

Mathematisch-Naturwissenschaftliche Fakultät

Fachbereich Mathematik

PD Dr. Jörg Zintl Felix Dietrich

Multilineare Algebra

Sommersemester 2018

16.05.2018

Übungsblatt 3

Aufgabe 5

Sei $(R, +, \cdot)$ ein kommutativer Ring mit Eins.

- (a) Zeigen Sie bitte, dass $(R, +, \cdot)$ in natürlicher Weise ein \mathbb{Z} -Modul ist.
- (b) Bestimmen Sie bitte ein Erzeugendensystem des \mathbb{Z} -Moduls $(\mathbb{Q}, +, \cdot)$.
- (c) Ist $(\mathbb{Q}, +, \cdot)$ ein freier \mathbb{Z} -Modul?
- (d) Ist $(\mathbb{Q}, +, \cdot)$ ein endlich erzeugter \mathbb{Z} -Modul?

Aufgabe 6

- (a) Betrachten Sie $(\mathbb{R}, +, \cdot)$ als \mathbb{Z} -Modul. Sei $\varphi : \mathbb{R} \to \mathbb{R}$ ein \mathbb{Z} -Modulhomomorphismus. Zeigen Sie bitte, ist φ eine stetige Funktion, dann ist φ auch ein \mathbb{R} -Modulhomomorphismus.
- (b) Gilt die Aussage von a) auch dann, wenn man \mathbb{R} durch \mathbb{C} ersetzt?
- (c) Seien $(M, +, \cdot)$ und $(N, +, \cdot)$ zwei \mathbb{Z} -Moduln, und $\varphi : M \to \mathbb{R}$ und $\psi : N \to \mathbb{R}$ zwei \mathbb{Z} -lineare Abbildungen. Zeigen Sie bitte, dass durch $\sigma(m, n) := \varphi(m) \cdot \psi(n)$, für $m \in M$, $n \in N$, eine bilineare Abbildung definiert wird und

$$\sigma^{-1}(\{0\}) = \ker(\varphi) \times N \cup M \times \ker(\psi)$$

gilt.

(d) Gilt die Aussage von c) auch dann, wenn man $\mathbb R$ durch einen beliebigen $\mathbb Z$ -Modul ersetzt?

Schriftliche Abgabe am 30.05.2018 vor 13:00 in den Fächern im C-Bau auf Ebene 3.

Sie erreichen die Vorlesungshomepage unter

https://www.math.uni-tuebingen.de/arbeitsbereiche/algebra/lehre/sommersemester-2018/lineare-algebra-2-multilineare-algebra.