10 The exterior algebra

Throughout this section let $(R,+, \cdot)$ always be a commutative ring with a multiplicative identity element, and let M be an R-module.
10.1 Definition. Let $p \in \mathbb{N}_{\geq 2}$. Let N be an R-module. A p-linear map $\varphi: M^{p} \rightarrow N$ is called alternating, if for all $\left(m_{1}, \ldots, m_{p}\right) \in M^{p}$ the following implication holds:
If there exist $i, j \in\{1, \ldots, p\}$ with $i \neq j$ such that $m_{i}=m_{j}$ holds, then $\varphi\left(m_{1}, \ldots, m_{p}\right)=0$.
10.2 Notation. We define the R-module of alternating p-linear maps by

$$
\operatorname{Alt}_{R}^{p}(M, N):=\left\{\varphi: M^{p} \rightarrow N: \varphi \text { alternating }\right\}
$$

10.3 Example. Let $(R,+, \cdot)=(K,+, \cdot)$ be a field, and let $M=K^{n}$. As vector spaces over K, we identify $M^{n} \cong \operatorname{Mat}(n, n, K)$. Then the determinant map det : $\operatorname{Mat}_{K}(n, n) \rightarrow K$ is alternating.
10.4 Definition. Let M be an R-module. For $p \in \mathbb{N}_{\geq 2}$ we define a submodule of $\bigotimes^{p} M$ by

$$
N^{p}(M):=\operatorname{span}_{R}\left\{m_{1} \otimes \ldots \otimes m_{p} \in \bigotimes^{p} M: \exists i \neq j \text { s.th. } m_{i}=m_{j}\right\}
$$

The R-module quotient

$$
\bigwedge^{p} M:=\bigotimes^{p} M / N^{p}(M)
$$

is called the p-th exterior power of M, or the p-th alternating power of M. For equivalence classes, we use the notation

$$
m_{1} \wedge \ldots \wedge m_{p}:=\left[m_{1} \otimes \ldots \otimes m_{p}\right] \in \bigwedge^{p} M
$$

10.5 Remark. The composed map τ^{a}, defined by

is p-linear and alternating. Indeed, for an element $\left(m_{1}, \ldots, m_{p}\right) \in M^{p}$ with $m_{i}=m_{j}$ for some $i \neq j$, we have $\tau\left(m_{1}, \ldots, m_{p}\right) \in N^{p}(M)$, so that $\pi \circ$ $\tau\left(m_{1}, \ldots, m_{p}\right)=0 \in \bigwedge^{p} M$.
10.6 Remark. As a quotient of the p-fold tensor product, the alternating product inherits rules for computation analogous to those listed in ??. In the case $p=2$, we have for all $m, m^{\prime}, m^{\prime \prime} \in M$ and $r \in R$ the equalities

```
(1) \(\quad(r m) \wedge m^{\prime}=m \wedge\left(r m^{\prime}\right)\)
(2) \(\left(m+m^{\prime}\right) \wedge m^{\prime \prime}=m \wedge m^{\prime \prime}+m^{\prime} \wedge m^{\prime \prime}\)
(3) \(m \wedge\left(m^{\prime}+m^{\prime \prime}\right)=m \wedge m^{\prime}+m \wedge m^{\prime \prime}\)
(4) \(\quad m \wedge 0=0\)
(5) \(\quad 0 \wedge m=0\).
```

Analogous formulae hold for all $p \in \mathbb{N}_{\geq 2}$. We have furthermore
(6) $\quad m_{1} \wedge \ldots \wedge m_{p}=0 \quad$ if $m_{i}=m_{j}$ for some $1 \leq i, j \leq p$ with $i \neq j$.
10.7 Proposition. Let M be an R-module. The p-th exterior power of M is up to isomorphism uniquely determined by the following universal property.
For any R-module Z, and any alternating p-linear map $\varphi: M^{p} \rightarrow Z$, there exists a unique p-linear map $\hat{\varphi}$ such that the diagram

commutes.

Proof. Follows from the universal property of the tensor product.
10.8 Remark. As before, the universal property of the p-th exterior power implies the existence of a covariant functor

$$
\begin{array}{rlcc}
\bigwedge^{p}:(R-\operatorname{Mod}) & \rightarrow & (R-\mathrm{Mod}) \\
M & \mapsto & \bigwedge^{p} \mathrm{M} \\
M \xrightarrow{\alpha} M^{\prime} & \mapsto & \bigwedge^{p} M \xrightarrow{\wedge^{p} \alpha} \bigwedge^{p} M^{\prime}
\end{array}
$$

such that the equality $\wedge^{p} \alpha\left(m_{1} \wedge \ldots \wedge m_{p}\right)=\alpha\left(m_{1}\right) \wedge \ldots \wedge \alpha\left(m_{p}\right)$ holds for all $\left(m_{1} \ldots, m_{p}\right) \in M^{p}$.
Indeed, for any homorphism $\alpha: M_{1} \rightarrow M_{2}$ of R-modules, the composed $\operatorname{map} \tau_{2}^{a} \circ(\alpha \times \ldots \times \alpha): M_{1}^{p} \rightarrow M_{2}^{p} \rightarrow \bigwedge^{p} M_{2}$ is alternating. The map $\wedge^{p} \alpha: \bigwedge^{p} M_{1} \rightarrow \bigwedge^{p} M_{2}$ is defined as the unique R-linear map satisfying $\wedge^{p} \alpha \circ \tau_{1}^{a}=\tau_{2}^{a} \circ(\alpha \times \ldots \times \alpha)$ given by the universal property.
10.9 Proposition. Let M be a free R-module of rank $n<\infty$. Then

$$
\bigwedge^{p} M=\{0\} \quad \text { for all } p>n
$$

Proof. Let $\left\{e_{1} \ldots, e_{n}\right\}$ be a basis of M. Then $\bigotimes^{p} M=\operatorname{span}_{R}\left\{e_{i_{1}} \otimes \ldots \otimes e_{i_{p}}\right.$: $\left.1 \leq i_{1}, \ldots, i_{p} \leq n\right\}$. By its construction as a quotient,

$$
\bigwedge^{p} M=\operatorname{span}_{R}\left\{e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}: 1 \leq i_{1}, \ldots, i_{p} \leq n\right\} .
$$

If $p>n$, then for any p-tuple $\left(i_{1}, \ldots, i_{p}\right)$, theres exists at least one pair of indices $1 \leq j, k \leq p$ with $j \neq k$ but $i_{j}=i_{k}$. Thus $e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}=0$.
10.10 Remark. Let $p \in \mathbb{N}_{>0}$. Recall that the group of permutations $\left(\Sigma_{p}, \circ\right)$ is given by the set Σ_{p} of bijective maps from $\{1, \ldots, p\}$ to itself, together with the composition "o" of maps. For a permutation $\sigma \in \Sigma_{p}$, the composed map

$$
\begin{array}{ccccc}
M^{p} & \rightarrow & M^{p} & \rightarrow & \otimes^{p} M \\
\left(m_{1}, \ldots, m_{p}\right) & \mapsto & \left(m_{\sigma(1)}, \ldots, m_{\sigma(p)}\right) & \mapsto & m_{\sigma(1)} \otimes \ldots \otimes m_{\sigma(p)}
\end{array}
$$

is p-linear. Thus, by the universal property of the tensor product, it defines a unique R-linear map $\bigotimes^{p} M \rightarrow \bigotimes^{p} M$ which shall also be denoted by σ, by abuse of notation.

Obviously, for this map holds $\sigma\left(N^{p}(M)\right) \subseteq N^{p}(M)$. By the universal property of the quotient $\bigwedge^{p} M=\bigotimes^{p} M / N^{p}(M)$ there exists a unique R-linear map $\bar{\sigma}$, which makes the following diagram commutative:

It is customary to denote the unique homomorphism $\bar{\sigma}$ again by σ. By construction, it is given on generating elements by

$$
\sigma: \begin{array}{clc}
\wedge^{p} M & \rightarrow & \bigwedge^{p} M \\
m_{1} \wedge \ldots \wedge m_{p} & \mapsto & m_{\sigma(1)} \wedge \ldots \wedge m_{\sigma(p)}
\end{array}
$$

10.11 Proposition. Let M be an R-module and let $p \in \mathbb{N}_{\geq 2}$. Then for all $a \in \bigwedge^{p} M$ and all $\sigma \in \Sigma_{p}$ holds

$$
\sigma(a)=\operatorname{sign}(\sigma) a .
$$

Proof. Since the map $\sigma: \bigwedge^{p} M \rightarrow \bigwedge^{p} M$ is R-linear, it is enough to prove the formula on generating elements $a=m_{1} \wedge \ldots \wedge m_{p} \in \bigwedge^{p} M$, where $m_{1}, \ldots, m_{p} \in M$.
Consider a representative $t=m_{1} \otimes \ldots \otimes m_{p} \in \otimes^{p} M$, so that $\pi(t)=a$. It is enough to show $n:=\sigma(t)-\operatorname{sign}(\sigma) t \in N^{p}(M)$. To do this, we write $\sigma=$ $\tau_{1} \circ \ldots \circ \tau_{k}$, where $\tau_{1}, \ldots, \tau_{k}$ are transpositions. Note that $\operatorname{sign}(\sigma)=(-1)^{k}$.
We will prove the claim by induction on k. For $k=1$, let $\sigma=\tau$ be the transposition interchanging the indices i and j. Without loss of generality we may assume $1 \leq i<j \leq p$. We compute

$$
\begin{aligned}
n= & m_{1} \otimes \ldots \otimes m_{j} \otimes \ldots \otimes m_{i} \otimes \ldots \otimes m_{p}-(-1) m_{1} \otimes \ldots \otimes m_{p} \\
= & m_{1} \otimes \ldots \otimes\left(m_{i}+m_{j}\right) \otimes \ldots \otimes\left(m_{i}+m_{j}\right) \otimes \ldots \otimes m_{p} \\
& -m_{1} \otimes \ldots \otimes m_{i} \otimes \ldots \otimes m_{i} \otimes \ldots \otimes m_{p} \\
& -m_{1} \otimes \ldots \otimes m_{j} \otimes \ldots \otimes m_{j} \otimes \ldots \otimes m_{p} \\
\in & N^{p}(M) .
\end{aligned}
$$

Now let $k \geq 2$, and assume that the formula holds up to $k-1$. We have $\sigma=\tau_{1} \circ \sigma^{\prime}$, where $\sigma^{\prime}=\tau_{2} \circ \ldots \circ \tau_{k}$. By assumption, we already have $\sigma^{\prime}(t)-\operatorname{sign}\left(\sigma^{\prime}\right) t \in N^{p}(M)$. Then clearly also $n^{\prime}:=\tau_{1}\left(\sigma^{\prime}(t)-\operatorname{sign}\left(\sigma^{\prime}\right) t\right) \in$ $N^{p}(M)$. We compute

$$
\begin{array}{llll}
n^{\prime} & =\sigma(t)-\operatorname{sign}\left(\sigma^{\prime}\right) \tau_{1}(t) & \in N^{p}(M), & \\
\text { and } \\
n_{1} & :=\tau_{1}(t)-\operatorname{sign}\left(\tau_{1}\right) t & \in N^{p}(M) & \\
\text { by step } 1
\end{array}
$$

From this we obtain

$$
\begin{aligned}
\sigma(t)-\operatorname{sign}(\sigma)(t) & =\sigma(t)-\operatorname{sign}\left(\sigma^{\prime}\right) \operatorname{sign}\left(\tau_{1}\right) t \\
& =\sigma(t)-\operatorname{sign}\left(\sigma^{\prime}\right)\left(\tau_{1}(t)-n_{1}\right) \\
& =\sigma(t)-\operatorname{sign}\left(\sigma^{\prime}\right) \tau_{1}(t)+\operatorname{sign}\left(\sigma^{\prime}\right) n_{1} \\
& =n^{\prime}+\operatorname{sign}\left(\sigma^{\prime}\right) n_{1} \\
& \in N^{p}(M)
\end{aligned}
$$

Thus $\sigma(a)-\operatorname{sign}(\sigma) a=\pi(\sigma(t)-\operatorname{sign}(\sigma)(t))=0$, as claimed.
10.12 Lemma. Let M be a free R-module of rank $n<\infty$ with basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Then there exists a unique alternating p-linear map

$$
\operatorname{det}: M^{n} \rightarrow R
$$

called the determinant map, such that $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=1$.

Proof. By construction, the n-th alternating product is given as

$$
\wedge^{n} M=\operatorname{span}_{R}\left\{e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}: 1 \leq i_{1}, \ldots, i_{n} \leq n\right\} .
$$

If $\left\{i_{1}, \ldots, i_{n}\right\} \npreceq\{1, \ldots, n\}$, we must have $i_{j}=i_{k}$ for some $j \neq k$, so that $e_{i_{1}} \wedge \ldots \wedge e_{i_{n}}=0$. We may hence assume that all n indices of the generating elements are pairwise different, and all numbers $1, \ldots, n$ occur as indices. Reordering of the indices changes the element only by a sign $\pm 1_{R}$, so we get

$$
\wedge^{n} M=\operatorname{span}_{R}\left\{e_{1} \wedge \ldots \wedge e_{n}\right\}=R \cdot e_{1} \wedge \ldots \wedge e_{n}
$$

Consider the coordinate map

$$
j: \begin{array}{ccc}
\bigwedge^{n} M & \rightarrow & R \\
r \cdot e_{1} \wedge \ldots \wedge e_{n} & \mapsto & r
\end{array}
$$

By composition with the map $\tau^{a}: M^{n} \rightarrow \bigwedge^{n} M$, we define det $:=j \circ \tau^{a}$. Clearly, this is p-linear and alternating, and it satisfies $\operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=1$.
To prove uniqueness, consider another alternating p-linear map $d: M^{n} \rightarrow R$ with $d\left(e_{1}, \ldots, e_{n}\right)=1$. By the universal property of the alternating product, there is a unique R-linear map $\hat{d}: \bigwedge^{n} M \rightarrow R$ such that $d=\hat{d} \circ \tau^{a}$.
Let $a \in \bigwedge^{n} M$. Then there exists an $r \in R$ such that $a=r \cdot e_{1} \wedge \ldots \wedge e_{n}$. We compute

$$
\begin{aligned}
\hat{d}(a) & =r \cdot \hat{d}\left(e_{1} \wedge \ldots \wedge e_{n}\right)=r \cdot d\left(e_{1}, \ldots, e_{n}\right) \\
& =r \cdot 1_{R} \\
& =r \cdot \operatorname{det}\left(e_{1}, \ldots, e_{n}\right)=r \cdot j\left(e_{1} \wedge \ldots \wedge e_{n}\right)=j(a)
\end{aligned}
$$

Hence $\hat{d}=j$, and thus $d=\tau^{a} \circ \hat{d}=\tau^{a} \circ j=\operatorname{det}$.
10.13 Proposition. Let M be a free R-module of rank $n<\infty$ with basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $p \in \mathbb{N}_{\geq 2}$. Then the p-th exterior power $\Lambda^{p} M$ is a free R-module with basis $\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}\right)_{1 \leq i_{1}<\ldots<i_{p} \leq n}$. In particular, for its rank holds

$$
\operatorname{rank}\left(\bigwedge^{p} M\right)=\binom{n}{p}
$$

Proof. Clearly, $\left\{e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}\right\}_{1 \leq i_{1}, \ldots, i_{p} \leq n}$ is a generating system of $\bigwedge^{p} M$. By proposition 10.11, we may assume that the indices are ordered as $1 \leq i_{1} \leq$ $\ldots \leq i_{p} \leq n$. We may furthermore confine ourselves to strict inequalities, since otherwise $e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}=0$.

It remains to prove the R-linear independence of the generating family. This needs some preparation.
We denote by \mathcal{I} the set of all tuples $I:=\left(i_{1}, \ldots, i_{p}\right)$ with $1 \leq i_{1}<\ldots<$ $i_{p} \leq n$. For $I \in \mathcal{I}$ we define the projection map

$$
\begin{array}{ccc}
\pi_{I}: & M & \rightarrow \\
m=\sum_{i=1}^{n} r_{i} e_{i} & \mapsto & R^{p} \\
& \left(r_{i_{1}}, \ldots, r_{i_{p}}\right)
\end{array}
$$

which is clearly R-linear. Consider the unique p-linear determinant map det : $\left(R^{p}\right)^{p} \rightarrow R$ from lemma 10.12 with respect to the standard basis $\left\{s_{i}\right\}_{i=1, \ldots, p}$ of R^{p}. Its composition with the p-fold direct product of π_{I} defines an alternating p-linear map

$$
\begin{array}{cccc}
\varphi_{I}: & M^{p} & \rightarrow & R \\
\left(m_{1}, \ldots, m_{p}\right) & \mapsto & \operatorname{det}\left(\pi_{I}\left(m_{1}\right), \ldots, \pi_{I}\left(m_{p}\right)\right)
\end{array}
$$

The universal property of the alternating power gives a unique R-linear map $\hat{\varphi}_{I}: \bigwedge^{p} M \rightarrow R$ such that for all generating elements $m_{1} \wedge \ldots \wedge m_{p} \in \bigwedge^{p} M$ holds $\hat{\varphi}\left(m_{1} \wedge \ldots \wedge m_{p}\right)=\operatorname{det}\left(\pi_{I}\left(m_{1}\right), \ldots, \pi_{I}\left(m_{p}\right)\right)$.
Consider another tuple $J \in \mathcal{I}$. For $J=I$ we compute

$$
\hat{\varphi}_{I}\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{p}}\right)=\operatorname{det}\left(\pi_{I}\left(e_{i_{1}}\right), \ldots, \pi_{I}\left(e_{i_{p}}\right)\right)=\operatorname{det}\left(s_{1}, \ldots, s_{p}\right)=1_{R}
$$

However, if $I \neq J$ there must exist some $\ell \in\{1, \ldots, p\}$ with $j_{\ell} \notin\left\{i_{1}, \ldots, i_{p}\right\}$. Hence $\pi_{I}\left(e_{j_{\ell}}\right)=0_{R}$. Thus

$$
\hat{\varphi}_{I}\left(e_{j_{1}} \wedge \ldots \wedge e_{j_{p}}\right)=\operatorname{det}\left(\pi_{I}\left(e_{j_{1}}\right), \ldots, \pi_{I}\left(e_{j_{p}}\right)\right)=0_{R} .
$$

Consider now an R-linear combination $a=\sum_{\left(j_{1}, \ldots, j_{p}\right) \in \mathcal{I}} r^{j_{1}, \ldots, j_{p}} e_{j_{1}} \wedge \ldots \wedge e_{j_{p}} \in$ $\bigwedge^{p} M$ with all $r^{j_{1}, \ldots, j_{p}} \in R$, and suppose $a=0$. By the properties of the R-linear map, we compute

$$
0_{R}=\hat{\varphi}_{I}(a)=r^{i_{1}, \ldots, i_{p}}
$$

for all $I=\left(i_{1}, \ldots, i_{p}\right) \in \mathcal{I}$.
10.14 Exercise. Let M be a vector space over a field K. Let $m_{1}, \ldots, m_{p} \in$ M. Then $m_{1} \wedge \ldots \wedge m_{p} \neq 0$ if and only if m_{1}, \ldots, m_{p} are K-linearly independent.
10.15 Notation. Let M be a module over a commutative ring $(R,+, \cdot)$ with multiplicative unit. We define

$$
\bigwedge M:=\bigoplus_{p \in \mathbb{N}} \bigwedge^{p} M
$$

as an R-module, where $\bigwedge^{0} M:=R$ and $\bigwedge^{1} M:=M$. By taking direct sums, there is a canonical R-linear map

$$
\pi^{a}: \bigotimes M \rightarrow \bigwedge M
$$

10.16 Proposition. There exists a unique R-algebra structure ($\bigwedge M,+, \cdot, \wedge$), with respect to which π^{a} is a homomorphism of R-algebras.

Proof. By construction, π^{a} is a homomorphism of R-modules. It is surjective, so for any $a, a^{\prime} \in \bigwedge M$, there exist elements $t, t^{\prime} \in \bigotimes M$, such that $\pi^{a}(t)=a$ and $\pi^{a}\left(t^{\prime}\right)=a^{\prime}$. We then define

$$
a \wedge a^{\prime}:=\pi\left(t \otimes t^{\prime}\right)
$$

By a straightforward computation, one verifies that this gives a well-defined bilinear map, which is unique.
10.17 Remark. In particular, proposition 10.16 implies that there is a unique well-defined bilinear map

$$
\begin{array}{cl}
\wedge: \bigwedge^{p} M \times \bigwedge^{q} M & \rightarrow \bigwedge^{p+q} M \\
\left(a_{1}, a_{2}\right) & \mapsto a_{1} \wedge a_{2}
\end{array}
$$

for all $p, q \in \mathbb{N}$, such that for all $t_{1} \in \bigotimes^{p} M$ and $t_{2} \in \bigotimes^{q} M$ holds

$$
\pi^{a}\left(t_{1}\right) \wedge \pi^{a}\left(t_{2}\right)=\pi^{a}\left(t_{1} \otimes t_{2}\right)
$$

10.18 Definition. Let M be a module over a commutative ring $(R,+, \cdot)$ with multiplicative unit. Then $(M,+, \cdot, \wedge)$ is called the exterior algebra of M.
10.19 Remark. a) The exterior algebra $(M,+, \cdot, \wedge)$ is an associative algebra with multiplicative unit $1_{R} \in \bigwedge M$. In general, it is not commutative.
b) As before, there is a functor

$$
\begin{array}{cll}
\wedge:(R-\mathrm{Mod}) & \rightarrow & (R \text {-Alg }) \\
M & \mapsto & \wedge M \\
\varphi & \mapsto & \wedge \varphi
\end{array}
$$

10.20 Lemma. Let $a_{1} \in \bigwedge^{p} M$ and $a_{2} \in \bigwedge^{q} M$ with $p, q \in \mathbb{N}$. Then the following formula holds:

$$
a_{2} \wedge a_{1}=(-1)^{p q} a_{1} \wedge a_{2}
$$

Proof. By linearity, it is enough to prove the claim on decomposable elements. Let $a_{1}=m_{1} \wedge \ldots \wedge m_{p}$ and $a_{2}=m_{p+1} \wedge \ldots \wedge m_{p+q}$, with $m_{1}, \ldots, m_{p+q} \in M$. Let $\sigma \in \Sigma_{p+q}$ be the permutation mapping the tuple $(1, \ldots, p+q)$ to $(p+1, \ldots, p+q, 1, \ldots, p)$. One easily verifies $\operatorname{sign}(\sigma)=$ $(-1)^{p q}$. Then

$$
\begin{aligned}
a_{2} \wedge a_{1} & =m_{p+1} \wedge \ldots \wedge m_{p+q} \wedge m_{1} \wedge \ldots \wedge m_{p} \\
& =\sigma\left(m_{1} \wedge \ldots \wedge m_{p+q}\right) \\
& =\operatorname{sign}(\sigma) \cdot m_{1} \wedge \ldots \wedge m_{p+q} \\
& =(-1)^{p q} a_{1} \wedge a_{2}
\end{aligned}
$$

by proposition 10.11.
10.21 Example. Let $R=\mathbb{R}$ and $M:=\mathbb{R}^{3}$, with standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Then we find

$$
\bigwedge \mathbb{R}^{3} \cong \mathbb{R} \oplus \mathbb{R}^{3} \oplus \mathbb{R}^{3} \oplus \mathbb{R}
$$

For the element $a:=e_{2}+e_{1} \wedge e_{3}$ one computes $a \wedge a=-2 e_{1} \wedge e_{2} \wedge e_{3} \neq 0$.
10.22 Example. Let M be a free R-module with a finite basis $\left\{e_{1}, \ldots, e_{n}\right\}$. Let $\varphi: M \rightarrow M$ be an R-linear map, which is given with respect to the chosen basis by a matrix

$$
A_{\varphi}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{1 n} & \ldots & a_{n n}
\end{array}\right)
$$

Let $p \in \mathbb{N}_{\geq 2}$. For an element $e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}$ with $1 \leq i_{1}<\ldots<i_{p} \leq n$ of the induced basis of $\bigwedge^{p} M$ we compute

$$
\begin{aligned}
\wedge^{p} \varphi\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}\right) & =\varphi\left(e_{i_{1}}\right) \wedge \ldots \wedge \varphi\left(e_{i_{p}}\right) \\
& =\sum_{j_{1}, \ldots, j_{p}=1}^{n} a_{i_{1}, j_{1}} e_{j_{1}} \wedge \ldots \wedge a_{i_{p}, j_{p}} e_{j_{p}} \\
& =\sum_{1 \leq j_{1}<\ldots<j_{n} \leq n} \sum_{\sigma \in \Sigma_{p}} \operatorname{sign}(\sigma) a_{i_{1}, j_{1}} \ldots a_{i_{p}, j_{p}} e_{j_{1}} \wedge \ldots \wedge e_{j_{p}} \\
& =\sum_{1 \leq j_{1}<\ldots<j_{n} \leq n} \operatorname{det}\left(A_{j_{1}, \ldots, j_{p}}^{1_{1}, \ldots, j_{p}}\right)
\end{aligned}
$$

In particular, for $p=n=\operatorname{rang}(M)$ we find on the generating element

$$
\wedge^{n} \varphi: \begin{array}{ccc}
\wedge^{n} M & \rightarrow & \wedge^{n} M \\
e_{1} \wedge \ldots \wedge e_{n} & \mapsto & \operatorname{det}(A) \cdot e_{1} \wedge \ldots \wedge e_{n}
\end{array}
$$

For example, let $n=2$, and $A_{\varphi}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then one computes

$$
\begin{aligned}
\wedge^{2} \varphi\left(e_{1}, e_{2}\right) & =\varphi\left(e_{1}\right) \wedge \varphi\left(e_{2}\right)=\left(a e_{1}+c e_{2}\right) \wedge\left(b e_{1}+d e_{2}\right) \\
& =a b e_{1} \wedge e_{1}+a d e_{1} \wedge e_{2}+c b e_{2} \wedge e_{1}+c d e_{2} \wedge e_{2} \\
& =(a d-b c) e_{1} \wedge e_{2}
\end{aligned}
$$

10.23 Proposition. Let M be a free R-module of rank $n<\infty$. Then $\wedge M$ is a free R-module of rank

$$
\operatorname{rank}(\bigwedge M)=2^{n}
$$

Proof. By proposition 10.13, we have $\operatorname{rank}\left(\bigwedge^{p} M\right)=\binom{n}{p}$ for $0 \leq p \leq n$, and $\bigwedge^{p} M=\{0\}$ for $p>n$ by proposition 10.9. We thus compute

$$
\operatorname{rank}(\bigwedge M)=\sum_{i=0}^{n}\binom{n}{p}=\sum_{i=0}^{n}\binom{n}{p} 1^{p} 1^{n-p}=(1+1)^{n}=2^{n}
$$

using the binomial formula.

