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11 The symmetric algebra

Throughout this section let (R,+, ·) always be a commutative ring with a
multiplicative identity element, and let M be an R-module.

11.1 Definition. Let p ∈ N>0, and let N be an R-module. A p-linear
map ϕ : Mp → N is called symmetric, if for all σ ∈ Σp holds

ϕ ◦ σ = ϕ.

11.2 Notation. The R-module of symmetric p-linear maps is denoted by

Symp
R(M,N) := {ϕ : Mp → N : ϕ symmetric}

We define a submodule of the of the R-module
⊗pM by

Y p(M) := spanR {t− τ(t) : t ∈
⊗pM, τ ∈ Σp transposition} .

11.3 Remark. a) Let t ∈
⊗pM , and let σ ∈ Σp be an arbitrary permu-

tation. Then t− σ(t) ∈ Y p(M). Indeed, we can write σ = τ1 ◦ . . . ◦ τn as a
composition of finitely many transpositions. We compute inductively

t− σ(t) = (t− τn(t)) + (τn(t)− τn−1 ◦ τn(t)) + . . .
. . .+ (τ2 ◦ . . . ◦ τn(t)− τ1 ◦ τ2 ◦ . . . ◦ τn(t)) ∈ Y p(M).

b) The submodule Y p(M) is Σp-invariant. Indeed, let σ ∈ Σp. Then for any
generating element t − τ(t) ∈ Y p(M), with t ∈

⊗pM and a transposition
τ ∈ Σp, we have σ(t− τ(t)) = σ(t)− σ ◦ τ ◦ σ−1(σ(t)), which is an element
of Y p(M) by a).

11.4 Definition. Let M be an R-module, and let p ∈ N>0. The R-module
quotient

SpM :=
⊗pM/Y p(M)

is called the p-th symmetric product of M . For equivalence classes, we use
the notation

m1 ∨ . . . ∨mp := [m1 ⊗ . . .⊗mp] ∈ SpM.

Any element of SpM , which can be written in this way, shall be called
decomposable. The canonical quotient map of the p-th symmetric product
is written on decomposable elements as

πs :
⊗pM → SpM

m1 ⊗ . . .⊗mp 7→ m1 ∨ . . . ∨mp
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By the construction of the p-th symmetric product as a quotient, we clearly
have

SpM = spanR {m1 ∨ . . . ∨mp : (m1, . . . ,mp) ∈Mp} .

The rules for adding and multiplying elements in SpM are analogous to
those for elements in

⊗pM .

11.5 Remark. Note that the composed map τ s, defined as the composi-
tion

Mp
τ
//

τs

''⊗pM
πs
// SpM

is p-linear and symmetric. Indeed, let m = (m1, . . . ,mp) ∈ Mp, and let
σ ∈ Σp be a permutation. By remark 11.3, we have in

⊗pM the inclusion
m1 ⊗ . . . ⊗mp − σ(m1 ⊗ . . . ⊗mp) ∈ Y p(M). Hence τ s(m) − τ s ◦ σ(m) =
0 ∈ SpM , as claimed.

11.6 Proposition. Let M be an R-module, and let p ∈ N>0. The p-th
symmetric power of M is up to isomorphism uniquely characterized by the
following universal property.

For any R-module Z, and any symmetric p-linear map ϕ : Mp → Z, there
exists a unique R-linear map ϕ̌ such that the diagram

Mp ϕ //

τs

��

Z

SpM
ϕ̌

<<

commutes.

Proof. Compare proposition ??. �

11.7 Remark. As before, we obtain a functor

Sp : (R-Mod) → (R-Mod)

M 7→ SpM

α 7→ Spα

where for any homomorphism α : M →M ′ of R-modules and for all gener-
ating elements m1 ∨ . . . ∨mp ∈ SpM holds

Spα(m1 ∨ . . . ∨mp) = α(m1) ∨ . . . ∨ α(mp) ∈ SpM ′.
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11.8 Proposition. Let M be a free R-module of rank n < ∞. Let p ∈
N>0. Then SpM is a free R-module of rank

rank(SpM) =

(
n+ p− 1

p

)
.

Proof. Let {ei}i=1,...,en be a basis of M . By construction, SpM is generated
by (ei1 ∨ . . . ∨ eip)1≤i1,...,ip≤n. Using the symmetry property , it is enough
to consider ordered indices, so that {ei1 ∨ . . . ∨ eip}1≤i1≤...≤ip≤n is a gener-

ating family. It is easy combinatorics to see that this family has
(
n+p−1

p

)
members, so that rank(SpM) ≤

(
n+p−1

p

)
. A standard proof shows the linear

independence, so that {ei1 ∨ . . . ∨ eip}1≤i1≤...≤ip≤n is indeed a basis. �

11.9 Example. Let M be a free R-module with a finite basis {ei}i=1,...,n.
Let p ∈ N>0. Consider the ring of polynomials R[X1, . . . , Xn] as an R-
module. The submodule of homogeneous polynomials of degree p is given
by

Rp[X1, . . . , Xn] := spanR{Xd1
1 · . . . ·X

dn
n : d1, . . . , dn ∈ N, d1 + . . .+dn = p}.

We define a p-linear map by

ϕp : Mp → Rp[X1, . . . , Xn]
(m1, . . . ,mp) 7→ (

∑n
j=1 r1,jXj) · . . . · (

∑n
j=1 rp,jXj)

where for any i = 1, . . . , p the element mi ∈ M is written with respect to
the basis as R-linear combination mi = ri,1e1 + . . . + ri,nen. Since the ring
of polynomials is commutative, the map ϕp is symmetric. By the universal
property of the p-th symmetric product, there exists a unique R-linear map
ϕ̌p : SpM → R[X1, . . . , Xn] such that for all decomposable elements m1 ∨
. . . ∨mp ∈ SpM holds

ϕ̌p(m1 ∨ . . . ∨mp) = ϕp(m1, . . . ,mp).

In particular, for any 1 ≤ i1, . . . , ip ≤ n holds Xi1 ·. . .·Xip = ϕ̌p(ei1∨. . .∨eip),
which implies, that the map ϕ̌p is surjective. One easily computes

rang(Rp[X1, . . . , Xn]) =

(
n+ p− 1

p

)
.

Together with our arguments from the proof of proposition 11.8, we find
that ϕ̌p is an isomorphism of free R-modules

SpM ∼= Rp[X1, . . . , Xn].
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Note that the direct sum R[X1, . . . , Xn] =
⊕

p∈NRd[X1, . . . , Xn] is more
than just an R-module: it has even the structure of an R-algebra. This
motivates the following definition.

11.10 Definition. Let M be an R-module. The symmetric algebra of M
is given as an R-module by

SM :=
⊕
p∈N

SpM,

where S0M := R.

11.11 Remark. As before, one shows that there exists a unique R-algebra
structure ”∨” on SM , such that the direct sum πs :

⊗
M → SM of the

canonical quotient maps is a homomorphism of R-algebras.

In particular, if a ∈ SpM and a′ ∈ SqM are given as a = πs(t) and a′ =
πs(t′) for some t ∈

⊗pM and t′ ∈
⊗qM , then their algebra product equals

a ∨ a′ = πs(t⊗ t′).

11.12 Proposition. Let M be an R-module. Then its symmetric algebra
SM is a graded commutative R-algebra with multiplicative unit 1R.

Proof. Straightforward. �

11.13 Proposition. Let M be a free R-module of rank n < ∞. Then
there exists an isomorphism of R-algebras

SM ∼= R[X1, . . . , Xn].

Proof. For the underlying isomorphism of R-modules see example 11.9. We
leave it as an exercise to verify its compatibility with the respective algebra
multiplications. �

11.14 Remark. Let L,M,N be free R-modules such that M = N ⊕ L.
Then there exists an isomorphism of graded R-algebras

SM ∼= SN ⊗ SL.

In particular, for all k ∈ N holds

SkM ∼=
⊕
p+q=k

SpN ⊗ SqL.
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12 Derivations and differentials

An important application of tensor products in general, and alternating
products in particular, is found in differential geometry and in physics: the
theory of differentials is essential for advanced calculus. We want to illustrate
this in one elementary example.

Throughout this section let (R,+, ·) always be a commutative ring with
a multiplicative identity element. Let (A,+, λ, σ) be a commutative and
associative R-algebra with a unital element 1A. In particular, (A,+, σ) is
a commutative ring with a multiplicative identity element. Let M be an
A-module, an thus an R-module, too.

12.1 Definition. An R-linear map D : A→M is called a derivation, if it
satisfies for all a, b ∈ A the Leibniz rule:

D(ab) = aD(b) + bD(a).

12.2 Remark. We denote by DerR(A,M) the set of all derivations from
A to M . It is a submodule of the R-module HomR(A,M).

12.3 Example. Let I ⊂ R be an open interval of real numbers. For a
natural number n ∈ N, let Cn(I) denote the set of all n-times continuously
differentiable functions f : I → R. Note that Cn(I) has the structure of
a commutative and associative R-algebra, where “+” and “·” are defined
point-wise. The constant function 1 is a unital element in Cn(I).

Moreover, for f ∈ Cn+1(I) and g ∈ Cn(I) holds f · g ∈ Cn(I). In this way,
M := Cn(I) becomes a module over A := Cn+1(I). Consider the map

D : Cn+1(I) → Cn(I)

f 7→ ∂f
∂x .

Clearly, differentiation is R-linear, and it satisfies the product rule. Thus D
is a derivation.

12.4 Lemma. Let D : A→M be a derivation. Then D(1A) = 0M .

Proof. From the Leibniz rule, we compute for the unital element D(1A) =
D(1A · 1A) = 1A ·D(1A) + 1A ·D(1A), and thus D(1A) = 0M . �
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12.5 Definition. Let ΩA be an A-module. A derivation d : A → ΩA is
called a universal derivation, if it satisfies the following universal property:

For any A-module M , and any derivation D : A→M , there exists a unique
homomorphism of A-modules δ : ΩA →M , such that the diagram

A
D //

d
��

M

ΩA

δ

==

commutes.

12.6 Fact. Universal derivations exist, and they are uniquely determined
up to isomorphisms. Moreover, for any universal derivation d : A → ΩA

holds ΩA = spanA{d(a) : a ∈ A}.

12.7 Example. Consider the algebra of polynomials k[x] over a field k.
Let d : k[x]→ Ωk[x] denote a universal derivation.

As a module over k, a generating family for k[x] is given by {xn}n∈N. By
lemma 12.4, for n = 0 holds d(x0) = 0. For n ≥ 2, we compute inductively

d(xn) = xn−1d(x) + xd(xn−1) = . . . = n · xn−1d(x).

Using the R-linearity of d, we obtain for any f ∈ k[x] the formula

d(f) =
∂f

∂x
d(x),

where ∂f
∂x denotes the formal differentiation of a polynomial. This implies

the equality spank[x]{d(f) : f ∈ k[x]} = k[x] · d(x). Therefore by 12.6, the
k[x]-module Ωk[x] is free of rank 1. A basis element is given by dx := d(x),
and we may write

Ωk[x] = k[x] dx.

12.8 Notation. Let d : A → ΩA be a universal derivation. We call ΩA

the A-module of Kähler differentials. For p ∈ N≥2 we write

Ωp
A :=

∧p ΩA

together with Ω0
A := A and Ω1

A := ΩA.
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12.9 Fact. There exists a family of R-linear maps dp : Ωp
A → Ωp+1

A

for p ∈ N such that for all p, q ∈ N, all ω ∈ Ωp
A and all η ∈ Ωq

A holds
dp+1 ◦ dp = 0, and

dp+q(ω ∧ η) = dpω ∧ η + (−1)pω ∧ dqη ∈ Ωp+q
A .

The family {dp}p∈N is called the de Rham complex of ΩA.

12.10 Example. Consider the ring of polynomials A := R[x, y, z] as an
R-algebra. Similarly to example 12.7 one obtains for the module of Kähler
differentials ΩA a free A-module of rank 3, with basis {dx, dy, dz}.
Because p-th exterior powers of ΩA vanish for p > 3, the de Rham complex
can be written as

Ω0
A

d0−→ Ω1
A

d1−→ Ω2
A

d2−→ Ω3
A → 0.

Let us compute this maps explicitly for all p = 0, 1, 2. For p = 0, the R-
linear map d0 : Ω0

A → Ω1
A is just the universal derivation. One can show

this to be the map

d : A → ΩA

f 7→ ∂f
∂x dx+ ∂f

∂y dy + ∂f
∂z dz.

In coordinates, i.e. with respect to the basis {dx, dy, dz} of Ω1
A this map

can be written as

d0(f) =


∂f
∂x
∂f
∂y
∂f
∂z

 =: grad(f).

In other words, the evaluation of universal derivation in some f ∈ A is given
by the gradient of f . For d1 : Ω1

A → Ω2
A one computes for a general element

fdx+ gdy + hdz ∈ Ω1
A using the formulae from 12.9

d1(fdx+ gdy + hdz) = d1(fdx) + d1(gdy) + d1(hdz)
= (df ∧ dx+ (−1)0f ∧ d1 dg) + . . .
= df ∧ dx+ dg ∧ dy + dh ∧ dz
= (∂f∂xdx+ ∂f

∂y dy + ∂f
∂z dz) ∧ dx+ . . .

= (−∂f
∂y + ∂g

∂x)dx ∧ dy + . . .

We leave it to the reader to fill in the dots. It gets more readable when we
use the notation in coordinates with respect to the bases {dx, dy, dz} of Ω1

A
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and {dy ∧ dz, dz ∧ dx, dx ∧ dy} of Ω2
A:

d1

 f
g
h

 =

 −
∂g
∂z + ∂h

∂y
∂f
∂z −

∂h
∂x

−∂f
∂y + ∂g

∂x

 =: rot

 f
g
h

 .

This is known as the rotation of the triple of functions (f, g, h). Analogously,
we obtain for d2 : Ω2

A → Ω3
A for a general element

d2(fdy ∧ dz + gdz ∧ dx+ hdx ∧ dy) =
= df ∧ dy ∧ dz + dg ∧ dz ∧ dx+ dh ∧ dx ∧ dy
= (∂f∂xdx+ ∂f

∂y dy + ∂f
∂z dz) ∧ dy ∧ dz + . . .

= (∂f∂x + ∂f
∂y + ∂f

∂z )dx ∧ dy ∧ dz.

With respect to the bases {dy∧dz, dz∧dx, dx∧dy} of Ω2
A and {dx∧dy∧dz}

of Ω3
A we get

d2

 f
g
h

 =
∂f

∂x
+
∂f

∂y
+
∂f

∂z
=: div

 f
g
h

 .

This is the definition of the divergence of the triple of functions (f, g, h).

12.11 Proposition. The following identities hold:

rot ◦ grad = 0
div ◦ rot = 0.

Proof. For the de Rham complex holds d ◦ d = 0. �
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