10 The exterior algebra

Throughout this section let $(R, +, \cdot)$ always be a commutative ring with a multiplicative identity element, and let M be an R-module.

10.1 Definition. Let $p \in \mathbb{N}_{\geq 2}$. Let N be an R-module. A p-linear map $\varphi : M^p \to N$ is called *alternating*, if for all $(m_1, \ldots, m_p) \in M^p$ the following implication holds:

If there exist $i, j \in \{1, ..., p\}$ with $i \neq j$ such that $m_i = m_j$ holds, then $\varphi(m_1, ..., m_p) = 0$.

10.2 Notation. We define the *R*-module of alternating *p*-linear maps by

 $\operatorname{Alt}_{R}^{p}(M, N) := \{ \varphi : M^{p} \to N : \varphi \text{ alternating } \}.$

10.3 Example. Let $(R, +, \cdot) = (K, +, \cdot)$ be a field, and let $M = K^n$. As vector spaces over K, we identify $M^n \cong \operatorname{Mat}(n, n, K)$. Then the determinant map det : $\operatorname{Mat}_K(n, n) \to K$ is alternating.

10.4 Definition. Let M be an R-module. For $p \in \mathbb{N}_{\geq 2}$ we define a submodule of $\bigotimes^p M$ by

$$N^p(M) := \operatorname{span}_R\{m_1 \otimes \ldots \otimes m_p \in \bigotimes^p M : \exists i \neq j \text{ s.th. } m_i = m_j\}.$$

The R-module quotient

$$\bigwedge^p M := \bigotimes^p M / N^p(M)$$

is called the *p*-th exterior power of M, or the *p*-th alternating power of M. For equivalence classes, we use the notation

$$m_1 \wedge \ldots \wedge m_p := [m_1 \otimes \ldots \otimes m_p] \in \bigwedge^p M.$$

10.5 Remark. The composed map τ^a , defined by

$$M^p \xrightarrow[]{\tau^a} \bigotimes^p M \xrightarrow[]{\pi^a} \bigwedge^p M$$

is *p*-linear and alternating. Indeed, for an element $(m_1, \ldots, m_p) \in M^p$ with $m_i = m_j$ for some $i \neq j$, we have $\tau(m_1, \ldots, m_p) \in N^p(M)$, so that $\pi \circ \tau(m_1, \ldots, m_p) = 0 \in \bigwedge^p M$.

10.6 Remark. As a quotient of the *p*-fold tensor product, the alternating product inherits rules for computation analogous to those listed in ??. In the case p = 2, we have for all $m, m', m'' \in M$ and $r \in R$ the equalities

(1)
$$(rm) \wedge m' = m \wedge (rm')$$

(2) $(m+m') \wedge m'' = m \wedge m'' + m' \wedge m''$
(3) $m \wedge (m'+m'') = m \wedge m' + m \wedge m''$
(4) $m \wedge 0 = 0$
(5) $0 \wedge m = 0.$

Analogous formulae hold for all $p \in \mathbb{N}_{\geq 2}$. We have furthermore

(6)
$$m_1 \wedge \ldots \wedge m_p = 0$$
 if $m_i = m_j$ for some $1 \le i, j \le p$ with $i \ne j$.

10.7 Proposition. Let M be an R-module. The p-th exterior power of M is up to isomorphism uniquely determined by the following universal property.

For any R-module Z, and any alternating p-linear map $\varphi: M^p \to Z$, there exists a unique p-linear map $\hat{\varphi}$ such that the diagram

commutes.

Proof. Follows from the universal property of the tensor product. \Box

10.8 Remark. As before, the universal property of the *p*-th exterior power implies the existence of a covariant functor

such that the equality $\wedge^p \alpha(m_1 \wedge \ldots \wedge m_p) = \alpha(m_1) \wedge \ldots \wedge \alpha(m_p)$ holds for all $(m_1 \ldots, m_p) \in M^p$.

Indeed, for any homorphism $\alpha : M_1 \to M_2$ of *R*-modules, the composed map $\tau_2^a \circ (\alpha \times \ldots \times \alpha) : M_1^p \to M_2^p \to \bigwedge^p M_2$ is alternating. The map $\wedge^p \alpha : \bigwedge^p M_1 \to \bigwedge^p M_2$ is defined as the unique *R*-linear map satisfying $\wedge^p \alpha \circ \tau_1^a = \tau_2^a \circ (\alpha \times \ldots \times \alpha)$ given by the universal property. **10.9 Proposition.** Let M be a free R-module of rank $n < \infty$. Then

$$\bigwedge^p M = \{0\}$$
 for all $p > n$

Proof. Let $\{e_1, \ldots, e_n\}$ be a basis of M. Then $\bigotimes^p M = \operatorname{span}_R\{e_{i_1} \otimes \ldots \otimes e_{i_p} : 1 \leq i_1, \ldots, i_p \leq n\}$. By its construction as a quotient,

$$\bigwedge^{p} M = \operatorname{span}_{R} \{ e_{i_{1}} \wedge \ldots \wedge e_{i_{p}} : 1 \leq i_{1}, \ldots, i_{p} \leq n \}.$$

If p > n, then for any *p*-tuple (i_1, \ldots, i_p) , there exists at least one pair of indices $1 \le j, k \le p$ with $j \ne k$ but $i_j = i_k$. Thus $e_{i_1} \land \ldots \land e_{i_p} = 0$. \Box

10.10 Remark. Let $p \in \mathbb{N}_{>0}$. Recall that the group of permutations (Σ_p, \circ) is given by the set Σ_p of bijective maps from $\{1, \ldots, p\}$ to itself, together with the composition " \circ " of maps. For a permutation $\sigma \in \Sigma_p$, the composed map

$$\begin{array}{ccccc} M^p & \to & M^p & \to & \bigotimes^p M \\ (m_1, \dots, m_p) & \mapsto & (m_{\sigma(1)}, \dots, m_{\sigma(p)}) & \mapsto & m_{\sigma(1)} \otimes \dots \otimes m_{\sigma(p)} \end{array}$$

is *p*-linear. Thus, by the universal property of the tensor product, it defines a unique *R*-linear map $\bigotimes^p M \to \bigotimes^p M$ which shall also be denoted by σ , by abuse of notation.

Obviously, for this map holds $\sigma(N^p(M)) \subseteq N^p(M)$. By the universal property of the quotient $\bigwedge^p M = \bigotimes^p M/N^p(M)$ there exists a unique *R*-linear map $\overline{\sigma}$, which makes the following diagram commutative:

It is customary to denote the unique homomorphism $\overline{\sigma}$ again by σ . By construction, it is given on generating elements by

$$\sigma: \bigwedge^{p} M \to \bigwedge^{p} M$$
$$m_{1} \wedge \ldots \wedge m_{p} \mapsto m_{\sigma(1)} \wedge \ldots \wedge m_{\sigma(p)}$$

10.11 Proposition. Let M be an R-module and let $p \in \mathbb{N}_{\geq 2}$. Then for all $a \in \bigwedge^p M$ and all $\sigma \in \Sigma_p$ holds

$$\sigma(a) = \operatorname{sign}(\sigma) a.$$

Proof. Since the map $\sigma : \bigwedge^p M \to \bigwedge^p M$ is *R*-linear, it is enough to prove the formula on generating elements $a = m_1 \land \ldots \land m_p \in \bigwedge^p M$, where $m_1, \ldots, m_p \in M$.

Consider a representative $t = m_1 \otimes \ldots \otimes m_p \in \bigotimes^p M$, so that $\pi(t) = a$. It is enough to show $n := \sigma(t) - \operatorname{sign}(\sigma)t \in N^p(M)$. To do this, we write $\sigma = \tau_1 \circ \ldots \circ \tau_k$, where τ_1, \ldots, τ_k are transpositions. Note that $\operatorname{sign}(\sigma) = (-1)^k$. We will prove the claim by induction on k. For k = 1, let $\sigma = \tau$ be the transposition interchanging the indices i and j. Without loss of generality

we may assume $1 \le i < j \le p$. We compute

$$n = m_1 \otimes \ldots \otimes m_j \otimes \ldots \otimes m_i \otimes \ldots \otimes m_p - (-1)m_1 \otimes \ldots \otimes m_p$$

$$= m_1 \otimes \ldots \otimes (m_i + m_j) \otimes \ldots \otimes (m_i + m_j) \otimes \ldots \otimes m_p$$

$$-m_1 \otimes \ldots \otimes m_i \otimes \ldots \otimes m_j \otimes \ldots \otimes m_p$$

$$-m_1 \otimes \ldots \otimes m_j \otimes \ldots \otimes m_j \otimes \ldots \otimes m_p$$

$$\in N^p(M).$$

Now let $k \geq 2$, and assume that the formula holds up to k-1. We have $\sigma = \tau_1 \circ \sigma'$, where $\sigma' = \tau_2 \circ \ldots \circ \tau_k$. By assumption, we already have $\sigma'(t) - \operatorname{sign}(\sigma')t \in N^p(M)$. Then clearly also $n' := \tau_1(\sigma'(t) - \operatorname{sign}(\sigma')t) \in N^p(M)$. We compute

$$\begin{array}{rcl} n' &=& \sigma(t) - \operatorname{sign}(\sigma') \, \tau_1(t) &\in N^p(M), & \text{and} \\ n_1 &:=& \tau_1(t) - \operatorname{sign}(\tau_1)t &\in N^p(M) & \text{by step 1.} \end{array}$$

From this we obtain

$$\sigma(t) - \operatorname{sign}(\sigma)(t) = \sigma(t) - \operatorname{sign}(\sigma')\operatorname{sign}(\tau_1) t$$

= $\sigma(t) - \operatorname{sign}(\sigma')(\tau_1(t) - n_1)$
= $\sigma(t) - \operatorname{sign}(\sigma') \tau_1(t) + \operatorname{sign}(\sigma')n_1$
= $n' + \operatorname{sign}(\sigma')n_1$
 $\in N^p(M).$

Thus $\sigma(a) - \operatorname{sign}(\sigma)a = \pi(\sigma(t) - \operatorname{sign}(\sigma)(t)) = 0$, as claimed.

10.12 Lemma. Let M be a free R-module of rank $n < \infty$ with basis $\{e_1, \ldots, e_n\}$. Then there exists a unique alternating p-linear map

$$\det: M^n \to R$$

called the determinant map, such that $det(e_1, \ldots, e_n) = 1$.

Proof. By construction, the *n*-th alternating product is given as

$$\bigwedge^{n} M = \operatorname{span}_{R} \{ e_{i_{1}} \land \ldots \land e_{i_{n}} : 1 \le i_{1}, \ldots, i_{n} \le n \}$$

If $\{i_1, \ldots, i_n\} \subseteq \{1, \ldots, n\}$, we must have $i_j = i_k$ for some $j \neq k$, so that $e_{i_1} \wedge \ldots \wedge e_{i_n} = 0$. We may hence assume that all *n* indices of the generating elements are pairwise different, and all numbers $1, \ldots, n$ occur as indices. Reordering of the indices changes the element only by a sign $\pm 1_R$, so we get

$$\bigwedge^{n} M = \operatorname{span}_{R} \{ e_{1} \wedge \ldots \wedge e_{n} \} = R \cdot e_{1} \wedge \ldots \wedge e_{n}.$$

Consider the coordinate map

$$j: \bigwedge^{n} M \to R$$
$$r \cdot e_1 \wedge \dots \wedge e_n \mapsto r$$

By composition with the map $\tau^a : M^n \to \bigwedge^n M$, we define det $:= j \circ \tau^a$. Clearly, this is *p*-linear and alternating, and it satisfies det $(e_1, \ldots, e_n) = 1$.

To prove uniqueness, consider another alternating *p*-linear map $d: M^n \to R$ with $d(e_1, \ldots, e_n) = 1$. By the universal property of the alternating product, there is a unique *R*-linear map $\hat{d}: \bigwedge^n M \to R$ such that $d = \hat{d} \circ \tau^a$.

Let $a \in \bigwedge^n M$. Then there exists an $r \in R$ such that $a = r \cdot e_1 \wedge \ldots \wedge e_n$. We compute

$$\hat{d}(a) = r \cdot \hat{d}(e_1 \wedge \ldots \wedge e_n) = r \cdot d(e_1, \ldots, e_n)$$

= $r \cdot 1_R$
= $r \cdot \det(e_1, \ldots, e_n) = r \cdot j(e_1 \wedge \ldots \wedge e_n) = j(a)$

Hence $\hat{d} = j$, and thus $d = \tau^a \circ \hat{d} = \tau^a \circ j = \det$.

10.13 Proposition. Let
$$M$$
 be a free R -module of rank $n < \infty$ with basis $\{e_1, \ldots, e_n\}$. Let $p \in \mathbb{N}_{\geq 2}$. Then the p-th exterior power $\bigwedge^p M$ is a free R -module with basis $(e_{i_1} \land \ldots \land e_{i_p})_{1 \leq i_1 < \ldots < i_p \leq n}$. In particular, for its rank holds

$$\operatorname{rank}(\bigwedge^p M) = \binom{n}{p}.$$

Proof. Clearly, $\{e_{i_1} \land \ldots \land e_{i_p}\}_{1 \leq i_1, \ldots, i_p \leq n}$ is a generating system of $\bigwedge^p M$. By proposition 10.11, we may assume that the indices are ordered as $1 \leq i_1 \leq \ldots \leq i_p \leq n$. We may furthermore confine ourselves to strict inequalities, since otherwise $e_{i_1} \land \ldots \land e_{i_p} = 0$.

It remains to prove the R-linear independence of the generating family. This needs some preparation.

We denote by \mathcal{I} the set of all tuples $I := (i_1, \ldots, i_p)$ with $1 \leq i_1 < \ldots < i_p \leq n$. For $I \in \mathcal{I}$ we define the projection map

$$\pi_I: \qquad M \quad \to \quad R^p \\ m = \sum_{i=1}^n r_i e_i \quad \mapsto \quad (r_{i_1}, \dots, r_{i_p})$$

which is clearly *R*-linear. Consider the unique *p*-linear determinant map det : $(R^p)^p \to R$ from lemma 10.12 with respect to the standard basis $\{s_i\}_{i=1,\dots,p}$ of R^p . Its composition with the *p*-fold direct product of π_I defines an alternating *p*-linear map

$$\varphi_I: \begin{array}{ccc} M^p & \to & R\\ (m_1, \dots, m_p) & \mapsto & \det(\pi_I(m_1), \dots, \pi_I(m_p)) \end{array}$$

The universal property of the alternating power gives a unique *R*-linear map $\hat{\varphi}_I : \bigwedge^p M \to R$ such that for all generating elements $m_1 \land \ldots \land m_p \in \bigwedge^p M$ holds $\hat{\varphi}(m_1 \land \ldots \land m_p) = \det(\pi_I(m_1), \ldots, \pi_I(m_p))$.

Consider another tuple $J \in \mathcal{I}$. For J = I we compute

$$\hat{\varphi}_I(e_{j_1} \wedge \ldots \wedge e_{j_p}) = \det(\pi_I(e_{i_1}), \ldots, \pi_I(e_{i_p})) = \det(s_1, \ldots, s_p) = 1_R.$$

However, if $I \neq J$ there must exist some $\ell \in \{1, \ldots, p\}$ with $j_{\ell} \notin \{i_1, \ldots, i_p\}$. Hence $\pi_I(e_{j_\ell}) = 0_R$. Thus

$$\hat{\varphi}_I(e_{j_1} \wedge \ldots \wedge e_{j_p}) = \det(\pi_I(e_{j_1}), \ldots, \pi_I(e_{j_p})) = 0_R.$$

Consider now an *R*-linear combination $a = \sum_{(j_1,\ldots,j_p)\in\mathcal{I}} r^{j_1,\ldots,j_p} e_{j_1} \wedge \ldots \wedge e_{j_p} \in \bigwedge^p M$ with all $r^{j_1,\ldots,j_p} \in R$, and suppose a = 0. By the properties of the *R*-linear map, we compute

$$0_R = \hat{\varphi}_I(a) = r^{i_1, \dots, i_p}$$

for all $I = (i_1, \ldots, i_p) \in \mathcal{I}$.

10.14 Exercise. Let M be a vector space over a field K. Let $m_1, \ldots, m_p \in M$. Then $m_1 \wedge \ldots \wedge m_p \neq 0$ if and only if m_1, \ldots, m_p are K-linearly independent.

10.15 Notation. Let M be a module over a commutative ring $(R, +, \cdot)$ with multiplicative unit. We define

$$\bigwedge M := \bigoplus_{p \in \mathbb{N}} \bigwedge^p M$$

as an *R*-module, where $\bigwedge^0 M := R$ and $\bigwedge^1 M := M$. By taking direct sums, there is a canonical *R*-linear map

$$\pi^a: \bigotimes M \to \bigwedge M.$$

10.16 Proposition. There exists a unique R-algebra structure $(\bigwedge M, +, \cdot, \wedge)$, with respect to which π^a is a homomorphism of R-algebras.

Proof. By construction, π^a is a homomorphism of *R*-modules. It is surjective, so for any $a, a' \in \bigwedge M$, there exist elements $t, t' \in \bigotimes M$, such that $\pi^a(t) = a$ and $\pi^a(t') = a'$. We then define

$$a \wedge a' := \pi(t \otimes t').$$

By a straightforward computation, one verifies that this gives a well-defined bilinear map, which is unique. $\hfill \Box$

10.17 Remark. In particular, proposition 10.16 implies that there is a unique well-defined bilinear map

$$\wedge : \bigwedge^{p} M \times \bigwedge^{q} M \to \bigwedge^{p+q} M$$
$$(a_{1}, a_{2}) \mapsto a_{1} \wedge a_{2}$$

for all $p, q \in \mathbb{N}$, such that for all $t_1 \in \bigotimes^p M$ and $t_2 \in \bigotimes^q M$ holds

$$\pi^a(t_1) \wedge \pi^a(t_2) = \pi^a(t_1 \otimes t_2).$$

10.18 Definition. Let M be a module over a commutative ring $(R, +, \cdot)$ with multiplicative unit. Then $(M, +, \cdot, \wedge)$ is called the *exterior algebra* of M.

10.19 Remark. a) The exterior algebra $(M, +, \cdot, \wedge)$ is an associative algebra with multiplicative unit $1_R \in \bigwedge M$. In general, it is not commutative. b) As before, there is a functor

$$\begin{array}{cccc} \bigwedge: & (R\text{-Mod}) & \to & (R\text{-Alg}) \\ & M & \mapsto & \bigwedge M \\ & \varphi & \mapsto & \land \varphi \end{array}$$

10.20 Lemma. Let $a_1 \in \bigwedge^p M$ and $a_2 \in \bigwedge^q M$ with $p, q \in \mathbb{N}$. Then the following formula holds:

$$a_2 \wedge a_1 = (-1)^{pq} a_1 \wedge a_2.$$

Proof. By linearity, it is enough to prove the claim on decomposable elements. Let $a_1 = m_1 \wedge \ldots \wedge m_p$ and $a_2 = m_{p+1} \wedge \ldots \wedge m_{p+q}$, with $m_1, \ldots, m_{p+q} \in M$. Let $\sigma \in \Sigma_{p+q}$ be the permutation mapping the tuple $(1, \ldots, p+q)$ to $(p+1, \ldots, p+q, 1, \ldots, p)$. One easily verifies sign $(\sigma) = (-1)^{pq}$. Then

$$a_{2} \wedge a_{1} = m_{p+1} \wedge \ldots \wedge m_{p+q} \wedge m_{1} \wedge \ldots \wedge m_{p}$$

= $\sigma(m_{1} \wedge \ldots \wedge m_{p+q})$
= $\operatorname{sign}(\sigma) \cdot m_{1} \wedge \ldots \wedge m_{p+q}$
= $(-1)^{pq} a_{1} \wedge a_{2}$

by proposition 10.11.

10.21 Example. Let $R = \mathbb{R}$ and $M := \mathbb{R}^3$, with standard basis $\{e_1, e_2, e_3\}$. Then we find

$$\bigwedge \mathbb{R}^3 \cong \mathbb{R} \oplus \mathbb{R}^3 \oplus \mathbb{R}^3 \oplus \mathbb{R}.$$

For the element $a := e_2 + e_1 \wedge e_3$ one computes $a \wedge a = -2e_1 \wedge e_2 \wedge e_3 \neq 0$.

10.22 Example. Let M be a free R-module with a finite basis $\{e_1, \ldots, e_n\}$. Let $\varphi : M \to M$ be an R-linear map, which is given with respect to the chosen basis by a matrix

$$A_{\varphi} = \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{nn} \end{array}\right).$$

Let $p \in \mathbb{N}_{\geq 2}$. For an element $e_{i_1} \wedge \ldots \wedge e_{i_p}$ with $1 \leq i_1 < \ldots < i_p \leq n$ of the induced basis of $\bigwedge^p M$ we compute

In particular, for $p = n = \operatorname{rang}(M)$ we find on the generating element

$$\wedge^n \varphi: \bigwedge^n M \to \bigwedge^n M$$
$$e_1 \wedge \ldots \wedge e_n \mapsto \det(A) \cdot e_1 \wedge \ldots \wedge e_n$$

For example, let n = 2, and $A_{\varphi} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then one computes

$$\wedge^2 \varphi(e_1, e_2) = \varphi(e_1) \wedge \varphi(e_2) = (ae_1 + ce_2) \wedge (be_1 + de_2)$$

= $abe_1 \wedge e_1 + ade_1 \wedge e_2 + cbe_2 \wedge e_1 + cde_2 \wedge e_2$
= $(ad - bc)e_1 \wedge e_2.$

10.23 Proposition. Let M be a free R-module of rank $n < \infty$. Then $\bigwedge M$ is a free R-module of rank

$$\operatorname{rank}(\bigwedge M) = 2^n.$$

Proof. By proposition 10.13, we have $\operatorname{rank}(\bigwedge^p M) = \binom{n}{p}$ for $0 \le p \le n$, and $\bigwedge^p M = \{0\}$ for p > n by proposition 10.9. We thus compute

$$\operatorname{rank}(\bigwedge M) = \sum_{i=0}^{n} {n \choose p} = \sum_{i=0}^{n} {n \choose p} 1^{p} 1^{n-p} = (1+1)^{n} = 2^{n}$$

using the binomial formula.