,−3, 1)

(1, 1, 1,−3)

Tν5(I)

(0, 0, 0, 0)

<

<

>

>

(−3, 1, 1, 1)

(1,−3, 1, 1)

(1, 1,−3, 1)

(1, 1, 1,−3)

Tνp(I) = T (I) for p > 7

Figure 12. Tν(I) for various p-adic and the trivial valuations.

Unlike Example 4.18, its tropical variety does not seem to dependent on the choice

of valuation, which is not surprising as Speyer and Sturmfels showed that it is

characteristic-free [24, Theorem 7.1]. In this case, the computations under the p-

adic valuation are mathematically equivalent to the computations under the trivial

valuation, though the practical timings under the p-adic valuation are slightly slower

due to a constant overhead of a more general framework.

Figure 13 shows a shortened output of Singular when computing its tropical va-

riety with respect to the 2-adic valuation. It describes a polyhedral fan whose

intersection with the affine hyperplane {−1} × R10 yields again a polyhedral fan:

The ray #0 represents the 5-dimensional lineality space of Tν2(I), while the maximal

cones {0 i j} represent polyhedral cones in Tν2(I) spanned by the lineality space

and rays #i, #j. Note that, from a perspective of Rn = {−1}×Rn, all data is given

in homogenized coordinates, which is why the f-Vector shown is slightly distorted

by lower-dimensional cones at infinity.

Figure 14 illustrates the combinatorial structure of ∆. Each vertex represents a ray

of ∆, while each edge represents a maximal cone of ∆. The graph shown should be

thought of as lying on a sphere S2, on which the colored edges connect with their

counterpart on the other side.

5. Optimizations for non-trivial valuations

Up till now, all algorithms for computing Tν(I) via T (π−1I) appear to be strictly

worse than computing T (I), as we are working with an inhomogeneous ideal π−1I

over a coefficient ring R instead of a homogeneous ideal I over a coefficient field K.

In this section, however, we consider simple optimizations for the traversal, which

suggest that working under a nontrivial valuation need not necessarily be slower

than working under a trivial valuation.
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SINGULAR /

A Computer Algebra System for Polynomial Computations / Version 4.1.0

0<

by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2016

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> LIB "gfanlib.so";

> printlevel = 1;

> ring r=0,(a,b,c,d,e,f,g,h,i,j),dp;

> ideal I = bf-ah-ce, bg-ai-de, cg-aj-df, ci-bj-dh, fi-ej-gh;

> tropicalVariety(I,number(2));

cones finished: 1 cones in working list: 4

[...] information on the state of the traversal because printlevel=1 was set

cones finished: 14 cones in working list: 1

cones finished: 15 cones in working list: 0

_application PolyhedralFan

_version 2.2

_type PolyhedralFan

AMBIENT_DIM

11

DIM

8

LINEALITY_DIM

5

RAYS

-1 0 0 0 0 0 0 0 0 0 0 # 0

0 -3 1 1 1 1 1 1 -1 -1 -1# 1

0 -1 -1 1 1 -1 1 1 1 1 -3# 2

0 -1 1 -1 1 1 -1 1 1 -3 1# 3

0 -1 1 1 -1 1 1 -1 -3 1 1# 4

0 1 -3 1 1 1 -1 -1 1 1 -1# 5

0 1 -1 -1 1 1 1 -3 -1 1 1# 6

0 1 -1 1 -1 1 -3 1 1 -1 1# 7

0 1 1 -3 1 -1 1 -1 1 -1 1# 8

0 1 1 -1 -1 -3 1 1 1 1 -1# 9

0 1 1 1 -3 -1 -1 1 -1 1 1# 10

LINEALITY_SPACE

0 -1 0 0 0 0 0 0 1 1 1 # 0

0 0 -1 0 0 0 1 1 0 0 1 # 1

0 0 0 1 0 0 1 0 1 0 1 # 2

0 0 0 0 1 0 0 1 0 1 1 # 3

0 0 0 0 0 -1 -1 -1 -1 -1 -1# 4

F_VECTOR

1 11 25 15

MAXIMAL_CONES

{0 1 2}# Dimension 8

{0 1 3}

{0 1 4}

{0 2 5}

{0 2 9}

{0 3 7}

{0 4 6}

{0 3 8}

{0 4 10}

{0 5 6}

{0 5 7}

{0 6 8}

{0 7 10}

{0 8 9}

{0 9 10}

Figure 13. Singular output for the Grassmann-Plücker ideal

The main algebraic bottlenecks in the computation of tropical varieties are:

(1) computing generic initial ideals, Algorithm 4.10 ,

(2) checking generic initial ideals for monomials in Algorithm 4.13,

(3) the flip of standard bases, Algorithm 4.2,
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1

3 7 10

2 5 6

4

9

8

Figure 14. tropical variety of the Grassmann-Plücker ideal

all of which require at least one standard basis computation, which is the reason for

the bottleneck. However, from Algorithm 4.16, they are never called on the actual

input ideal, they are exclusively called on its initial ideals instead. This can be

exploited, should the input ideal of Algorithm 4.16 be of the form π−1I for some

I EK[x]. Lemma 5.4 then shows that many computations can actally be done over

the residue field K.

Convention 5.1

Let I EK[x] be a homogeneous ideal and fix an initial ideal J := in(−1,w)(π
−1I) E

R[t, x] of its preimage as well as the corresponding monomial ordering >(−1,w). Note

that necessarily p ∈ J .

Lemma 5.2 (quasi-homogeneity of J)

There exists a positive weight vector u ∈ (R>0)n+1 such that J is weighted homoge-

neous with respect to it.

Proof. Because J is weighted homogeneous with respect to w ∈ R<0 × Rn and x-

homogeneous, it is, picking k ∈ N sufficiently high, also weighted homogeneous with

respect to k · (0, 1, . . . , 1) + w ∈ (R>0)n+1. �

Definition 5.3

We call an element g =
∑

β,α cβ,α · tβxα ∈ R[t, x] a canonical representative of its

residue class g ∈ K[t, x], if

cβ,α = 0 ⇐⇒ cβ,α = 0 and cβ,α = 1 ⇐⇒ cβ,α = 1.

Lemma 5.4 (standard bases of J)

Let {g1, . . . , gk} be a monic standard basis of J with respect to >(−1,w). Then

{g0, g1, . . . , gk} is a standard basis of J with respect to >(−1,w), where g0 = p and

g1, . . . , gk are canonical representatives of their residue classes.
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Proof. Let G = {g0, . . . , gk}. Since p ∈ J , it is clear that 〈G〉 ⊆ J and therefore

〈LT>(g) | g ∈ G〉 ⊆ LT>(J). For the converse, consider a term s = c·tβxα ∈ LT>(J).

Now if p | c, then s ∈ 〈LT>(g) | g ∈ G〉, since p ∈ G and LT>(p) = p. And if p - c, we

may use p ∈ LT>(J) to normalize s, and get tβxα ∈ LT>(J). Thus tβxα ∈ LT>(J),

and hence there is a gi such that LM>(gi) | tβxα. Since all gi were chosen to be

monic, this implies LT>(gi) | tβxα, and because all gi were chosen to be canonical

representatives, this implies LT>(gi) | s. �

This article was dedicated to show how Tν(I) can be computed via T (π−1I), however

until now we have not addressed how to compute the preimage π−1I in the first place.

We will therefore end the article with two results: The first will show that π−1I can

be obtained by a saturation. The second will allow us get around computing the

saturation.

Lemma 5.5

Let I E K[x] be an ideal, and let G = {g1, . . . , gk} ⊆ I ∩ OK [x] be a generating

set over the valuation ring. Since π : RJtK[x] → OK [x] is surjective, there exist

g′1, . . . , g
′
k ∈ RJtK[x] such that π(g′i) = gi ∈ R[x]. Then

π−1I =
(
〈g′1, . . . , g′k〉+ 〈p− t〉

)
: p∞ ERJtK[x].

Proof. π−1I ⊇ (〈g′1, . . . , g′k〉+ 〈p− t〉) : p∞ is obvious, as p− t is mapped to 0 and p

is invertible in K.

For the converse inclusion, let f ∈ π−1I. Then there are q1, . . . , qk ∈ K[x] such that

π(f) = q1 · g1 + . . .+ qk · gk ∈ K[x],

which means that for a sufficiently high power l ∈ N we have

pl · π(f) = plq1︸︷︷︸
∈OK [x]

·g1 + . . .+ plqk︸︷︷︸
∈OK [x]

·gk ∈ OK [x].

Since the map π : RJtK[x] → OK [x] is surjective, there exist q′1, . . . , q
′
k ∈ RJtK[x]

such that

pl · π(f) = π(q′1 · g′1 + . . .+ q′k · g′k),
or rather

pl · f − q′1 · g′1 + . . .+ q′k · g′k ∈ ker(π) = 〈p− t〉.
Thus pl · f ∈ 〈g′1, . . . , g′k〉+ 〈p− t〉, and hence

f ∈ (〈g′1, . . . , g′k〉+ 〈p− t〉) : p∞. �

Proposition 5.6

Let IEK[x] be an ideal, and let G = {g′1, . . . , g′k} ⊆ π−1I such that I = 〈π(g′1), . . . , π(g′k)〉.
Then

T (π−1I) = T (〈g′1, . . . , g′k〉+ 〈p− t〉).



COMPUTING TROPICAL VARIETIES 29

Proof. By Lemma 5.5, we have

π−1I =
(
〈g′1, . . . , g′k〉+ 〈p− t〉︸ ︷︷ ︸

=:I′

)
: p∞ ERJtK[x].

Consider a weight vector w ∈ R<0 × Rn and suppose inw(I ′) contains a monomial

tβxα. By Algorithm 4.12, there exists a witness f ∈ I ′ with inw(f) = tβxα. However

since I ′ ⊆ π−1I, inw(π−1I) then contains the monomial tβxα as well.

Now suppose inw(π−1I) contains a monomial tβxα. By Algorithm 4.12, there exists

a witness f ∈ π−1I with inw(f) = tβxα. Let l ∈ N be sufficiently high such that

pl · f ∈ I ′. Now since p− t ∈ I ′, this implies tl · f ∈ I ′ and inw(I ′) then contains the

monomial inw(tl · f) = tβ+lxα. �
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