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8. Basics on holomorphic functions

Definition 8.1. Let U ⊆ C be an open subset. A function
f : U → C is called holomorphic, if the complex derivative

df

dz
(z0) = lim

z→z0

f (z)− f (z0)

z − z0

exists for any z0 ∈ U .

There are many equivalent characterizations of holomorphic
functions, like for example as solutions of the Cauchy-Riemann
differential equations. For us, the following is the most important:

Proposition 8.2. Let U ⊆ C be an open subset. A function
f : U → C is holomorphic, if and only if for any z0 ∈ U there
exists an r > 0 with

Ur(z0) := {z ∈ C : |z − z0| < r} ⊆ U

together with complex numbers a0, a1, a2, . . . ∈ C such that

f (z) =

∞∑
n=0

an(z − z0)n

holds for all z ∈ Ur(z0).

A function which can be written everywhere locally as a converging
power series is called complex analytic. In fact, the power series
is obtained as the Taylor expansion by iterated computing of
complex derivatives.

One example is the complex exponential function
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exp(z) :=

∞∑
n=0

1

n!
zn.

Remark 8.3. Properties of a holomorphic function f : U → C

• f is a continuous map

• if f is non-constant, then f is an open map (i.e. f maps
open sets to open sets)

• f ′ := df
dz is holomorphic

• Identity theorem:

If g : U → C is holomorphic, and W ⊆ U a non-discrete
subset such that f |W = g|W , then f = g.

This few basic properties have very important consequences for
holomorphic functions. Here are a few examples.

Lemma 8.4. Let f : U → C be a holomorphic function, which
is not constantly 0. Then the vanishing locus

V (f ) := {z ∈ U : f (z) = 0}

is a discrete subset.

Proof. Assume that the vanishing locus is not discrete. Put

W := V (f ) and g ≡ 0.

Now apply the identity theorem to
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f |W = 0|W

and obtain a contradiction.

Theorem 8.5. (Liouville) Let f : C → C be holomorphic. If
there exists an upper bound R > 0 such that |f (z)| < R for all
z ∈ C, then f is constant.

The main object of complex analysis is the following generalization
of holomorphic functions.

Definition 8.6. Let U ⊆ C be an open subset, and let ∆ ⊂ U
be a discrete subset. A function f : U r ∆ → C is called a
meromorphic function on U if for any z0 ∈ U , there exists an
r > 0 with

Ur(z0) := {z ∈ C : |z − z0| < r} ⊆ U

together with some k ∈ Z and complex numbers
ak, ak+1, ak+2, . . . ∈ C such that

4



f (z) =

∞∑
n=k

an(z − z0)n

holds for all z ∈ Ur(z0) r ∆.

Example 8.7. Consider the function

f (z) :=
exp(z)

z
=

∞∑
n=0

1

n!

zn

z
=

∞∑
n=−1

1

(n + 1)!
zn

as a meromorphic function on C, with ∆ = {0}.

Example 8.8. Consider the rational function on C

f (z) :=
z − 1

z3 − z2

By factorization of the denominator

z3 − z2 = z(z + 1)(z − 1)

we find for the exceptional set ∆ = {−1, 0, 1}.

Note that f is complex differentiable at z0 = 1, since by cancella-
tion

f (z) =
1

z(z + 1)
.

One says that f : C r ∆ → C extends holomorpically over
z0 = 1.

Recall the formula
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1

z + 1
=

∞∑
n=0

(−z)n,

which is valid as long as |z| < 1, i.e. for z ∈ U1(z0).

Using this, we obtain for the case z0 = 0:

f (z) = 1
z(z+1)

= 1
z

∞∑
n=0

(−1)nzn

=
∞∑

n=−1
(−1)n+1zn

This formula holds for z ∈ U1(0) r {0}.
Similarly, we compute for z0 = −1:

f (z) = 1
z(z+1)

= 1
z+1

−1
1−(z+1)

= 1
z+1 (−1)

∞∑
n=0

(z + 1)n

=
∞∑

n=−1
(−1)(z + 1)n

Here we need the condition z 6= −1 and |z + 1| < 1, which is
equivalent to z ∈ U1(−1) r {−1}.

Remark 8.9. Is has become an accepted habit to write for a
meromorphic function

f : U → C
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even though strictly speaking there may be some points in U (con-
tained in ∆), where the map f is not defined.

Definition 8.10. Let f : U → C be a meromorphic function.
Let z0 ∈ U , and let

f (z) =

∞∑
n=k

an(z − z0)n

for all z ∈ Ur(z0) for a suitable r > 0. Let ak 6= 0.

We call

ordz0(f ) := k

the order of f at z0.

We say that

f has a pole of order k at z0, if k < 0

and

f has a zero of order k at z0, if k > 0

Note: ordz0(f ) = 0 ⇔ f (z0) ∈ Cr {0}.
More generally, for a complex number v ∈ C, we say that f as-
sumes the value v to the order k at z0, if the meromorphic func-
tion

fv(z) := f (z)− v
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has a zero of order k at z0.

Exercise 8.11. Show that for a meromorphic function f holds

ordz0(f ) = k

if and only if

g(z) :=
f (z)

zk

extends holomorphically over z0, with g(z0) 6= 0.

Remark 8.12. Meromorphic functions on U are such holomor-
phic functions f on U minus some discrete subset ∆f , where for
any z0 ∈ ∆f the limit

lim
z→z0

f (z)

has a ”controlled behavior”: either the limit exists in C, in which
case f extends holomorphically over z0 ( ⇔ ordz0 ≥ 0), or the
limit is ∞ ( ⇔ ordz0 < 0).

There are examples of holomorphic functions f : U r {z0} → C,
where no well-defined limit exists. Such a function is not mero-
morphic.

Notation 8.13. Let U ⊆ C be open. We write

O(U) := {f : U → C such that f is holomorphic on U}

and
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M(U) := {f : U → C such that f is meromorphic on U}

Remark 8.14. For the algebraically interested:

Let f, g ∈ O(U). By defining f + g and f · g pointwise, we see
that O(U) has the structure of a commutative ring.

Let f, g ∈ M(U). Let ∆f and ∆g be their exceptional sets, and
let Vg be the set of points, where g vanishes. By 8.4, the set Vg is
discrete. Therefore

f

g

is meromorphic over U , with exceptional set contained in ∆f ∪Vg.
(In fact, 1

g extends holomorphically over all points of ∆g.)

In particular, for the quotient holds f
g ∈M(U).

This makesM(U) into a field!

Definition 8.15. The Riemann sphere is the set Ĉ := C∪{∞},
together with the following topological structure:

For any point p ∈ Ĉ, and any r > 0, we define circular neighbour-
hoods

Ur(p) :=

{
{z ∈ C : |z − p| < r} if p ∈ C
{z ∈ C : |z| > 1

r} ∪∞ if p =∞

A subset V ⊆ Ĉ is called open, if for any point p ∈ V there exists
a circular neighbourhood contained in V .
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Exercise: Ĉ is compact.

Remark 8.16. Let f ∈M(U) be a meromorphic function on an
open subset U ⊆ C. By defining f (z) := ∞, if z is a pole of f ,
we can view f as a map

f : U → Ĉ

By remark 8.12, we make an identification

M(U) =

 f : U → Ĉ such that
f is continuous and

f is holomorphic on f−1(Ĉ r {∞})


9. Elliptic functions

Definition 9.1. Let f ∈ M(C). A complex number w ∈ C is
called a period on f , if for all z ∈ C holds

f (z + w) = f (z).

The set of all periods of f is denoted by

Per(f ) := {w ∈ C : w is a period of f}.

Example 9.2. Consider the exponential function f (z) = exp(z).
We find

Per(exp) = {2πim : m ∈ Z} = 2πiZ.
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Proposition 9.3. Let f ∈ M(C) be a non-constant mero-
morphic function. Then (Per(f ),+) is a discrete subgroup of
(C,+).

Proof. (i) It is easy to see that Per(f ) is an Abelian group with
respect to “+”.

Clearly, 0 ∈ Per(f ).

For w1, w2 ∈ Per(f ), we find

f (z + w1 + w2) = f (z + w1) = f (z)

for all z ∈ C, and thus w1 + w2 ∈ Per(f ).

For the inverse of a period w ∈ Per(f ), consider

f (z) = f (z − w + w) = f (z − w)

and thus −w ∈ Per(f ), too.

(ii) By definition,

f (w) = f (0)

for all w ∈ Per(f ). If we write c := f (0), then

f |Per(f ) ≡ c

is constant. If Per(f ) is not a discrete subset, then the identity
theorem 8.3 implies that f is constant, a contradiction. �
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Proposition 9.4. Let (Ω,+) be a discrete subgroup of (C,+).

Then Ω is exactly one of the following:

• Ω = {0}

• Ω = ω Z = {ωm : m ∈ Z}, where 0 6= ω ∈ C

• Ω = ω1 Z + ω2 Z = {ω1m1 + ω2m2 : m1,m2 ∈ Z},
where ω1 and ω2 are linearly independent over R.

Remark 9.5. We say that the discrete subgroup Ω is of rank 0,
1 or 2, respectively.

A discrete subgroup of rank 2 in C is called a lattice.

Proof. of proposition 9.4

Note that by assumption, Ω is discrete. So C r Ω is open, and
hence Ω is closed.

We may assume Ω 6= {0}. For the proof we view C as a 2-
dimensional vector space over R.

Case 1. Suppose that Ω is contained in a line. This is equivalent
to saying that any 2 elements of Ω are linearly equivalent over R.

Note that the line must necessarily contain the origin 0.

Since Ω is discrete, we can find a period 0 6= ω0 ∈ Ω, for which
|ω0| is minimal.

For any other 0 6= ω ∈ Ω, there exists a scalar λ ∈ R, such that
ω = λω0.

Claim: λ ∈ Q.
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Otherwise, there exists sequences of integers (pn)n∈N and (qn)n∈N
in Z, such that

lim
n→∞

pn
qn

= λ

such that pn
qn
6= λ for all n ∈ N.

Since Ω is an Abelian group, we have

pnω0 − qnω ∈ Ω

for all n ∈ N. In particular,

(pnω0 − qnω)n∈N

is a sequence of points in Per(f ) r {0}, which converges to the
point 0 ∈ Per(f ). But this contradicts the discreteness of Per(f ).

Claim: λ ∈ Z.

Otherwise, we can write λ as a fraction λ = p
q with gcd(p, q) = 1

and q 6∈ {−1, 1}. We can to thus find a, b ∈ Z such that

aq + bp = 1.

We compute

ω = (ap + bq)ω = apω0 + bpω.

Since by definition ω = p
qω0, this implies

1

q
ω0 =

1

p
ω = aω0 + bω ∈ Ω.

This, however, contradicts the minimality of ω0.

Case 2. Suppose that Ω contains two elements ω1 and ω2, which
are linearly independent over R. We may assume that |ω1| in
minimal among the elements Ω r {0} and |ω2| is minimal among
the elements not linearly equivalent to ω1.

For any 0 6= ω ∈ Ω, there exist unique λ1, λ2 ∈ R, such that

ω = λ1ω1 + λ2ω2
13



We find

w − λ2ω2 = λ1ω1 ∈ Ω′

where

Ω′ := Ω ∩ L for the line L := ω1R
Note that Ω′ is a discrete subgroup of C. By case 1, we must have
λ1 ∈ Z.

Analogously, we conclude λ2 ∈ Z.

Definition 9.6. Let Ω ⊂ C be a lattice. An elliptic function
with respect to Ω is a meromorphic function f ∈ M(C) such
that

Ω ⊆ Per(f ).

The set

K(Ω) := {f ∈M(C) such that f is elliptic w.r.t. Ω}

is called the field of elliptic functions with respect to Ω.

Note. It is not hard to verify the field axioms for K(Ω).

Remark 9.7. For a constant function f clearly holds Per(f ) = C.
Therefore, a constant function f is elliptic with respect to any
lattice Ω.

Proposition 9.8. Let Ω ⊂ C be a lattice, and let f be holo-
morphic on C and elliptic with respect to Ω.

Then f is constant.

Before we prove this proposition, let us introduce some notation.
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Notation 9.9. Let Ω ⊂ C be a lattice.

A semi-open parallelogram of periods of Ω is a set

Pω1,ω2 := {t1ω1 + t2ω2 ∈ C for 0 ≤ t1, t2 < 1}

where ω1, ω2 ∈ C are R-linearly independent generators of the
lattice Ω = ω1Z + ω2Z.

The set

P ω1,ω2 := {t1ω1 + t2ω2 ∈ C for 0 ≤ t1, t2 ≤ 1}.

is called a closed parallelogram of periods of Ω.

Proof. of proposition 9.8.

Let Ω = ω1Z + ω2Z and f ∈ O(C) ∩ K(Ω).

The function f being elliptic means that f is periodic with respect
to Ω.

Therefore we have

f (C) = f (Pω1,ω2) = f (P ω1,ω2).

As a holomorphic function is in particular a continuous function.

Hence it maps compact subsets of C to compact subsets.

Since P ω1,ω2 is compact, so is f (P ω1,ω2). Therefore, by the above
identity, f (C) is compact.

In particular, the values of f are bounded.

Now the theorem of Liouville implies that f must be constant. �
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Theorem 9.10. Let f ∈ K(Ω) be a meromorphic function,
which is not constantly zero, and elliptic with respect to a lat-
tice Ω.

Let P = Pω1,ω2 be a semi-open parallelogram of periods of Ω.

For a point z ∈ P let ordz(f ) denote the order of f at z.

Then there are at most finitely many points z ∈ P , such that
ordz(f ) 6= 0, and ∑

z∈P

ordz(f ) = 0.

The proof of this statement is a consequence of the very strong
Residue Theorem on meromorphic functions.

Remark 9.11. Note that ordz(f ) 6= 0 if and only if z is either a
pole or a zero of f .

If f (z) = 0, for some z ∈ P , then ordz(f ) > 0. Thus the sum

n(f ) :=
∑

z∈P such that f(z)=0

ordz(f ) ≥ 0

counts the number of zeroes of f inside P with multiplicities
given by the order of f at the respective points.

Conversely, if z is a pole of f , then ordz(f ) < 0. By definition, the
order of the pole is given by −ordz(f ), and therefore the sum

p(f ) :=
∑

z∈P such that z is a pole

(−ordz(f )) ≥ 0

is counting poles in P with multiplicities.
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The essence of the above theorem is the important fact, that these
two sums

n(f ) = p(f )

are in fact the same!

Definition 9.12. Let f ∈ K(Ω)r {0} for some lattice Ω. The
order of f is defined by

ord(f ) := n(f ).

Remark 9.13. (i) Note that n(f ) = 0 is equivalent to p(f ) = 0.

Hence ord(f ) = 0 is equivalent to f being holomorphic on Pω1,ω2,
and therefore, by periodicity, on all of C.

From proposition 9.8 it follows that this is the case if and only if
f is constant.

(ii) One can show that there exists no elliptic function of order 1.

10. The Weierstrass function

Throughout this section let Ω = ω1Z + ω2Z be a lattice, with
ω1, ω2 ∈ C linearly independent over R.

Definition 10.1. Let k ∈ N. The Eisenstein series of weight k
with respect to Ω is

Gk(Ω) :=
∑

ω∈Ωr{0}

1

ωk
.

Proposition 10.2. The Eisenstein series Gk(Ω) converges ab-
solutely for all k ≥ 3.
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Proof. For m ∈ N , consider the two finite sums

Sm :=
∑

ω = m1ω1 + m2ω2

−m ≤ m1,m2 ≤ m

1

|ω|k

and
Tm=1 := Sm+1 − Sm.

Note that Sm consists of (2m + 1)2 summands, and Tm of 8m
summands.

As formal sums,

∑
ω∈Ωr{0}

1

|ω|k
=

∞∑
m+1

Tm

Therefore to show the absolute convergence of Gk(Ω), it suffices to
show the (absolute) convergence of the sum on the right hand side.

Define
a := min{|ω1|, |ω2|, |ω1 + ω2|, |ω1 − ω2|}

and
b := max{|ω1|, |ω2|, |ω1 + ω2|, |ω1 − ω2|}.

For an element ω = m1ω1 + m2ω2 with −m ≤ m1,m2 ≤ m we
obtain the estimates

ma ≤ |ω| ≤ mb

and therefore

1

(ma)k
≥ 1

|ω|k
≥ 1

(bm)k
.
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From this we conclude

8m

(ma)k
≥ Tm ≥

8m

(bm)k
.

Now the series we are interested in is bounded by two series, which
converge for k ≥ 3:

8

(a)k

∞∑
m=1

1

mk−1
≥

∞∑
m=1

Tm ≥
8

(b)k

∞∑
m=1

1

mk−1
.

Hence it must be converging, too. �

Remark 10.3. For any odd number k ∈ N holds Gk(Ω) = 0.

Indeed, by the absolute convergence of the series, we may group
the summands into pairs

1

ωk
+

1

(−ω)k
= 0

Proposition 10.4. The series

℘(z) :=
1

z2
+

∑
ω∈Ωr{0}

(
1

(z − ω)2
− 1

ω2

)
defines an elliptic function with respect to Ω.

Definition 10.5. ℘ is called the Weierstraß ℘-function.

Remark 10.6. Note that ℘ is a symmetric function.

Indeed, for all z ∈ C and all ω ∈ Ω we have

1

(z − ω)2
=

1

(−z + ω)2
.
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Once we have established that ℘ is a meromorphic function, we
may reorder the series by interchanging ω with−ω, and thus obtain
℘(−z) = ℘(z) for all z ∈ C.

Proof. of proposition 10.4

(i) Let R > 0. We can split the above series as

℘(z) = g(z) + f (z),

where

g(z) :=
1

z2
+

∑
ω ∈ Ω r {0}
|ω| ≤ 2R

(
1

(z − ω)2
− 1

ω2

)
and

f (z) :=
∑

ω ∈ Ω r {0}
|ω| > 2R

(
1

(z − ω)2
− 1

ω2

)
.

Note that g is just a finite sum, so it is clearly a meromorphic
function on the open disc UR(0).

We claim that f is holomorphic on UR(0).

From this it then follows that ℘ is meromorphic on UR(0), and
since this holds true for any R > 0, the function ℘ is meromorphic
on all of C.

To prove the claim, we need to show, that f converges absolutely
and uniformly on the disc UR(0), where R > 0 is fixed.

For a point z ∈ UR(0) and an element ω ∈ Ω with |ω| > 2R, we
have the following two inequalities:

|2ω − z| ≤ |2ω| + |z| ≤ 3|ω|
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and

|z − ω| ≥ |ω| − |z| ≥ |ω| − |ω|
2

=
|ω|
2
.

From this we derive the following estimate for the summands of f .∣∣∣ 1
(z−ω)2

− 1
ω2

∣∣∣ =
∣∣∣ω2−z2+2zω−ω2

(z−ω)2ω2

∣∣∣
= |z| |2ω−z|

|z−ω|2|ω|2

≤ R·3|ω|
|ω|2
4 |ω|2

= 12R 1
|ω|3

Summing up gives the bound

∑
ω ∈ Ω r {0}

|ω| > 2R

∣∣∣ 1
(z−ω)2

− 1
ω2

∣∣∣ ≤ 12R
∑

ω ∈ Ω r {0}
|ω| > 2R

1
|ω|3

≤ 12R ·G3(Ω)

which proves absolute convergence.

Since the Eisenstein series in independent of z, the convergence is
uniformly as well.

We have thus shown that ℘ is a meromorphic function. We still
need to see that ℘ is elliptic, i.e. periodic with respect to Ω.

(ii) Note that because of the summands 1
(z−ω)2

we will have a pole

for any z ∈ C with z ∈ Ω.
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So consider z ∈ CrΩ. We compute the first derivative ℘′ of ℘ by
differentiating the summands of the series:

℘′(z) =
−2

z3
+

∑
ω∈Ωr{0}

−2

(z − ω)3
=
∑
ω∈Ω

−2

(z − ω)3
.

Note that since ℘ is meromorphic, so is ℘′, and hence the series on
the right is absolutely convergent. We therefore may reorder the
summands, to obtain

∑
ω∈Ω

−2

(z − ω)3
=
∑
ω∈Ω

−2

(z − ω + ω0)3

for any element ω0 ∈ Ω. This implies

℘′(z) = ℘′(z + ω0)

or, equivalently,

℘′ ∈ K(Ω).

We now need to go back from the first derivative to the original
function.

For any ω0 ∈ Ω we know by now that

(℘(z)− ℘(z + ω0))′ = 0 for all z ∈ Cr Ω.

This is in particular true for the two generators ω1, ω2 of Ω.
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By the standard rules for differentiation there must therefore exist
constants c1, c2 ∈ C such that

℘(z) = ℘(z + ωi) + ci for all z ∈ Cr Ω, i = 1, 2

The function ℘ is periodic if and only if c1 = c2 = 0.

To compute c1, it suffices to consider one point of Cr Ω.

We choose z := −ω1
2 .

Since ω1 is a generator of Ω, we have z ∈ Cr Ω. We compute

℘(−ω1

2
) = ℘(

ω1

2
) + c1 = ℘(−ω1

2
) + c1

For the last equality, we are using that ℘ is a symmetric function,
as noted in 10.6.

From this immediately follows c1 = 0, and analogously for c2. �

Lemma 10.7. The poles of f are precisely the elements of the
lattice Ω. All poles are of order 2. In particular, we have

ord(℘) = 2.

Proof. Note that the semi-open parallelogram of periods Pω1,ω2
contains exactly one point of Ω, which is 0.

From calculus, we have the power series expansion at z0 = 0

1

(z − ω)2
=

∞∑
j=1

jzj−1

ωj+1

for all ω 6= 0 and |z| < |ω|. Thus
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℘(z) = 1
z2

+
∑

ω∈Ωr{0}

(
1

(z−ω)2
− 1

ω2

)
= 1

z2
+

∑
ω∈Ωr{0}

(
∞∑
j=2

jzj−1

ωj+1

)

= 1
z2

+
∞∑
j=2

(
j ·

∑
ω∈Ωr{0}

1
ωj+1

)
zj−1

= 1
z2

+
∞∑
ν=1

(2ν + 1)G2ν+2(Ω) z2ν

For the last equality recall that the Eisenstein series of odd weight
are constantly zero. �

Remark 10.8. We have seen that the Weierstrass ℘-function is
an even function of order 2, with a pole of order 2 at all points of
the lattice Ω.

By differentiating the power series expansion of ℘, as we found it
in the proof of lemma 10.7, we immediately see that ℘′ is an odd
function

℘′(−z) = −℘(z) for all z ∈ C

of order 3, with poles of order 3 exactly at the elements of Ω.

Theorem 10.9. (Differential equation of the ℘-function)

For all z ∈ Cr Ω holds

℘′(z)2 = 4℘(z)3 − g2 ℘(z)− g3

where
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g2 := 60G4(Ω),

g3 := 140G6(Ω).

Proof. Consider the meromorphic function

f (z) := ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3.

Note that f ∈ K(Ω), and the only points, where f may possibly
have poles, are the points of Ω.

In the proof of lemma 10.7, we computed the power series expan-
sion of ℘, centered at 0 as

℘(z) =
1

z2
+ 3G4(ω)z2 + 5G6(Ω)z4 + . . .

From this we get

4℘(z)3 =
4

z6
+

36

z2
G4(Ω) + 60G6(Ω)z0 + 36G4(Ω)2z2 + . . .

Analogously, we get by differentiation

℘′(z) = − 2

z3
+ 6G4(Ω)z + 20G6(Ω)z3 + (. . .)z5 + . . .

and thus

℘′(z)2 =
4

z6
− 24

z2
G4(Ω)− 80G6(Ω)z0 + (. . .)z2 + . . .
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If we combine these power series expansions, and sort them by
powers of z, then we obtain

f (z) = (4− 4) 1
z6

+ (−24G4(ω)− 36G4(Ω) + g2) 1
z2

+ (−80G6(Ω)− 60G6(Ω) + g3)z0

+ (. . .)z2

+ . . .

From this we see immediately that f can be extended over the
point z0 = 0 by f (0) := 0.

Since f is periodic, it extends over all points of Ω, so

f ∈ O(C) ∩ K(Ω).

By proposition 9.8, the function f must be constant, and since we
know f (0) = 0, we must have f ≡ 0.

Therefore the differential equation holds true. �

Lemma 10.10. (i) The first derivative ℘′ of the Weierstrass
℘-function has exactly 3 zeroes on the semi-open parallelogram
of periods Pω1,ω2, which are

ρ1 =
ω1

2
, ρ2 =

ω2

2
, and ρ3 =

ω1 + ω2

2
.

Each of them has order 1.

(ii) The values ei := ℘(ρi), i = 1, 2, 3 are pairwise different.
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Proof. (i) Since ℘′ is an odd and a periodic function, we have

℘′(z) = −℘′(−z) = −℘′(ω − z)

for all ω ∈ Ω and all z ∈ Cr Ω.

In particular, for z := ω1
2 and ω := ω1 we obtain

℘′(
ω1

2
) = −℘′(ω1

2
).

Therefore ℘′(ρ1) = ℘′(ω12 ) = 0.

Analogously we obtain ℘′(ρ2) = ℘′(ρ3) = 0.

The order of ℘′ equals 3 by 10.8.

Therefore, by theorem 9.10, the elliptic function ℘′ has exactly
three zeroes, counted with orders, on the semi-open parallelogram
of periods Pω1,ω2.
Since we found three distinct points ρ1, ρ2, ρ3, where ℘′ vanishes,
the vanishing order at each point must be equal to 1.

(ii) As an easy consequence of theorem 9.10, each value of ℘ is
assumed in exactly ord(℘) = 2 points on the semi-open parallelo-
gram of periods Pω1,ω2, where we count with multiplicities.

By part (i) of the proof, we know that ℘′(ρ1) = 0, so the value
e1 = ℘(ρ1) is assumed with multiplicity greater than 1.

So the multiplicity of the value e1 at ρ1 must equal 2, and there
can be no other point, where this value is assumed.

In particular, e1 6= e2 and e1 6= e3.

The proof of e2 6= e3 is analogous. �
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Proposition 10.11. The Weierstrass ℘-function satisfies the
differential equation

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Proof. Consider the elliptic function

f (z) := ℘′(z)2 − 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Suppose that f is not constant.

Writing down the power series expansion as before, we get

f (z) = (4− 4)
1

z6
+ (. . .)

1

z4
+ . . .

So f can have at most one pole of order 4 at z0 = 0, and it has no
other poles on the semi-open parallelogram of periods.

In particular, we must have ord(f ) ≤ 4.

Let us count the zeroes of f .

Clearly, f (ρi) = 0 for i = 1, 2, 3, as these are the zeroes of ℘′.

Let us compute the first derivative of f

f ′(z) = 2℘′(z)℘′′(z) − 4℘′(z)(℘(z)− e2)(℘(z)− e3)

− 4℘′(z)(℘(z)− e1)(℘(z)− e3)

− 4℘′(z)(℘(z)− e1)(℘(z)− e3)

Thus f ′(ρi) = 0 for all i = 1, 2, 3. Therefore the order of each of
the zeroes ρ1, ρ2, ρ3 of f is at least 2.
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This implies that the total number of zeroes on the semi-open
parallelogram of periods, counted with multiplicities, is at least 6,
contradicting the bound ord(f ) ≤ 4.

Therefore, f must be constant.

Since f (ρ1) = 0, we must have f ≡ 0. �

Remark 10.12. Recall from Algebra, that a quadratic equation

ax2 = bx + c = 0

with a 6= 0 admits exactly two different solutions

x1,2 =
−b±

√
b2 − 4ac

2a

if and only if the discriminant

D := b2 − 4ac

is different from zero.

In the same way, a cubic equation

ax3 + 3bx2 + 3cx + d = 0

with a 6= 0 has exactly three pairwise different solutions, if its
discriminant

∆ := a2d2 − 6abcd + 4ac3 + 4b3d− 3b2c2

is not equal to zero.
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Corollary 10.13. For a fixed lattice Ω, the above constants
satisfy the following equations:

g3 = 4e1e2e3

g2 = −4(e1e2 + e1e3 + e2e3)

0 = e1 + e2 + e3

g3
2 − 27g2

3 = 16(e1 − e2)2(e1 − e3)2(e2 − e3)2

We also have

g3
2 − 27g2

3 6= 0.

Proof. Follows from the above. �

Lemma 10.14. Let z1, z2 ∈ Cr Ω, such that z1 6≡ z2 mod Ω.
Let ℘(z1) = ℘(z2). Then z1 + z2 ∈ Ω.

In other words, the lemma is saying that ℘(z1) = ℘(z2) implies
that z2 ∈ {−z1, z1} modulo Ω.

Proof. For any z ∈ C, there exists a unique ωz ∈ Ω, so that z+ωz
is contained in the semi-open parallelogram of periods P of Ω.

Suppose that ℘(z1) = ℘(z2) =: v.

Since ord(℘) = 2, the value v is assumed on the semi-open paral-
lelogram of periods at most twice.

Since ℘ is an even function, we know that ℘(−z1) = ℘(z1). There-
fore

℘−1({v}) ∩ P = {z1 + ωz1,−z1 + ω−z1}.
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In particular, since ℘(z2) = v, we must have

z2 + ωz2 ∈ {z1 + ωz1,−z1 + ω−z1}

If z2 + ωz2 = z1 + ωz1, then z1 ≡ z2 mod Ω, a contradiction to
the assumption of the lemma.

Therefore we must have z2 + ωz2 = −z1 + ω−z1, which implies
z1 + z2 ∈ Ω. �

Proposition 10.15. (Theorem of Addition) Let z1, z2 ∈ CrΩ,
such that z1 + z2 6∈ Ω.

Then

℘(z1 + z2) =


1
4

(
℘′(z1)−℘′(z2)
℘(z1)−℘(z2)

)2

− ℘(z1)− ℘(z2) if z1 − z2 6∈ Ω

1
4

(
12℘(z1)2−g2

2℘′(z1)

)2

− 2℘(z1) if z1 − z2 ∈ Ω

Proof. For the proof one applies exactly the same strategy that we
used to show the differential equations for ℘ and ℘′ above. We
leave it here as an exercise to the reader. �

Remark 10.16. (i) It is obvious that the first formula is sym-
metric in z1 and z2.

For the second formula, let ω := z1 − z2 ∈ Ω. Then
℘(z1) = ℘(ω + z2) = ℘(z2) by the periodicity property, and
analogously ℘′(z1) = ℘′(z2).

(ii) We excluded the case z1 + z2 ∈ Ω, since that would result in
a pole of ℘. Note that this correspond on the right hand side to a
division by zero.

In the first formula we find in the denominator
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℘(z1)− ℘(z2) = ℘(z1 − (z1 + z2))− ℘(z2) = 0.

In the second case, where ω̃ := z1 − z2 ∈ Ω,

2℘′(z1) = 2℘′(z1 − (ω̃ + z1 + z2)) = 2℘′(−z2) = 2℘′(−z1)

Since ℘′ is an odd function, we find for the denominator in this
case ℘′(z1) = 0, too.

Remark 10.17. Clearly, if z1−z2 ∈ Ω, then we have ℘(z1+z2) =
℘(2z1). The second part of the above formula is therefore also
known as the doubling formula

℘(2z) =
1

4

(
12℘(z)2 − g2

2℘′(z)

)2

− 2℘(z).

11. Complex Tori

Throughout this section let

Ω = ω1Z + ω2Z ⊂ C

be a lattice, with fixed R-linearly independent generators ω1, ω2 ∈
C. Let

P := {t1ω1 + t2ω2 ∈ C where 0 ≤ t1, t2 ≤ 1}

be the corresponding closed parallelogram of periods.
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Definition 11.1. A complex torus is a quotient

π : C→ C/Ω.

The equivalence class of a point z ∈ C is denoted by

[z] := π(z) := z mod ω.

The map π is called the quotient map, and we usually write

T := C/Ω.

It is clear from the construction of T that the restriction π|P → T
is surjective, but not injective.

Remark 11.2. Note that group structure “+” on C induces
a well-defined composition on the quotient. For any two points
z1, z2 ∈ C, we put

[z1] + [z2] := [z1 + z2].

Note that for the identity element holds

[0] = [z] ⇔ z ∈ Ω.

Thus the pair (T,+) forms an Abelian group.

Definition 11.3. A subset U ⊆ T is called open if and only if
its set-theoretic preimage π−1(U) ⊂ C is open.

33



Proposition 11.4. With this definition, T becomes a topolog-
ical space. Moreover, the quotient map π : C→ T is continu-
ous, and T is compact.

Proof. It is left to the reader to verify the axioms of a topological
space for T , as well as the statement about the map π.

To prove compactness, consider some open covering of T

T =
⋃
i∈I

Ui

where Ui ⊂ T is open for all i ∈ I , where I is some set of indices.

By the definition of the topology on T , all preimage sets π−1(Ui)
are open in C, and their union covers all of C.

In particular, for the closed parallelogram of periods holds

P ⊂
⋃
i∈I

π−1(Ui).

Since P is compact, there exists a finite number of indices
i1, . . . , in ∈ I , such that

P ⊂
⋃

j=1,...,n

π−1(Uij).

By applying the quotient map, we obtain

T = π(P ) =
⋃

j=1,...,n

Uij

and thus a finite sub-covering of T . �

What we want to do is to study meromorphic functions which are
defined on the torus, instead of the complex plane.
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This is the realm of differential geometry, and there in particular
the theory of complex manifolds.

Luckily for us, we don’t have do do the full abstract machinery.
Since we are only interested in a very special example, namely the
complex torus, we can define all the tools we need from scratch.

Definition 11.5. Let U ⊆ T be an open subset. A continuous
map

f : U → C

is called holomorphic (or meromorphic) if the composed map

f ◦ π : π−1(U)→ C

is holomorphic (or meromorphic, respectively).

The set of all molomorphic functions on U is denoted by O(U),
and the set of all meromorphic functions on U by M(U).

Remark 11.6. Again, it is not hard to verify, that O(U) has the
natural structure of a ring, if summation and multiplication is done
pointwise on the values, andM(U) is even a field.

Proposition 11.7. Any holomorphic map on T is constant,
i.e.

O(T ) = C.

Proof. Let f ∈ O(T ).

Then by definition the composition f ◦π : C→ C is holomorphic.

Since the torus T is compact, so is f (T ) = f ◦ π(C).

In particular, the function f ◦ π is bounded.
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By the theorem of Liouville, such a holomorphic function must be
constant.

Since π is surjective, f must be constant, too. �

Remark 11.8. Let f ∈M(T ) be a meromorphic function o the
torus. By the definition of the quotient map π we have for all
z ∈ C

f ◦ π(z) = f ◦ π(z + ω) for all ω ∈ Ω.

This is equivalent to

f ◦ π ∈ K(Ω),

so f ◦ π is an elliptic function with respect to Ω.

In this way, we obtain a map

π∗ : M(T ) → K(Ω)

f 7→ f ◦ π

Exercise 11.9. Show that this map is a homomorphism of fields.

Theorem 11.10. The map π∗ is an isomorphism of fields.

Proof. To prove surjectivity, consider an element f̃ ∈ K(Ω).

For any t ∈ T , choose some zt ∈ C, such that π(zt) = t. Note
that for any other choice z̃t ∈ C satisfying π(z̃t)t, we have

z̃t = zt + ω

for some ω ∈ Ω. Hence
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f̃ (z̃t) = f̃ (zt)

since f̃ is elliptic.

We therefore have a well-defined map

f : T → C
t 7→ f̃ (zt)

Let z ∈ C. We compute

π∗f (z) = f ◦ π(z) = f ([z]) = f̃ (z),

and thus f̃ = π∗(f ).

Clearly, the map π∗ is not constant, so as a homomorphism of fields
it is injective. However, the reader is welcome to do the easy proof
injectivity directly from the definition. �

The importance of the above theorem is that is allows us to carry
over everything we learned about elliptic functions the theory of
functions of complex tori.

Definition 11.11. Let f ∈M(T ). The order of f is

ord(f ) := ord(π∗f ).

Proposition 11.12. Let f ∈ M(T ) with d := ord(f ) > 0. In
particular, f is not constant. Then

f : T → Ĉ

is surjective, and any value v ∈ Ĉ is assumed exactly d times,
counted with multiplicities.

37



Definition 11.13. Let T = C/Ω and T ′ = C/Ω′ be two com-
plex tori. A continuous map

ϕ : T → T ′

is called holomorphic, if for any open subset U ′ ⊆ T ′ and for
any f ∈ O(U ′) holds

ϕ∗(f ) := f ◦ ϕ ∈ O(ϕ−1(U ′)).

Remark 11.14. Note that if ϕ is continuous, and U ′ ⊂ T ′ is
open, then ϕ−1(U ′) ⊂ T is open, too.

By definition, ϕ∗(f ) is holomorphic, if the composition

f ◦ ϕ ◦ π : π−1(ϕ−1(U ′))→ C

is holomorphic in the classical sense.

It is easy to verify that for a holomorphic map ϕ, the map ϕ∗ :
O(U ′)→ O(ϕ−1(U ′)) is a homomorphism of rings.

Example 11.15. Let m ∈ N with m > 0. We define for a point
P ∈ T

m · P := P + . . . + P

where we take the sum over m-times the point p. From this we get
a map

[m] : T → T
P 7→ m · P

In fact, [m] is a holomorphic map.
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Remark 11.16. The holomorphic map [m] : T → T is in fact a
homomorphism of groups.

It therefore has kernel, and we define

T [m] := ker([m])

By this definition, we have

T [m] = {P ∈ T such that m · P = [0]}

= π({z ∈ C such that mz ∈ Ω})

= π( 1
mΩ)

As an Abelian group, we have Ω ∼= Z× Z, so we obtain

T [m] ∼= π( 1
mZ×

1
mZ)

∼= Zm × Zm

The elements of T [m] are called the m-torsion points of T .

Example 11.17. Let Q ∈ T be fixed. We define a map

tQ : T → T

P 7→ P + Q

This map is called the translation on T by the element Q. It
is again a holomorphic map, but clearly not a homomorphism of
groups (unless Q = [0]).

Exercise: Show that tQ is biholomorphic, and (tQ)−1 = t−Q.
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Definition 11.18. Let Ω and Ω′ be two lattices with, T = C/Ω
and T ′ = C/Ω′ the two complex tori defined by them.

Let α ∈ Cr {0}. The map

α : C → C
z 7→ αz

is called a homothety between Ω and Ω′ if

αΩ ⊆ Ω′.

Remark 11.19. A homothety α : C→ C induces a holomorphic
map

ϕα : T → T ′

of complex tori, such that the diagram

C α //

π
��

C
π′��

T ϕα
// T ′

commutes.

The condition of the homothety αΩ ⊆ Ω′ ensures that the map

ϕα([z]) := [αz]

is well-defined:

Indeed, if [z′] = [z] in T , then by definition z′ = z + ω for some
ω ∈ Ω.

40



Therefore αz′ = αz +αω. Since by assumption αω ∈ Ω′, we have

[αz′] = [αz]

in T ′.

Note: ϕα is a homomorphism of groups.

Theorem 11.20. Let ϕ : T → T ′ be a non-constant holomor-
phic map between complex tori. Then ϕ can be written as

ϕ = tQ ◦ ϕα

where ϕα is induced by a homothety with α ∈ C r {0} and tQ
is the translation by Q := ϕ(0).

Proof. At this point, our interdisciplinary course could take a de-
tour into Topology.

An elegant method to prove the theorem makes use of liftings to
covering spaces, and the concept of a universal cover of a non
simply-connected topological manifold. �

Corollary 11.21. Let ϕ : T → T ′ be a non-constant holomor-
phic map. Then the following hold true.

(i) ϕ is surjective.

(ii) ϕ is a homomorphism of groups ⇔ ϕ([0]) = [0]. (!!!)

(iii) ϕ is biholomorphic ⇔ αΩ = Ω′.
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Definition 11.22. Let ϕ : T → T ′ be a non-constant holomor-
phic map. Let ϕ = tQ ◦ ϕα be its decomposition as in theorem
11.20. The degree of ϕ is

deg(ϕ) = | ker(ϕα)|.

Remark 11.23. In fact, we have

ker(ϕα) ∼= Ω′/αΩ

and deg(ϕ) = |Ω′/αΩ| <∞.

Definition 11.24. Let ϕ : T → T ′ be a non-constant holo-
morphic map. It is called an isogeny, if ϕ([0]) = [0].

Remark 11.25. By theorem 11.20, ϕ is an isogeny if and only if
ϕ is a group homomorphism.

Proposition 11.26. Let ϕ : T → T ′ be an isogeny with
deg(ϕ) = d. Then there exists a dual isogeny ϕ∨ : T ′ → T ,
such that

ϕ∨ ◦ ϕ = [d].

Proof. By corollary 11.21, ϕ is surjective.

Hence for any point Q ∈ T ′, there exists at least one point PQ ∈ T
such that ϕ(PQ) = Q.

We now define

ϕ∨ : T ′ → T

Q 7→ d · PQ.
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This map is well-defined. Indeed, suppose ϕ(P ) = ϕ(P ′) = Q for
two points P, P ′ ∈ T . Then for α := P − P ′ we compute

ϕ(α) = ϕ(P − P ′) = ϕ(P )− ϕ(P ′) = 0,

so α ∈ ker(ϕ). Since d = | ker(ϕ)|, it follows from group theory
that

d · α = 0.

This implies dP = dP ′, so ϕ∨(Q) is well-defined.

Obviously, ϕ∨ ◦ ϕ(P ) = dP , and ϕ(0) = 0.

To complete the proof, it remains to show that ϕ is holomorphic.
This is left as a exercise to the reader. �

Remark 11.27. Isogenies from a torus T to itself are called en-
domorphisms. They can be thought of as “symmetries” of T .

Together they form the ring of endomorphisms of T .

Dual isogenies form an important tool in the study of this endo-
morphism ring. It provides important insights into the structure
of complex tori, and ultimately the structure of elliptic curves (see
below).

In particular, the study of endomorphisms gives rise to powerful
methods to compute group orders of elliptic curves and their sub-
groups.

Construction 11.28. Let T = C/Ω be a complex torus.

We define a map from T into the projective plane P2 as follows.

Φ : T → P2

[z] 7→ (℘(z) : ℘′(z) : 1).
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Note that this map is well-defined. If [z] = [z′], then by definition
z′ = z + ω for some ω ∈ Ω. Since ℘ and ℘′ are elliptic, we obtain
(℘(z′) : ℘′(z′) : 1) = (℘(z) : ℘′(z) : 1).

We can even makes sense of this for the point [0] ∈ T .

Use the properties of homogeneous coordinates to obtain

(℘(z) : ℘′(z) : 1) = (z3℘(z) : z3℘′(z) : z3).

Since ℘ has a pole of order 2 at 0 and ℘′ has a pole of order 3 at
0, the function g(z) := z3℘′(z) does not have a zero at z = 0.

At the point [0] we now compute

Φ([0]) = (0 : 1 : 0).

Let us consider the image of this map Φ(T ) ⊂ P 2. The differential
equation of the Weierstrass ℘-function

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

implies for a point [z] ∈ T

Φ([z]) ∈ V (Y 2Z − 4X3 − g2XZ
2 − g3Z

3).

So the image of T is contained in a cubic curve!

The discriminant of this cubic curve can be computed as

∆ = g3
2 − 27g2

3.

By corollary 10.13, we have ∆ 6= 0, so the cubic is smooth.

In fact, by putting
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O := (0 : 1 : 0) = Φ([0]),

we obtain an elliptic curve in (almost) Weierstrass normal form

(Cg2,g3,O)

with Cg2,g3 := V (Y 2Z − 4X3 − g2XZ
2 − g3Z

3).

The coefficient “4” can easily be removed by a change of coordi-
nates from X to 3

√
4X .

Proposition 11.29. The map constructed above

Φ : T → Cg2,g3

is a bijective map of sets.

Remark 11.30. In fact, up to projective transformation in P2,
any elliptic curve in Weierstrass normal form is the image of a
complex torus.

Theorem 11.31. The map constructed above

Φ : T → Cg2,g3

is an isomorphism of groups

(T,+) ∼= (Cg2,g3,O).
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Proof. We need to show for any z1, z2 ∈ C the identity

Φ([z1]) + Φ([z1]) = Φ([z1] + [z2]).

In coordinates, this is equivalent to

(℘(z1) : ℘′(z1) : 1)+(℘(z2) : ℘′(z2) : 1) = (℘(z1+z2) : ℘′(z1+z2) : 1).

Now compare proposition 3.13, for the rules of adding two points
on a Weierstrass elliptic curve, and proposition 10.15 for the rules
for addition in the Weierstrass ℘-function. �

Corollary 11.32. Let T be a complex torus, and C := Cg2,g3
the corresponding elliptic curve.

Then for all 0 6= m ∈ N holds

T [m] ∼= C[m].

In particular, this gives a proof of proposition 6.13.

– THANK YOU ! –
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