## 11 The symmetric algebra

Throughout this section let $(R,+, \cdot)$ always be a commutative ring with a multiplicative identity element, and let $M$ be an $R$-module.
11.1 Definition. Let $p \in \mathbb{N}_{>0}$, and let $N$ be an $R$-module. A $p$-linear $\operatorname{map} \varphi: M^{p} \rightarrow N$ is called symmetric, if for all $\sigma \in \Sigma_{p}$ holds

$$
\varphi \circ \sigma=\varphi
$$

11.2 Notation. The $R$-module of symmetric $p$-linear maps is denoted by

$$
\operatorname{Sym}_{R}^{p}(M, N):=\left\{\varphi: M^{p} \rightarrow N: \varphi \text { symmetric }\right\}
$$

We define a submodule of the of the $R$-module $\bigotimes^{p} M$ by

$$
Y^{p}(M):=\operatorname{span}_{R}\left\{t-\tau(t): t \in \bigotimes^{p} M, \tau \in \Sigma_{p} \text { transposition }\right\}
$$

11.3 Remark. a) Let $t \in \bigotimes^{p} M$, and let $\sigma \in \Sigma_{p}$ be an arbitrary permutation. Then $t-\sigma(t) \in Y^{p}(M)$. Indeed, we can write $\sigma=\tau_{1} \circ \ldots \circ \tau_{n}$ as a composition of finitely many transpositions. We compute inductively

$$
\begin{aligned}
t-\sigma(t)=(t- & \left.\tau_{n}(t)\right)+\left(\tau_{n}(t)-\tau_{n-1} \circ \tau_{n}(t)\right)+\ldots \\
& \ldots+\left(\tau_{2} \circ \ldots \circ \tau_{n}(t)-\tau_{1} \circ \tau_{2} \circ \ldots \circ \tau_{n}(t)\right) \in \quad Y^{p}(M)
\end{aligned}
$$

b) The submodule $Y^{p}(M)$ is $\Sigma_{p}$-invariant. Indeed, let $\sigma \in \Sigma_{p}$. Then for any generating element $t-\tau(t) \in Y^{p}(M)$, with $t \in \bigotimes^{p} M$ and a transposition $\tau \in \Sigma_{p}$, we have $\sigma(t-\tau(t))=\sigma(t)-\sigma \circ \tau \circ \sigma^{-1}(\sigma(t))$, which is an element of $Y^{p}(M)$ by a).
11.4 Definition. Let $M$ be an $R$-module, and let $p \in \mathbb{N}_{>0}$. The $R$-module quotient

$$
S^{p} M:=\bigotimes^{p} M / Y^{p}(M)
$$

is called the $p$-th symmetric product of $M$. For equivalence classes, we use the notation

$$
m_{1} \vee \ldots \vee m_{p}:=\left[m_{1} \otimes \ldots \otimes m_{p}\right] \in S^{p} M
$$

Any element of $S^{p} M$, which can be written in this way, shall be called decomposable. The canonical quotient map of the $p$-th symmetric product is written on decomposable elements as

$$
\begin{array}{cccc}
\pi^{s}: & \bigotimes^{p} M & \rightarrow & S^{p} M \\
& m_{1} \otimes \ldots \otimes m_{p} & \mapsto & m_{1} \vee \ldots \vee m_{p}
\end{array}
$$

By the construction of the $p$-th symmetric product as a quotient, we clearly have

$$
S^{p} M=\operatorname{span}_{R}\left\{m_{1} \vee \ldots \vee m_{p}:\left(m_{1}, \ldots, m_{p}\right) \in M^{p}\right\}
$$

The rules for adding and multiplying elements in $S^{p} M$ are analogous to those for elements in $\bigotimes^{p} M$.
11.5 Remark. Note that the composed map $\tau^{s}$, defined as the composition

is $p$-linear and symmetric. Indeed, let $m=\left(m_{1}, \ldots, m_{p}\right) \in M^{p}$, and let $\sigma \in \Sigma_{p}$ be a permutation. By remark 11.3, we have in $\otimes^{p} M$ the inclusion $m_{1} \otimes \ldots \otimes m_{p}-\sigma\left(m_{1} \otimes \ldots \otimes m_{p}\right) \in Y^{p}(M)$. Hence $\tau^{s}(m)-\tau^{s} \circ \sigma(m)=$ $0 \in S^{p} M$, as claimed.
11.6 Proposition. Let $M$ be an $R$-module, and let $p \in \mathbb{N}_{>0}$. The $p$-th symmetric power of $M$ is up to isomorphism uniquely characterized by the following universal property.
For any $R$-module $Z$, and any symmetric p-linear map $\varphi: M^{p} \rightarrow Z$, there exists a unique $R$-linear map $\check{\varphi}$ such that the diagram

commutes.
Proof. Compare proposition ??.
11.7 Remark. As before, we obtain a functor

$$
\begin{array}{ccc}
S^{p}:(R \text {-Mod }) & \rightarrow & (R \text {-Mod }) \\
M & \mapsto & S^{p} M \\
\alpha & \mapsto & S^{p} \alpha
\end{array}
$$

where for any homomorphism $\alpha: M \rightarrow M^{\prime}$ of $R$-modules and for all generating elements $m_{1} \vee \ldots \vee m_{p} \in S^{p} M$ holds

$$
S^{p} \alpha\left(m_{1} \vee \ldots \vee m_{p}\right)=\alpha\left(m_{1}\right) \vee \ldots \vee \alpha\left(m_{p}\right) \in S^{p} M^{\prime}
$$

11.8 Proposition. Let $M$ be a free $R$-module of rank $n<\infty$. Let $p \in$ $\mathbb{N}_{>0}$. Then $S^{p} M$ is a free $R$-module of rank

$$
\operatorname{rank}\left(S^{p} M\right)=\binom{n+p-1}{p}
$$

Proof. Let $\left\{e_{i}\right\}_{i=1, \ldots, e_{n}}$ be a basis of $M$. By construction, $S^{p} M$ is generated by $\left(e_{i_{1}} \vee \ldots \vee e_{i_{p}}\right)_{1 \leq i_{1}, \ldots, i_{p} \leq n}$. Using the symmetry property, it is enough to consider ordered indices, so that $\left\{e_{i_{1}} \vee \ldots \vee e_{i_{p}}\right\}_{1 \leq i_{1} \leq \ldots \leq i_{p} \leq n}$ is a generating family. It is easy combinatorics to see that this family has $\binom{n+p-1}{p}$ members, so that $\operatorname{rank}\left(S^{p} M\right) \leq\binom{ n+p-1}{p}$. A standard proof shows the linear independence, so that $\left\{e_{i_{1}} \vee \ldots \vee e_{i_{p}}^{p}\right\}_{1 \leq i_{1} \leq \ldots \leq i_{p} \leq n}$ is indeed a basis.
11.9 Example. Let $M$ be a free $R$-module with a finite basis $\left\{e_{i}\right\}_{i=1, \ldots, n}$. Let $p \in \mathbb{N}_{>0}$. Consider the ring of polynomials $R\left[X_{1}, \ldots, X_{n}\right]$ as an $R$ module. The submodule of homogeneous polynomials of degree $p$ is given by
$R_{p}\left[X_{1}, \ldots, X_{n}\right]:=\operatorname{span}_{R}\left\{X_{1}^{d_{1}} \ldots . X_{n}^{d_{n}}: d_{1}, \ldots, d_{n} \in \mathbb{N}, d_{1}+\ldots+d_{n}=p\right\}$.
We define a $p$-linear map by

$$
\begin{array}{cccc}
\varphi_{p}: & M^{p} & \rightarrow & R_{p}\left[X_{1}, \ldots, X_{n}\right] \\
& \rightarrow & \left(m_{1}, \ldots, m_{p}\right) & \mapsto \\
\left(\sum_{j=1}^{n} r_{1, j} X_{j}\right) \cdots \cdots\left(\sum_{j=1}^{n} r_{p, j} X_{j}\right)
\end{array}
$$

where for any $i=1, \ldots, p$ the element $m_{i} \in M$ is written with respect to the basis as $R$-linear combination $m_{i}=r_{i, 1} e_{1}+\ldots+r_{i, n} e_{n}$. Since the ring of polynomials is commutative, the map $\varphi_{p}$ is symmetric. By the universal property of the $p$-th symmetric product, there exists a unique $R$-linear map $\check{\varphi}_{p}: S^{p} M \rightarrow R\left[X_{1}, \ldots, X_{n}\right]$ such that for all decomposable elements $m_{1} \vee$ $\ldots \vee m_{p} \in S^{p} M$ holds

$$
\check{\varphi}_{p}\left(m_{1} \vee \ldots \vee m_{p}\right)=\varphi_{p}\left(m_{1}, \ldots, m_{p}\right) .
$$

In particular, for any $1 \leq i_{1}, \ldots, i_{p} \leq n$ holds $X_{i_{1}} \cdots \cdot X_{i_{p}}=\check{\varphi}_{p}\left(e_{i_{1}} \vee \ldots \vee e_{i_{p}}\right)$, which implies, that the map $\check{\varphi}_{p}$ is surjective. One easily computes

$$
\operatorname{rang}\left(R_{p}\left[X_{1}, \ldots, X_{n}\right]\right)=\binom{n+p-1}{p}
$$

Together with our arguments from the proof of proposition 11.8, we find that $\check{\varphi}_{p}$ is an isomorphism of free $R$-modules

$$
S^{p} M \cong R_{p}\left[X_{1}, \ldots, X_{n}\right]
$$

Note that the direct $\operatorname{sum} R\left[X_{1}, \ldots, X_{n}\right]=\bigoplus_{p \in \mathbb{N}} R_{d}\left[X_{1}, \ldots, X_{n}\right]$ is more than just an $R$-module: it has even the structure of an $R$-algebra. This motivates the following definition.
11.10 Definition. Let $M$ be an $R$-module. The symmetric algebra of $M$ is given as an $R$-module by

$$
S M:=\bigoplus_{p \in \mathbb{N}} S^{p} M
$$

where $S^{0} M:=R$.
11.11 Remark. As before, one shows that there exists a unique $R$-algebra structure " $\vee$ " on $S M$, such that the direct sum $\pi^{s}: \otimes M \rightarrow S M$ of the canonical quotient maps is a homomorphism of $R$-algebras.
In particular, if $a \in S^{p} M$ and $a^{\prime} \in S^{q} M$ are given as $a=\pi^{s}(t)$ and $a^{\prime}=$ $\pi^{s}\left(t^{\prime}\right)$ for some $t \in \bigotimes^{p} M$ and $t^{\prime} \in \bigotimes^{q} M$, then their algebra product equals

$$
a \vee a^{\prime}=\pi^{s}\left(t \otimes t^{\prime}\right)
$$

11.12 Proposition. Let $M$ be an $R$-module. Then its symmetric algebra $S M$ is a graded commutative $R$-algebra with multiplicative unit $1_{R}$.

Proof. Straightforward.
11.13 Proposition. Let $M$ be a free $R$-module of rank $n<\infty$. Then there exists an isomorphism of $R$-algebras

$$
S M \cong R\left[X_{1}, \ldots, X_{n}\right]
$$

Proof. For the underlying isomorphism of $R$-modules see example 11.9. We leave it as an exercise to verify its compatibility with the respective algebra multiplications.
11.14 Remark. Let $L, M, N$ be free $R$-modules such that $M=N \oplus L$. Then there exists an isomorphism of graded $R$-algebras

$$
S M \cong S N \otimes S L
$$

In particular, for all $k \in \mathbb{N}$ holds

$$
S^{k} M \cong \bigoplus_{p+q=k} S^{p} N \otimes S^{q} L
$$

## 12 Derivations and differentials

An important application of tensor products in general, and alternating products in particular, is found in differential geometry and in physics: the theory of differentials is essential for advanced calculus. We want to illustrate this in one elementary example.
Throughout this section let $(R,+, \cdot)$ always be a commutative ring with a multiplicative identity element. Let $(A,+, \lambda, \sigma)$ be a commutative and associative $R$-algebra with a unital element $1_{A}$. In particular, $(A,+, \sigma)$ is a commutative ring with a multiplicative identity element. Let $M$ be an $A$-module, an thus an $R$-module, too.
12.1 Definition. An $R$-linear map $D: A \rightarrow M$ is called a derivation, if it satisfies for all $a, b \in A$ the Leibniz rule:

$$
D(a b)=a D(b)+b D(a) .
$$

12.2 Remark. We denote by $\operatorname{Der}_{R}(A, M)$ the set of all derivations from $A$ to $M$. It is a submodule of the $R$-module $\operatorname{Hom}_{R}(A, M)$.
12.3 Example. Let $I \subset \mathbb{R}$ be an open interval of real numbers. For a natural number $n \in \mathbb{N}$, let $C^{n}(I)$ denote the set of all $n$-times continuously differentiable functions $f: I \rightarrow \mathbb{R}$. Note that $C^{n}(I)$ has the structure of a commutative and associative $\mathbb{R}$-algebra, where " + " and "." are defined point-wise. The constant function 1 is a unital element in $C^{n}(I)$.
Moreover, for $f \in C^{n+1}(I)$ and $g \in C^{n}(I)$ holds $f \cdot g \in C^{n}(I)$. In this way, $M:=C^{n}(I)$ becomes a module over $A:=C^{n+1}(I)$. Consider the map

$$
\begin{aligned}
D: \quad C^{n+1}(I) & \rightarrow C^{n}(I) \\
f & \mapsto
\end{aligned} \frac{\partial f}{\partial x} .
$$

Clearly, differentiation is $\mathbb{R}$-linear, and it satisfies the product rule. Thus $D$ is a derivation.
12.4 Lemma. Let $D: A \rightarrow M$ be a derivation. Then $D\left(1_{A}\right)=0_{M}$.

Proof. From the Leibniz rule, we compute for the unital element $D\left(1_{A}\right)=$ $D\left(1_{A} \cdot 1_{A}\right)=1_{A} \cdot D\left(1_{A}\right)+1_{A} \cdot D\left(1_{A}\right)$, and thus $D\left(1_{A}\right)=0_{M}$.
12.5 Definition. Let $\Omega_{A}$ be an $A$-module. A derivation $d: A \rightarrow \Omega_{A}$ is called a universal derivation, if it satisfies the following universal property: For any $A$-module $M$, and any derivation $D: A \rightarrow M$, there exists a unique homomorphism of $A$-modules $\delta: \Omega_{A} \rightarrow M$, such that the diagram

commutes.
12.6 Fact. Universal derivations exist, and they are uniquely determined up to isomorphisms. Moreover, for any universal derivation $d: A \rightarrow \Omega_{A}$ holds $\Omega_{A}=\operatorname{span}_{A}\{d(a): a \in A\}$.
12.7 Example. Consider the algebra of polynomials $k[x]$ over a field $k$. Let $d: k[x] \rightarrow \Omega_{k[x]}$ denote a universal derivation.
As a module over $k$, a generating family for $k[x]$ is given by $\left\{x^{n}\right\}_{n \in \mathbb{N}}$. By lemma 12.4, for $n=0$ holds $d\left(x^{0}\right)=0$. For $n \geq 2$, we compute inductively

$$
d\left(x^{n}\right)=x^{n-1} d(x)+x d\left(x^{n-1}\right)=\ldots=n \cdot x^{n-1} d(x)
$$

Using the $\mathbb{R}$-linearity of $d$, we obtain for any $f \in k[x]$ the formula

$$
d(f)=\frac{\partial f}{\partial x} d(x)
$$

where $\frac{\partial f}{\partial x}$ denotes the formal differentiation of a polynomial. This implies the equality $\operatorname{span}_{k[x]}\{d(f): f \in k[x]\}=k[x] \cdot d(x)$. Therefore by 12.6 , the $k[x]$-module $\Omega_{k[x]}$ is free of rank 1. A basis element is given by $d x:=d(x)$, and we may write

$$
\Omega_{k[x]}=k[x] d x .
$$

12.8 Notation. Let $d: A \rightarrow \Omega_{A}$ be a universal derivation. We call $\Omega_{A}$ the $A$-module of Kähler differentials. For $p \in \mathbb{N}_{\geq 2}$ we write

$$
\Omega_{A}^{p}:=\bigwedge^{p} \Omega_{A}
$$

together with $\Omega_{A}^{0}:=A$ and $\Omega_{A}^{1}:=\Omega_{A}$.
12.9 Fact. There exists a family of $R$-linear maps $d_{p}: \Omega_{A}^{p} \rightarrow \Omega_{A}^{p+1}$ for $p \in \mathbb{N}$ such that for all $p, q \in \mathbb{N}$, all $\omega \in \Omega_{A}^{p}$ and all $\eta \in \Omega_{A}^{q}$ holds $d_{p+1} \circ d_{p}=0$, and

$$
d_{p+q}(\omega \wedge \eta)=d_{p} \omega \wedge \eta+(-1)^{p} \omega \wedge d_{q} \eta \quad \in \Omega_{A}^{p+q} .
$$

The family $\left\{d_{p}\right\}_{p \in \mathbb{N}}$ is called the de Rham complex of $\Omega_{A}$.
12.10 Example. Consider the ring of polynomials $A:=\mathbb{R}[x, y, z]$ as an $\mathbb{R}$-algebra. Similarly to example 12.7 one obtains for the module of Kähler differentials $\Omega_{A}$ a free $A$-module of rank 3 , with basis $\{d x, d y, d z\}$.
Because $p$-th exterior powers of $\Omega_{A}$ vanish for $p>3$, the de Rham complex can be written as

$$
\Omega_{A}^{0} \xrightarrow{d_{0}} \Omega_{A}^{1} \xrightarrow{d_{1}} \Omega_{A}^{2} \xrightarrow{d_{2}} \Omega_{A}^{3} \rightarrow 0 .
$$

Let us compute this maps explicitly for all $p=0,1,2$. For $p=0$, the $\mathbb{R}$ linear map $d_{0}: \Omega_{A}^{0} \rightarrow \Omega_{A}^{1}$ is just the universal derivation. One can show this to be the map

$$
\begin{array}{rlrc}
d: & A & \rightarrow & \Omega_{A} \\
f & \mapsto & \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z .
\end{array}
$$

In coordinates, i.e. with respect to the basis $\{d x, d y, d z\}$ of $\Omega_{A}^{1}$ this map can be written as

$$
d_{0}(f)=\left(\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right)=: \operatorname{grad}(f) .
$$

In other words, the evaluation of universal derivation in some $f \in A$ is given by the gradient of $f$. For $d_{1}: \Omega_{A}^{1} \rightarrow \Omega_{A}^{2}$ one computes for a general element $f d x+g d y+h d z \in \Omega_{A}^{1}$ using the formulae from 12.9

$$
\begin{aligned}
d_{1}(f d x+g d y+h d z) & =d_{1}(f d x)+d_{1}(g d y)+d_{1}(h d z) \\
& =\left(d f \wedge d x+(-1)^{0} f \wedge d_{1} d g\right)+\ldots \\
& =d f \wedge d x+d g \wedge d y+d h \wedge d z \\
& =\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right) \wedge d x+\ldots \\
& =\left(-\frac{\partial f}{\partial y}+\frac{\partial g}{\partial x}\right) d x \wedge d y+\ldots
\end{aligned}
$$

We leave it to the reader to fill in the dots. It gets more readable when we use the notation in coordinates with respect to the bases $\{d x, d y, d z\}$ of $\Omega_{A}^{1}$
and $\{d y \wedge d z, d z \wedge d x, d x \wedge d y\}$ of $\Omega_{A}^{2}$ :

$$
d_{1}\left(\begin{array}{l}
f \\
g \\
h
\end{array}\right)=\left(\begin{array}{r}
-\frac{\partial g}{\partial z}+\frac{\partial h}{\partial y} \\
\frac{\partial f}{\partial z}-\frac{\partial h}{\partial x} \\
-\frac{\partial f}{\partial y}+\frac{\partial g}{\partial x}
\end{array}\right)=: \operatorname{rot}\left(\begin{array}{l}
f \\
g \\
h
\end{array}\right) .
$$

This is known as the rotation of the triple of functions $(f, g, h)$. Analogously, we obtain for $d_{2}: \Omega_{A}^{2} \rightarrow \Omega_{A}^{3}$ for a general element

$$
\begin{aligned}
d_{2}(f d y \wedge & d z+g d z \wedge d x+h d x \wedge d y)= \\
& =d f \wedge d y \wedge d z+d g \wedge d z \wedge d x+d h \wedge d x \wedge d y \\
& =\left(\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z\right) \wedge d y \wedge d z+\ldots \\
& =\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}\right) d x \wedge d y \wedge d z
\end{aligned}
$$

With respect to the bases $\{d y \wedge d z, d z \wedge d x, d x \wedge d y\}$ of $\Omega_{A}^{2}$ and $\{d x \wedge d y \wedge d z\}$ of $\Omega_{A}^{3}$ we get

$$
d_{2}\left(\begin{array}{l}
f \\
g \\
h
\end{array}\right)=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=: \operatorname{div}\left(\begin{array}{l}
f \\
g \\
h
\end{array}\right) .
$$

This is the definition of the divergence of the triple of functions $(f, g, h)$.
12.11 Proposition. The following identities hold:

$$
\begin{aligned}
& \text { rot } \circ \operatorname{grad}=0 \\
& \operatorname{div} \circ \operatorname{rot}=0 .
\end{aligned}
$$

Proof. For the de Rham complex holds $d \circ d=0$.

