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Abstract. In this paper we study standard bases for submodules of a mixed

power series and polynomial ring RJt1, . . . , tmK[x1, . . . , xn]
s respectively of their

localization with respect to a t-local monomial ordering for a certain class of noe-

therian rings R. The main steps are to prove the existence of a division with

remainder generalizing and combining the division theorems of Grauert–Hironaka

and Mora and to generalize the Buchberger criterion. Everything else then trans-

lates naturally. Setting eitherm = 0 or n = 0 we get standard bases for polynomial

rings respectively for power series rings over R as a special case.

The paper follows to a large part the lines of [Mar10], or alternatively [GrP02]

and [DeS07], adapting to the situation that the coefficient domain R is no field.

We generalize the Division Theorem of Grauert–Hironaka respectively Mora (the

latter in the form stated and proved first by Greuel and Pfister, see [GGM+94],

[GrP96]; see also [Mor82], [Grä94]). The paper should therefore be seen as a unified

approach for the existence of standard bases in polynomial and power series rings for

coefficient domains which are not fields. Standard bases of ideals in such rings come

up naturally when computing Gröbner fans (see [MaR15a]) and tropical varieties

(see [MaR15b]) over non-archimedian valued fields, even though we consider a wider

class of base rings than actually needed for this.

An important point is that if the input data is polynomial in both t and x then

we can actually compute the standard basis in finite time since a standard basis

computed in R[t1, . . . , tm]〈t1,...,tm〉[x1, . . . , xn] will do.

Many authors contributed to the further development (see e.g. [Bec90] for a standard

basis criterion in the power series ring) and to generalizations of the theory, e.g.

to algebraic power series (see e.g. [Hir77], [AMR77], [ACH05]) or to differential

operators (see e.g. [GaH05]). This list is by no means complete.
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1. Division with remainder

In this section, we construct a division with remainder following the first three

chapters of [Mar08]. Please mind the assumptions on our ground ring in Convention

1.1 for that, which were taken from Definition 1.3.14 in [Wie11].

After a quick introduction of the basic terminology, we begin with a division algo-

rithm over the ground ring in the form of Algorithm 1.11. We then continue with

homogeneous division with remainder in Algorithm 1.13, and finally end with a weak

division with remainder in Algorithm 1.22.

Convention 1.1 (The class of base rings)

For this chapter, let R be a noetherian ring in which linear equations are solvable

as in Definition 1.3.14 of [Wie11]. The latter means that, given any finite tuple of

arbitrary length (c1, . . . , ck) with ci ∈ R, we must be able to do the following:

(1) decide for b ∈ R whether b ∈ 〈c1, . . . , ck〉, and, if yes, find a1, . . . , ak ∈ R such

that

b = a1 · c1 + · · ·+ ak · ck.

(2) find a finite generating set S ⊆ Rk of its syzygies as module over R,

syzR(c1, . . . , ck) = {(a1, . . . , ak) ∈ Rk | a1 · c1 + . . .+ ak · ck = 0} = 〈S〉R.

We will use the notion RJtK[x] := RJt1, . . . , tmK[x1, . . . , xn] to denote a mixed power

series and polynomial ring over R in several variables t = (t1, . . . , tm) and x =

(x1, . . . , xn), and RJtK[x]s will denote the free module of rank s over RJtK[x].

R being noetherian is most notably required for the conditional termination of Al-

gorithm 1.22, while linear equations being solvable is required in the instructions of

Algorithm 1.11 and Algorithm 2.16.

Example 1.2

Admissible ground rings satisfying Convention 1.1 include the following:

• Obviously any field, assuming we are able to compute inverse elements.

• The ring of integers Z. The division with remainder in Z allows us to solve the

ideal membership problem, while the least common multiple allows us to compute

finite generating sets of syzygies, see Theorem 2.2.5 in [Wie11] for the latter.

• Also, Z/mZ for an arbitrary m ∈ Z. While it generally is neither Euclidean nor

factorial like Z, many problems can nonetheless be solved by tracing them back

to the integers.

• Similarly, any Euclidean ring for which we are able to compute its division with

remainder, or, more generally, any factorial ring for which we can compute the

unique factorization. Classical examples hereof are the ring of Gaussian integers

Z[i], the polynomial ring Q[y], the power series ring QJsK or multivariate polyno-

mial rings.
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• Moreover, thanks to the theory of Gröbner bases, any quotient ring of a polynomial

ring, e.g. the ring of Laurent polynomials K[y±1
1 , . . . , y±1

n ] = K[y0, . . . , yn]/(1 −

y0 · · · yn).

• And, thanks to the theory of standard bases, any localization of a polynomial

ring at a prime ideal, as it can be traced back to a quotient of a polynomial ring

localized at a mixed ordering, see [Mor91].

• Also, Dedeking domains. A solution to the ideal membership problem and the

computation of syzygies can be found in [HKY10].

• Finally, product rings like Z × Z, because any ideal in it is the product of two

ideals in Z.

We now begin with introducing some very basic notions of standard basis theory

to our ring resp. module, definitions such as monomials, monomial orderings and

leading monomials.

Definition 1.3

The set of monomials of RJtK[x] is defined to be

Mon(t, x) := {tβxα | β ∈ Nm, α ∈ Nn} ⊆ RJtK[x],

and a monomial ordering on Mon(t, x) is an ordering > that is compatible with its

natural semigroup structure, i.e.

∀a, b, q ∈ Mon(t, x) : a > b =⇒ q · a > q · b.

We call a monomial ordering > t-local, if 1 > tβ for all β ∈ Nm.

Let > be a t-local monomial ordering on Mon(t, x), and let w ∈ Rm
<0 × Rn be a

weight vector. Then the ordering >w is defined to be:

tβxα >w tδxγ· :⇐⇒ w · (β, α) > w · (δ, γ) or

w · (β, α) = w · (δ, γ) and tβxα > tδxγ .

We will refer to orderings of the form >w as a weighted ordering with weight vector

w and tiebreaker >.

Definition 1.4

The set of module monomials of RJtK[x]s is defined to be

Mons(t, x) := {tβxα · ei | β ∈ Nm, α ∈ Nn, i = 1, . . . , s} ⊆ RJtK[x]s.

A monomial ordering on Mons(t, x) is an ordering > that is compatible with the

natural Mon(t, x)-action on it, i.e.

∀a, b ∈ Mons(t, x) ∀q ∈ Mon(t, x) : a > b =⇒ q · a > q · b,

and that restricts onto the same monomial ordering on Mon(t, x) in each component,

i.e.

∀a, b ∈ Mon(t, x) ∀i, j ∈ {1, . . . , s} : a · ei > b · ei ⇐⇒ a · ej > b · ej.
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We call a monomial ordering > t-local, if 1·ei > tβ ·ei for all β ∈ Nm and i = 1, . . . , s.

Let > be a t-local monomial ordering on Mons(t, x), and let w ∈ Rm
<0 ×Rn ×Rs be

a weight vector. Then the ordering >w is defined to be:

tβxα · ei >w tδxγ · ej ⇐⇒

w · (β, α, ei) > w · (δ, γ, ej) or

w · (β, α, ei) = w · (δ, γ, ej) and tβxα · ei > tδxγ · ej.

We will refer to orderings of the form >w as a weighted ordering with weight vector

w and tiebreaker >.

From now on, we will simply refer to module monomials as monomials.

Definition 1.5

Given a t-local monomial ordering > on Mons(t, x) and an element f =
∑

α,β,i cα,β,i ·

tβxα · ei ∈ RJtK[x]s, we define its leading monomial, leading coefficient, leading term

and tail to be

LM>(f) = max{tβxα · ei | cα,β,i 6= 0},

LC>(f) = cα,β,i, where tβxα · ei = LM>(f),

LT>(f) = cα,β,i · t
βxα · ei, where tβxα · ei = LM>(f),

tail>(f) = f − LT>(f).

For a submodule M ≤ RJtK[x]s, we set

LM>(M) = 〈LM>(f) | f ∈ M〉R[t,x] ≤ R[t, x]s,

LT>(M) = 〈LT>(f) | f ∈ M〉R[t,x] ≤ R[t, x]s.

Note that we regard the two modules above as submodules of R[t, x]s, while the

original module lies in RJtK[x]s. We refer to LT>(M) as the leading module of M

with respect to >.

Example 1.6

Observe that in general

LM>(M) 6= LT>(M).

Consider the ideal

I := 〈1 + t6x+ t4y + t7x2 + t5xy + t8y2, 2− t〉E ZJtK[x],

and let >w be the weighted ordering with weight vector w = (−1, 3, 3) and any

arbitrary tiebreaker. Then by weighted degree alone we have

LT>w
(I) = 〈t5xy, 2〉 6= LM>w

(I) = 〈1〉,

since LM>w
(2−t) = 1. In fact, the last equation holds true for any t-local monomial

ordering, while the former varies depending on the ordering. This is why the role
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of leading monomials in the classical standard basis theory over fields is played by

leading terms over rings.

Remark 1.7

Note that the t-locality of the monomial ordering> is essential for leading monomials

and other associated objects to exist, as elements of RJtK[x] resp. RJtK[x]s may be

unbounded in their degrees of t.

However, given a weight vector in Rm
<0×Rn resp. Rm

<0×Rn×Rs, a weighted monomial

ordering does not need a t-local tiebreaker for leading monomials to be well-defined.

But for sake of simplicity, we nevertheless assume all occuring monomial orderings

to be t-local.

Mon(t, x) comes equipped with a natural notion of divisibility and least common

multiple. For module monomials, we define:

Definition 1.8

For two module monomials tβxα · ei and tδxγ · ej ∈ Mon(t, x)s, we say

tβxα · ei divides t
δxγ · ej :⇐⇒ ei = ej and tβxα divides tδxγ ,

and in this case we set

tβxα · ei
tδxγ · ej

:=
tβxα

tδxγ
= tβ−δxα−γ ∈ Mon(t, x).

We define the least common multiple of two module monomials tβxα ·ei and tδxγ ·ej ∈

Mon(t, x)s to be

lcm(tβxα · ei, t
δxγ · ej) :=

{

lcm(tβxα, tδxγ) · ej, if i = j,

0, otherwise.

We now devote the remaining section to proving the existence of a division with

remainder, starting with its definition.

Definition 1.9

Let > be a t-local monomial ordering on Mons(t, x). Given f ∈ RJtK[x]s and

g1, . . . , gk ∈ RJtK[x]s we say that a representation

f = q1 · g1 + . . .+ qk · gk + r

with q1, . . . , qk ∈ RJtK[x] and r =
∑s

j=1 rj · ej ∈ RJtK[x]s satisfies

(ID1): if LM>(f) ≥ LM>(qi · gi) for all i = 1, . . . , k,

(ID2): if LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless r = 0,

(DD1): if no term of qi · LT>(gi) lies in 〈LT>(gj) | j < i〉 for all i = 1, . . . , k,

(DD2): if no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,

(SID2): if LT>(rj · ej) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless rj = 0, for all j = 1, . . . , s.
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A representation satisfying (ID1) and (ID2) is called an (indeterminate) division with

remainder, and a representation satisfying (DD1) and (DD2) is called a determinate

division with remainder. In each of these two cases we call r a remainder or normal

form of f with respect to (g1, . . . , gk). Moreover, if the remainder r is zero, we call

the representation a standard representation of f with respect to (g1, . . . , gk).

A division with remainder of u · f for some u ∈ RJtK[x] with LT>(u) = 1 is also

called a weak division with remainder of f . A remainder of u · f will be called a

weak normal form of f with respect to (g1, . . . , gk), and a standard representation

of u · f will be called a weak standard representation of f .

Proposition 1.10

Consider a representation

f = q1 · g1 + . . .+ qk · gk + r or u · f = q1 · g1 + . . .+ qk · gk + r

with f, g1, . . . , gk, r ∈ RJtK[x]s, q1, . . . , qk ∈ RJtK[x] and LT>(u) = 1. Then:

(1) if the representation satisfies (DD2), then it also satisfies (SID2),

(2) if the representation satisfies (SID2), then it also satisfies (ID2),

(3) if it satisfies both (DD1) and (ID2), then it also satisfies (ID1).

In particular, (DD1) and (DD2) imply (ID1) and (ID2).

Proof. (1) and (2) are obvious, so suppose the representation satisfies both (DD1)

and (DD2).

Take the maximal monomial tβxα occurring in any of the expressions qi · gi or r on

the right hand side, and assume tβxα > LM>(f). Because of maximality, it has to

be the leading monomial of each expression it occurs in. And because it does not

occur on the left hand side, the leading terms have to cancel each other out. Let

qi1 · gi1 , . . . , qil · gil be the qi · gi containing tβxα with i1 < . . . < il.

If r contains tβxα, then
∑l

j=1 LT>(qij · gij) + LT>(r) = 0, and hence

LT>(r) = tβxα ∈ 〈LT>(g1), . . . ,LT>(gk)〉,

contradicting (ID2).

If r does not contain a, then we have
∑l

j=1 LT>(qij · gij) = 0, thus

LT>(qil · gil) ∈ 〈LT>(gj) | j < il〉,

contradicting (DD1). �

Next, we pay a little attention to our ground ring. Convention 1.1 states that our

ring already comes equipped with everything we need to compute representations of

members in given ideals, but we still need to make sure that these representations

satisfy our needs in Algorithm 1.13.

Algorithm 1.11 (DivR, division in the ground ring)

Input: (b, C), where C = (c1, . . . , ck) ∈ Rk and b ∈ 〈C〉.
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Output: (a1, . . . , ak) ⊆ Rk, such that

b = a1 · c1 + . . .+ ak · ck

with ai · ci /∈ 〈cj | j < i〉 unless ai · ci = 0, for any i = 1, . . . , k.

1: Find a1, . . . , ak ∈ R with b = a1 ·c1+ . . .+ak ·ck, which is possible by Convention

1.1.

2: for i = k, . . . , 1 do

3: if ai · ci 6= 0 and ai · ci ∈ 〈cj | j < i〉 then

4: Find h1, . . . , hi−1 ∈ R such that ai · ci = h1 · c1 + . . .+ hi−1 · ci−1.

5: Set aj := aj + hj for all j < i, and ai := 0.

6: return (a1, . . . , ak)

Proof. Termination and correctness are obvious. �

With this preparation we are able to formulate and prove determinate division with

remainder for x-homogeneous ideals and modules.

Definition 1.12

For an element f =
∑

β,α,i cα,β,i · t
βxα · ei ∈ RJtK[x]s we define its x-degree to be

degx(f) := max{|α| | cα,β,i 6= 0},

and we call it x-homogeneous, if all its terms are of the same x-degree.

Given a weight vector w ∈ Rm
<0×Rn×Rs, we define its weighted degree with respect

to w to be

degw(f) := max{w · (β, α, ei) | cα,β,i 6= 0},

and we call it weighted homogeneous with respect to w, if all its terms are of the

same weighted degree.

Algorithm 1.13 (HDDwR, homogeneous determinate division with remainder)

Input: (f,G,>), where f ∈ RJtK[x]s x-homogeneous, G = (g1, . . . , gk) a k-tuple of

x-homogeneous elements in RJtK[x]s and > be a t-local monomial ordering on

Mons(t, x).

Output: (Q, r), where Q = (q1, . . . , qk) ∈ RJtK[x]k and r ∈ RJtK[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

satisfies

(DD1): no term of qi · LT>(gi) lies in 〈LT>(gj) | j < i〉 for all i,

(DD2): no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,

(DDH): the q1, . . . , qk, r are either 0 or x-homogeneous of x-degree

degx(f)− degx(g1), . . . , degx(f)− degx(gk), degx(f) respectively.

1: Set qi := 0 for i = 1, . . . , k, r := 0, ν := 0, fν := f .

2: while fν 6= 0 do

3: if LT>(fν) ∈ 〈LT>(g1), . . . ,LT>(gk)〉 then
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4: Let Dν := {gi ∈ G | LM>(gi) divides LM>(fν)}{gi1 , . . . , gil}.

5: Compute (ai1 , . . . , ail) = DivR(LC>(fν), (LC>(gi1), . . . ,LC>(gil))).

6: Set

qi,ν :=

{

ai ·
LM>(fν)
LM>(gi)

, if gi ∈ Dν ,

0 , otherwise,

for i = 1, . . . , k, and rν := 0.

7: else

8: Set qi,ν := 0, for i = 1, . . . , k, and rν := LT>(fν).

9: Set qi := qi + qi,ν for i = 1, . . . , k and r := r + rν .

10: Set fν+1 := fν − (q1,ν · g1 + . . .+ qk,ν · gk + rν) and ν := ν + 1.

11: return ((q1, . . . , qk), r)

Proof. Note that we have a descending chain of terms to be eliminated

LM>(f0) > LM>(f1) > LM>(f2) > . . . ,

which implies that, except the terms that are zero, we have k+1 descending chains

of factors and remainders

LM>(qi,0) > LM>(qi,1) > LM>(qi,2) > . . . ,

LM>(r0) > LM>(r1) > LM>(r2) > . . . .

By construction, each qi,ν , i = 1, . . . , k, is x-homogeneous of x-degree degx(f) −

degx(gi), and each rν is x-homogeneous of x-degree degx(f), unless they are zero.

Because of Lemma 1.14 we may assume that the ordering > is a t-local weighted

monomial ordering. Thus, by Lemma 1.16, the qi,ν and rν converge to zero in the

〈t〉-adic topology, so that

qi :=
∞∑

ν=0

qi,ν ∈ RJtK[x] and r :=
∞∑

ν=0

rν ∈ RJtK[x]s

exist and the following representation satisfies (DDH):

f = q1 · g1 + . . .+ qk · gk + r. (1)

Observe that, because all qi,ν and rν are terms with distinct monomials, each non-

zero term of qi · LT>(gi) or r equals qi,ν · LT>(gi) or rν respectively, for some ν ∈ N.

So first, let p be a non-zero term of qi ·LT>(gi), say p = qi,ν ·LT>(gi) for some ν ∈ N.

Then LC>(qi,ν) 6= 0 implies that LC>(qi,ν ·gi) /∈ 〈LC>(gj) | j < i with gj ∈ Dν〉R. In

particular, we have LT>(qi,ν · gi) = qi,ν · LT>(gi) /∈ 〈LT>(gj) | j < i with gj ∈ Dν〉.

Therefore we also get qi,ν ·LT>(gi) /∈ 〈LT>(gj) | j < i〉, since the leading monomials

of all gj /∈ Dν do not divide LM>(fν) = LM>(qi,ν · gi). Thus (1) satisfies (DD1).

Lastly, let p be a non-zero term of r, i.e. p = rν for a suitable ν. But because

rν 6= 0, we have rν = LT>(fν) /∈ 〈LT>(g1), . . . ,LT>(gk)〉 by default. Therefore, our

representation (1) also satisfies (DD2). �
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In the proof we have used the following two Lemmata whose proof can be found

in [Mar08]. The first Lemma allows us to restrict ourselves to weighted monomial

orderings, while the second guarantees 〈t〉-adic convergence.

Lemma 1.14 ([Mar08] Lemma 2.5)

Let > be a t-local monomial ordering on Mons(t, x), and let g1, . . . , gk ∈ RJtK[x]s

be x-homogeneous. Then there exists a weight vector w ∈ Rm
<0 × Rn+s such that

any t-local weight ordering with weight vector w, say >w, induces the same leading

monomials as > on g1, . . . , gk, i.e.

LM>w
(gi) = LM>(gi) for all i = 1, . . . , k.

Example 1.15

A monomial ordering can always be expressed by an invertible matrix. For example,

the lexicographical ordering > on Mon(t, x) with x1 > x2 > 1 > t is given by

tβxα > tδxγ ⇐⇒ A · (β, α)t > A · (δ, γ)t, where A =
(

0 1 0
0 0 1

−1 0 0

)

,

where the > on the right hand side denotes the lexicographical ordering on R3.

Consider the polynomial g = t5x1 + t2x2. In order to find a weight vector w ∈

R<0 × R2 such that LM>w
(g) = LM>(g) = t5x1, consider the first row vector of A,

a1 = (0, 1, 0) ∈ R3. Since a1 /∈ R<0 × R2 it represents no viable choice for w. But

because dega1(t
5x1) > dega1(t

2x2), adding a sufficiently small negative weight in t

will not break the strict inequality. Hence we obtain w = (−1
5
, 1, 0) ∈ R<0 × R2:

deg(0,1,0)(t
5x1) = 1 > 0 = deg(0,1,0)(t

2x2)

deg(−1/5,1,0)(t
5x1) = 0 > −2

5
= deg(−1/5,1,0)(t

2x2).

−(1/5, 0, 0) −(1/5, 0, 0)

In particular, a determinate division with remainder with respect to >w will also be

a determinate division with remainder with respect to >, as (DD1) and (DD2) are

only dependant on the leading terms.

Lemma 1.16 ([Mar08] Lemma 2.6)

Let >w be a t-local monomial ordering on Mons(t, x) with weight vector w ∈ Rm
<0 ×

Rn+s, and let (fk)k∈N be a sequence of x-homogeneous elements of fixed x-degree in

RJtK[x]s such that LM>w
(fk) > LM>w

(fk+1) for all k ∈ N. Then (fk)k∈N converges

to zero in the 〈t〉-adic topology, i.e.

∀N ∈ N ∃M ∈ N : fk ∈ 〈t〉N ·RJtK[x]s ∀k ≥ M.

In particular, the element
∑∞

k=0 fk ∈ RJtK[x]s exists.

Remark 1.17 (polynomial input)

In case m = 0, i.e. RJtK[x]s = R[x]s, all f, g1, . . . , gk ∈ R[x]s are homogeneous and so
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is any polynomial appearing in our algorithm. Moreover, all fν , unless fν = 0, have

the same x-degree as f . And since there are only finitely many monomials of a given

degree, there cannot exist an infinite sequence of decreasing leading monomials

LM>(f0) > LM>(f1) > LM>(f2) > . . . ,

and Algorithm 1.13 has to terminate.

Remark 1.18 (weighted homogeneous input)

Similar to how the output is x-homogeneous because the input is x-homogeneous,

note that if the input is weighted homogeneous with respect to a certain weight

vector w ∈ Rm
<0 ×Rn, then so is the output. This will be essential when computing

tropical varieties over the p-adic numbers.

Example 1.19

Over a ground field, as in the proof of Theorem 2.1 in [Mar08], all the terms of fν can

be simultaneously checked for containment in 〈LT>(g1), . . . ,LT>(gk)〉, eliminating

the terms which lie in the ideal using g1, . . . , gk and discarding the terms which are

outside the ideal to the remainder. However, this is not possible if R is no field.

Let f = 2x, g = 2x + 2tx + t2x + 3t3x ∈ ZJtK[x] and consider a weighted ordering

>=>w with weight vector w = (−1, 1) ∈ R<0 × R. Then Figure 1 illustrates a

division algorithm, which discards any term of fν not divisible by LT>(g) directly

to the remainder. The underlined term marks the respective leading term.

f0 = 2x r

f1 = −2tx−

to remainder
︷ ︸︸ ︷

t2x− 3t3x

f2 = 2t2x+

to remainder
︷ ︸︸ ︷

t3x+ 3t4x

f3 = −2t3x−

to remainder
︷ ︸︸ ︷

t4x− 3t5x

−g

+tg

−t2g

...

−t2x

3t3x

t3x

3t4x

t4x

3t5x
...

=
−

+
+

−
−

Figure 1. division slice by slice

Not only would this process continue indefinitely, every term in our remainder but

the first would actually be divisible by LT>(g):

r = −t2x− 3t3x+ t3x+ 3t4x− t4x− . . . = −xt2 − 2xt3 + 2xt4 − 2xt5 + . . . .
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As we see, it is important to know when terms can be safely discarded to the

remainder, and the only way to guarantee that is by proceeding term by term

instead of slice by slice. And in order to guarantee that our result converges in the

〈t〉-adic topology, the order needs to be compatible with a weighted monomial order

>w with w ∈ Rm
<0 × Rn+s. Figure 2 shows the same example in our algorithm.

f0 = 2x r

f1 = −2tx−

to be processed
︷ ︸︸ ︷

t2x− 3t3x

f2 = t2x− 2t3x+ 3t4x t2x

f3 = −2t3x+ 3t4x

f4 = 5t4x+ t5x+ 3t6x 5t4x

... t5x

f7 = 0

−g

+tg

to remainder

+t2g

to remainder

to remainder 3t6x

=

+

+

+

Figure 2. division term by term

We obtain a representation satisfying (DD1), (DD2) and (DDH):

f = (1− t− t3
︸ ︷︷ ︸

=q

) · g + (xt2 + 5xt4 + xt5 + 3xt6
︸ ︷︷ ︸

=r

).

Having constructed a homogeneous determinate division with remainder, we will

now introduce homogenization, dehomogenization and the ecart to continue with a

weak division with remainder.

Definition 1.20 (Homogenization and dehomogenization)

For an element f =
∑

β,α,i cα,β,i · t
βxα · ei ∈ RJtK[x]s we define its homogenization to

be

fh :=
∑

α,β,i

cα,β,i · t
βx

degx(f)−|α|
0 xα · ei ∈ RJtK[xh]

s
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with xh = (x0, x) = (x0, x1, . . . , xn). And for an element F ∈ RJtK[xh]
s we define its

dehomogenization to be F |x0=1 ∈ RJtK[x]s.

Remark 1.21 (Homogenization and dehomogenization)

Any monomial ordering > on Mons(t, x), can be naturally extended to an ordering

>h on Mons(t, x0, x) through

a >h b :⇐⇒ degxh
(a) > degxh

(b) or

degxh
(a) = degxh

(b) and a|x0=1 > b|x0=1.

Defining the ecart of an element f ∈ RJtK[x]s with respect to > to be

ecart>(f) := degx(f)− degx(LM>(f)) ∈ N,

one can show that for any elements g, f ∈ RJtK[x]s and any xh-homogeneous F ∈

RJtK[xh]:

(1) f = (fh)d,

(2) F = x
degxh

(F )−degx(F
d)

0 · (F d)h,

(3) LT>h
(fh) = x

ecart>(f)
0 · LT>(f),

(4) LT>h
(F ) = x

ecart>(F d)+degxh
(F )−degx(F

d)

0 · LT>(F
d),

(5) LM>h
(gh)|LM>h

(fh) ⇐⇒

LM>(g)|LM>(f) and ecart>(g) ≤ ecart>(f),

(6) LM>h
(gh) | LM>h

(F ) ⇐=

LM>(g)|LM>(F
d) and ecart>(g) ≤ ecart>(F

d).

With this preparation we are now able to formulate and prove weak division with

remainder.

Algorithm 1.22 (DwR, weak division with remainder)

Input: (f,G,>), where f ∈ RJtK[x]s and G = (g1, . . . , gk) is a k-tuple in RJtK[x]s

and > a weighted t-local monomial ordering on Mons(t, x).

Output: (u,Q, r), where u ∈ RJtK[x] with LT>(u) = 1, Q = (q1, . . . , qk) ⊆ RJtK[x]k

and r ∈ RJtK[x]s such that

u · f = q1 · g1 + . . .+ qk · gk + r

satisfies

(ID1): LM>(f) ≥ LM>(qi · gi) for i = 1, . . . , k and

(ID2): LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless r = 0.

Moreover, the algorithm requires only a finite number of recursions.

1: if f 6= 0 and LT>(f) ∈ 〈LT>(g1), . . . ,LT>(gk)〉 then

2: Set D := {gi ∈ G | LM>(gi) divides LM>(f)} and D′ := ∅.

3: while LT>(f) /∈ 〈LT>(gi) | gi ∈ D′〉 do

4: Pick g ∈ D with minimal ecart.
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5: Set D′ := D′ ∪ {g} and D := D \ {g}.

6: if e := max{ecart>(g) | g ∈ D′} − ecart>(f) > 0 then

7: Compute

((Q′
1, . . . , Q

′
k), R

′) := HDDwR(xe
0 · f

h, (LT>(g
h
1 ), . . . ,LT>(g

h
k )), >h).

8: Set f ′ := (xe
0 · f

h −
∑k

i=1 Q
′
i · g

h
i )

d.

9: Run

(u′′, (q′′1 , . . . , q
′′
k+1), r) := DwR(f ′, (g1, . . . , gk, f), >).

10: Set qi := q′′i + u′′ ·Q′d
i , i = 1, . . . , k.

11: Set u := u′′ − q′′k+1.

12: else

13: Compute

((Q′
1, . . . , Q

′
k), R

′) := HDDwR(fh, (gh1 , . . . , g
h
k ), >h).

14: Run

(u, (q′′1 , . . . , q
′′
k), r) := DwR((R′)d, (g1, . . . , gk), >).

15: Set qi := q′′i + u ·Q′d
i , i = 1, . . . , k.

16: else

17: Set (u, (q1, . . . , qk), r) := (1, (0, . . . , 0), f).

18: return (u, (q1, . . . , qk), r).

Proof. Finiteness of recursions: For sake of clarity, label all the objects appearing in

the ν-th recursion step by a subscript ν. For example the ecart eν ∈ N, the element

fν ∈ RJtK[x]s and the subset Gν ⊆ RJtK[x]s.

Since Gh
1 ⊆ Gh

2 ⊆ Gh
3 ⊆ . . ., we have an ascending chain of leading ideals in RJtK[xh]

s,

which eventually stabilizes unless the algorithm terminates beforehand

LT>h
(Gh

1) ⊆ LT>h
(Gh

2) ⊆ . . . ⊆ LT>h
(Gh

N) = LT>h
(Gh

N+1) = . . . .

Assume eN > 0. Then we’d have fN ∈ GN+1, and thus

LT>h
(fh

N) ∈ LT>h
(Gh

N+1) = LT>h
(Gh

N).

To put it differently, we’d have

LT>h
(fh

N) ∈ 〈LT>h
(gh) | gh ∈ Gh

N with LM>h
(gh) divides LM>h

(fh
N)〉,

which by Remark 1.21 (5) would imply that

LT>(fN) ∈ 〈LT>(g) | g ∈ GN with LM>(g) divides LM>(fN),

and ecart>(g) ≤ ecart>(fN)〉.

Consequently, we’d get

D′
N ⊆ {g ∈ GN | LM>(g) divides LM>(fN) and ecart>(g) ≤ ecart>(fN)},
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contradicting our assumption

eN = max{ecart>(g) | g ∈ D′
N} − ecart>(fN)

!
> 0.  

Therefore we have eN ≤ 0. By induction we conclude that eν ≤ 0 for all ν ≥ N , i.e.

that we will exclusively run through steps 14-16 of the “else” case from the N -th

recursion step onwards.

By the properties of HDDwR we know that in particular

LT>h
(R′

N) /∈ LT>h
(Gh

N).

Now assume that the recursions would not stop with the next recursion. That means

there exists a D′
N+1 ⊆ DN+1 with

LT>((R
′
N)

d) = LT>(fN+1) ∈ 〈LT>(g) | g ∈ D′
N+1〉

such that eN+1 = max{ecart>(g) | g ∈ D′
N+1} − ecart>((R

′
N)

d) ≤ 0. From Remark

1.21 (6), this immediately implies the following contradiction

LT>h
(R′

N) ∈ LT>h
(Gh

N+1) = LT>h
(Gh

N).  

Hence the algorithm terminates after the N + 1-th recursion step.

Correctness: We make an induction on the number of recursions, say N ∈ N. If

N = 1 then either f = 0 or LT>(f) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, and in both cases

1 · f = 0 · g1 + . . .+ 0 · gk + f

satisfies (ID1) and (ID2).

So suppose N > 1 and consider the first recursion step. If e ≤ 0, then by the

properties of HDDwR the representation

fh = Q′
1 · g

h
1 + . . .+Q′

k · g
h
k +R′

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1), which means

that for each i = 1, . . . , k we have

x
ecart>(f)
0 · LM>(f) = LM>h

(fh)
(ID1)

≥h LM>h
(Q′

i) · LM>h
(ghi ) = . . .

. . . = x
ai+ecart>(gi)
0 · LM>(Q

′d
i ) · LM>(gi)

for some ai ≥ 0. Since fh and Q′
i ·g

h
i are both xh-homogeneous of the same xh-degree

by (DDH), the definition of the homogenized ordering >h implies

LM>(f) ≥ LM>(Q
′d
i ) · LM>(gi) for all i = 1, . . . , k. (2)

Moreover, by induction the representation u ·R′d = q′′1 · g1 + . . .+ q′′k · gk + r satisfies

(ID1), (ID2) and LT>(u) = 1, the first implying that

LM>(f)
(17)

≥ LM>

(

f −
k∑

i=1

Q′d
i · gi

)

︸ ︷︷ ︸

=R′d

(ID1)

≥ LM>(q
′′
i · gi). (3)
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Therefore, the representation

u · f =
k∑

i=1

(q′′i + u ·Q′d
i ) · gi + r

satisfies (ID1) by (17), (18), LT>(u) = 1 and (ID2) by induction.

Similarly, if e > 0, then by the properties of HDDwR the representation

xe
0 · f

h = Q′
1 · LT>h

(gh1 ) + . . .+Q′
k · LT>h

(ghk ) +R′

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1), which means

that for each i = 1, . . . , k we have

x
e+ecart>(f)
0 · LM>(f) = LM>h

(xe
0 · f

h) ≥ . . .

. . . ≥ LM>h
(Q′

i) · LM>h
(LT>h

(ghi )) = x
ai+ecart>(gi)
0 · LM>(Q

′d
i ) · LM>(gi),

for some ai ≥ 0. Since xe
0 · f

h and Q′
i · LT>h

(ghi ) are both xh-homogeneous of the

same xh-degree by (DDH), the definition of the homogenized ordering >h implies

LM>(f) ≥ LM>(Q
′d
i ) · LM>(gi). (4)

Moreover, by induction the representation u′′ · f ′ =
∑k

i=1 q
′′
i · gi+ q′′k+1 · f + r satisfies

(ID1), (ID2) and LT>(u
′′) = 1 with the first implying that

LM>(f)
(19)

≥ LM>

(

f −
k∑

i=1

Q′d
i · gi

)

︸ ︷︷ ︸

=LM>(R′d)

(ID1)

≥ LM>(q
′′
i · gi). (5)

Therefore, the representation

u · f =
k∑

i=1

(q′′i + u′′ ·Q′d
i ) · gi + r, with u = u′′ − q′′k+1

satisfies (ID1) by (19), (20), LT>(u
′′) = 1 and (ID2) by induction.

To see that LT>(u) = 1, observe that

LT>h
(xe

0 · f
h) ∈ 〈LT>(g

h
1 ), . . . ,LT>(g

h
k )〉,

which is why

LM>(f) = LM>h
(xe

0 · f
h)d > LM>h

(

xe
0 · f

h −
k∑

i=1

Q′
i · g

h
i

)d

= LM>(f
′).

Thus LM>(f) > LM>(f
′) ≥ LM>(q

′′
k+1)·LM>(f), which necessarily implies LM(q′′k+1) <

1. By induction we get LT>(u) = LT>(u
′′) = 1. �
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Remark 1.23 (polynomial input)

If the input is polynomial, f, g1, . . . , gk ∈ R[t, x]s, then we can regard them as

elements of RJt′K[x′] = R[t, x] with t′ = () and x′ = (t, x). In that case, our homoge-

neous determinate divisions with remainder terminates by Remark 1.17, and hence

so does our weak division with remainder. In particular, the output q1, . . . , qk, r will

be polynomial as well.

The next corollary will prove to be very useful in Theorem 2.14, though not for

elements in RJtK[x]s, but for elements in RJtK[x]k under the Schreyer ordering.

Corollary 1.24

Let > be a t-local monomial ordering and g1, . . . , gk ∈ RJtK[x]s. Then any f ∈

RJtK[x]s has a weak division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r

with r =
∑s

j=1 rjej ∈ RJtK[x]s satisfying

(SID2): LT>(rj · ej) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless rj = 0, for j = 1, . . . , s.

Proof. We make an induction on s, in which the base case s = 1 follows from

Algorithm 1.22, as condition (SID2) coincides with (ID2).

Suppose s > 1. By Algorithm 1.22 there exists a weak division with remainder

u · f = qi · g1 + . . .+ qk · gk + r. (6)

If r = 0, then the representation satisfies (SID2) and we’re done. If r 6= 0, there

is a unique j ∈ {1, . . . , s} such that LT>(r) ∈ RJtK[x] · ej. For sake of simplicity,

suppose that j = s and that g1, . . . , gk are ordered in such that

LT>(g1), . . . ,LT>(gl)
︸ ︷︷ ︸

/∈RJtK[x]·es

, LT>(gl+1), . . . ,LT>(gs)
︸ ︷︷ ︸

∈RJtK[x]·es

for some 1 ≤ l < s.

Consider the projection

σ : RJtK[x]s −→ RJtK[x]s−1, (p1, . . . , ps) 7−→ (p1, . . . , ps−1),

the inclusion

ι : RJtK[x]s−1 −→ RJtK[x]s, (p1, . . . , ps−1) 7−→ (p1, . . . , ps−1, 0),

and let >∗ denote the restriction of > on Mon(t, x)s−1. Note that we have

(1) for h ∈ RJtK[x]s−1: LM>(ι(h)) = ι(LM>∗
(h)),

(2) for i = 1, . . . , l: LM>(gi) = LM>(ι(σ(gi))).

By induction, there exists a weak division with remainder of σ(r) ∈ RJtK[x]s−1

satisfying (SID2), say

u′ · σ(r) = q′1 · σ(g1) + . . .+ q′l · σ(gl) + r′. (7)
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Writing r =
∑s

j=1 rj · ej and r′ =
∑s−1

j=1 r
′
j · ej, we want to show that the following

constructed representation

u · u′ · f =
l∑

i=1

(u′ · qi + q′i) · gi +
k∑

i=l+1

u′ · qi · gi + r′′ with r′′ =
s−1∑

j=1

r′j · ej + rs · es

is a weak division with remainder satisfying (SID2).

As (6) satisfies (ID2), (7) satisfies (ID1), and LT>(r) ∈ RJtK[x]> · es, we obtain for

i = 1, . . . , l

LM>(f) ≥ LM>(r) > LM>(ι(σ(r))) ≥ LM>(ι(q
′
i · σ(gi))) = . . .

. . . = LM>(q
′
i · ι(σ(gi))) = LM>(q

′
i · gi).

Now since (6) satisfies (ID1) and LT>(u) = 1 = LT>(u
′), we have for i ≤ l

LM>(u · u′ · f) = LM>(f) ≥ LM>((u
′ · qi + q′i) · gi)

and for i > l

LM>(u · u′ · f) = LM>(f) ≥ LM>(qi · gi) = LM>(u
′ · qi · gi),

proving that our constructed representation satisfies (ID1).

Moreover, (SID2) of (7) tells us that for j = 1, . . . , s− 1

LT>∗
(r′j · ej) /∈ 〈LT>∗

(σ(g1)), . . . ,LT>∗
(σ(gl))〉, unless r′j = 0,

And because LT>(gi) ∈ RJtK[x] · es for i > l, we get for j = 1, . . . , s− 1

LT>(r
′
j · ej) /∈ 〈LT>(g1), . . . ,LT>(gs)〉, unless r′j = 0.

In addition, by (ID2) of (6), we have

LT>(r
′
s · es) = LM>(r) /∈ 〈LT>(g1), . . . ,LT>(gs)〉,

which completes the proof that our constructed representation satisfies (SID2). By

Proposition 1.10 this implies (ID2). �

We will now introduce localizations at monomial orderings. More than just a con-

venience to get rid of the u with LM>(u) = 1 in our weak division with remainder,

localization at monomial orderings allows geometers to compute in localizations at

ideals generated by variables. It is a technique that has been applied in the study

of isolated singularities to great success.

Definition 1.25 (Localization at monomial orderings)

For a t-local monomial ordering > on Mon(t, x), we define

S> := {u ∈ RJtK[x] | LT>(u) = 1} and RJtK[x]> := S−1
> RJtK[x].

We will refer to RJtK[x]> as RJtK[x] localized at the monomial ordering >.
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Let > be a module monomial ordering on Mons(t, x). Recall that it restricts to the

same monomial ordering on Mon(t, x) in each component by Definition 1.4, which

we will denote by >RJtK[x]. We then define for any k ∈ N

RJtK[x]s> := S−1
>RJtK[x]

(RJtK[x]s) .

We will refer to RJtK[x]s> as RJtK[x]s localized at the monomial ordering >. For s = 1,

it coincides with the first definition.

Our definitions on RJtK[x]s extend naturally to RJtK[x]s>, since for any element f ∈

RJtK[x]s> there exists an element u ∈ S> such that u · f ∈ RJtK[x]s. We define the

leading monomial, leading coefficient and leading term of f with respect to > to be

that of u · f ∈ RJtK[x]s. The leading module of a submodule M ≤ RJtK[x]s> is again

the module generated by the leading terms of its elements.

And given f, g1, . . . , gk, r =
∑s

j=1 rj · ej ∈ RJtK[x]s>, we say a representation

f = q1 · g1 + . . .+ qk · gk + r

satisfies

(ID1): if LM>(f) ≥ LM>(qi · gi) for all i = 1, . . . , k,

(ID2): if LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉RJtK[x], unless r = 0,

(DD1): if no term of qi · LT>(gi) lies in 〈LT>(gj) | j < i〉RJtK[x] for all i = 1, . . . , k,

(DD2): if no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,

(SID2): if LT>(rj ·ej) does not lie in 〈LT>(g1), . . . ,LT>(gk)〉RJtK[x], unless rj = 0, for

j = 1, . . . , s.

We will refer to a representation satisfying (ID1) and (ID2) as (indeterminate) di-

vision with remainder, and we will refer to a representation satisfying (DD1) and

(DD2) as determinate division with remainder. In each of these two cases we call

r a remainder or normal form of f with respect to (g1, . . . , gk). Moreover, if the

remainder r is zero, we call the representation a standard representation of f with

respect to (g1, . . . , gk).

With these notions, Corollary 1.24 then implies:

Corollary 1.26

Let > be a monomial ordering and g1, . . . , gk ∈ RJtK[x]s>. Then any f ∈ RJtK[x]s>
has a division with remainder with respect to g1, . . . , gk satisfying (SID2).

2. Standard bases and syzygies

In this section, we introduce standard bases for rings satisfying Convention 1.1. We

also incorporate some remarks on possible optimizations for R being a principal

ideal domain. Similar to the classical theory, it opens with introducing the Schreyer

ordering and syzygies, and finishes with proving Buchberger’s criterion.
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Definition 2.1

Let > be a t-local monomial ordering on Mon(t, x)s and M ≤ RJtK[x]s or M ≤

RJtK[x]s>. A standard basis of M with respect to > is a finite set G ⊆ M with

LT>(G) = LT>(M)

where LT>(G) := 〈LT>(g) | g ∈ G〉. G is simply called a standard basis with respect

to >, if G is a standard basis of 〈G〉RJtK[x]>
with respect to >.

With this definition we get the usual results for standard bases. We will formulate

them, but we will only prove them if the proof has to be adjusted due to the fact

that the base ring is not a field. For the existence of standard bases it is important

to note, that our base ring is noetherian.

Proposition 2.2

For any monomial ordering > all submodules of RJtK[x]s and RJtK[x]s> have a stan-

dard basis.

Proof. LetM ≤ RJtK[x]s resp.M ≤ RJtK[x]s> be a submodule. Since R is noetherian,

so are RJtK[x]s and RJtK[x]s>, and LT>(M) ≤ RJtK[x]s has a finite generating set

h1, . . . , hk. Because

LT>(M) = 〈LT>(g) | g ∈ M〉
!
= {LT>(g) | g ∈ M},

there exist g1, . . . , gk with LT>(gi) = hi forming a standard basis of M . �

Computing weak normal forms is essential in the standard bases algorithm. While

it can be essentially done by computing a division with remainder and discarding

everything but the remainder, as in the following algorithm, the fact that everything

but the remainder is discarded may be used for some optimization in the division

algorithm, which we leave out for sake of clarity.

Algorithm 2.3 (normal form)

Input: (f,G,>), where f ∈ RJtK[x], G = (g1, . . . , gk) a k-tuple in RJtK[x]s and > a

t-local monomial ordering.

Output: r = NF(f,G,>) ∈ RJtK[x], a normal form of f with respect to G and >.

1: Use Algorithm 1.22 to compute a division with remainder,

(u, (q1, . . . , qk), r) = DwR(f,G,>).

2: return r.

Remark 2.4 (polynomial input)

Should the input be polynomial, i.e. f ∈ R[t, x] and G ⊆ R[t, x], then by Re-

mark 1.23 we automatically obtain a polynomial normal form NF(f,G,>) ∈ R[t, x].

Convention 2.5

For the remainder of the section, fix a t-local monomial ordering > on Mon(t, x)s.
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Proposition 2.6

Let M ≤ RJtK[x]s be a module and let G = {g1, . . . , gk} be a standard basis of M .

Then given an element f ∈ RJtK[x] and a weak division with remainder

u · f = q1 · g1 + . . .+ qk · gk + r,

we have f ∈ M if and only if r = 0. In particular, we see that M = 〈G〉

Proof. If r = 0, then obviously f ∈ 〈G〉 ⊆ J . Conversely, if f ∈ J , then r =

u · f − q1 · g1 + . . . + qk · gk ∈ J and therefore LT>(r) ∈ LT>(J) = LT>(G). Hence

r = 0 by (ID2).

We obviously have M ⊇ 〈G〉. For the converse, note that u ∈ RJtK[x]> with

LT>(u) = 1 is a unit, and hence the weak division with remainder implies M ⊆

〈G〉. �

Proposition 2.7

Let M be a submodule of RJtK[x]s> (resp. of RJtK[x]s) and let G = {g1, . . . , gk} ⊆ M .

Then the following statements are equivalent:

(a) G is a standard basis of M .

(b) Every (weak) normal form of any element in M with respect to G is zero.

(c) Every element in M has a (weak) standard representation with respect to G.

Proof. By Proposition 2.6 (a) implies (b), and the implication (b) to (c) is true by

Corollary 1.26. And if any f ∈ J has a standard representation

f = q1 · g1 + . . .+ qk · gk,

then, since LM>(f) ≥ LM>(qi ·gi) for i = 1, . . . , k, there can be no total cancellation

of the leading terms on the right hand side. Hence LT>(f) ∈ LT>(G), and (c) implies

(a). �

Also note that this in particular implies for x-homogeneous modules that being a

standard basis only depends on the leading monomials.

Corollary 2.8

Let G be an x-homogeneous standard basis of an x-homogeneous module M ≤ RJtK[x]

with respect to >. Let >′ be another t-local monomial ordering on Mons(t, x) such

that LM>′(g) = LM>(g) for all g ∈ G. Then G is also a standard basis of M with

respect to >′.

Proof. By Algorithm 1.13, for any f ∈ M = 〈G〉 we can compute a determinate

division with remainder 0 with respect to >,

f = q1 · g1 + . . .+ qk · gk + 0.

However, since the conditions (DD1) and (DD2) are only dependant on LM>(gi) =

LM>′(gi), this is also a valid determinate division with remainder under >′. By
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Proposition 1.10, this is in particular a valid division with remainder, proving that

G is also a standard basis with respect to >′. �

Definition 2.9 (Syzygies and Schreyer ordering)

Given a k-tuple G = (g1, . . . , gk) in RJtK[x]s>, we define the Schreyer ordering >S on

Monk(t, x) associated to G and > to be

tα · xβ · εi >S tα
′

· xβ′

· εj :⇐⇒

tα · xβ · LM>(gi) > tα
′

· xβ′

· LM>(gj) or

tα · xβ · LM>(gi) = tα
′

· xβ′

· LM>(gj) and i > j.

Note that we distinguish between the canonical basis elements ej of the free module

RJtK[x]s> and the canonical basis elements εi of the free module RJtK[x]k>.

Moreover, observe that>S and> restrict to the same monomial ordering on Mon(t, x),

so that

RJtK[x]k>S
= S−1

>S,RJtK[x]
RJtK[x]k = S−1

>RJtK[x]
RJtK[x]k = RJtK[x]k>.

We may, therefore, stick with the notation RJtK[x]k> also when replacing > by the

Schreyer ordering >S.

Let ϕ denote the substitution homomorphism

ϕ : RJtK[x]k> =
⊕k

i=1 RJtK[x]> · εi −→ RJtK[x]s> =
⊕s

j=1RJtK[x]> · ej,

7−→εi gi.

We call its kernel the syzygy module or simply the syzygies of G,

syz(G) :=

{
k∑

i=1

qi · εi ∈ RJtK[x]k>S

∣
∣
∣
∣
∣

k∑

i=1

qi · gi = 0

}

.

The concept of syzygies is one that can be applied to any ring, and one of the

conditions on our ground ring R in Convention 1.1 states that we assume to be able

to compute a finite system of generators for the syzygies of our leading coefficients,

syzR(LC>(g1), . . . ,LC>(gk)) :=

{(c1, . . . , ck) ∈ Rk | c1 · LC>(g1) + . . .+ ck · LC>(gk) = 0}.

In the case of a base field one constructs certain syzygies of a standard basis G with

the aid of s-polynomials in order to show that G is a standard basis. In order to

treat the class of base rings introduced in Convention 1.1 we have to replace this set

by a more subtle set of syzygies which we will now introduce. We will then show in

Remark 2.11 and Proposition 2.12 that in the case of a factorial base ring the new

set of syzygies coincides with the classical one.
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Definition 2.10

For a k-tuple G = (g1, . . . , gk) in RJtK[x]s and a fixed index 1 ≤ l ≤ k, we will now

introduce several objects which will be of importance in the upcoming theory.

Recall the notions of divisibility and least common multiple of module monomials in

Definition 1.8. We denote the set of least common multiples of the leading monomials

up to and including gl with

Cl :=
{

lcm(LM>(gi) | i ∈ J)
∣
∣
∣ J ⊆ {1, ..., k} with max(J) = l

}

\ {0}.

Note that Cl ⊆ RJtK[x] · eλ for the index 1 ≤ λ ≤ s such that LT>(gl) ∈ RJtK[x] · eλ.

And for a least common multiple a ∈ Cl, we abbreviate the set of all indices j up

to l such that LM>(gj) divides it with

Jl,a :=
{

i ∈ {1, . . . , l}
∣
∣
∣ LM>(gi) divides a

}

.

Now given Jl,a, we can compute a finite generating set for the syzygies of the tuple

(LC>(gi))i∈Jl,a , which we will temporarily denote with SR. Let syzR,l,a be the set of

elements of SR with non-trivial entry in l:

〈 SR 〉R =
{

(ci)i∈Jl,a ∈ R|Jl,a|
∣
∣
∣
∑

i∈Jl,a
ci · LC>(gi) = 0

}

,

syzR,l,a =
{

(ci)i∈Jl,a ∈ SR

∣
∣
∣ cl 6= 0

}

.

⊆

With this, we can write down a finite set of syzygies of the leading terms of the gi
up to and including LT>(gl) with non-trivial entry in l,

syzl :=







∑

i∈Jl,a

ci · a

LM>(gi)
· εi ∈ RJtK[x]k

∣
∣
∣
∣
∣
∣

a ∈ Cl and c ∈ syzR,l,a






.

For each ξ′ ∈ syzl, we can then fix a single weak division with remainder of ϕ(ξ′) ∈

RJtK[x]s with respect to g1, . . . , gl to obtain

Sl :=

{

u · ξ′ −
k∑

i=1

qi · εi

∣
∣
∣
∣
∣

ξ′ ∈ syzl and u · ϕ(ξ′) = q1 · g1 + . . .+ ql · gl + r

the fixed weak division with remainder

}

.

As Sl obviously depends on G, we write SG,l instead whenever G is not clear from

the context. Moreover, we abbreviate

S
(G) := SG,|G|.

Also, there is a certain degree of ambiguity in the construction of Sl since we are

actively choosing generating sets and divisions with remainders. Hence whenever

we use Sl, it will represent any possible outcome of our construction. For example,

when we write S ⊆ Sl for a set S ⊆ RJtK[x]k>S
, it means that the elements of S are

possible outcomes of our construction of Sl.
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Remark 2.11 (factorial ground rings)

Should R be a factorial ring in which we have a natural notion of a least common

multiple, then the construction above simplifies to extensions of classical techniques.

Suppose a ∈ Cl is a least common multiple of various leading monomials including

LM>(gl). Let Jl,a be the set of all indices i for which LM>(gi) divides a. Then the

syzygy module of all leading coefficients of gi with i ∈ Jl,a is generated by syzygies

of the form (see Proposition 2.12)

lcm(LC>(gi),LC>(gj))

LC>(gi)
· εi −

lcm(LC>(gi),LC>(gj))

LC>(gj)
· εj, with i, j ∈ Jl,a, i > j.

Abbreviating λi := LC>(gi), we consequently get

syzR,l,a =

{
lcm(λl, λi)

λl

· εl −
lcm(λl, λi)

λi

· εi

∣
∣
∣
∣
i ∈ Jl,a

}

.

Hence,

syzl =
⋃

a∈Cl

{
lcm(λl, λi) · a

LT>(gl)
· εl −

lcm(λl, λi) · a

LT>(gi)
· εi

∣
∣
∣
∣
i ∈ Jl,a

}

.

The definition of the Schreyer ordering >S now states

LT>S

(
lcm(λl, λi) · a

LT>(gl)
· εl −

lcm(λl, λi) · a

LT>(gi)
· εi

)

=
lcm(λl, λi) · a

LT>(gl)
· εl.

Therefore, the module generated by the leading terms of syzl is generated by the

leading terms of its elements of the form

lcm(LT>(gl),LT>(gi))

LT>(gl)
· εl −

lcm(LT>(gl),LT>(gi))

LT>(gi)
· εi with l > i ∈ Jl,a,

which we obtain by setting a = lcm(LM>(gl),LM>(gi)). Note that for i /∈ Jl,a the

expression would just be zero.

The images of these generators under ϕ are, in the classical case of polynomial rings,

commonly known as s-polynomials, and the fixed divisions with remainder, which

we considered for the definition of Sl, represent the normal form computations of

these s-polynomials that are commonly done in the standard basis algorithm (and

also Buchberger’s Algorithm). We continue this train of thought in Remark 2.15.

Proposition 2.12

Let R be a factorial ring, and let c1, . . . , ck ∈ R. Then

syz(c1, . . . , ck) =

〈
lcm(ci, cj)

ci
· εi −

lcm(ci, cj)

cj
· εj

∣
∣
∣
∣
k ≥ i > j ≥ 1

〉

.

Proof. We make an induction on k with k = 1, 2 being clear. Now let k > 2 and

consider a syzygy a := a1 · ε1 + . . .+ ak · εk. Then

ak · ck ∈ 〈c1, . . . , ck−1〉,
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from which we can infer

ak ∈ 〈c1, . . . , ck−1〉 : 〈ck〉 = 〈c1〉 : 〈ck〉+ . . .+ 〈ck−1〉 : 〈ck〉

=

〈
lcm(c1, ck)

ck

〉

+ . . .+

〈
lcm(ck−1, ck)

ck

〉

Setting

sij :=
lcm(ci, cj)

ci
· εi −

lcm(ci, cj)

cj
· εj and µij :=

lcm(ci, cj)

cj
,

we have shown that there are b1, . . . , bk−1 ∈ R such that

ak = b1 · µk1 + . . .+ bk−1 · µkk−1,

so that, by induction,

a− b1 · sk1 + . . .+ bk−1 · skk−1 ∈ syz(c1, . . . , ck−1)

= 〈sij | k − 1 ≥ i > j ≥ 1〉.

Hence,

a ∈ 〈sij | k − 1 ≥ i > j ≥ 1〉+ 〈sk1, . . . , skk−1〉. �

We now come back to the general case that R is a noetherian ring in which linear

equations are solvable. For the objects in Definition 2.10 the following holds:

Lemma 2.13

For any a ∈ Cl and any (ci)i∈Jl,a ∈ syzR,l,a there exists a ξ ∈ Sl such that

LT>S
(ξ) =

cl · a

LM>(gl)
· εl.

Proof. By construction in Definition 2.10, for any a ∈ Cl and any (ci)i∈Jl,a ∈ syzR,l,a,

there exists a ξ ∈ Sl of the form

ξ = u · ξ′ −
k∑

i=1

qi · εi =
∑

i∈Jl,a

ci · a

LM>(gi)
· εi −

l∑

i=1

qi · εi.

First, recall that Jl,a is the set of indices i up to l for which LM>(gi) divides a.

Hence for all i, j ∈ Jl,a we have

LM>

( ci · a

LM>(gi)
︸ ︷︷ ︸

6=0

·gi
)

= a = LM>

( cj · a

LM>(gj)
︸ ︷︷ ︸

6=0

·gj
)

.

As an immediate consequence, we get

LT>S

(∑

i∈Jl,a

ci · a

LM>(gi)
· εi
)

=
cl · a

LM>(gl)
· εl, (8)

because the Schreyer ordering prefers the highest component in case of a tie, and

l = max Jl,a, cl 6= 0 by definition.
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Next, recall that (ci)i∈Jl,a ∈ syzR(LC>(gi) | i ∈ Jl,a), which means that

∑

i∈Jl,a

ci · a

LM>(gi)
· LT>(gi) =

∑

i∈Jl,a

ci LC>(gi) · a
!
= 0.

Therefore, for all j ∈ Jl,a,

LM>

( cj · a

LM>(gj)
· gj
)

> LM>

( ∑

i∈Jl,a

ci · a

LM>(gi)
· gi
)

= LM>(ϕ(ξ))

as all summands have the same leading monomial a and the leading terms in the

sum cancel each other out.

Finally, recall that ϕ(ξ) = q1 · g1 + . . . + ql · gl + r was a division with remainder,

whose (ID1) property implies for all j ∈ Jl,a and i = 1, . . . , l

LM>

( cj · a

LM>(gj)
· gj
)

> LM>(ϕ(ξ))
(ID1)

≥ LM>(qi · gi).

Thus we have for all j ∈ Jl,a and i = 1, . . . , l

LM>S

( cj · a

LM>(gj)
· εj
)

>S LM>S
(qi · εi). (9)

Together, we obtain

LT>S
(ξ) = LT>S

(

u ·
∑

j∈Jl,a

cj · a

LM>(gj)
· εj −

l∑

i=1

qi · εi
)

(9)
= LT>S

(

u ·
∑

j∈Jl,a

cj · a

LM>(gj)
· εj
)

(8)
=

cl · a

LM>(gl)
· εl. �

Theorem 2.14

Let G = (g1, . . . , gk) be a k-tuple of elements in RJtK[x]s and let S1, . . . ,Sk be

constructed as in Definition 2.10. Suppose there exists an S ⊆
⋃k

l=1Sl such that

LT>S
(S) = LT>S

(
⋃k

l=1 Sl) and ϕ(ξ) = 0 for all ξ ∈ S. Then G is a standard basis

with respect to > and S is a standard basis of syz(G) with respect to >S.

Proof. Let q1, . . . , qk ∈ RJtK[x]> = RJtK[x]>S
be chosen arbitrarily. We will proof

both statements simultaneously via the standard representation criteria in Proposi-

tion 2.7 (c), by considering

χ :=
k∑

i=1

qi · εi and g := ϕ(χ) =
k∑

i=1

qi · gi.

Here g represents an arbitrary element of M , and, in case g = 0, χ represents an

arbitrary element of syz(G).
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First compute a division with remainder of χ with respect to S and the Schreyer

ordering,

χ =
∑

ξ∈S

aξ · ξ + r.

Should r be zero, then the expression above is a standard representation of χ with

respect to >S. Moreover, as ϕ(ξ) = 0 for all ξ ∈ S by assumption, g = ϕ(χ) = 0

trivially possesses a standard representation. Hence, in case r = 0, both g and χ

satisfy the standard representation criteria. So suppose r 6= 0 for the remainder of

the proof.

By Corollary 1.26, we may assume that our division with remainder satisfies (SID2),

i.e. say

r = r1 · ε1 + . . .+ rk · εk with LT>(ri · εi) /∈ LT>S
(S) for all i = 1, . . . , k. (10)

Since by assumption ϕ(ξ) = 0 for all ξ ∈ S, we have

g = ϕ(χ) = ϕ(r) = r1 · g1 + . . .+ rk · gk. (11)

To proof the statement for G ⊆ M , it suffices to show that the expression above

is a standard representation of g. To proof the statement for S ⊆ syz(G), we will

show that r 6= 0 contradicts g = 0. This leaves r = 0 as the only viable case,

assuming g = 0, for which we have already established that χ satisfies the standard

representation criteria.

Now assume that LM>(g) < LM>(ri · gi) for some i = 1, . . . , k, and hence for

J := {i ∈ {1, . . . , k} | LM>(ri · gi) maximal}
∑

i∈J

LT>(ri · gi) = 0.

Set l := max(J) and a := lcm(LM>(gi) | i ∈ J), so that obviously J ⊆ Jl,a. We will

now concentrate on rl · εl.

For the leading coefficient of rl · εl, note that the leading coefficients sum up to zero,

i.e.
∑

i∈J LC>(ri) · εi ∈ syz(LC>(gi) | i ∈ Jl,a). Recall that syzR,l,a are the elements

of a generating system of syz(LC>(gi) | i ∈ Jl,a) with non-trivial entry in l. Hence

there are suitable d(ci) ∈ R such that

LC>(rl) · εl =
∑

(ci)∈syzl,a

d(ci) · cl · εl. (12)

For the leading monomial of rl · εl, note that LM>(rl · gl) is divisible by LM>(gi) for

all i ∈ J . Hence it is divisible by a = lcm(LM>(gi) | i ∈ J), i.e. there exists a tδxγ

such that LM>(rl · gl) = tδxγ · a, or equivalently

LM>(rl) = tδxγ ·
a

LM>(gl)
. (13)



STANDARD BASES 27

Now, by the previous Lemma 2.13 there exists a ξ(ci) ∈ Sl for any (ci) ∈ syzR,l,a

such that

LT>S
(ξ(ci)) =

cl · a

LM>(gl)
· εl. (14)

Piecing everything together, we thus get

LT>(rl) · εl
(12)+(13)

= tδxγ
∑

(ci)∈syzl,a

d(ci) ·
cl · a

LM>(gl)
· εl

(14)
= tδxγ

∑

(ci)∈syzl,a

d(ci) · LT>S
(ξ(ci)) ∈ LT>S

(Sl).

And since LT>S
(Sl) ⊆ LT>S

(S) by our first assumption, this contradicts the (SID2)

condition in Equation (10). Therefore, Equation (11) has to be a standard repre-

sentation, implying that G is a standard basis of M with respect to >.

Moreover, since r 6= 0, Equation (11) being standard representation yields an obvious

contradiction if g = 0. Hence in the case g = 0, we have r = 0 and we have already

seen how this implies that S is a standard basis of syz(G) with respect to >S. �

Remark 2.15 (factorial rings continued)

Suppose again that R is a factorial ring. We have seen in Remark 2.11, that the

leading module of
⋃k

l=1SG,l is generated by the leading terms of elements of the

form
lcm(LT>(gi),LT>(gj))

LT>(gi)
· εi −

lcm(LT>(gi),LT>(gj))

LT>(gj)
· εj, i > j.

They are, thus, the only elements we need to keep track of for Theorem 2.14. These

elements are obviously characterized by pairs of distinct elements (gi, gj) that is, by

elements in a so-called pair-set, which commonly appear in the classical standard

basis algorithm and in Buchberger’s Algorithm.

Algorithm 2.16 (standard basis algorithm)

Input: (G,>), where G = (g1, . . . , gk) be a k-tuple of elements in RJtK[x]s generat-

ing M ≤ RJtK[x]s and > a t-local monomial ordering on Mons(t, x).

Output: G′ ⊆ M a standard basis of M with respect to >.

1: Pick S ⊆
⋃k

l=1SG,l ⊆ RJtK[x]k such that

LT>S
(S) = LT>S

( k⋃

l=1

SG,l

)

,

where >S is the Schreyer ordering on Monk(t, x) associated to G and >.

2: while S 6= ∅ do

3: Set k := |G|, so that G := {g1, . . . , gk} and S ⊆ RJtK[x]k>.

4: Choose q =
∑k

i=1 qi · εi ∈ S.

5: Set S := S \ {q}.
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6: Compute a weak normal form r of q1 · g1 + . . .+ qk · gk with respect to G

r := NF>(q1 · g1 + . . .+ qk · gk, G,>).

7: if r 6= 0 then

8: Set gk+1 := r.

9: Set G := G ∪ {gk+1}.

10: Pick S
′ ⊆ S

(G) ⊆ RJtK[x]k+1 such that

LT>S
(S′) = LT>S

(

S
(G)
)

,

where >S is the Schreyer ordering on Monk+1(t, x) induced by the newly

extended G and >.

11: Set S := (S×{0}) ∪S
′.

12: return G.

Proof. Label all objects in the ν-th iteration of the while loop with a subscript ν.

That is, to be more precise,

• Gν as it exists in Step 4,

• kν as it exists in Step 4,

• qν as chosen in Step 5

• rν as computed in Step 7,

• Sν as S exists in Step 4,

• S
′
ν+1 as S′ exists in Step 9 if rν−1 6= 0, S′

ν+1 = ∅ otherwise, S′
1 := S1,

so that

Gν+1 = Gν ∪ {rν} and Sν+1 = (Sν×{0}) ∪S
′
ν+1.

Termination. Note that we have a nested sequence of modules

LT>(G1) ⊆ LT>(G2) ⊆ LT>(G3) ⊆ . . . ⊆ LT>(Gν) ⊆ LT>(Gν+1) ⊆ . . . ,

which has to stabilize at some point. Because rν 6= 0 implies LT>(Gν) ( LT>(Gν+1),

it means that our sets Sν have to be strictly decreasing in every step beyond the

point of stabilization. And since all Sν are finite, our algorithm terminates eventu-

ally.

Correctness. Let N be the total number of iterations, and let G be the return

value, k := |G|. We will prove that G is a standard basis by constructing a set

S ⊆ RJtK[x]k that satisfies the two conditions in Theorem 2.14. For that, consider

all Sν ⊆ RJtK[x]kν> canonically embedded in RJtK[x]k> due to Gν ⊆ G and kν ≤ k.

Let S be the union of all S′
ν ,

S :=
N+1⋃

ν=1

S
′
ν ⊆ RJtK[x]k.

Note that S′
ν ⊆ SG,kν , because the construction of SG,kν only depends on the first

kν elements of G, which are exactly the elements of Gν . Moreover, Step 9 implies
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that LT>S
(Sν) = LT>S

(SG,kν ), which shows that S satisfies the first condition of

our theorem,

LT>S
(S) = LT>S

(
k⋃

l=1

SG,l

)

.

Now for each ξ ∈ S there exists an iteration 1 ≤ ν ≤ N in which it is chosen in

Step 5, ξ =
∑kν

i=1 qi,ν · εi.

If ϕ(ξ) = rν = 0, then ξ satisfies the second condition of our theorem. However if

ϕ(ξ) = rν 6= 0, then gν+1 = rν and ξ can be replaced with ξ − εν+1 so that ϕ(ξ −

εν+1) = 0. Note that this does not change the leading term, since by construction

the maximal leading terms of q1 · g1, . . . , qlν · glν cancel each other out, which implies

that qi,ν · εi >S εν+1 for any 1 ≤ i ≤ ν with qi,ν 6= 0. Hence we obtain a set S

completely satisfying the second condition of our theorem. �

Remark 2.17 (polynomial input)

Should our input be polynomial, g1, . . . , gk ∈ R[t, x]s, then all normal form compu-

tations terminate and yield polynomial outputs as noted in 2.4. In particular, our

standard basis algorithm will terminate and the output will be polynomial as well.

Moreover, if our input is x-homogeneous, then so is the resulting standard basis.

Should R be a factorial ring, Algorithm 2.16 can be simplified to:

Algorithm 2.18 (standard basis algorithm for factorial rings)

Input: (G,>), where G = (g1, . . . , gk) be a k-tuple of elements in RJtK[x]s gen-

erating M ≤ RJtK[x]s with R factorial and > a t-local monomial ordering on

Mons(t, x).

Output: G′ ⊆ M a standard basis of M with respect to >.

1: Suppose G := {g1, . . . , gk}.

2: Initialize a pair-set, P := {(gi, gj) | i < j}.

3: while P 6= ∅ do

4: Pick (gi, gj) ∈ P .

5: Set P := P \ {(gi, gj)}.

6: Compute a weak normal form

r := NF>(spoly(gi, gj), G,>),

where

spoly(gi, gj)

=
lcm(LT>(gi),LT>(gj))

LT>(gi)
· gi −

lcm(LT>(gi),LT>(gj))

LT>(gj)
· gj
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and

lcm(LT>(gi),LT>(gj))

= lcm(LC>(gi),LC>(gj)) · lcm(LM>(gi),LM>(gj)).

7: if r 6= 0 then

8: Extend the pair-set, P := P ∪ {(g, r) | g ∈ G}.

9: Set G := G ∪ {r}.

10: return G′ := G.

3. Standard basis algorithm for an application in tropical geometry

Remark 3.1 (simplification for ideals in tropical geometry)

The most important application of standard bases over rings that we have in mind

is motivated by tropical geometry over the field of p-adic numbers Qp. Given a

homogeneous ideal in Qp[x] we have to decide if the initial ideal with respect to

some weight vector w ∈ Rn is monomial free or not, where for the initial forms the

valuation of the coefficients is taken into account. For this the ideal can be restricted

to Zp[x] and via the surjection

π : ZJtK[x] −→ Zp[x] : t 7→ p

we may pull the ideal back to the mixed power series ring ZJtK[x]. It is not hard to

see ([MaR15b]) that the initial ideal of I = 〈f1, . . . , fk〉 E Qp[x] with respect to w

with fi ∈ Z[x] is monomial free if and only if the initial ideal with respect to (−1, w)

of

J = 〈p− t, f1, . . . , fk〉E ZJtK[x]

is monomial free. But this can be read of a certain standard basis of J . We are,

thus, particularly interested in computing standard bases of x-homogeneous ideals

in ZJtK[x] generated by polynomials and containing p− t for some prime number p.

In that situation our reduction algorithm can be simplified a lot. For any polynomial

f occuring in the reduction process either the leading coefficient c is divisible by p

and can thus be reduced by p, or it is coprime to p, in which case the Euclidean

Algorithm provides integers a, b ∈ Z such that

1 = a · c+ b · p,

and hence replacing f by a · f + b · (p− t) we can pass to a polynomial with leading

coefficient 1. If we preprocess all polynomials, except p− t, added to our standard

basis in the standard basis algorithm that way, checking if a leading term can be

reduced burns down to a simple divisibility check as in the case of standard bases

over fields.

We will now describe the algorithms for the special case described in Remark 3.1 in

detail, starting with the algorithm reducing a polynomial with respect to p− t.
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Algorithm 3.2 (pRed — (p− t)-reduce)

Input: (g,>), where > a t-local monomial ordering and g ∈ Z[t, x].

Output: (a, q, r) with a ∈ {1, . . . , p − 1} and q, r ∈ Z[t, x], such that a · g =

q · (p− t) + r, LM>(g) ≥ LM>(q) and either r = 0 or LC>(r) = 1.

1: Set q := 0

2: Set r := g.

3: while p | LC>(r) do

4: Let l := max{m ∈ N | pm divides LC>(r)} > 0.

5: Set r := r − LT>(r)
pl

· (pl − tl).

6: Set q := q + LT>(r)
pl

· (pl−tl)
p−t

.

7: if r 6= 0 then

8: Compute with the Euclidean Algorithm a ∈ {1, . . . , p − 1} and b ∈ Z such

that 1 = a · LC>(r) + b · p.

9: Set r := a · r + b · (p− t) · LM>(r).

10: Set q := a · q − b · LM>(r).

11: return (a, q, r)

Proof. Termination: We need to show that eventually p does not divide the leading

coefficient of r anymore. Let us for a moment consider the polynomial

r =
k∑

i=1

ri · x
αi

as a polynomial in x with coefficients ri in Z[t]. Then the set of monomials in x

occuring in r does not increase throughout the algorithm. Moreover, if the leading

monomial of r is contained in ri · x
αi with

ri = ci1 · t
i1 + . . .+ cij · t

ij , i1 < . . . < ij,

then in Step 5 we substitute the term ci1 ·t
i1xαi by the term ci1/p

l ·ti1+lxαi , increasing

the minimal t-degree in ri strictly.

Let νp(c) := max{m ∈ N | pm divides c} denote the p-adic valuation on Z, so that

l = νp(ci1), and consider the valued degree of ri defined by

mi := max{νp(ci1) + deg(ti1), . . . , νp(cij) + deg(tij)}.

This is a natural upper bound on the t-degree of our substituted ri, and hence

max{m1, . . . ,mk}

is an upper bound for the t-degree of all terms in our new r.

If the monomial of the substitute, ti1+lxαi , does not occur in the original r, then

this upper bound remains the same for out new r. If it does occur in the original

r, then this valued degree might increase depending on the sum of the coefficients,

however the number of terms in r strictly decreases.
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Because r has only finitely many terms to begin with, this upper bound may there-

fore only increase a finite number of times. And since the minimal t-degree is strictly

increasing, if p divides the leading coefficient of r, our algorithm terminates eventu-

ally.

Correctness: Once the while loop is done, we have found polynomials q and r such

that g = q ·(p−t)+r and LM>(g) ≥ LM>(q). Moreover, we may assume that r 6= 0.

Since p does not divide the leading coefficient of r, these numbers are coprime and

the Euclidean Algorithm computes integers a, b ∈ Z such that

1 = a · LC>(r) + b · p,

and we may assume a ∈ {1, . . . , p− 1}. This leads to the equation

a · g = (a · q − b · LM>(r)) · (p− t) + (a · r + b · (p− t) · LM>(r)),

and we are done by replacing q with a·q−b·LM>(r) and r with a·r+b·(p−t)·LM>(r).

It is clear by construction that then LM>(g) ≥ LM>(q) and LC>(r) = 1. �

Remark 3.3

Given p − t and a polynomial g as in Algorithm 3.2, we are interested in the ideal

generated by these in the ring ZJtK[x]. If r is the output of Algorithm 3.2, then we

have indeed

〈p− t, g〉 = 〈p− t, r〉E ZJtK[x].

To see this consider the equation

a · g = s · (p− t) + r

which implies the inclusion ⊇. For the other inclusion it suffices to note that the

integer a ∈ {1, . . . , p− 1} is a unit in the ring of p-adic numbers ZJtK/〈p− t〉 ∼= Zp.

Moreover, note that the polynomials q and r will be x-homogeneous, if the input g

was x-homogeneous.

Next we adjust the homogeneous determinate division with remainder to the situ-

ation that all but the first element in G have leading coefficient one. This will be

formulated for any base ring as in Convention 1.1.

Algorithm 3.4 (SHDDwR — special version)

Input: (f,G,>), where f ∈ RJtK[x]s x-homogeneous, G = (g1, . . . , gk) a k-tuple of

x-homogeneous elements in RJtK[x]s with with LC>(gi) = 1 for i = 2, . . . , k and

> a t-local monomial ordering on Mons(t, x).

Output: (Q, r), where Q = (q1, . . . , qk) ∈ RJtK[x]k and r ∈ RJtK[x]s such that

f = q1 · g1 + . . .+ qk · gk + r

satisfies

(DD1): no term of qi · LT>(gi) lies in 〈LT>(gj) | j < i〉 for all i,

(DD2): no term of r lies in 〈LT>(g1), . . . ,LT>(gk)〉,
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(DDH): the q1, . . . , qk, r are either 0 or x-homogeneous of x-degree

degx(f)− degx(g1), . . . , degx(f)− degx(gk), degx(f) respectively.

1: Set qi := 0 for i = 1, . . . , k, r := 0, ν := 0, fν := f .

2: while fν 6= 0 do

3: if ∃ i : LT>(gi) | LT>(fν) then

4: Choose i ∈ {1, . . . , k} minimal with LT>(gi) | LT>(fν).

5: for j=1,. . . ,k do

6: Set

qj,ν :=

{
LM>(fν)
LM>(gi)

, if j = i,

0 , otherwise,

7: Set rν := 0.

8: else

9: Set qi,ν := 0, for i = 1, . . . , k, and rν := LT>(fν).

10: Set qi := qi + qi,ν for i = 1, . . . , k and r := r + rν .

11: Set fν+1 := fν − (q1,ν · g1 + . . .+ qk,ν · gk + rν) and ν := ν + 1.

12: return ((q1, . . . , qk), r)

Proof. We just have to note that the condition

LT>(fν) ∈ 〈LT>(g1), . . . ,LT>(gk)〉

is equivalent to the condition

∃ i : LT>(gi) | LT>(fν).

For this observe, that as soon as some LT>(gi) for i = 2, . . . , k occurs in a linear

combination representing LT>(fν) then necessarily LT>(gi) divides LT>(fν).

Hence, the algorithm coincides with Algorithm 1.13, only the test in Step 3 has been

simplified. �

In the specialized algorithm for weak division with remainder we restrict to the base

ring Z. Moreover, we assume that the input is polynomial, so that we are able to

homogenize also with respect to the variable t. We, therefore, change our convention

for this one algorithm and set x = (t, x1, . . . , xn).

Algorithm 3.5 (SDwR - special version of DwR)

Input: (f,G,>), where f ∈ Z[x] = Z[t, x1, . . . , xn] and G = (g1, . . . , gk) is a k-tuple

in Z[x] with g1 = p−t and LC>(gi) = 1 for i = 2, . . . , k and > a t-local monomial

ordering on Mon(x) = Mon(t, x1, . . . , xn).

Output: (u,Q, r), where u ∈ Z[x] with p ∤ LC>(u) = LT>(u), Q = (q1, . . . , qk) ⊆

Z[x]k and r ∈ Z[x] such that

u · f = q1 · g1 + . . .+ qk · gk + r

satisfies (ID1) and (ID2):

(ID1): LM>(f) ≥ LM>(qi · gi) for i = 1, . . . , k and
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(ID2): LT>(r) /∈ 〈LT>(g1), . . . ,LT>(gk)〉, unless r = 0.

Moreover, the algorithm requires only a finite number of recursions.

1: Compute

(a, q, f) := pRed(f,>).

2: if f 6= 0 and ∃ i : LT>(gi) | LT>(f) then

3: Set D := {gi ∈ G | LT>(gi) divides LT>(f)}.

4: Pick gj ∈ D with minimal ecart.

5: if e := ecart>(gj)− ecart>(f) > 0 then

6: Compute

((Q′
1, . . . , Q

′
k), R

′) := SHDDwR(xe
0 · f

h, (LT>(g
h
1 ), . . . ,LT>(g

h
k )), >h).

7: Set f ′ := (xe
0 · f

h −
∑k

i=1 Q
′
i · g

h
i )

d.

8: Compute

(u′′, (q′′1 , . . . , q
′′
k+1), r) := SDwR(f ′, (g1, . . . , gk, f), >).

9: Set qi := q′′i + u′′ ·Q′d
i , i = 1, . . . , k.

10: Set u := u′′ − q′′k+1.

11: else

12: Compute

((Q′
1, . . . , Q

′
k), R

′) := SHDDwR(fh, (gh1 , . . . , g
h
k ), >h).

13: Compute

(u, (q′′1 , . . . , q
′′
k), r) := SDwR((R′)d, (g1, . . . , gk), >).

14: Set qi := q′′i + u ·Q′d
i , i = 1, . . . , k.

15: else

16: Set (u, (q1, . . . , qk), r) := (1, (0, . . . , 0), f).

17: return (a · u, (q1 + q, q2, . . . , qk), r).

Proof. Note first, that after Step 1 the new polynomial f has leading coefficient 1,

its leading monomial is less than or equal to that of the original f and the same

holds for the leading monomial LM>(q) = LM>(q · g1).

We then should keep in mind that, as in Algorithm 3.4, the condition

LT>(f) ∈ 〈LT>(g1), . . . ,LT>(gk)〉

is equivalent to

∃ i : LT>(gi) | LT>(f).

Finiteness of recursions: For sake of clarity, label all the objects appearing in the

ν-th recursion step by a subscript ν. For example the ecart eν ∈ N, the element

fν ∈ Z[x] and the subset Gν ⊆ Z[x].
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Since Gh
1 ⊆ Gh

2 ⊆ Gh
3 ⊆ . . ., we have an ascending chain of leading ideals in Z[xh],

which eventually stabilizes unless the algorithm terminates beforehand

LT>h
(Gh

1) ⊆ LT>h
(Gh

2) ⊆ . . . ⊆ LT>h
(Gh

N) = LT>h
(Gh

N+1) = . . . .

Assume eN > 0. Then we’d have fN ∈ GN+1, and thus

LM>h
(fh

N) = LT>h
(fh

N) ∈ LT>h
(Gh

N+1) = LT>h
(Gh

N).

To put it differently, we’d have a gh ∈ Gh
N such that

LT>h
(gh) | LT>h

(fh
N),

which by Remark 1.21 (5) would imply that

LT>(g) | LT>(fN) and ecart>(g) ≤ ecart>(fN).

This contradicts our assumption

eN = min{ecart>(g) | g ∈ DN} − ecart>(fN)
!
> 0.  

Therefore we have eN ≤ 0. By induction we conclude that eν ≤ 0 for all ν ≥ N , i.e.

that we will exclusively run through steps 13-15 of the “else” case from the N -th

recursion step onwards.

By the properties of HDDwR we know that in particular

LT>h
(R′

N) /∈ LT>(G
h
N). (15)

Now assume that the recursions would not stop with the next recursion. That means

there exists a g ∈ DN+1 ⊆ GN = GN+1 such that

LT>(g) | LT>(fN+1) = LT>((R
′
N)

d),

and because of eN+1 ≤ 0 also

ecart(g) ≤ ecart(fN+1) = ecart((R′
N)

d).

It then follows from Remark 1.21 (6) that

LT>h
(gh) | LT>h

(R′
N),

in contradiction to (15). Hence the algorithm terminates after the N+1-th recursion

step.

Correctness: In what follows we will denote by f the original polynomial and by f̃

the polynomial f after Step 1. Moreover, we recall that

a · f = q · g1 + f̃ (16)

with LM>(f) ≥ LM>(q) = LM>(q · g1).

We make an induction on the number of recursions, say N ∈ N. If N = 1 then

either f̃ = 0 or LT>(f̃) is not divisible by any LT>(gi), and in both cases

1 · f̃ = 0 · g1 + . . .+ 0 · gk + f̃
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satisfies (ID1) and (ID2), and thus by (16) so does

a · f = q · g1 + 0 · g2 + . . . 0 · gk + f̃ .

So suppose N > 1 and consider the first recursion step. If e ≤ 0, then by the

properties of HDDwR the representation

f̃h = Q′
1 · g

h
1 + . . .+Q′

k · g
h
k +R′

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1), which means

that for each i = 1, . . . , k we have

x
ecart>(f̃)
0 · LM>(f̃) = LM>h

(f̃h)
(ID1)

≥h LM>h
(Q′

i) · LM>h
(ghi ) = . . .

. . . = x
ai+ecart>(gi)
0 · LM>(Q

′d
i ) · LM>(gi)

for some ai ≥ 0. Since f̃h and Q′
i ·g

h
i are both xh-homogeneous of the same xh-degree

by (DDH), the definition of the homogenized ordering >h implies

LM>(f̃) ≥ LM>(Q
′d
i ) · LM>(gi) for all i = 1, . . . , k. (17)

Moreover, by induction the representation u ·R′d = q′′1 · g1 + . . .+ q′′k · gk + r satisfies

(ID1), (ID2) and p ∤ LC>(u) = LT>(u), the first implying that

LM>(f̃)
(17)

≥ LM>

(

f̃ −
k∑

i=1

Q′d
i · gi

)

︸ ︷︷ ︸

=R′d

(ID1)

≥ LM>(q
′′
i · gi). (18)

Therefore, the representation

u · f̃ =
k∑

i=1

(q′′i + u ·Q′d
i ) · gi + r

satisfies (ID1) by (17), (18), p ∤ LC>(u) = LT>(u) and (ID2) by induction, and

hence by (16) so does the representation

a · u · f = (q′′1 + u ·Q′d
i + q) · g1 +

k∑

i=2

(q′′i + u ·Q′d
i ) · gi + r.

Similarly, if e > 0, then by the properties of HDDwR the representation

xe
0 · f̃

h = Q′
1 · LT>h

(gh1 ) + . . .+Q′
k · LT>h

(ghk ) +R′

satisfies (DD1), (DD2) and (DDH). (DD1) and (DD2) imply (ID1), which means

that for each i = 1, . . . , k we have

x
e+ecart>(f̃)
0 · LM>(f̃) = LM>h

(xe
0 · f̃

h) ≥ . . .

. . . ≥ LM>h
(Q′

i) · LM>h
(LT>h

(ghi )) = x
ai+ecart>(gi)
0 · LM>(Q

′d
i ) · LM>(gi),
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for some ai ≥ 0. Since xe
0 · f̃

h and Q′
i · LT>h

(ghi ) are both xh-homogeneous of the

same xh-degree by (DDH), the definition of the homogenized ordering >h implies

LM>(f̃) ≥ LM>(Q
′d
i ) · LM>(gi). (19)

Moreover, by induction the representation u′′ · f̃ ′ =
∑k

i=1 q
′′
i · gi+ q′′k+1 · f̃ + r satisfies

(ID1), (ID2), p ∤ LC>(u
′′) = LT>(u

′′) with the first implying that

LM>(f̃)
(19)

≥ LM>

(

f̃ −
k∑

i=1

Q′d
i · gi

)

︸ ︷︷ ︸

=LM>(R′d)

(ID1)

≥ LM>(q
′′
i · gi). (20)

Therefore, the representation

u · f̃ =
k∑

i=1

(q′′i + u′′ ·Q′d
i ) · gi + r, with u = u′′ − q′′k+1

satisfies (ID1) by (19), (20), LM>(u
′′) = 1 and (ID2) by induction.

To see that LT>(u) = LT>(u
′′) and hence p ∤ LC>(u) = LT>(u), observe that

LT>h
(xe

0 · f̃
h) ∈ 〈LT>(g

h
1 ), . . . ,LT>(g

h
k )〉,

which is why

LM>(f̃) = LM>h
(xe

0 · f̃
h)d > LM>h

(

xe
0 · f̃

h −
k∑

i=1

Q′
i · g

h
i

)d

= LM>(f̃
′).

Thus LM>(f̃) > LM>(f̃
′) ≥ LM>(q

′′
k+1)·LM>(f̃), which necessarily implies LM(q′′k+1) <

1 and thus LT>(u) = LT>(u
′′). �

Remark 3.6

The representation

u · f = q1 · g1 + . . .+ qk · gk + r (21)

that we compute in Algorithm 3.5 is actually not a standard representation in the

sense that we defined, even though it satisfies (ID1) and (ID2). The reason is, that

we replaced the condition

LT>(u) = 1

by the weaker condition

p ∤ LC>(u) and LM>(u) = 1.

However, if p does not divide the integer LC>(u) then this number is invertible in

the ring of p-adic numbers

ZJtK/〈p− t〉 ∼= Zp,

which implies that there are power series g, h ∈ ZJtK such that

g · LC>(u) = 1 + h · (p− t).
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Replacing in the above representation u by g · u, r by g · r, q1 by g · q1 − h and qi by

g · qi for i = 2, . . . , k we get a standard representation with coefficients in ZJtK[x].

The representation is thus good enough for our purposes.

We, actually, could even easily turn (21) into a polynomial standard representation

as follows. If a, b ∈ Z with

a · LC>(u) + b · p = 1

and if

b =
l∑

j=0

cj · p
j

is the p-adic expansion of b, then

a · LC>(u) = 1−
l+1∑

j=1

cj−1 · p
j = 1−

l+1∑

j=1

cj−1 · t
j + h · (p− t)

for some polynomial h ∈ Z[t]. With

v = 1−
l+1∑

j=1

cj−1 · t
j + tail(u)

and multiplying (21) by a we thus get

(v + h · (p− t)) · f =
k∑

i=1

a · qi + a · r

or equivalently

v · f = (a · q1 − h · f) · g1 +
k∑

i=2

a · qi · gi + a · r,

which is a standard representation with LC>(v) = 1 and v, q1, . . . , qk, r ∈ Z[t, x].

If needed, one can actually turn (21) into a standard representation

It remains to formulate the standard basis algorithm in this special case.

Algorithm 3.7 (standard basis algorithm — special case)

Input: (G,>), where G = (g1, . . . , gk) be a k-tuple of elements in ZJtK[x] with

g1 = p− t and > a t-local monomial ordering on Mon(t, x).

Output: G′ = (g′1, . . . , g
′
l) a standard basis of 〈G〉EZJtK[x] with respect to > such

that g′1 = p− t and LC>(g
′
i) = 1 for i = 2, . . . , l.

1: for i = 2, . . . , k do

2: Compute (a, q, r) := pRed(gi, >).

3: Set gi := r.

4: Initialize a pair-set, P := {(gi, gj) | i < j}.

5: while P 6= ∅ do

6: Pick (gi, gj) ∈ P .
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7: Set P := P \ {(gi, gj)}.

8: Compute

(u, (q1, . . . , qk), r) := SDwR>(spoly(gi, gj), G,>),

where

spoly(gi, gj)

=
lcm(LT>(gi),LT>(gj))

LT>(gi)
· gi −

lcm(LT>(gi),LT>(gj))

LT>(gj)
· gj

and

lcm(LT>(gi),LT>(gj))

= lcm(LC>(gi),LC>(gj)) · lcm(LM>(gi),LM>(gj)).

9: if r 6= 0 then

10: Compute (a, q, r) := pRed(r,>).

11: Extend the pair-set, P := P ∪ {(g, r) | g ∈ G}.

12: Set G := G ∪ {r}.

13: return G′ := G.

Remark 3.8

We should like to remark that the standard basis elements g′2, . . . , g
′
l will be x-

homogeneous if the input g2, . . . , gk was so.

4. Reduced standard bases

In this rather short section we recall the notion of a reduced standard basis and show

what problems we run into when allowing base rings that are not fields and local

orderings. Reduced standard bases play a very important role in the computation

of Gröbner fans and tropical varieties. Since they turn not to be computationally

feasible in our setting, we will replace them by a weaker notion that is good enough

for the computation of Gröbner fans and tropical varieties.

Definition 4.1

Let G,H ⊆ RJtK[x]s be two finite subsets. Given a t-local monomial ordering > on

Mons(t, x), we call G reduced with respect to H, if, for all g ∈ G, no term of tail>(g)

lies in LT>(H).

And we simply call G reduced, if it is reduced with respect to itself and minimal in

the sense that no proper subset G′ ( G is sufficient to generate its leading module,

i.e. LT>(G
′) ( LT>(G).

Observe that we forego any kind of normalization of the leading coefficients that is

normally done in polynomial rings over ground fields.

If our module is generated by x-homogeneous elements, it is not hard to show that

reduced standard bases exist. Given an x-homogeneous standard basis, one can
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pursue a strategy similar to the classical reduction algorithm based on repeated tail

reduction. Lemma 1.16 guarantees its convergence in the 〈t〉-adic topology.

Algorithm 4.2 (reduction algorithm)

Input: (G,>), where G = {g1, . . . , gk} is a minimal x-homogeneous standard basis

of M ≤ RJtK[x]s with respect to the weighted ordering >=>w with w ∈ Rm
<0 ×

Rn+s.

Output: G′ = {g′1, . . . , g
′
k} an x-homogeneous reduced standard basis of M with

respect to > such that LM>(g
′
i) = LM>(gi).

1: for i = 1, . . . , k do

2: Set g′i := gi.

3: Create a working list

L := {p ∈ RJtK[x]s | p term of g′i, LM>(g
′
i) > p},

4: while L 6= ∅ do

5: Pick p ∈ L with LM>(p) maximal.

6: Set L := L \ {p}.

7: if p ∈ LT>(M) then

8: Compute homogeneous division with remainder

((q1, . . . , qk), r) = HDDwR(p, (g1, . . . , gk), >).

9: Set g′i := g′i − (q1 · g1 + . . .+ qk · gk).

10: Update the working list

L := {p′ ∈ RJtK[x]s | p′ term of gi, LM>(p) > LM>(p
′)}.

11: return {g′1, . . . , g
′
k}

Proof. Pick an i = 1, . . . , k. Labelling all objects occurring in the ν-the recurring

step by a subscript ν, we have a strictly decreasing sequence

LM>(p1) > LM>(p2) > LM>(p3) > . . . .

And since LM>(pν) ≥ LM>(qj,ν · gj) for all j = 1, . . . , k, the sequence (qj,ν · gj)ν∈N
must also converge in the 〈t〉-adic topology together with (pν)ν∈N. In particular, the

element g′i = gi −
∑∞

ν=0

∑k
j=1 qj,ν · gj in our output exists.

Also, while setting g′i,ν+1 = g′i,ν − (q1,ν · g1 + . . . + qk,ν · gk) apart from the term pν
cancelling, the terms changed are all strictly smaller than p. Hence for any term p

of g′i, p 6= LT>(gi), there is a recursion step in which it is picked. Because p is not

cancelled during the step, we have p /∈ LT>(M). Therefore no term of g′i apart from

its leading term lies in LT>(M). �

One nice property of reduced standard bases, that is repeatedly used in the es-

tablished theory of Gröbner fans of polynomial ideals over a ground field, is their

uniqueness up to multiplication by units. In fact, this property does not change

even if we add power series into the mix.
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Lemma 4.3

Let R be a field and let M ≤ RJtK[x]s or M ≤ RJtK[x]s> be a module generated by

x-homogeneous elements. Then M has a unique monic, reduced standard basis.

Proof. Because R is a field, we have LT>(M) = LM>(M) and since LM>(M) has a

unique minimal generating system consisting of monomials, let’s call it A, so does

LT>(M).

Let G = {g1, . . . , gk} be a monic, reduced standard bases of M . Observe that the

leading terms of G form a standard basis of the leading module of M . That means

each a ∈ A ⊆ LT>(M) can be expressed with a standard representation of the

leading terms of G,

a = q1 · LT>(g1) + . . .+ qk · LT>(gk).

Since there is no cancellation of higher terms in the standard representation, there

must exist an i = 1 . . . , k with a = LM>(qi · gi). This implies LM>(gi) = a because

a wouldn’t be a minimal generator of LM>(M) otherwise. And because G is monic,

LT>(gi) = a.

Therefore, given a reduced standard basis G, we see that for any minimal generator

a ∈ A there exists an element g ∈ G with LM>(g) = a. And since reduced standard

bases are minimal themselves, it means that there is exactly one element g ∈ G per

minimal generator a ∈ A.

Now let G and H be two different reduced standard basis of M . Let a ∈ A and let

g ∈ G, h ∈ H be the basis element with leading monomial a. If g − h 6= 0, then

g−h ∈ M must have a non-zero leading monomial which lies in LM>(M). However,

that monomial also has to occur in either g and h, and since R is a field the term

with that monomial has to lie in LT>(M) = LM>(M), contradicting that G and H

were reduced. �

However, it can easily be seen that this does not hold over rings.

Example 4.4

Consider the ring Z[x, y] and the degree lexicographical ordering >, i.e.

xa1ya2 > xb1yb2 :⇐⇒

a1 + a2 > b1 + b2 or

a1 + a2 = b1 + b2 and (a1, a2) > (b1, b2) lexicographically in R2.

Consider the following ideal and its leading ideal:

I := 〈2x2y + 1, 3xy2 + 1〉 and LT>(I) = 〈2x, 9y3, xy2〉.

Two possible standard bases, both reduced, are
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G1 = { 2x− 3y, 9y3 + 2, xy2 + 3y3 + 1 },

G2 = { 2x− 3y, 9y3 + 2, xy2 − 6y3 − 1 }.

= = 6=

Hence, unlike their classical counterparts over ground fields, reduced standard bases

over ground rings are not unique up to multiplication with units. The key problem is

that leading modules are not necessarily saturated with respect to the ground ring.

This allowed the third basis element to have terms with monomials in LM>(M),

to which we could add a constant multiple of the second basis element without

changing it being reduced.

Note also, that even if the base ring is a field and the ideal is generated by a

polynomial, the reduced standard basis might contain power series. This is a well

known fact when dealing with local orderings.

Example 4.5

Consider the principal ideal generated by the element g = x + y + tx ∈ QJtK[x, y]

and the monomial ordering >w with weight vector w = (−1, 1, 1) and > the lex-

icographical ordering with x > y > 1 > t as tiebreaker. Then {g} is a standard

basis and one can show that it converges to g′ = x+
∑∞

i=0(−1)i · tiy in its reduction

process.

x+ y + tx

x+ y − ty− t2x

x+ y − ty + t2y+ t3x

...

−t · g

+t2 · g

Figure 3. reduction of tx+ t2x+ y

Since the reduced standard basis is unique, this implies that I has no reduced

standard basis consisting of polynomials, even though I is generated by a polynomial

itself. Consequently, this means that the reduced standard bases which play a central

role in the established Gröbner fan theory are useless in our case from a practical

perspective.
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In [MaR15a] we will weaken the notion of reducedness, and we will show that this

weakened version can be computed and is strong enough to compute Gröbner fans

(see [MaR15a]) and tropical varieties (see [MaR15b]).
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