Eberhard Karls Universität Tübingen Fachbereich Mathematik

PD Dr. Jörg Zintl

Elliptische Funktionen und elliptische Kurven

Übungsaufgaben zum 5. Tutorium am 20.11.2018

Aufgabe 17

Sei $\varphi_A: \mathbb{P}^2 \to \mathbb{P}^2$ eine projektive Transformation mit $A \in Gl_3(\mathbb{C})$. Sei (C, \mathcal{O}) eine elliptische Kurve. Sei $C' := \varphi_A^{-1}(C) \subset \mathbb{P}^2$ und $\mathcal{O}' := \varphi_A^{-1}(\mathcal{O}) \in C'$. Zeigen Sie:

$$\varphi_A|C': (C', \mathcal{O}') \to (C, \mathcal{O})$$

ist ein Isomorphismus von Gruppen.

Aufgabe 18

Sei (C, \mathcal{O}) eine elliptische Kurve, wobei $\mathcal{O} \in C$ ein Wendepunkt sei. Sei $T \in C$. Konstruieren Sie einen Gruppenisomorphismus

$$(C, \mathcal{O}) \cong (C, T).$$

Aufgabe 19

Seien $C := V(X^2 + Y^2 - Z^2) \in \mathbb{P}^2$ und $L := V(Y) \subset \mathbb{P}^2$.

a) Zeigen Sie:

$$\varphi: L \to C \quad \text{mit } \varphi(X:Y:Z) := (2XZ:X^2 - Z^2:X^2 + Z^2)$$

definiert einen Isomorphismus von Kurven.

b) Begründen Sie anschaulich geometrisch, weshalb jede irreduzible Quadrik isomorph ist zur projektiven Geraden \mathbb{P}^1 .

Aufgabe 20

Sei (C, \mathcal{O}) die elliptische Kurve in Weierstraß-Normalform mit $C := V(Y^2Z - X^3 + XZ^2)$. Sei

$$[i]:\ C\to C \quad \text{ mit } [i](X:Y:Z):=(-X:-iY:Z).$$

Bestimmen Sie die duale Isogenie zu $\varphi:=[1]+[i]\in \operatorname{End}(C).$

Keine Abgabe, nur zur Vorbereitung auf das Tutorium!