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80 Introduction

When T was looking for a subject for my dissertation I was confronted with the question,
whether the rank of the derivative of an injection f from ((CQ, 0) to ((C3, 0) could possibly
be zero. A quite long standing conjecture says "no”. But although the question can
be formulated so easily and does not involve any difficult terms, so far one was neither
able to prove it nor to find a counterexample. I was caught by the fascination of this
question. The main problem in tackeling this conjecture directly is the necessity to find
a sensible definition for the set of double points of f, which should be the preimage
of the points with more than one preimage. A sensible definition has to commute
with the change of the base space, but such a definition will automatically include the
points where f is not an immersion although such a point may be the only point in the
preimage of its image under f. However, Andrds Némethi claimed in [Nem] that an
injection violating the above conjecture would have a very peculiar property, which we
define somewhat later as being ”bad”, and that the "good” injections would not only
satisfy the condition rank(df()) > 1 but, moreover, their images were equisingular
families of plane curves. His proof of this assertion was actually framed in a somewhat
wider context in that he looked at germs f : (C",0) — (C"*',0) and derived interesting
results even in the case when f was only finite and birational. It was my aim to
understand his work and to reduce the proof to the case where f : ((CQ, 0) — ((C3, o)is
injective.

When I had worked out his main arguments, there remained some questions which I tried
to clarify in an example, namely f : ((CQ, 0) — ((C3, 0) given by (z,y) — (z,y?% v° + ).
However, what I found was not the answer I had expected. The example shows in a
quite simple way that there has to be a major mistake in the proof, although it does
not contradict Némethi’s claim itself. To clarify this, let me just summarize the main
idea of the proof. The goodness of f (or more precisely, of its image) allows us to
choose a suitable coordinate system (wq,ws,ws) of ((C3, 0) such that V = (w; o f)7'(0)
and V' = im(f) N {w; = 0} are two isolated plane curve singularities. Moreover,
it shall ensure that either V' is smooth or V' and V' are isomorphic (*) . However,
we will see in section 3 that for the above example the coordinate system (z,z,y) is
suitable, where (z,y, z) denotes the standard coordinate system in ((C3,0). But then
V = {2?+y® = 0} is an Ay—singularity and V' = {z* —¢® = 0} is an Es. Thus, neither
of the situations in Némethi’s conclusion occurs, which changed my aim considerably.
I will now try to show where exactly his argument goes wrong, working along the
example already mentioned. For this it is necessary to reproduce Némethi’s proof in
detail. T will do so in the clarified version (for f: (C?0) — (C?,o)injective) after an
introductory section in which we lay the foundations for the constructions and notions
which we need (versal deformation/unfolding; good representative (of a map germ);
geometric basis and Dynkin diagram).

Before I start, I would like to thank my supervisor David Mond for his kind introduction
in a field, which was completely new to me, and for the patience, which he had during
the many hours in which I besieged him with my questions. I would also like to thank
Jan Stevens with whom I had many fruitful discussions concerning my dissertation
(although he had to do most of the talking and explaining) and to whom a most



valuable construction in 3.2 b. is due. Finally I would like to thank Pia Maas and Jens
Pfeiffer for their corrections and criticisms which eliminated many errors and clarified
several obscurities.



81 Basic definitions and results

To get the conclusion that either V' is smooth or V' and V' are isomorphic, Némethi
chooses a geometric basis in H; (V;, Z) and tries to embed it into a geometric basis of
H, (V],Z), where V; and V/ are Milnor fibers of V" and V' respectively. This embedding
shall be done in a way which leads to a disconnection of a Dynkin diagram of V', unless
V' and V' satisfy one of the conditions in (*) on page 1. A result of Gabrielov and
Lazzeri on the connectedness of Dynkin diagrams of singularities would thus ensure
that the conclusion in (*) holds. This in turn would easily imply that the rank of df (o)
had to be greater than one.

To obtain the embedding of a geometric basis of H; (V;,Z) into one of H, (V},Z)
Némethi considers their construction via a miniversal deformation of (V,0) and an
R-miniversal unfolding of a generator of (V’,0) respectively. He wants to choose the
constructing machinery for the basis in H; (V;,Z) in the base space of the miniversal
deformation of (V,0) in such a way that it can be transported into the base space of
an R-miniversal unfolding of (V’,0) to be part of the constructing machinery there.
However, it will turn out, that it is exactly the transport of this machinery that goes
wrong — namely it comes down in the wrong place.

To make my dissertation consistent, I will now give the definitions of the notions used
above and do the necessary constructions.

1.1 Deformations and unfoldings

In what follows we will only be concerned with deformations and unfoldings of isolated
hypersurface singularities, indeed only with isolated plane curve singularities. We
therefore restrict ourselves in the following definitions and results to the hypersurface
case.

Let ¢ : (C",0) — (C,0) be a hypersurface germ with an isolated singularity of finite

multiplicity p, i.e. its Milnor number is p = dimg¢ O(C“,o/(g_Za ceey %ﬁ) < 00, and let

V' be equal to ¢~ ') . Denote furthermore by T the Tjurina number of (¢~ (0) ,0), i.e.
: 8 )

T = dlm@ O(Cn’o/(gp, 6—;1, cay %) < Q0.

We remark that the finiteness of p and 7 respectively is equivalent to 0 being an
isolated singularity (see e.g. [Lo], prop. 1.2).

Definition 1 .

a. A deformation of (V,0) is a sequence (V,0) < (X,0) 2 (B,0) where i denotes
the identification of (V,0) with the fiber (o' (0) ,0) in (X, 0), such that the map p
is flat, i.e. such that Ox, becomes a flat Og ,~module via p* : O, = Ox: g —
gop.

b. A deformation of ¢ is an analytic function germ ® : (C* x B, 0) — (C,0) such
that <i>(.,0) = .

c. An unfolding of y is an analytic map germ ® : (C" x B, 0) — (C x B, 0) such that
there exists a deformation ® : (C" x B,0) — (C, 0) of ¢ which satisfies ®(z,x) =

(&)(m), A) .



In each of the above cases the space germ (B, o) is called the base space of the
deformation or unfolding respectively.

Remark 1

In the sequel we will not mention the inclusion i in the notion of a deformation of (V, o)
explicitly, assuming i is known or (V,0) is naturally embedded in (X, 0). Furthermore,
we will restrict ourselves to deformations and unfoldings with smooth base spaces, i.e.

(B, 0)=(C",0) for some k € Ny

Definition 2

a.

Two deformations p : (X, 0) — ((Ck, 0) andp': (X' 0) — ((Ck, 0) of (V,0) over the
same base space ((Ck, o) are said to be isomorphic if there exists a biholomorphic
map germ h : (X, 0) — (X', 0) such that p’ o h = p and hyy is the identity.

Given two unfoldings ® and ®' of ¢ over the same base space ((Ck, 0).

(i) ® and " are said to be K—isomorphic if there exists a biholomorphic map
germ h: (C" x C*,0) — (C" x C*,0), which is itself an unfolding of the
identity of (C",0), such that ((®' o h) " o), 0) and (® '(0),0) are isomorphic
as complex spaces, i.e. O(Cnxck’o/(q), oh) = Oun . k’o/((b).

(ii)) ® and @' are said to be R—isomorphic (= right isomorphic) if there ex-
ists a biholomorphic map germ h, : ((C" x CF, 0) — ((Cn x Ck, 0), which is an
unfolding of the identity of (C", o), such that ® oh = ®.

Remark 2

a.

b.

If two unfoldings are R—isomorphic then they are certainly K—isomorphic.

Ifo: ((C" x CF, o) — ((C x CF, o) is an unfolding of ¢, then ® and the restriction
@ : (@' (0x C*),0) — (0 x C,0) are deformations of (Vo). For this note that
¢ is flat since it defines an hypersurface, and the flatness of ¢ implies the flatness
of ® (so in particular ® itself is a deformation of (V,o0)). But hence @ is flat
since flatness is preserved by base change (see e.g. [Mat], page 46).

. If two unfoldings ® and ®' of ¢ are K—isomorphic then they are isomorphic as

!

deformations of (V,0) and so are ¢ and |

Definition 3
a. Given two deformations p: (X,0) — ((Ck,o) and p' : (X',0) — ((Cl, 0) of (Vo).

We say p' is induced by p via some base change b : ((Cl, o) — ((Ck, o) if (X',0) is
the pullback of (X, 0) under b, and p' is the restriction of the canonical projection
onto ((Cl,o), ie. X' = {(:1:,)\) € (X X (Cl,o) | by :p(x)} and p'(z)) = X for
(x, \) € (X')0).

Similarly, given two unfoldings of ¢, say & : ((C" x CF, 0) — ((C X (Ck,o) and
P : (Y,0) — (Cx (Cl,o), we say @' is induced by ® via some base change
b: (CxClo)— (CxC" o) if (¥,o0) is the pullback of (C" x C*,0) under b and



®' is the restriction of the canonical projection onto ((C x C', 0),
ie. ¥ = {(z,)) € ((C*xC*) x (CxC"),0) | bn) =P} and ®'@x) = A for
(x, ) € ()V,0).

Definition 4
a. A deformation p of (V,o) is said to be versal if every deformation of (Vo) is

isomorphic to one induced by p via a base change.
If furthermore the dimension of the base space is minimal (among those of versal
deformations) then the deformation is said to be miniversal.

An unfolding ® of ¢ is said to be K—versal or R—versal respectively if every un-
folding of ¢ is K—isomorphic or R—isomorphic respectively to one induced by ®
via a base change.

If furthermore the dimension of the base space is minimal (among those of
the K—/R—versal unfoldings) then the unfolding is said to be K-miniversal or
R-miniversal respectively.

Remark 3

a.

(K—/R~-)miniversal deformations/ unfoldings of (V,0) or ¢ respectively exist al-
ways and any two of them are (K—/R-)isomorphic.

The dimension of the base space of a miniversal deformation of (V,0) or a K-
miniversal unfolding of ¢ is the Tjurina number

— i O o9
T = dlm(co(cn’o/<<p, 8_Z1’ . ’E)

One can indeed identify the base space! with O¢ 0/ (cp, g—z“i, . (%i .

The dimension of the base space of an R-miniversal unfolding of ¢ is the Milnor
number

— A5 Op Oy
“_dlm(co@“,o/(a_zl""’%)'

Again one can identify the base space® with Og» ,/ (g—i, c 8‘%). (see e.g. [Teil,
§4)

Ifp:(X,0) = (C7,0) is a miniversal deformation of (V,0), then (X, 0) is smooth.

(see e.g. [Voh], Bemerkung 2.3.10)

. If b is some base change such that a given deformation of (V,0)/unfolding of ¢ is

induced isomorphic via b to a (K—/R—)miniversal one, then db(o) is uniquely deter-
mined, although b itself is not. (We call db() the reduced Kodaira-Spencer map
of the given deformation/unfolding).

LD (C"x CTyo0) = (C x CT7,0) is a K—miniversal unfolding of ¢ and if we denote

® 1 (0x C") by X, then @ : (X,0) — (0 x C7,0) is a miniversal deformation of
(V,0). (see e.g. [Tei], prop. 4.5.1 and remark 4.5.2)

Lor more precisely the tangentspace at 0
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or more precisely the tangentspace at 0



e. If &: ((C” X (Ck,o) — ((C X (Ck,o) is an R—miniversal unfolding of ¢, then it is
K—versal.
If @ is K—versal, then it is versal as deformation of (V,0), since CI>‘ (@‘1(0 X(Ck) ,0)

is a versal deformation of (Vo).

f. The Tjurina number of (V,o) is less than or equal to its Milnor number, i.e.
7 < p. (see e.g. [L-S])

Since miniversal deformations and unfoldings play an extremly important role in what
follows we will briefly outline how they are constructed.

Theorem 1
a. Let ey, ...,e; € Og», be such that their images in Ti} = O¢»,/ (gp, g—i, e 8‘37‘1)

form a basis of T}p. Here we may choose e; to be identically one. If we now
define ® : (C" x C7,0) — (C x C7,0) by D) = (p(z) + i, Ai€i(2), A), then
is a K-miniversal unfolding of .

By remark 1 d. we get with X = {(x,A) € (C" x C7,0) | p(z) + Y1, Ni€i(z) = 0}
that p: (X,0) — (C",0):(z, \) — X is a miniversal deformation of (Vo).

b. Let g1,...,9, € O¢», be such that their images in R}O = O¢ n’o/(g—i, e 8‘37‘1)
form a basis of R}p. Again we may choose g, to be identically one. Similarly as
above define @ : (C" x C*,0) — (C x C*,0) by ®z0) = (@) + Db, 0igi(2), 0),
and get that ® is an 'R-miniversal unfolding of ¢.

(see e.g. [Tei], cor. 2.5.7)

1.2 Good representatives

Apart from the notion of an R—miniversal unfolding of ¢, the construction of the
Dynkin diagram corresponding to the singularity of ¢ at zero requires the existence of
a well behaved fibration of (V,o0), the so called Milnor fibration. Before we actually
construct the fibration let us give the following

Definition 5
Let m: M — B be an analytic map of complex manifolds. We call m a smooth locally
trivial fibration with fiber F' if the following condition is satisfied:

Vb € B AU(b) C B open neighbourhood of b and a diffeomorphism

ou 9" (U) = U x F such that my-14) = pri o gy
where pry denotes the canonical projection from U x F onto U.
This means that the fibers of m are all isomorphic to F' and that this fact matches
locally smoothly.

In order to construct the Milnor fibration of ¢ we have to fix representatives of germs
of ¢ or some unfolding of . It is not sufficient to fix just any representative, but we
have to make sure that our choice is "good” in the following sense:



Construction 1

Let g : (Cn+k, 0) — ((C x CF, o) define an ICIS (isolated complete intersection singu-
larity), i.e. 0 is an isolated singularity and dim(g'(0)) = n — 1. Now let g : U — D
be any representative of the germ and denote g~'0) by X,. Given any real-analytic
function r : U — [0, 00) with r='(0) = {0} (e.g. the square of the Euclidean Norm).
Then according to Looijenga (see [Lo], (2.4)) there exists an & > 0 such that XoNr ()
(the link of Xg) is smooth (i.e. the intersection is transverse) and compact, and that
rixo\qo} has no critical value in (0,¢] (i.e. XoMr ') Ve’ € (0,¢]). This enables
us to find a ball B around 0 in D such that the restriction of g to U N1~ ') is a
local submersion along ¢=' (B) Nr~ ') (i.e. g~ 'oyMr~') Vb € B). If we denote
g~ (B)Nr~']0,¢) by X then g;: X — B will be called a "good” representative of the
ICIS g. (see [Lo], (2.7))

Let us just summarize some of the properties of a good representative, which we will
need later.

Theorem 2
Let X denote g=' (B) Nr~'[0,¢] and let X be g~ (B) Nr~' ().
Then: (i) g/ : X — B is proper.

(ii) The critical locus C, of g in X is analytic in X and the restriction of g
to C, is finite (= proper with finite fibers).

(iii) The discriminant locus D, = ¢(C,) is analytic in B and dim(D,) =
dim(C,) = k unless D, is void.

Definition and Theorem 6

Let @ : ((C" x Ck, 0) — ((C x Ck, 0) be an unfolding of ¢. Choose a good representative
®: X — B of ® and denote by Dg its discriminant locus.

Then: (i) X'=X\ &' (Dg) and B' = B\ Dg are smooth.

(ii) @ : X' — B' is a smooth locally trivial fibration with fiber ® (o) =
“1
poo=V.

(iii) For any s € B’ the fiber V, = ® 1(s) has the homotopy type of a bouquet
of uu spheres of dimension n-1, where p is the Milnor number of (Vo).

We call the fibration in (ii) the Milnor fibration of (V,0) and Vi a Milnor fiber
of (V,0).

Remark 4
a. Note first of all that an unfolding of the isolated hypersurface singularity ¢ defines
an ICIS, namely (V,o) itself, which enables us to choose a good representative.

b. The above theorem does not only hold for unfoldings of isolated hypersurface
singularities but for general ICIS with the Milnor number of (V,0) replaced by
the one of the ICIS. In particular it holds for deformations of (V,o0). (see e.g.
[Hamm] or [Lo])



c. The definition of ”the” Milnor fiber V; does neither depend on the choice of the
unfolding nor on the choice of the good representative. One could for instance
use ¢ : (C",0) — (C,0) as an unfolding of itself. (see e.g. [Lol, (2.9), or [A-G-V],
10.3.1)

1.3 Geometric bases and Dynkin diagrams

The theorem on the Milnor fibration tells us that the only non trivial reduced homol-
ogy group of a Milnor fiber V; of (V,0) is indeed H,_; (V;,Z), which is a free group
of rank . If we supply H,_y (Vs,Z) with the bilinear form (.,.) obtained by the in-
tersection number of two cycles, i.e. (vy,d) = intersection number of v and §, then

(lffn_1 (Vs, Z), (., .>)is the so called Milnor lattice of (V,0). (see e.g. [Ebel], page 2)

Our aim is now, roughly speaking, to choose a suitable basis for H, . (Vs, Z) such that
the graph induced by the intersection matrix contains valuable information about our
singularity. We will call this graph the Dynkin diagram of (V,0) and a suitable basis
geometric or distinguished.

There are different approaches to the construction of these bases. Husein—Zade works
in his paper [Hus] with a morsification ¢ of ¢ which gives rise to a split of the critical
point 0 into p critical points {z,...,2,} C C with distinct values, all of type A;.
Arnold [A-G-V] chooses a generic line [ in the base space of an R—miniversal unfolding
of ¢, which then intersects the bifurcation set ¥ = {o € C* | (0,0) € Dg N (C x {o})}
transversally in p points {oy,...,0,}. Here ® is chosen to be a good representative
of the miniversal deformation in theorem 1 and Dg denotes its discriminant. For each
1<i<pu (0,0;) is a critical value of ®, and ® '(0,,;) has exactly one singular point
of type A;.

In both situations one chooses paths u; from some chosen base point z in Cor ¢ in [
respectively to the intersection points z; or g; respectively such that they have neither
any intersection with each other apart from the base point nor any selfintersection.
Near the z; or o; respectively the inverse image of a point under ¢ or ® respectively
contains in a natural way a real (n-1)-sphere. This sphere can be pulled back into
the corresponding level sets ¢~'(z) or ®~'(0,0) respectively along the paths u;. The ho-
mology class of that sphere in H,_1 (¢~ (2), Z) or Hy_1 (™' (0,0), Z) respectively will be
called a vanishing cycle A; corresponding to z; or o; respectively. The set {A, ..., A,}
forms a basis of I:In_l and with respect to a suitable ordering of the z; or o; respectively
in the first place we get a geometric or distinguished basis.

We will, however, use a slightly different approach, along the ideas in [Ebel] (see also
[Lam] and [Lo]). Again, the difference will mainly occur in the way we find p suitable
points which we then link to some base point.

Construction 2

Let @ : (C" x C",0) — (C x C*,0) be an R-—miniversal unfolding of ¢ as in theorem
1, i.e. consider g1 = 1,92,...,9, € O¢», such that their images form a basis of R}p
and define ®(z,0) = (=) + Y i, 0:9i(2),0). Denote by m : C* x C* — C* the canonical
projection onto C*. If we denote by (Dg,0) the germ of the discriminant locus of ® we
see that (C x {0}") N Dg is {0}.



For this, let us look at thg derivative of ® at a point (z,0) in ®~! (C x {0}"):

d®(z,0) = ( 3_%(2) gI(Z) > with g = (g1,..-,9u)-

Hence: ®(z,0) = (¢(2),0) € Dy < :;(z) € D, = {0}. (see also [Lo], page 68 and page 76)
According to Looijenga we may choose a good representative ® : X — D x S of ®
with D C C and S C C". Denote by D¢ the discriminant of ®. For any A € S, set
[ = D x {A}, and thus we have [y N Dg = {(z1,A),..., (x4, )}, where . = Milnor
number of (V,0) is also equal to the multiplicity mo (Dg) of the discriminant of ®.
We choose now any x € D\ {z1,...,x,} as base point and set s = (z,\), s; = (z;, \)
for 1 < i < p. Let us recall that V, = ® '(s) is a Milnor fiber of (V,0) and that
H,_, (Vs, Z) =2 Z*. Under these circumstances Vs, = ® 1(s,) has exactly one singular
point (z;,\) of type A;. This implies that there exists a small neighbourhood U
of (z;,\) in 7' = C" x {A} and local coordinates (vi,...,v,) on U; such that
Dvy,vn) = 85+ ZZZI v,%. We may then fix a small disc D; of radius p in [, centered at
si, such that ® : X; \'V;, — D; \ {s;} is a Milnor fibration, where X; = U; N ®~' (D;).
We then choose paths u; : [0,1] — [y from z to z; in ) simultaneously for all 1 < i < p
such that the u; have neither any intersection with each other apart from z nor any
selfintersection, and that, furthermore, u; passes through the boundary 0D; of D; at
the point s; + p at the time 6; € [0, 1].

Let us now introduce some further notation: Vs, ., = D Vsi4p), F; = Vsi4pNU;, Si =
{(vi,...,v,) € F; | all vy, are real}={(v1,...,v,) € U; | Yop_, i = p, all vy, real} and
Yi = u; [0, 6;].

Lamotke shows in [Lam] 5.5 that there is a natural way to identify S; with the
zero section of the tangent bundle TS™ ' of the real (n-1)-sphere S"~' via some real
analytic diffeomorphism from F; to TS™~'. Moreover, he shows in 6.2 that S; can be
transported along u; into Vi in the following sense:

The inverse image ® ! (v;) fibers trivially, which ensures the existence of an embed-

ding j : Vi,p X i — m () with the following property:

J (Vaitp X i) = @71 (0), G sitn) = (2,A) and @ o j(znui) = ujt) for
(2,A) € Vi,ip and t € [0, 6;].
But now the image of S; x {s} under j is an embedded (n-1)-sphere in V. We denote
its homology class in H, 1 (V,,Z) by A; and call it a cycle vanishing along u; or, in a

shorter form, a vanishing cycle. The system (Ay,...,A,) forms a basis of H,_, (V;, 7).
Let us now suppose that x was a point on the boundary 0D of D and that we have
ordered the system (sy,...,s,) in such a way that the paths u; are numbered in the
order in which they start in s = (x,\), where we count clockwise and start at the
"boundary” of the "disc” Iy = D x {A\} 3. This basis of vanishing cycles coming from
such a system of paths (uy, . ..,w,) is called geometric or distinguished (for (V,0)). (see
[Ebel], 1.4, or [Hus],1.2.3)

Remark 5
a. In order to construct the geometric basis we had to make quite a few choices.
But fortunately, once the base point s is fixed, the homotopy type of the paths u;
in [, with the condition of not passing through any other critical value of ® than

3If = has been chosen in D the paths u; map obviously to [, U {s}



Figure 1

s; and having no selfintersection, determines the vanishing cycle A; uniquely up
to the orientation, which is given by the choice of an orientation of j (S; x {s}).
This, however, is enough to ensure that the properties of the Dynkin diagram,
that we will construct next, are as good as required. Moreover, the construction
of the Dynkin diagram is independent of the choice of base points s and A, and
one could also have replaced the line C x {\} by any other generic* line near
to zero in C x C", and then have chosen a suitable representative of ® with a
similar splitting in the base space (see e.g. [Ebel], page 2 and (1.5)).

b. We claim that we even can replace a generic line [ in C x C* by a smooth curve
Cy with the property (P), construct a system of p vanishing cycles as above and
get indeed a geometric basis, i.e. get a basis that can already be constructed in a
generic line.

A smooth curve Cy, with t sufficiently small has the property (P) if Cy is a member
of a 1-parameter family {C’g}oe(@’o) of smooth curves in C x C* such that:

(i) 0 € Cy
(ii) The intersection multiplicity mq (Cy, Dg) of Cy and De equals the multiplic-
ity mo (Dg) of Dg which is just the Milnor number u of (V, o).
(111) Cy intersects Dg transversally for any 0 < 6 < 1.
(iv) Cy intersected with the boundary dDg of Dg is the empty set ().

Proof: Some generic line [ will intersect some of the Cy in a point s, not contained
in Dg. (For this note that Dg is a hypersurface, the family has dimension two
and is by (iii) and (iv) in a certain sense in general position w.r.t. Dg, as is any
generic line.) The property (P) implies that C; intersects Dg in p regular points.

“Generic means "parallel to a line through the origin, which is not contained in the tangent cone
of the discriminant of ®”.

10



Each of these points can be joined to s by a continous path in (er(c,o) C()) \ Dg.

Each of these paths gives rise to a vanishing cycle as constructed above. The fact
that the set of all vanishing cycles (obtained in such a way) is a single orbit under
the action of the monodromy group (unless we are in the trivial case of an A;—
singularity) implies that the set of all vanishing cycles can already be constructed
by the paths in an arbitrary generic line (e.g. C x {A}). (see e.g. [Lo], page 118,
or [Ebel], page 10) Since the vanishing cycles derived from paths joining the p
points in DY N Cy to s form certainly a basis of H,_; (V;, Z), this completes the
proof of the claim.

c. Instead of using an R—miniversal unfolding of ¢ to construct a geometric basis we
could equally well have worked with a miniversal deformation p of (V,0) (see e.g.
[Lo], (7.4)) using the fact that the discriminant D, of p has multiplicity mg (Dg)
equal to the Milnor number p of (V,o0) (see e.g. [Tei], prop. 5.5.2).

We will now define the Dynkin diagram of (V,o):

Definition 7

With the same notation as in construction 2 suppose that (A, ...,A,) is a geometric
basis in H, , (Vi,Z). The Dynkin diagram of (V,0) corresponding to (Ay,...,A,) is
the graph with o vertices {ey,...,e,} where e; is joint to e; (i # j) by | (Ai, 4;) |
edges. (If (A;, A;) is negative, one uses a dotted line for the edge.) Here (.,.) denotes
the bilinear form on H, (Vs,Z) given by the intersection number of two cycles.

Remark 6

a. The Dynkin diagram constructed in this way is certainly dependent on the choice
of the above geometric basis. But any two Dynkin diagrams obtained from geo-
metric bases are strongly equivalent in the sense that they can be obtained from
each other by a finite number of quite simple operations on the corresponding
geometric bases, namely changing the orientation of a basis element or applying
a standard generator of the braid group to the basis (see e.g. [Hus], thm. 2.2.3).
A similar result is also true if one allows a somewhat wider range of bases, the so
called weakly distinguished bases for the construction of a Dynkin diagram. For
further information on this see [Ebel], 1.4 and 1.5.

b. The equivalence of the Dynkin diagrams is sufficient to ensure that such a graph
determines some important invariants of the singularity in question, namely its
Milnor lattice, its set of vanishing cycles, its monodromy group and also the
conjugacy class of the generic monodromy operator (see e.g. [Ebel], 1.5). This
implies that the Dynkin diagram of a singularity is a useful tool in the classi-
fication of singularities; especially since the Dynkin diagram can be defined for
a much wider class than only the hypersurface singularities. However, we will
only use one particular property of "the” Dynkin diagram of (V,0), which will
be formulated in the next theorem.
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c. Before we move on, [ would just like to remark that there is also a slightly different
definition of Dynkin diagrams of (V,0), related to the choice of its ”generator”
©, which might seem more convenient in some respects; namely the connection
to classical Dynkin diagrams and Weyl groups. The monodromy group will turn
out to be a group of reflections. However, the results obtained so far and in the
next theorem still hold in this version.

Replace ¢ : (C",0) — (C,0) by ¢ : (C" x C™,0) — (C,0) with @(z,2) = p(z) + 7 +
...+ z2, then we get the following:
(i) (@7 '(0),0) is still an isolated hypersurface singularity.

(i) The Milnor numbers of ¢ ~'(0) and ¢~'(0) are equal.
(iii) The Tjurina numbers of ¢ '(0) and ¢ (o) are equal.
(iv) There exists a geometric basis {AI, ce Au} for (»7'(0),0) such that

| (A5, Ag) |=] (A A)) | for i # 4.
Moreover, if we choose m € Ny such that m +n = 3 (mod 4) we have that

(A, A) = =2 for 1 < i < p and the monodromy group is indeed generated
by the reflections a — a + {a, A;)A; on the orthogonal complement of A; with
t=1,..., 1, which is then an easy consequence of the Picard-Lefschetz formulae

(see e.g. [Hus], 2.3, and [Lo], (7.17)).

Let us now state the theorem of Gabrielov on the connectedness of the Dynkin diagram
which will turn out to be a key result in Némehtis proof.

Theorem 3 (Gabrielov)

Any Dynkin diagram of (V,0) is connected,

i.e. if any two disjoint subsets of a geometric basis for (V,0) are mutually orthogonal
to each other, then one of these subsets is empty.

In order to proof this result, Gabrielov constructs first a geometric basis along the
ideas of Arnold [Arn], as outlined above, and shows the independence of the Dynkin
diagram of the chosen paths. He then uses an indecomposable covering of the bifur-
cation diagram Y and the connectedness of the Dynkin diagram A,, corresponding to
¢: (C%0) = (C,0):(z,y) = (22 4+ ), to which any hypersurface singularity (indeed
every ICIS) with Milnor number p > 1 deforms (in the sense of [Lo], (7.15)), to con-
clude.

Again the connectedness result holds also for Dynkin diagrams derived from a weakly
distinguished basis.

12



82 Némethi’s claim and proof

We have now all the tools needed to go along the lines of Némethi’s proof. Let us
therefore now define what it means for f : (C* o) — (C?,0)(or rather its image) to be
b gOOd”.

Definition 8
a. Let I': ((C3, 0) — (C,0) be a hypersurface germ. We call F' a good germ if there
exists a coordinate system (wy,wo, ws3) in ((C3, o) such that the following conditions
are satisfied:
(i) F}: ({wy =0},0) = (C,0) defines an isolated plane curve singularity, i.e.
V' = F~'(0) N {w; = 0} is an isolated plane curve singularity.

) aF 8
(ii) 3—51 ¢ (wl,a—i,a—i) O(Cs,o

b. A hypersurface germ (X, 0) C ((C3, 0) is said to be good if there exists a good hy-
persurface germ F : (C?,0) — (C, 0) representing (X, 0), i.e. (X,0) = (F~'(0),0).
Otherwise (X, o) is said to be bad, i.e. for any representative F' and any coordinate

system (wy,ws, ws) satisfying (i) we have 2 € (wl, oF 3—F) Oc s,

1 Ows? Odws

Lemma 1
Let F': ((C3, 0) — (C,0) be a good hypersurface germ. Then there exists a coordinate

system (wq,wq,ws3) in ((C3, 0) such that the following holds:
(i) F: ({w1 = 0},0) — (C,0) defines an isolated plane curve singularity, i.e.
V' = F~Y0) N {w; = 0} is such.

(ii) 2L ¢ (wlgTFgTF) Ops,
(iii) X N {w, =0}n {gTF - 0} C {0} with X = F~'(0)
Proof: Since (X, 0) is a good hypersurface germ, we find a generator F' and a system

of coordinates {w}, w}, wi} satisfying (i) and (ii). Given 2,2’ € C, we get with w; = wj,
wy = wh + 2w} and wy = wh + 2'w| that

OF _ OF 9wl | OF 9wy | OF 9}
Owr — Ow) dwi Owl dw Owh dwi

AF dwi + OF O(w2—zw1) + a_Fa(wg—z’wl)
Ow) dwi Owl Ow1 Owh Ow1
oF oF 1 OF

= ow' - Zﬁwé -z owh

This means that such a change of coordinates allows us to add to gf; any linear

1
combination of the remaining partial derivatives of F', which by (i) cannot both be
zero, and hence to achieve (iii) without interfering in (i) and (ii).

O

We state now Némethi’s claim and reproduce his proof in the case n = 2.
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Theorem 4

Let f: (C* 0) = (C?,0)be an injective map germ such that (X, 0) = (im (f) , 0) is good.
Then we have rank(df)) > 1, and, moreover, (X,0) is an equisingular family of
isolated plane curve singularities over the smooth base space (C, o).

Proof:

0. Introductory remark
Since f is injective, it is certainly finite. This implies that X = im(f) is a
hypersurface (see [Nar|, page 71, prop. 5), and thus, our hypothesis makes sense.
Furthermore, (X, 0) is irreducible since ((CQ,O) is so and f is injective.
Before we now start with the proof, let us give a list of the contents of the proof.

1. Some notation

Proof that the rank(df(0)) is greater than 0.

—~
—
S—

>

V' is an isolated plane curve singularity,
{0}.

V not regular.

ooy 18 injective and VN Cy, =

Miniversal deformation p of (V,0) and base change b.
Definition of S.

The image ¢ of p as a deformation of (V’,0) and good representatives of p
and q.

A

|~

The R-—miniversal unfolding © of ¢, its restriction ©| and the base changes
by & bs.

The non-triviality of dbs(0).

The construction of a geometric basis {Ay,...,A,} for (V,o).

[u—
S e |

An important remark on the constructing machinery.

—
—_

— =

The transport of the geometric basis {A, ..., A,}.
The Dynkin diagram of (V') o).

Y-V — V' is an isomorphism.

[y
W

df (0) has rank greater than 0.

Proof that (X, 0) is an equisingular family of isolated plane curve singulari-
ties.

—~
—
—

SN—r

—

5. Xiing has dimension one.

16. (X,0) is equisingular.

1. Some notation:
We will denote coordinate systems in ((C3, 0) by (w1, ws,ws) . Given such a coordi-
nate system we define ¢ : ((CQ, 0) — (C,0) and v : ((CQ, 0) — ((CQ, 0) by ¢ = wjof
and 1) = (wy o f, w3 o f) respectively. We denote the zero locus ¢~ '(0) of ¢ by V
and its image ) (V') under 1 by V'. Via the identification of (C?, 0) with {w; = 0}

14



>

and the resulting embedding of V" into (C?,0) we identifiy V’ with X N{w; = 0}.
We define g and 4/ to be the Milnor numbers of (V,0) and (V’,0) respectively
and 7 to be the Tjurina number of (Vo).

If o is any map (germ), C, will denote the critical locus of & and D, = a (C,)
its discriminant. Similarly, for any analytic set A, Ay, will be the singular locus
of A and A,., its complement in A.

Claim: rank(df()) >1

Choose (w1, ws,ws) such that lemma 1 is satisfied.
Claim:

a. V= ¢~ Y0) is an isolated plane curve singularity.
b. The restriction of ¢ to o () for any X € (C, 0) is injective.
c. VN Cw = {0}

Proof:

a. By lemma 1 (i): V' has an isolated singularity at 0.
& Ifx € V'\ {0}, then (X,x) is regular and {w; = 0} NX at z.
< If x € V' \ {0}, then (X,x) is regular and T,X +
T,{w; =0} = T,C”.
& If x € V'\ {0}, then (X,x) is regular and df, (T,C*) +
To{w, =0} = T,C? for z € f~'(a).
If z € V'\ {0}, then (X, x) is regular and fM{w; = 0} at x.
If z € V' \ {0}, then (f~'({w; = 0}), f ‘(@) is regular.
f7'({w1 = 0}) =V has an isolated singularity at 0.

Tt

b. Suppose z, y € ¢ () such that (z) = 1)(y). Then:

(wi, w2, ws) (f@) = (A @) = (A ) = (Wi, wa, w3) (fw)

and hence f(z) = f(y). Since f is injective this implies that x = y and thus
zp‘@,lm is injective.

c. Given x € VN Cy.

Then: z€V = 0=p@ =wi(f)

f) e X N{w =0}

det (dip(x)) =0

0 = c(@) det (dip@) = 22 (f (@)

where c(z) is the conductor of f~!(Xying)

= f@ € {5—5:0}

and x € Oy

L4

Hence by lemma 1 (iii) f(z) = 0 and thus by the injectivity of f, x = 0. The
other inclusion is clear.

15



3.

| o~

|C)‘(

Claim: W.l.o.g. we may suppose that V' is not regular.

Proof: If V is regular, then the rank(dy)) = 1 and thus rank(df(0)) > 1, since
dip) = (dwn (£0)))13(Af 0))55-

O

. As in theorem 1 we choose e; = 1, ey,...,e; in Oy such that their images in T}O

form a basis of T, set X' = {(2,2) € (C* x C,0) | p(z) + >, Aiei(z) = 0} and
get that (V,0) < (X,0) == (C7,0) is a miniversal deformation of (V,0), where
p denotes the canonical projection onto (C",o).

Claim: If we define a map germ b: (C,0) — (C7,0) by bw) = (¢,0,...,0), then
©: ((CQ, 0) — (C, 0) is isomorphic to the deformation of (V,0) induced from p via
the base change b.

Proof:  Define b*X = {((y, A),t) € (X x C,0) | A = pz») = by = (¢,0,...,0)}.

Thus, the induced deformation is given by pry : (b*X',0) — (C,0) where pry is the
canonical projection onto (C,0). We define a map germ from ((CQ, 0) to (b*X,0)
by 2z — ((2, (—¢(),0,...,0)), —@(z)). This map germ is obviously biholomorphic
and leaves the embedded (V,0) invariant. Hence it is an isomorphism.

O

Next we choose a good representative p : X — B of the miniversal deformation
p:(X,0) = (C7,0) of (V,o0) in the sense of construction 1. For A\ € B we will
denote p~'(\) by V). Let us recall that for A € B\ D,, Vy is a Milnor fiber of
(V,0) (according to remark 4, a.) and that for A € (D,) . V) has exactly one
singular point of type A;. (see e.g. [Tei], 5.4.2).

reg’

. In part 9. we are going to construct a geometric basis for (V,0) via a generic line

in B. However, to "ensure” that this basis embeds in one for (V’,0), Némethi
restricts the set in which he chooses the line to a two—dimensional linear subspace
of B, with some suitable properties.

Claim:  There exists a two—dimensional linear subspace of C" such that its
intersection S with B has the following properties:

a. b(C) ={(t,0,...,0)e B|teC}CS
b. (Dp N S)\NA{0}) € (Dy),g

¢. SN(D,),,,

d. If X € (D, N S)\ {0}) and (zx, A) denotes the corresponding A, —~singularity
m V,\,
then: (i) 2\ ¢ Cy
and  (ii) whenever (z,\) € V) with z # zy, then () # (zy)-
(i.e. 1)(z\) is neither a critical value of 1 nor a genuine double point.)

Proof: Let N be {)\ € (Dp),,, | the Aj—singularity (z), \) satisfies (i) and (11)}
This is obviously a Zariski open subset of D,. Let us for the moment suppose
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that V' # 0 holds. Then N is open and dense in D, and thus its complement R in
D,, has dimension strictly less than dim (D,) = 7—1. Furthermore, b(C) intersects
R in 0. This enables us to choose a linear complement L of b(C) = ((1,0,...,0))¢c
in C” such that dim (LN R) < dim (L) —2 =7 — 3 holds. Hence dim (L N R) is
not complementary to dim (b(C)) = 1 and we may choose some v € L such that
(v,(1,0,...,0))cN R is 0. Replacing v possibly by an arbitrarily small perturbed
u € L we can achieve that (u,(1,0,...,0))c is transverse to (D,),,, and still
(u,(1,0,...,0))cN R equals 0. This plane satisfies the requirements of the claim.
It remains to show N # ():

We consider the family UAEB Vi of plane curves with V5 = V. Since V N Cy
equals {0}, we have that for sufficiently small A € B the intersection V) N Cy
is still finite. Similarly, the injectivity of ¢;; implies that for small A\ € B only
finitely many points are not in the injectivity domain of ¢, i.e. they map to
multiple points. Thus, we may suppose that our representative p: X — B, or
more precisely B, was sufficiently small in the first place to ensure this for all
A€ B.

Consider now the following extended deformation of (V,o):

P (X'0) = (C7 x C*?)0)

with
X' = {(z, N A) € ((C2 x CT x (CQXQ,U) | pz+Az) + D01 Ai€i(z+A4z) = 0}
and the restriction of the canonical projection p’ onto ((CT x C?*2, 0), and set
Xooa=p"to={(z,\,A) € X' | (z + Az, )\) €  }.

Suppose p' : X' — B’ is a good representative of the germ p’. Given \ € (Dp)reg

such that (5\,0) € B’ then we can find an A € C**? arbitrarily near to 0 such
that

(@) (M A) e (D)., and X5 5 has a single A;-singularity (z,A,A) and

(B') this z fulfills now (i) and (ii), i.e. Z ¢ Cy, but in the injectivity domain of
.

(Note for this that the choice of A implies a slight perturbation of the coordinates
in (C7,0) which suffices to omit the finite number of bad points.)

Restricting p' to X" = {(2,A) € (C* x C",0) | p((1+A)2) + d_i_, Ni€s((1+4)2) = 0}
and recalling that A arbitrarily close to 0 implies the invertibility of [ + A we
get that p"” = pl: (X",0) = (C7,0) is a deformation of (V,0) which is isomorphic
to the original deformation p: (X,0) — (C",0) over the same base space and is
hence miniversal itself. The isomorphism is given by

(X,0) = (X",0): (2, \) = ((1+ A7z, )\).

Moreover, if we fix a good representative p” : X" — B" of p" with A € B”, then
we get:

17



|=

(") X € (Dyr),, and (p") "% has a single A, singularity (z,A) and

(8") this z fulfills now (i) and (ii).

Thus, if we replace the germ p: (X,0) = (C7,0) by p": (X" 0) = (C",0), i.e.
replacing ey, ...,e, in 4. by e; o (I+A) =1,ep0 (I—l—A),...,eTo (I+A), we
may suppose that N is not empty.

O

We will, however, stick to p as the notation of our miniversal deformation of
(V,0), assuming we have made the right choice for the basis in the first place.
Denote by v, and 7, the canonical coordinates on S, given by

vi(ou+ 5(1,0,...,0)) =

and

Yao(ou + $(1,0,...,0)) = 3,
and denote by pg the restriction of p to S. For A = (71,72) € S we will again set
Vi = (ps) " tne).

Now we have the tools, which are necessary to construct a geometric basis
for (V,0), and next we will collect those tools needed for the construction of
the shuttle which should carry it into a geometric basis for (V';0). To get
the geometric basis for (V';0) we will work with an R—miniversal unfolding of
h = F|{w1 — 0} (CQ,O) — (C,0), the generator of (V' o), and it will be nec-
essary to get a connection between this unfolding and the defining equation
¢ (C%0) = (C,o0) of (V,0). For this we construct an auxiliary deformation of
(V',0), namely the image ¢ : (},0) — (C",0) of p: (X,0) — (C7,0) under 1 x id.
Claim: After possibly shrinking X and B we have thatq : Y = (¢ x id)(X) — B
is a good representative of the deformation

q: (V={We,\) €C*xC"|(z,A) € (X,0},0) — (C",0)

of (V',0) where q is again the restriction of the canonical projection onto (C", 0).

Proof: Suppose ¢ x id denotes a good representative of the map germ ¢ x id from
C? x C" to C?> x C", and X is sufficiently small such that it is contained in the
domain of ¢ x id.

Define r: X — [0,00) by
ren) = e [P+ [ idoy |12

.Y = (¢ x id)(X) = [0,00) by

e =l 2 [7+ [T A

=3I

and

Then construction 1 tells us that there exist £;,e5 > 0 such that p ') N r ')
is compact and p~')Mr~' () for all 0 < &' < g1, and similarly ¢ (0) N 7" (e5)
is compact and ¢~ ') N7~ for all 0 < &’ < &,. Replacing £; and &, by their
minimum £, we get, moreover, that there exist balls By and B, around 0 in B such
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that p~ o)y Mr—te) for all A € By and ¢ oy M7 e for all A € B,. Redefining
B to be the intersection of By and By, X to be the intersection of p~!(B) with
r='([0,¢)) and Y to be the intersection of ¢~'(B) with 77'([0,¢)), we get that
the restrictions p: X — B and ¢ : Y — B are good representatives.

Moreover:

(¢ xid)(X) = {(¥(2), A) | A € B, F(th(z)) = () < &, 0(z) + D1, Ni€i(z) = 0}

That ¢ : (),0) — (C7,0) is actually a flat deformation of (V’,0) follows from the
fact that (V’,0) is an isolated plane curve singularity and hence the restriction of
q to (g ' ),0) = (V',0) is flat. (see e.g. [Tei], remark 4.5.2)

O

Let us now consider an R-miniversal unfolding © : (C? x C*,0) — (C x C*',0)
of h = F|{w1 — 0} ((C2,0) — (C,0) as in theorem 1, (i.e. fix g1 = 1,09,...,9x
in O > such that they project to a basis of

L _ o (on o) OF  oF
R, = O(Cz,o/(aw2’ awg) = Ocs,/ (wl’ B’ (9w3)'

Define © by O(z,0) = (h(z) + Zﬁil aigi(z),a) and choose a good representative

©: H — D x T as in construction 2 with D C C and T C CH. Restricting © as
in remark 3 e. gives a good representative of the deformation

0=0: <I:I = {cp(z) + Zil 0iGi(z) = 0},0) — ((C“',0>

of (V',0). The R—versality of © ensures that © and © are versal deformations of
(V',0) (see remark 3 e.).

Thus, there exists a map germ by : (C7,0) — (C*,0) such that the deformation
¢ : (Y,0) = (C7,0) is isomorphic to one induced from © : (H,0) — (C*',0) via by,
and, moreover, we may assume that the representative ¢ : Y — B is small enough
to get a representative by : B — T of the germ b;.

Claim: ¢: ((CQ, 0) — (C, 0) is isomorphic to the pullback of © under the base
change by = by o b : (C,0) — (C*, 0).

Proof: It obviously suffices to show that ¢ : ((CQ, 0) — (C,0) is isomorphic to the
pullback

pra s (Y = {(z,M1) € (0 x C,0) | A = gy = by = (£,0,..,0)},0) = (C,0)

of ¢ : (V,0) — (C7,0) under b, where pry is once more the projection onto (C, o).
Let us recall that (z,(¢,0,...,0)) € (¥,0) is equivalent to the existence of an
(z,(t,0,...,0)) € (X,0) with @) +t =0, i.e. & € p~'(-1). Since 1) restricted
to ¢ (-1 is injective by 4., we have that the x corresponding to z is uniquely
determined, and, furthermore, the map germ

(C?,0) — (b*Y,0) 1 x> ((Ya), (—@), 0, . ..,0)) — p@)
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is an isomorphism, mapping (V,0) to the embedded (V' = ¢ (V),0).

O

If i : (C*,0) — (C x C*,0) denotes the natural embedding of the base space of
O into the base space of ©, we define bs : (C7,0) — (C x C*,0) by by = iob; and
denote by bs the map germ or some representative respectively between the total
spaces induced by the base change b3. b3 and by = (¢ x id) o by provide us with
the main means of transport in question.

. The main reason, why b3 seems suitable for this purpose, is the next

Claim: The reduced Kodaira-Spencer map

dby(0) : Ty(C) = C = Ty(T) 2R} = O s, ( or. aF)

Wi, 30.12 Ows

is not trivial, i.e. (dby(0))(1) # 0.
Proof: First we note the following:
() H = 'Y = {(Ve),t)](2(t0,...,0) € (X,0), t € (C,0)}

| (
{(w(z),t) | te ((Ca 0)7 QO(z) = t}
- {(w%wi’nt) | te ((C,O), F(t""’?’“’f‘i) = 0}

Since H equals {(WQ,C(}?,, o) € ((C2 x C* 0) | P(wsws) + Zf;l 03 (wayws) = 0} we
have that F'(tw»ws) has the form

Ftw,03) = (ws ws) + Y1, 04(6)Gi(ws )
with o;() € C{t}. But thus we get byt) = (o1(t), ..., 0, (1) for t € (C,0) and

de(O) : TO(C) =C — TO(T) = R,,l1

) a1
1 — (%,..., 85;)(0)

30’1
= 2L Grenn (m (ot 25))

o 3F(t,u}2,u}3) _ OF
=T 00 jt=0 — dwr (Ow2e3):

Now we use the "goodness” of (X, 0), namely that by the choice of the coordinate
system (wy, wa, w3) g—i ¢ (wl, g—i, g—i) O3, to conclude that (dby(0))(1) is not
0in To(T) = R;.

O

The non-triviality of the reduced Kodaira-Spencer map dby(0) implies that the
embedding of (C,o) in ((C X (C“l,o) as (100y)(C) = b3(b(C)) = b3(y1 =0) is a
smooth curve. Némethi wants to use a small perturbation of this curve for the
construction of the geometric basis for (V',0).
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9. Construction of the geometric basis for (V,o):

First of all we remark, that, since b3(y; =0) = b3({(1,0,...,0))c) is a smooth
curve in the base space D x T of the R-miniversal unfolding ©, b3(¢) will also
be a smooth curve in D x T for any sufficiently small perturbation ¢ of {7, = 0}.
Let ¢ be such a perturbation of {7, = 0} = ((1,0,...,0))c in S which intersects
{71 =0}in g =(0,t0) € Dy (e.g. L:yi+ere=1n, 0<n<Ke K1 &ty =—n/e).
This is possible by 5.a.

According to [Le], 3.5 and 3.6.4, the intersection multiplicity of {y; =0} =
((1,0,...,0))c with D, is just the Milnor number u of (V,0) (see also [Teil,
5.5.2 prop. and proof). This together with 5. b. and c. ensures that ¢ intersects
D, in p regular points {A, ..., A,}, and the corresponding fibers V), have a single
singularity (z;, A;) of type Ay with z; ¢ Cy, but z; in the injectivity domain of ¢
(by 5.d.). Since A\g ¢ D,, V), is a Milnor fiber, and hence, using remark 5 c., we
may construct a geometric basis (Aq,...,A,) in Hy (V),,Z) for (V,0) along lines
similar to those outlined in construction 2.

10. By §; : S' — V), we will denote the cycle whose homology class [6;] in H, (Vy,, Z)

is A;. In 2. we proved that ¢ is injective on ¢~ (t0). Thus by = (¢ X id) o b is
injective on Vy, = {(2, o) | 2 € ¢ (o) }; in particular §;(S?) is in the injectivity
domain of l~74.
Moreover, z; is in the injectivity domain of ) and not in Cy by 5.d.(ii). Thus,
in fibers sufficiently close to (z;, \;) the vanishing cycles derived from the path
u; joining A\ to A; will be in the injectivity domain of by and not in its critical
locus. As seen in the proof of 5. the number of points in each fiber V), A\ € B,
which violate the injectivity of ¢ or lie in its critical locus are finite in number,
and Némethi claims that therefore the pull back of the vanishing cycles along the
u; can be organized in such a way that they lie in the injectivity domain of by
and not in its critical locus for the remaining fibers as well.?

11. Transport of the basis (Ay,...,A,) "into a basis for (V' 0)”:
Let VY denote the image of V}, in H under by, i.e. Vi, = bs(Va,) = O~ (b3(00)),
and ¢ denote the image of ¢ under the base change bs, i.e. ¢/ = b3(¢), which is a
smooth curve in D x T (see 9.).
By 5.d.(i) 2 ¢ Cy, and thus by locally is a diffeomorphism at (z;, ;). This, and
the fact that (z;, \;) is in the injectivity domain of by (see 5.d.(ii)), ensures, that
the image (Z;,0;) = by(zi0) Of (2i, A;) in H is isolated in the set

{(z,0) € ©({') | (2,0) is singular in O~ (O(z,0)) }
and it is indeed an A;-singularity in

O~ (Ozi) = O (b3(h) = ba(Th,).

5This last argument is not sufficient, as we will see later, and could lead to problems in a general
example, although the problem can be solved in the example which we give. But even there it is
anything but clear.
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Némethi uses the arguments in 10. to carry the whole constructing machinery

of (Ay,...,A,) over to ¢, and thus to achieve p vanishing cycles in (V/\’O)reg

corresponding to the p A;—singularities (z;, 0;) over (0,0;) = bs(\) € Dg.°
Unfortunately, at the moment we can neither be sure that VY is a Milnor fiber
of V' nor that ¢ is in general position (i.e. suitable for the construction of a
geometric basis for (V',0)). V{ might have several singularities {Py,..., P}
itself.

Figure 2

However, if p; is the Milnor number of (VA’O, Pi), then

k
W=y
=1

Moreover, by the product decomposition theorem?”, Dg has at (0,0;) = bs(n) the
discriminant DY of the A;-singularity (Z;,0;) as irreducible component and ¢

6 As already remarked, we cannot be sure that 10. holds in general, but in our example we will be
able to get these vanishing cycles.

"see [Tei], thm. 4.8.2 and cor. 4.8.3, for the version for miniversal deformations; an analogue for
versal deformations holds also
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intersects D} transversally at (0, ;).

According to Némethi we may now choose® an arbitrarily small perturbation
" of ¢/ in D x T which intersects Dg in p' regular points, and since (" is an
arbitrarily small perturbation of b3(7; = 0) they can be embedded in a familiy of
smooth curves each of which intersects Dg transversally (apart from b3(v; = 0))
in p' regular points. This shall ensure that ¢” is suitable for the construction of
a geometric basis for (V' 0).”

Furthermore, since ¢ is transverse to D at (0, 0;) and may be embedded with ¢”
in a family of smooth curves all of which are transverse to Dg (apart from possibly
"), the (z;,0;) correspond to u A;—singularities over ¢”, and the constructing
machinery for the corresponding vanishing cycles in V), can be carried into ¢”
via this family, once we have fixed a base point s = (¢,0) € "\ Dg. This in turn
gives us p vanishing cycles {AI, e A”} in H, (©7'(s),Z) and we have completed
the transport of the geometric basis (Ay,...,A,).

12. Tt still remains to show that the results of 11.'° would lead to a disconnection

of the Dynkin diagram of (V’,0) unless the sum Zle Jt; is zero, which means
that VY is smooth and was therefore a Milnor fiber of V" in the first place. To
achieve this we will complete {Al, . .,AM} to a geometric basis by vanishing
cycles {A]" ..., AP} derived from the singularities P; of VY .

Claim: If Dy denotes the Dynkin diagram of (V, o) corresponding to (Ay, ..., A,)
and Dp, the Dynkin diagram of (V/\’O, R) corresponding to (Af", .. .,Afz’), then
there is a Dynkin diagramD of (V', 0) corresponding to (Al, cen A_M, @fl, cee Afj’;)
which is just the disjoint union of Dy with the Dp,, i.e. (A;,AlY =0 for
jg=1...,p0=1,....k,m = 1,...,p; and (Afﬂﬁf{) =0 forj #i,n =
Looopy, m=1,..., 1.

Proof: Since the image of §;(S') fori = 1,..., uin Vy induced by the base change
bs is contained in (VA’O) we may find an open set W in VY , whose closure is
still contained in (VY )
51 in (‘(Xo)
the cycles defining {Al, e Au}, via the family connecting /' and ¢".

Moreover, for each of the singularities P; of VA’0 we get a subset W; in © (s

reg’

reg and which contains the vanishing cycles induced by the

. This W may be transported to a subset W, of ©~!(s), containing

Te

containing the pu; cycles, which define {Af L, Aﬁ;’} and having an empty in-
tersection with W, 0 < j <k, j # i. This proves the claim.

13. Claim: ), : V — V' is an isomorphism of analytic germs.

8This is the main source of our trouble, and it seems that we do not have this choice.

9To achieve this Némethi applies an argument which is similar to the one in remark 5 b. but does
neither contain any information about what happens on the boundary of D x T (he works with germs)
nor about the intersection multiplicity of the curve through the origin with the discriminant. We will
come later to the problems which result from this.

10We suppose now that 11. holds - as well as any previous result.
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(IT)

Proof: Recall that by 3. V' is not regular and hence p is not zero. The result 12.
would contradict theorem 3 (on the connectedness of the Dynkin diagram), unless
the singularities Py, ..., P, do not exist. This proves that the Milnor numbers p
and 4" of (V,0) and (V’,0) respectively are equal.

The injectivity of ¢y, implies that the numbers r and r’ of irreducible components
of (V,0) and (V',0) coincide as well.

By [Mil], thm. 10.5, or [B-G], 1.2.1, the delta invariant ¢ of a plane curve singu-
larity is just 6 = 3(s+ r — 1), and thus the delta invariants of (V,0) and (V’,0)
are also equal. Since V and V' are isolated plane curve singularities, this suffices
to ensure that ) : V' — V" is an isomorphism.

Claim: rank(df()) >1

Proof: (V',0) is an isolated plane curve singularity and therefore not both z and
y can project to zero in Oy ,. W.lLo.g. we may assume that the image of z in
Oy, is not zero. Since by 13. 1/;|* : Oyr o = Oy is an isomorphism, 1/;|*(x) cannot
be contained in M? = (z¥y" | k +1 > 2)¢, where M = (2,y)O 2 , denotes the
maximal ideal of Op» . But then ¢f'x) = x0t¢) =wyo f ¢ M?. Therefore the
Taylor expansion of wy o f contains a summand of degree less than or equal to
one. Again by 13., wr(:c) is not constant in Oy ,, since w‘*(l) is so. Thus, the
Taylor expansion of ¢‘*(:p) = wy o f contains indeed a summand of degree equal to
one. But then dw, o f(0) is not zero and we have

0 # dws o f0) = (dw2(f(0)));5(df (0)) g9,

and hence df (0) cannot be zero, or equivalently rank(df()) > 1.
O

This ”completes” the first part of our proof, and it only remains to show that X
is an equisingular family of isolated plane curve singularities.

Claim: (X, ) is an equisingular family of isolated plane curve singularities.

If (X, 0) is smooth, there is nothing to show, and hence we may as well suppose
that (X, 0) is not smooth.

Claim: dim (Xy;,) =1

Proof: Suppose (X,0) is not smooth. Since f : ((CQ,O) — ((C3,0)is injective, f is
certainly finite and birational.

The finiteness of f implies that (via f*: Ox, = Op2 ) Op2  is a finite Ox o~
module, and thus integral over Ox ,. Therefore we have

Oz, C Intclog(o(C , 0)(OX,0) C Intclog((/)(C , 0)(0@ 2,) =O¢2,

E]

where the second inclusion follows from the fact that f* embeds Ox, in O2
and the last equality comes from the normality of ((C2, 0).
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The birationality of f tells us now that the quotient field Q(Ox ) is identified with
the quotient field Q(O. 2 ) via the isomorphism f* which sends g/h € Q(Ox,) to
gof/hof € Q(Opz,). Thus, O  is the normalization of Ox, or equivalently
f: ((CZ,O) — (X, 0) is the normalization of (X, o).

The germ (X,0) is not normal, since otherwise f: f~'(X,ey) = X,eq could be
biholomorphically extended to a map f : ((C2, 0) — (X, 0) contradicting the non—
smoothness of (X,o0) (see [Whi], page 256, thm. 3A). But (X,0) is Cohen—
Macaulay, as it is a hypersurface germ, and hence singular in codimension at
most one (see e.g. [Voh], 1.2.4), which then implies that dim (X;,,) is indeed
one.

16. Claim: (X, 0) is an equisingular family of isolated plane curve singularities.

Proof: Since the rank of df (o) is positive, we may choose a coordinate system
(w1, ws,ws) in ((C3,0) with w; a linear form. Using the notation in 1. we have
that V' is smooth and its Milnor number p is zero.

Moreover, since f is the normalization of X and the preimage V; of each V} is
smooth, we get that f is a simultaneous normalization of the V/', ¢ € (C,0). Thus,
Use(c,o) Vi is a d-invariant family of plane curves. Since the number of irreducible
components of V}' is also constant, namely one by the injectivity of f and the
irreducibility of V;, we get that the Milnor number of the V/ is constant (see
[B-GJ, 1.2.1).

By 15., V/ = ¢(¢'w), t € (C,0), must have at least one singularity. But
V) cannot have more than one singularity, since its Milnor number is equal to
the sum of the Milnor numbers of its singularities, and therefore more than one
singularity would actually lead to a disconnection of the Dynkin diagram.

But a family of plane curves with isolated singularity and constant Milnor number
is equisingular (see e.g. [B-GJ, 5.3.1).

This ”completes” the proof of theorem 4.
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§3 Counterexample

3.1 Localizing the problem

In the proof of theorem 4 we tried to make our arguments as rigorously as possible. By
doing so we have already localized the areas where the proof could possibly go wrong,
namely in the parts 10., 11. and 12. Although the arguments in the proof of 12. are
quite vague, they seem very much to be correct - in particular since similar results
have already been used in earlier papers to show that for an isolated hypersurface sin-
gularity, where after a small perturbation the Milnor numbers of the new singularities
add up to the original Milnor number, the perturbed analytic space has again only one
singularity. This leaves us with 10. and 11.

Before actually giving the example and showing that, at least in this case, it is not
part 10. that causes the trouble, let us explain which problems we have to expect from
10. and 11. respectively, and what could cause them.

In 10. we tried to show that it was possible to choose the paths u; in the line ¢ and
the corresponding vanishing cycles in the fibers of the deformation p over the u; such
that none of the vanishing cycles contained a critical point of ¢ X id or a point in the
preimage of a genuine double point of this map. Now, why is this important?

In order to construct the vanishing cycles in VY , coming from those in V), we trans-
port the whole machinery from p, : p~'(¢) = £ to ©: ©~'(¢') — ¢'. This means the
new paths are obtained from the u; by composition with the base change b3 and the
new cycles are obtained by mapping the old ones by by = (¢ x id) o bs. If we now have
a cycle over some point in the path u; which meets either the critical locus of ¢ x id
or the complement of its injectivity domain, its image under by will have a singularity.
Thus, the construction will no longer be suitable to obtain vanishing cycles in VY ,
since for this none of the cycles during the pullback may have a singularity. Moreover,
one cannot argue, that a small perturbation of this cycle would remove it from its
singularity. For this we would also have to move nearby cycles slightly and then one
of them would have a singularity (since 10. is assumed to be wrong).

And why is the argument in 10. not sufficient?

Our example will show that we may expect the bad points in p~'(£), namely those
where 1) X id does not behave well, to form a subvariety of real dimension two, al-
though in each fiber there will only be finitely many of them. The family of vanishing
cycles which we have to choose over the u; has also real dimension two and has to fit
together smoothly. Thus, it is no problem to perturb each cycle on its own so that it
no longer meets any bad point, but since the space p~'(¢) has only real dimension four,
it is not at all clear that we may perturb all cycles simultaneously such that neither of
them meets a bad point but the family remains smooth. We will indeed show that for
an unsuitable choice of the paths u; it really can go wrong (see 3.2 b. claim 16).

In 11. we want to choose a small perturbation ¢” of ¢/ which shall intersect the discrim-
inant Dg in ' regular points, p of which are connected to the special critical values in
¢', giving rise to the vanishing cycles in (V/\’O)mg. Furthermore, this line ¢” shall then be
suitable for the construction of a basis of vanishing cycles. As we have seen in remark
5 b. this would be satisfied if we could embed ¢” into a family of curves with a suitable
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curve (" (with the correct intersection multiplicity with Dg) through the origin such
that each member of this family apart from ¢” intersected Dg transversally and if we
could keep the family fixed where it meets the boundary of the base space D x T of ©.
To recover the vanishing cycles from ¢ we would more or less have to get the same for
the family of curves connecting /" to ¢'. The problem which we face in our example is
that the whole of S gets mapped into the discriminant Dg by the base change bs. This
means not only that ¢ lies completely in Dg, but bs3(y; = 0) does so as well. So neither
can we decide whether b3(7; = 0) would be a suitable curve ¢ through zero, as far as
its intersection multiplicity with Dg is concerned, nor may we even dream of joining
either b3(y; = 0) or ¢ with any curve intersecting Dg in g’ points such that the joining
family is fixed on the boundary of D x T'. This does not yet show that we cannot find
a suitable small perturbation ¢”, but it says the argument which Némethi wants to use
(see [Nem], 13., page 11), does not work. Moreover, it makes it very unlikely that we
are able to find such an ¢”. And our example shows that this must be the place where
the proof goes wrong.

What could happen?

There are different possibilities and we will try to list them:

1. Any small perturbation will intersect in more (or less) than p' points and thus
the set of cycles which we construct need not contain a basis for Hy (V/,Z), even
if they generate it.

(Short: find ¢”, but not with y' intersection points)

2. A perturbation intersecting in y' regular points is not a small perturbation — in
the sense that we loose the intersection with DY, and thus the vanishing cycles
coming from V).

(Short: find ¢” with g intersection points, but loose the cycles Ay, ..., A,)

3. Even though we find a ”small” perturbation ¢” intersecting in p’ regular points
this curve is not suitable to construct a geometric basis for Hy (V!, Z).
(Short: find ¢" with p intersection points and where Ay,..., A, are preserved,
but do not get a basis)

Even in the quite simple example which we have chosen, it seems to be too difficult to
decide which of these possibilities describes the situation best or whether all of them
do, since the discriminant space of the Eg has complex dimension five.

3.2 The example (z,y) — (z,y% y> + 2?)

We will split the following calculations into two parts. The first part will show that
f: ((CQ,O) — (C3,0) satisfies the hypotheses of theorem 4 but that V' and V' do not
relate to each other in the way claimed by Némethi. In the second part we will work
through the example along the lines of the proof of theorem 4. My aim is it, to show
that up to part 10. included everything works as stated in the proof, although in part
10. there can occur problems if we choose the wrong paths. Recalling then that the
parts 12. up to 16. are correct, we have shown that the error lies in part 11. and thus
in fact we may not choose a suitable small perturbation ¢” of ¢'.
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a. Claim:  Given the situation described in the proof of theorem 4 we do not
necessarily have that v equals 0 or p' as claimed in part 15. of the proof.

Proof: Here we choose our example slightly more general than the one mentioned
in the introduction. Let f : ((CQ, 0) — ((C3, o)be given by (z,y) l—>(ar, vy + :1:'“),
k > 2. Each of these germs can be derived from

(C%0) — (C*0) : (z,y) = (z,9%,°),

the ordinary cuspidal edge, by a suitable coordinate change. We will now show
that f satisfies the hypotheses of theorem 4 and we will determine a generator
for X = im(f) and a suitable coordinate system for (C?,o).

Claim 1 f is injective.
Proof: Let (z,y), (2/,y') € (C*,0) with fy) = f@'y) be given.
Then we have : z=2/, 2=¢” & 3 +aF=y> +2'*
R :L‘,, y2 — y/2 & y3 — y/3

Thus f is injective.

Claim 2 F': ((C3, 0) — (C, 0) with F(zy,) = (z — :c’“)2 — % is a generator of
X =im(f), i.e. X =F""0).

Proof: (F o f)wy = (y* + 2% — xk)Z —(2)* = 0 hence F~'(0) D X, and the other

inclusion is also clear.

Claim 3 F:{z =0} — C defines an isolated plane curve singularity.

Proof: We have Fi(y) = 2% —y®. Thus (dF)) @y = (2kz*",3y?) = (0,0) if and
only if (z,y) = (0,0).

Claim 4 2£ (z OF ‘9F) and X N {z =0} n{2£ =0} = {0}.

7%78_y

Proof: OF = —2kz*'(z—2%) = 27! (mod 2)
or — 3y = ¥ (mod2)
" - 2(z — 2F) = 2 (mod 2)

Thus for k > 2 we have &£ = 2% ¢ (2,42, 2%71) = (z, or %—5).
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Moreover, let (z,y,z) € X N{z=0} = {2 —y* =0}, then 0 = L@y, =
2(z — %) = —22% implies that x is zero and thus y is zero as well. Therefore we
get XN{z=0}n{% =0} = {0}.

O

But this altogether proves that X = im(f) is a good hypersurface germ, and
therefore f suits the hypotheses of theorem 4 with F' as generator of X and the
coordinate system (z,z,y) (satisfying lemma 1.3).

However, with the notation of the theorem, (wy,ws,ws) replaced by (z,x,y), we
get the following:

Claim 5 V = {y* +2* =0} and p=2(k - 1).

Proof:
V=(z0f)""0={y*+a*=0}
and
d(p(z,y) = d(Z o) f)(x,y) = (kl‘kil, 3y2)
Thus:
p=dime O 2 /(dp) = dime (’)(Cz’o/(xkfl, y?) =2(k—1).
O
Claim 6 V' =X N{z=0} = {(z,y) | 2% —y* =0} and p/ =2(2k — 1)
Proof:
! 2k 3
Xn{z=0t=(F,_q) o={@y |-y =0}
and
(dF‘ (2= 0}) @) = (2ka?1, —3y2).
Thus:
p' = dimg 0@2,0/(dF|) = dim¢ O(Czyo/(x%*l, y?) =2(2k — 1).
O

We are assuming that k£ > 2. Therefore p is neither zero nor equal to y'. This
shows that the proof of theorem 4 cannot be correct.

. In order to show where the proof actually goes wrong, we will proceed with this
example along the lines of the proof. First of all we will describe the miniversal
deformation of (V,0) and the R—miniversal unfolding of h = K (=0} explicitly.
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. _ — — — — k-2 — k-2
Claim 7 e; = 1,e = y,e3 = x, 64 = TY,..., €op_3 = T" % egp_9g = 2" %y

project to a basis of T, = O, 2, ("1, y?) and
p:(X,0) — ((CQ(k_l), 0) C(z,A) = A
is a miniversal deformation of (V,0), where
X = {(«Ta y,A) € <(C2 x C2D, 0) | 2F + % + 00 (M@ + Aaigozy) = 0}
In particular: T = p.
Proof:
7 =dimc Op2 /(" + 4%, 2" y?) = dime Og 2 /("' %) =

Thus: T, =RL = O /(2" 1, 5%) and (e, ..., ea_2) is obviously a basis.
Then use theorem 1.

[m]
Claim 8 g1 = 1,92 = ¥, g3 = @, g4 = Y, ..., €ap—g = 27772 ey = 2777y
project to a basis of R} = Oc 2’0/ (x%*l, y2) and
61 (C2x €20, ) — (Cx €221, o)
with
2%k—2
(z,y,0) = a® —y* + Z (02i417" + 09i127"Y)
i=0
s an R—miniversal unfolding of h = F\{z =0}
Proof: (g1, ..., gik—2) is obviously a basis. Then use theorem 1.
O

In the following, we will restrict to the simplest case, k¥ = 2, in order to keep the
calculations managable. In this case we have y =7 =2 and p’ = 6.

Next we will calculate the discriminant of p and see that the whole base space of
p satisfies the requirements of S in part 5. of the proof.

Claim 9 (a) Xsing = {(07 Y, 2y37 _3y2) | Y € (Ca 0)}
(8) D, ={(2t%, =3t%) | t € (C,0)}
Proof: Define & : ((C2 X (C2,0) — (C,0) : (w9, M, Ag) = 22 + 43 + A + Aoy

Then: X = @ '(0), 9% = 2z and g_i = 3y + \o.

And these partial derivatives determine X;,,. Thus we get
Xsing = {(ana )‘17 )‘2) | y2 = _%)\2} nx = {(07y7 2y37 _3y2) | y e (C,U)}
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and
D, = p(Xsing) = {(23/3, _392) |y € (C, 0)}-11

Claim 10 (o) (D,). = D,\ {0}

reqg
(8) p~toy has (for X € (Dp)reg) exactly one singular point (xx,yx, \) of type Ay
with (zx,yx, \) = (0,2, 2t3, =3t%) and t # 0 uniquely determined.

(v) (xxyn) & Cy
(6) (xx,yn) is in the injectivity domain of ¢ = (zo f,yo f) = (z,y?)

Proof:

(a) Clear, since D, is a cusp.
(ﬂ) Let A\ = ()\1,)\2) € (Dp)
)\1 = 2t3 and )\2 = —3t2

ptoy = {(z,y) | 2* + >+ 263 — 3t2y = 0}
= {(z,y) | 2>+ (y+2t)(y — 1)* = 0}

And d(2? + y® + 2t3 — 3t%y) = (2, 3y* — 3t%) = (0,0)

& =0 & y =12

S =0 & y=t,
since 2 + y3 + 23 — 3t?y = 0 has to be satisfied!
Thus, (0,t,2t%, —3t%) is the only singular point of p~t(x). In order to find
the type of the singularity, we have to look at the defining equation 2 +
(y+2t)(y —t)* = 0. For y close to t, (y + 2t) is nearly constant and non—
zero. With n =y —t and 0 # ¢ =~ y + 2t we have the equivalent equation:
2? + cn? = 0. Thus, the singularity is of type A;. (For the Milnor number
calculate the dimension of OC2’(O’t)/(x, y? — %) = Oc,/(n(n+2t)) = 1).

(7) di(zy) = (1,2y) has rank less than 2 if and only if y = 0.
Therefore: Cy, = {y = 0},
and thus: (z),y)) € Oy &y =0 X = (243, —3y3) = (0,0).

reg be given. There exists a unique ¢t # 0 with

(6) If (z,y) € p~ 'y with Y(ay) = Y(aryn), then we get = =z, = 0 and y* = y3.
Again y = —y, contradicts the defining equation of p~'(), since A =
(243, —393)-

Hence: (z,y) = (zx,y»)-

' Another way to see this is the following: We may identify our miniversal deformation with

(€2 x Cy0) 25 (€ X o)t (2,9, A0) > (22 + 57 + Aoy, Ao)

(2 3yP+ Xy
dp‘(o o 1)

Thus the rank of dp' is not maximal exactly if 22 = 0 and 3y? + Ay = 0 is fulfilled.

and
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Let us just recall that the map germ b: (C,0) — (C*,0) from 6. is given by
— (t,0), and thus, b(C) N D, = 0.

We will now have a look at the image of p : (X,0) — ((CQ, 0) under v x id and its

embedding in © : (H,0) — (C*, o).

Claim 11 (a) Y = (¢ x id)(X) = {(:c,y, A de) | (@24 M) =yly + AQ)Q}

(B) bi: (Co) — (C°%0)
(A, A2) = (AT+ 2A3,4)2,0,0,2),0)
is a base change such that q : (Y, 0) — ((CZ, 0) 18 1nduced isomorphic to
O: (I:I,o) — ((Cﬁ,o) (zyy,0) =0
where H is given by
H =00 = {z* — y® + 01+ o9y + 037 + o4y + 052% + 022y = 0}
(v) The reduced Kodaira-Spencer map dbyo) : C — C°® is not trivial.

Proof:

() Let (z,y,)) € &, i.e. x22+ v+ A+ )\22y =0.
Then we have (2% + A1)” = y2(y* + X2)”.
Thus ¢(ey) = (z,y%) = (z,7) satisfies the relation (22 + A)” = 7(7 + A2

And: (¢ x id)(X) = {(:r2 ) =yly + )‘2)2}-
( )
= {(z,y,0,1) € (Hx C?*)0) | by(») = O(ay.) = 7}
= {(z,y,0,)) € (C* x C° x C?,0) |
a2t — P 4 o + ooy + 031 + ouxy + 0522 + o2’y =0
and (01,...,06) = (AT 4+ 2A3,1)3,0,0,2),,0) }
= {(z,y,\) € (C* x C*0) |x4—y + A2+ 23+ I\ + 2022 = 0}

_ {(a:,y,)\) €(C2xC%0) | (22 + M) — (y— 20) (y + 1x) = o}
Thus (bl)*(I:I) — Vi(x,y,\) — (x,y - %)\2, )\) is the appropriate isomor-

phism with
(V,0) —= i (H) (H, o)
q pra (:)
(€2,0) ()



(7) The base change by is given by byt = (#2,0,0,0,—2¢,0) and therefore
dby(0) = (0,0,0,0, —2,0) is not trivial.

O

Thus, we get the base change b3 : ((C2, 0) — ((C x C°, 0) by b3(ai,0) = (0, b0 22))
and we can show that b3 ((CQ) is completely contained in the discriminant of Dg.

Claim 12 Dg Nb3(C? 0) = Do N ({0} x by (C?,0))
= {(0,374 - 2y37 3y2707 07 —2372,0) | T,y € ((C, 0)} = b3((C27 0)

Proof: In order to calculate the discriminant Dg we need to know the critical
locus Cg. O is given by

Ozw,o) = (z* — Y3 + 01 + 02y + o3 + o4y + 0522 + 06Ty, 0)

Therefore %—2 and %—2 determine whether or not a point (z,y,0) is in Ce:

g_i) = (42° + 03 + 04y + 2057 + 2067y, 0)
?9_2 = (=3¢ + 02 + 04z + 062°,0)

Given (z,y,0) € Co N O (b3(C)) = Co N by(X) we have the following:
by claim 11: o3 =04 =05 =0 (1)
by (1) and O(z.y.0)=(0,0): z* —y* + o1 + o9y + 052 = 0 (2)
By claim 11 oy, 09 and o5 satisfy the equation:
2\2 4
(01 — (305) ) - ﬁag =0 (3)

And since (z,y,0) is a critical point of © we have

%(z,y,a) =0 (4)
%(z,y,a) =0 (5)

Now, (4) and (1) imply that 42 + 2052 = 0 and hence
either z = 0 or 05 = —22°. (6)
Similarly, (5) and (1) give —3y* + 0 = 0 and thus

oy = 3y°. (7)
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e If z =0, we get from (2) and (7):
oy = —2y° (8)
Furthermore, (3),(7) and (8) imply:

4
0= (-2 — j03)" = 5= (3")" = 3 (" + f502)

And thus either o5 = 0 or 02 = —16y°.
Therefore we get

_J (0, —2y%,34%,0,0,0,0)
G(x’y’o—) o { (0, —2y37 3?J2, 07 07 05, 0)7 O-g = _16y3 (9)

e If z # 0, we get from (2),(6) and (7):

oy =t — 23 (10)
Furthermore, for any z,y € (C,0) o1 = ' — 23, 0y = 3y? & 05 = —222
fulfill the equation (2).
Therefore we get
Ozy0) = (0,21 — 29%,352,0,0, —222,0). (11)

(9) and (11) imply that b3(C? 0) C De: namely, given A = (A1, As) € (C?0)
choose some (x,y) € ((CQ, 0) such that > = —)\; and y = —%)\2.

Then by = (0,A7+ 2A3,4)2,0,0,2),0)
= (0,2 — 293 3y%,0,0, —222,0)

- @(Iayaz472y3a3y270a0772x270)

and %_(3(l‘,y,l‘4—2y3,3y2,0,0,—2562,0) — 4:1:3 - 41‘3 — 0
%(Iay@4*2y3,3y2,0,0,*212,0) = _3y2 + 3y2 = 0

Thus (z,y, 2" — 2y3,3y?,0,0, —222,0) € Cg and therefore bz(xi,\) € Dg.

O

We have now seen, what happens to the base spaces. Let us check the total
spaces and fix the result in the following diagram.
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(z,y) — (z,y,—¢(z,y),0)
(2,y,A1,22)—» (Ixy2,>\1,>\2)_> (z,y2+%A2,A1,>\2)
— (2024322 + F23.523.00.201.0)
. (m,y2+%x2,xf+727Ag,%xg,o,o,ml,o)

¢ — X — Y —VH — H —H=C*xC°

idX—pXx0 P Xid =] idX by =

C b=—idx0 (CQ = (CQ = (C2 by (CG Oxid (¥ (CG

p=zof P pro

. (o,xf+§7xg,%xg,o,o,le,o)
A1 A2) —» (Ah2) — % (A22) —» (k%+%k%,%%,o,o,2k1,0)

t - (=t,0)

Figure 3

We will now slightly deviate from the strict lines of Némethi’s proof to show that
10. is not violated, and we will later explain why this alteration does not matter.
Instead of choosing a line ¢’ in C? which intersects the line {\; = 0} we choose
a line L parallel to {\s = 0} to construct a basis of vanishing cycles for (Vo).
Again the reason for this is to keep the calculations as simple as possible.

Claim 13 (i) Given A = (2t*, =3t*) € (D,),,-
hen (zx,yx, A) = (0,1,2t3, —3t%) is the only singularity (of type Ay) in
p ') and

b4(zk,yk,)\) = 53(0,t2,2t3,73t2) = (0, —t2, 2t6, 3t4, 0,0, 4t3, 0)

(it) Given the line L = {\y = a} C (C*0), a # 0.
We have:

D,NL={(2t3,a),(—2t3,a) | t, fixed such that a = —3¢2},

bs(D, N L) = {(0,—%a? £a?,0,0,+4t3,0) | a = —3¢2}

and
54(0’ j:ta’ j:2tz’ CL) = (0’ éa’ _%CL?’, %CLQ, 07 07 :I:4t27 0) .
(’L'ﬂ) {/et L, = bg(L) = {(0,'[;2 _|_ 2170/3, %Q/Q, 0,0, 2.[;, 0) | t e ((C, 0)}’ then 6—1([/) —
ba(p~*(L))

= {(z,y, % + £d% 30%,0,0,2t,0) | t € (C,0),
(@ 41" — (v = 30) (v + S)" = 0
= {(z,y, + £a%£a%0,0,2t,0) | t € (C,0),
ot — P+ 12+ Zab + Lay + 2ta® = 0}
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Proof: Clear from claim 10, claim 11 and figure 3.

Now we calculate the set of singular points in the fibers over L'.

Claim 14 ES
= {(=, v, o) e O (L) (x,y,a) singular in 7' (O(@.0))}

|
= {( —%a3,%a2,0,0,i t3 0)}
U{(xt, 50,12 + Za®, 5a%,0,0,26,0) [ t € (C,0),t = —a?}
Proof: Given (z,y,0 ) € Ls. By L' C ({0} x C°,0) we have O@y.0) = (0,0) and
there exists a t = t(o) € (C,0) with
o= (*+ %a*, £a%,0,0,2t,0).

We are interested in the singularities of

0 00 = {(z,y.t+ £d* 3a%0,0,2¢,0) | t = t(0),
(x4—y)+(t2+ )+1a2y+2tx =0}

To calculate these singularities we have to investigate the derivative of

1 2
Gy = ot — P + 22 + Zad’y + —a® + 12

3 27
We get
% = 4234+4tr = 0 & z=0o0r —a2=t
2
g—g = “3yPl+1id® = 0 & ¥’ =1td>= (30

o [f x =0, then y = —la will imply that 0 = g(z.y) = 2.
Thus y = ——a is possible only for ¢ = 0, in which case we get

(x,y,0) = (0,—%@,% 142,0,0,0, 0)

73

For y = %a we have 0 = g(zy) = t* + %a?’.

Thus y = 5a is possible only for * = —2-a® = 415, in which case we get

(v,y,0) = (0, éa —2—27a ,ga 0,0, £4t3 0).

e If z # 0, then choose an z; such that —z? = ¢, thus z = +u,.

Ify=-— a we have 0 = g(oiy) = (2} +t)2 + (y — %a) (y + %a)2, which is
satisfied for all t € (C,o).
Thus we get

{(xz, —%a,1* + Za®, £a?,0,0,2t,0) | t € (C,0)},

which is a curve in Lg. Whereas for y = %a we get 0 = g(z,y) = 21‘7(13, which
is a contradiction. So y = %a is not possible.
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Thus Lg is as stated above.

Remark 7
For t = t( ) = £2t3 we get 2?7 = :|:2t3 or y = —2a® # 0 and with 0 =
(—2—7a —a ,0,0, +413 0) the fiber ©~'(0,0) has three smgular points, namely

(z, —3a,0) with z € {0,2% = —t},

whereas all other fibers over L' have only two singularities.
In particular: For A = (£23 a) and (zy, yx, A) = (0, +t,, \) we have that

baaany) = (0, 3a, —=a®, 2a?,0,0, +412,0)

are isolated in Lg.
To see the type of these singularities, we look at

dg @ ~
062’(0’%a)/<8_g; 8_Z> = O(C2,(O,%a)/(x(x2 + Qt), (y — %a) (y + %a)) = 062’0/(1‘, T/),
where n =y — 1a.

Thus, the Milnor number of the singularity is 1 and its type is A;.

The aim of part 10. in the proof of theorem 4 is to ensure that none of the
vanishing cycles needed in the construction over the line ¢ (or L respectively)
gets mapped to a cycle with singularity. We thus have to make sure that we can
choose our paths in ¢ (or L respectively) and the cycles over these paths such
that the cycles do not meet the preimage of Lg in X in any other point than the
singularities (zy,yx, A) over £ (or L respectively). We will call that part of the
preimage of Lg in X under by Xoad-

Claim 15 The preimage of the curve of singularities

{(ot, =50, 4 Fa*, 30%,0,0.21,0) [ £ € (C.o), 2 = —t}

under the map by is

Xbad - {(xtagtata a) | gt = —a, S ((C7 0)}

and

by 0. 0, 2a? 10200442 0) = (0, o, £263 a).

13— 27

Proof: Given (lb‘t, sa, 1% + 227 —a ,0,0,2t, 0) for t € (C,0) denote by (z, g, \¢)

a point in its preimage under b4 (Wthh is indeed one of two points). We know
from claim 11 that A\, = (¢, a).

_— R | . 9 __
Furthermore, 7, = z; and ; + 5a = —3a, which means j;=-
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Figure 4
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Remark 8
If we assume that a is a negative real constant of small absolute value, we have:

ta:% | a|

(54) - (ES \ 54(0,ta,ﬂt2,a)> = {(xt, ++/] al,t, a) |22 = —t, t e ((C,o)} = Xpaa-

Claim 16 For this choice of a it is possible to find paths u, and u_, joining
a basepoint \g in L to the critical values A, = (2t3,a) and A\ = (=23 qa)
respectively, and to find corresponding smooth families of cycles in p~' (L) but
which do not meet Xyoq.

Proof: We are interested in the intersection of Xy,g with p~(u [0, 1]) where u = u
or u = u_ are the paths joining some base point g in L to the singular points

A= (28,0) = <2<L;f|>a) and A = (=26, a) = (-2(@)(1)

We have to show that we may simultaneously choose a cycle in each u(¢) such that
the family of cycles, defined by this, is smooth and none of the cycles actually
meets Xp,q. In order to see what happens, it is quite instructive to choose the
paths v, and u_ to lie completely in T' = [—23,2t3] x {a}, although they will
not be suitable for our final construction.

If we now project p~1(T") to the first two coordinates (z, y) and omit the imaginary
part of y, we get figure 4, which is a slight modification of the picture in [B-K],
page 164.

Dotted curves denote the intersection of a certain level set with the Im(x)-Re(y)
plane, whereas full lines correspond to the intersection with the Re(x)-Re(y)
plane. The green curves come from the singular level set p~'(x_) and the brown
ones from the singular level set p~'(x;). The blue curves correspond to the non—

2
singular level set p~'(ta) with ¢ = 0. Varying ¢ between —2¢3 = —2 <@> and

3
2
a : .
23 =2 <¥> causes a contraction or expansion of §; or J_.

We have chosen ¢t = 0, since that is exactly the value where the cycles d, and §_
meet the projection of Xj,; in one point, as does their non—projected preimage
w.r.t. Xpeq. The projected AXp,q consists of two curves, each with two branches,
in the form of a cross. These curves are exactly

(B (=Tl VTaTp) o (o -yl VTaT})

since p~'(T) N Xpoq = {(:r,y,t, a)| (t,a) €T, y=+/|al, 2? = —t}, and they
are drawn in red colour.

This picture gives a sufficiently good indication how p~'(,a) with (¢,a) € T looks
like.
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Since we want to choose u, and u_ in I, we will have that the point (0,y)is a
member of at least one of the two paths, and w.l.o.g. we may assume that (0, )
lies on u, . If we now want to construct the family of vanishing cycles over u such
that their projection lies in the Re(x)-Re(y) plane, the non—projected preimage

of 5, will be one of the cycles, and it will intersect Xp,q in (0, | al,0, a).

To avoid this, one could think it would be sufficient to move d, slightly off the
Re(x)-Re(y) plane in the Im(x) direction so that it no longer intersects the red
cross. However, this enforces us to move very close fibers in the same way. If we

now look at the intersection point <0, —/]a |) of 64 with the Im(x)-Re(y) plane,

then we see that moving a cycle in the Im(x) direction implies an increasing of
the Re(y)-par of this intersection point. Thus, some other cycle (corresponding
to some (t,a) on uy with 0 < ¢ < 2¢3) will have Re(y)-part /| a | and therefore
meet Xp,q. Pushing §, and nearby cycles quite far off the Re(x)-Re(y) plane
corresponds to moving the trouble point (¢, a) closer to the critical point (£3,a).
This shows that the choice of v, and u_ in [' will not work. But let us have a
closer look at why this is the case and suppose again w.l.o.g. that (0,a) lies on
Uy

Since we may assume that the trouble occurs in a fiber p~'(t,0) with ¢ close to zero
and for ¢ sufficiently small, the fiber p~'(t.0) may be locally flattened around the

"two” points of Xyeq NP (ta) N ((C X {\/| a |} X (C2>. This leads to the family
of pictures in figure 5a.

The arrows indicate, in which direction the two points move as t increases. Thus,
we have two points coming together on the Re(x)-axis, collapsing in a single
point and spreading out again in the Im(x) direction. (see figure 5b)

This crossing point makes it impossible to find a suitable family of cycles with
the restriction of v, and u_ to I'.
We therefore do the following construction, which is due to Jan Stevens:

Choose 0 < e < | a | and set
3
U {eei® [ a € [0,7]} U [w(%') D « {a}.

('

Choose the base point g in L to be (—¢,a) and the paths vy and u_ in T” in the

%
obvious way, i.e. such that u([0,1]) = ({56” | € [0, 7]} U [5, 2<|;)L|> ]) X

{a} and u_((0,1]) = [-2(@)3,_51 « {a}.

Thus, u_ causes no problems. We may choose the cycles over u_ such that their
projection lies in the Im(x)-Re(y) plane. They will not meet Xj4.
It remains now to show that such a choice of a smooth family of cycles over u,

3
is also possible. For the part where u, is [5, 2 (@) ] x {a} we may choose
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the cycles such that their projection lies in the Re(x)-Re(y) plane as suggested
by figure 4. Again they will not meet Xp,y. Thus, we only have to find the cycles
over {ee'® | a € [0, 7]} x {a} such that they fit smoothly together, avoid X4,
and for o = 0 come smoothly together with those whose projection lies in the
Re(x)-Re(y) plane.

Again we have to worry about the points in Xp,qNp~! (cei*)N ((C X {\/ | a |} X (CQ)
= Q.. But keeping in mind that the projection of X}, N ((C X {\/| a |} X (CQ)

gives the picture in figure 6, we get for p~!(cei), o running from 7 back to 0, the
family of pictures in the figures 7a and 7b, after a local flattening around @,,.

Given a fixed fiber, it is clear that, once we are away from X},4, we may deform
our cycle however we want. So the question that remains is whether we can
choose the family of cycles locally at (), such that it fits smoothly with the other
family. But this problem can be solved by the family of pictures in the figures 8a
and 8b. This proves the claim.

Remark 9

Claim 16 ensures that the construction of vanishing cycles over the paths b3 ou,
and bz ou_ in ©7'(L') is possible, since the transported families of cycles do not
meet, the singular curve 54(Xbad). The vanishing cycles constructed in this way

lie in (V,),,, = (b(3,))

However, we have still to explain why it does not matter that our line L does not
intersect {Ay = 0}, and that ), is not contained in {Ay = 0}. For this, we recall
that the choice of ¢ = {e\; + Ay = a} with 0 < ¢ < ¢ < 1 was made in order
to ensure that a construction like the one in claim 16 should be possible. So at
least its spirit is not violated.

Furthermore, we notice that both, ¢ and L, are small perturbations of {\; = 0}
and thus their images ¢’ and I’ are small perturbations of each other. Hence, any
small perturbation ¢” of ¢’ will also be a small perturbation of L, and it is indeed
such a perturbation ¢” which is needed for the construction of the geometric basis
for (V',0) in the proof of theorem 4.

Finally, one could think that the fiber V(’_5 0) = O (b3(-¢,a)) was worse than

Y

the fiber V(’E 0) = 07(b3(2,0)), or equivalently V( was worse than V(g 0).

—£,a)
But this is indeed not the case. Both V(’_8 a) and V{g 0) have two singularities

of type A, and they come from two points in V( and V(£

a’

—¢,q) 0) respectively,

where 1 X id is not immersive.
Thus, it does not matter that we worked with L = {)\y = a} instead of ¢ =
{eA1 + A2 = a} to keep the calculations simple.

This finally proves that the main error lies in 11. where Némethi assumes that
we may choose a small perturbation of /' which suits.
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Claim 17 We cannot perturb L' (or (') to get {" by a "small” perturbation such
that 0" intersects Dg transversally in 6 points giving rise to a geometric basis.

Proof: Suppose such a perturbation /" exists. The adjective ”"small” implies that
two of these 6 intersection points contribute the vanishing cycles coming from
V)\O = pil(,\o) via (@(b?’()‘o)))reg = (V)(O)reg'
Since the constructing machinery for these cycles is such that during the pullback
the cycles do not meet the additional singularities in any fiber, they may actually
be separated from the vanishing cycles coming from those additional singularities
in the way described in 12. Thus, we get a disconnected Dynkin diagram, which
leads to a contradiction. Therefore /" cannot exist.

[m]

We will close this section by looking at what the different fibers Vy,, V) and
©~!(s) "are” — and how the vanishing cycles lie in them.

V3, is @ Milnor fiber of an ordinary cusp and thus has the homotopy type of two
circles. Since the cusp has only one irreducible component, we may identify V),
with a torus with one hole and the vanishing cycles §, and §_ may be taken as
indicated in figure 9. Similarly, we come to figure 10a for © 1(s) since O 1(s) is
the Milnor fiber of an Eg—singularity. Choosing a geometric basis in ©~!(s) in the
way indicated in figure 10a, there are two different ways to see, that VY must
more or less look like as shown in figure 11:

e 1, is the image of V), under an injection with two non-immersive points.

e The two Ay—singularities of Vy give rise to non-intersecting vanishing cycles
when going from V} to ©7'(s); and thus, we may regain V from ©~'(s) by
contracting the cycles d; to d4 simultaneously.

The first way also suggests that the vanishing cycles induced from V; lie in Vi
as shown in figure 11.

If Némethi’s construction in part 11. of the proof of theorem 4 was possible, we
would get the situation in figure 10b and thus the Dynkin diagram Eg had to be
equivalent to the disjoint union of three Ay’s. This is not the case. In 3.1 we
gave three different suggestions 1.-3. of what could possibly happen instead. If
any small perturbation intersects in the wrong number of points (1.) we would
get a situation as described in figure 10c. Suggestion 2. that we loose ¢, and ¢ _
would give us figure 10a. And finally number 3. is represented in figure 10d.

As we already mentioned, we cannot decide which of these pictures describes
the situation best. Indeed, it seems very likely that the ”correct” choice of the
deformation ¢” could lead to any of the figures 10a, 10c and 10d and that just
figure 10b cannot be achieved by any small perturbation at all.
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