11 The symmetric algebra

Throughout this section let $(R, +, \cdot)$ always be a commutative ring with a multiplicative identity element, and let M be an R-module.

11.1 Definition. Let $p \in \mathbb{N}_{>0}$, and let N be an R-module. A p-linear map $\varphi: M^p \to N$ is called *symmetric*, if for all $\sigma \in \Sigma_p$ holds

$$\varphi \circ \sigma = \varphi.$$

11.2 Notation. The *R*-module of symmetric *p*-linear maps is denoted by

$$\operatorname{Sym}_{R}^{p}(M, N) := \{\varphi : M^{p} \to N : \varphi \text{ symmetric}\}$$

We define a submodule of the of the *R*-module $\bigotimes^p M$ by

$$Y^p(M) := \operatorname{span}_R \{t - \tau(t) : t \in \bigotimes^p M, \tau \in \Sigma_p \text{ transposition}\}.$$

11.3 Remark. a) Let $t \in \bigotimes^p M$, and let $\sigma \in \Sigma_p$ be an arbitrary permutation. Then $t - \sigma(t) \in Y^p(M)$. Indeed, we can write $\sigma = \tau_1 \circ \ldots \circ \tau_n$ as a composition of finitely many transpositions. We compute inductively

$$t - \sigma(t) = (t - \tau_n(t)) + (\tau_n(t) - \tau_{n-1} \circ \tau_n(t)) + \dots$$

$$\dots + (\tau_2 \circ \dots \circ \tau_n(t) - \tau_1 \circ \tau_2 \circ \dots \circ \tau_n(t)) \in Y^p(M).$$

b) The submodule $Y^p(M)$ is Σ_p -invariant. Indeed, let $\sigma \in \Sigma_p$. Then for any generating element $t - \tau(t) \in Y^p(M)$, with $t \in \bigotimes^p M$ and a transposition $\tau \in \Sigma_p$, we have $\sigma(t - \tau(t)) = \sigma(t) - \sigma \circ \tau \circ \sigma^{-1}(\sigma(t))$, which is an element of $Y^p(M)$ by **a**).

11.4 Definition. Let M be an R-module, and let $p \in \mathbb{N}_{>0}$. The R-module quotient

$$S^pM := \bigotimes^p M/Y^p(M)$$

is called the p-th symmetric product of M. For equivalence classes, we use the notation

$$m_1 \vee \ldots \vee m_p := [m_1 \otimes \ldots \otimes m_p] \in S^p M.$$

Any element of $S^p M$, which can be written in this way, shall be called *decomposable*. The canonical quotient map of the *p*-th symmetric product is written on decomposable elements as

$$\pi^s: \bigotimes^p M \to S^p M$$
$$m_1 \otimes \ldots \otimes m_p \mapsto m_1 \vee \ldots \vee m_p$$

By the construction of the p-th symmetric product as a quotient, we clearly have

$$S^{p}M = \operatorname{span}_{R} \{ m_{1} \vee \ldots \vee m_{p} : (m_{1}, \ldots, m_{p}) \in M^{p} \}$$

The rules for adding and multiplying elements in $S^p M$ are analogous to those for elements in $\bigotimes^p M$.

11.5 Remark. Note that the composed map τ^s , defined as the composition

$$M^p \xrightarrow[\tau^s]{} S^p M \xrightarrow[\pi^s]{} S^p M$$

is *p*-linear and symmetric. Indeed, let $m = (m_1, \ldots, m_p) \in M^p$, and let $\sigma \in \Sigma_p$ be a permutation. By remark 11.3, we have in $\bigotimes^p M$ the inclusion $m_1 \otimes \ldots \otimes m_p - \sigma(m_1 \otimes \ldots \otimes m_p) \in Y^p(M)$. Hence $\tau^s(m) - \tau^s \circ \sigma(m) = 0 \in S^p M$, as claimed.

11.6 Proposition. Let M be an R-module, and let $p \in \mathbb{N}_{>0}$. The p-th symmetric power of M is up to isomorphism uniquely characterized by the following universal property.

For any R-module Z, and any symmetric p-linear map $\varphi : M^p \to Z$, there exists a unique R-linear map $\check{\varphi}$ such that the diagram

commutes.

Proof. Compare proposition ??.

11.7 Remark. As before, we obtain a functor

$$\begin{array}{rccc} S^p: & (R\operatorname{-Mod}) & \to & (R\operatorname{-Mod}) \\ & M & \mapsto & S^pM \\ & \alpha & \mapsto & S^p\alpha \end{array}$$

where for any homomorphism $\alpha : M \to M'$ of *R*-modules and for all generating elements $m_1 \vee \ldots \vee m_p \in S^p M$ holds

$$S^p \alpha(m_1 \lor \ldots \lor m_p) = \alpha(m_1) \lor \ldots \lor \alpha(m_p) \in S^p M'.$$

11.8 Proposition. Let M be a free R-module of rank $n < \infty$. Let $p \in \mathbb{N}_{>0}$. Then S^pM is a free R-module of rank

$$\operatorname{rank}(S^p M) = \binom{n+p-1}{p}.$$

Proof. Let $\{e_i\}_{i=1,\ldots,e_n}$ be a basis of M. By construction, S^pM is generated by $(e_{i_1} \vee \ldots \vee e_{i_p})_{1 \leq i_1,\ldots,i_p \leq n}$. Using the symmetry property , it is enough to consider ordered indices, so that $\{e_{i_1} \vee \ldots \vee e_{i_p}\}_{1 \leq i_1 \leq \ldots \leq i_p \leq n}$ is a generating family. It is easy combinatorics to see that this family has $\binom{n+p-1}{p}$ members, so that $\operatorname{rank}(S^pM) \leq \binom{n+p-1}{p}$. A standard proof shows the linear independence, so that $\{e_{i_1} \vee \ldots \vee e_{i_p}\}_{1 \leq i_1 \leq \ldots \leq i_p \leq n}$ is indeed a basis. \Box

11.9 Example. Let M be a free R-module with a finite basis $\{e_i\}_{i=1,...,n}$. Let $p \in \mathbb{N}_{>0}$. Consider the ring of polynomials $R[X_1, \ldots, X_n]$ as an R-module. The submodule of homogeneous polynomials of degree p is given by

$$R_p[X_1, \dots, X_n] := \operatorname{span}_R\{X_1^{d_1} \cdot \dots \cdot X_n^{d_n} : d_1, \dots, d_n \in \mathbb{N}, d_1 + \dots + d_n = p\}.$$

We define a p-linear map by

$$\varphi_p: \qquad M^p \quad \to \qquad R_p[X_1, \dots, X_n] \\ (m_1, \dots, m_p) \quad \mapsto \quad (\sum_{j=1}^n r_{1,j} X_j) \cdot \dots \cdot (\sum_{j=1}^n r_{p,j} X_j)$$

where for any $i = 1, \ldots, p$ the element $m_i \in M$ is written with respect to the basis as *R*-linear combination $m_i = r_{i,1}e_1 + \ldots + r_{i,n}e_n$. Since the ring of polynomials is commutative, the map φ_p is symmetric. By the universal property of the *p*-th symmetric product, there exists a unique *R*-linear map $\check{\varphi}_p : S^p M \to R[X_1, \ldots, X_n]$ such that for all decomposable elements $m_1 \vee \ldots \vee m_p \in S^p M$ holds

$$\check{\varphi}_p(m_1 \vee \ldots \vee m_p) = \varphi_p(m_1, \ldots, m_p).$$

In particular, for any $1 \leq i_1, \ldots, i_p \leq n$ holds $X_{i_1} \cdots X_{i_p} = \check{\varphi}_p(e_{i_1} \vee \ldots \vee e_{i_p})$, which implies, that the map $\check{\varphi}_p$ is surjective. One easily computes

$$\operatorname{rang}(R_p[X_1,\ldots,X_n]) = \binom{n+p-1}{p}.$$

Together with our arguments from the proof of proposition 11.8, we find that $\check{\varphi}_p$ is an isomorphism of free *R*-modules

$$S^p M \cong R_p[X_1, \dots, X_n]$$

Note that the direct sum $R[X_1, \ldots, X_n] = \bigoplus_{p \in \mathbb{N}} R_d[X_1, \ldots, X_n]$ is more than just an *R*-module: it has even the structure of an *R*-algebra. This motivates the following definition.

11.10 Definition. Let M be an R-module. The symmetric algebra of M is given as an R-module by

$$SM := \bigoplus_{p \in \mathbb{N}} S^p M,$$

where $S^0 M := R$.

11.11 Remark. As before, one shows that there exists a unique *R*-algebra structure " \vee " on *SM*, such that the direct sum $\pi^s : \bigotimes M \to SM$ of the canonical quotient maps is a homomorphism of *R*-algebras.

In particular, if $a \in S^p M$ and $a' \in S^q M$ are given as $a = \pi^s(t)$ and $a' = \pi^s(t')$ for some $t \in \bigotimes^p M$ and $t' \in \bigotimes^q M$, then their algebra product equals

$$a \vee a' = \pi^s(t \otimes t').$$

11.12 Proposition. Let M be an R-module. Then its symmetric algebra SM is a graded commutative R-algebra with multiplicative unit 1_R .

Proof. Straightforward.

11.13 Proposition. Let M be a free R-module of rank $n < \infty$. Then there exists an isomorphism of R-algebras

$$SM \cong R[X_1, \dots, X_n].$$

Proof. For the underlying isomorphism of R-modules see example 11.9. We leave it as an exercise to verify its compatibility with the respective algebra multiplications.

11.14 Remark. Let L, M, N be free *R*-modules such that $M = N \oplus L$. Then there exists an isomorphism of graded *R*-algebras

$$SM \cong SN \otimes SL.$$

In particular, for all $k \in \mathbb{N}$ holds

$$S^k M \cong \bigoplus_{p+q=k} S^p N \otimes S^q L.$$

12 Derivations and differentials

An important application of tensor products in general, and alternating products in particular, is found in differential geometry and in physics: the theory of differentials is essential for advanced calculus. We want to illustrate this in one elementary example.

Throughout this section let $(R, +, \cdot)$ always be a commutative ring with a multiplicative identity element. Let $(A, +, \lambda, \sigma)$ be a commutative and associative *R*-algebra with a unital element 1_A . In particular, $(A, +, \sigma)$ is a commutative ring with a multiplicative identity element. Let *M* be an *A*-module, an thus an *R*-module, too.

12.1 Definition. An *R*-linear map $D : A \to M$ is called a *derivation*, if it satisfies for all $a, b \in A$ the *Leibniz rule*:

$$D(ab) = aD(b) + bD(a).$$

12.2 Remark. We denote by $\text{Der}_R(A, M)$ the set of all derivations from A to M. It is a submodule of the R-module $\text{Hom}_R(A, M)$.

12.3 Example. Let $I \subset \mathbb{R}$ be an open interval of real numbers. For a natural number $n \in \mathbb{N}$, let $C^n(I)$ denote the set of all *n*-times continuously differentiable functions $f : I \to \mathbb{R}$. Note that $C^n(I)$ has the structure of a commutative and associative \mathbb{R} -algebra, where "+" and "." are defined point-wise. The constant function 1 is a unital element in $C^n(I)$.

Moreover, for $f \in C^{n+1}(I)$ and $g \in C^n(I)$ holds $f \cdot g \in C^n(I)$. In this way, $M := C^n(I)$ becomes a module over $A := C^{n+1}(I)$. Consider the map

$$D: \quad C^{n+1}(I) \quad \to \quad C^n(I)$$
$$f \quad \mapsto \quad \frac{\partial f}{\partial x}.$$

Clearly, differentiation is $\mathbb R\text{-linear},$ and it satisfies the product rule. Thus D is a derivation.

12.4 Lemma. Let $D: A \to M$ be a derivation. Then $D(1_A) = 0_M$.

Proof. From the Leibniz rule, we compute for the unital element $D(1_A) = D(1_A \cdot 1_A) = 1_A \cdot D(1_A) + 1_A \cdot D(1_A)$, and thus $D(1_A) = 0_M$.

12.5 Definition. Let Ω_A be an A-module. A derivation $d : A \to \Omega_A$ is called a *universal derivation*, if it satisfies the following *universal property*:

For any A-module M, and any derivation $D: A \to M$, there exists a unique homomorphism of A-modules $\delta: \Omega_A \to M$, such that the diagram

commutes.

12.6 Fact. Universal derivations exist, and they are uniquely determined up to isomorphisms. Moreover, for any universal derivation $d : A \to \Omega_A$ holds $\Omega_A = \operatorname{span}_A \{ d(a) : a \in A \}$.

12.7 Example. Consider the algebra of polynomials k[x] over a field k. Let $d: k[x] \to \Omega_{k[x]}$ denote a universal derivation.

As a module over k, a generating family for k[x] is given by $\{x^n\}_{n\in\mathbb{N}}$. By lemma 12.4, for n = 0 holds $d(x^0) = 0$. For $n \ge 2$, we compute inductively

$$d(x^{n}) = x^{n-1}d(x) + xd(x^{n-1}) = \dots = n \cdot x^{n-1}d(x).$$

Using the \mathbb{R} -linearity of d, we obtain for any $f \in k[x]$ the formula

$$d(f) = \frac{\partial f}{\partial x} \, d(x),$$

where $\frac{\partial f}{\partial x}$ denotes the *formal* differentiation of a polynomial. This implies the equality $\operatorname{span}_{k[x]}\{d(f): f \in k[x]\} = k[x] \cdot d(x)$. Therefore by 12.6, the k[x]-module $\Omega_{k[x]}$ is free of rank 1. A basis element is given by dx := d(x), and we may write

$$\Omega_{k[x]} = k[x] \, dx.$$

12.8 Notation. Let $d : A \to \Omega_A$ be a universal derivation. We call Ω_A the *A*-module of *Kähler differentials*. For $p \in \mathbb{N}_{\geq 2}$ we write

$$\Omega^p_A := \bigwedge^p \Omega_A$$

together with $\Omega_A^0 := A$ and $\Omega_A^1 := \Omega_A$.

12.9 Fact. There exists a family of *R*-linear maps $d_p : \Omega_A^p \to \Omega_A^{p+1}$ for $p \in \mathbb{N}$ such that for all $p, q \in \mathbb{N}$, all $\omega \in \Omega_A^p$ and all $\eta \in \Omega_A^q$ holds $d_{p+1} \circ d_p = 0$, and

$$d_{p+q}(\omega \wedge \eta) = d_p \omega \wedge \eta + (-1)^p \omega \wedge d_q \eta \quad \in \Omega_A^{p+q}.$$

The family $\{d_p\}_{p\in\mathbb{N}}$ is called the *de Rham complex* of Ω_A .

12.10 Example. Consider the ring of polynomials $A := \mathbb{R}[x, y, z]$ as an \mathbb{R} -algebra. Similarly to example 12.7 one obtains for the module of Kähler differentials Ω_A a free A-module of rank 3, with basis $\{dx, dy, dz\}$.

Because p-th exterior powers of Ω_A vanish for p > 3, the de Rham complex can be written as

$$\Omega_A^0 \xrightarrow{d_0} \Omega_A^1 \xrightarrow{d_1} \Omega_A^2 \xrightarrow{d_2} \Omega_A^3 \to 0.$$

Let us compute this maps explicitly for all p = 0, 1, 2. For p = 0, the \mathbb{R} linear map $d_0 : \Omega^0_A \to \Omega^1_A$ is just the universal derivation. One can show this to be the map

$$\begin{array}{rccc} d: & A & \to & \Omega_A \\ & f & \mapsto & \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy + \frac{\partial f}{\partial z} \, dz. \end{array}$$

In coordinates, i.e. with respect to the basis $\{dx, dy, dz\}$ of Ω^1_A this map can be written as

$$d_0(f) = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix} =: \mathbf{grad}(f).$$

In other words, the evaluation of universal derivation in some $f \in A$ is given by the gradient of f. For $d_1 : \Omega^1_A \to \Omega^2_A$ one computes for a general element $fdx + gdy + hdz \in \Omega^1_A$ using the formulae from 12.9

$$d_1(fdx + gdy + hdz) = d_1(fdx) + d_1(gdy) + d_1(hdz)$$

= $(df \wedge dx + (-1)^0 f \wedge d_1 dg) + \dots$
= $df \wedge dx + dg \wedge dy + dh \wedge dz$
= $(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz) \wedge dx + \dots$
= $(-\frac{\partial f}{\partial y} + \frac{\partial g}{\partial x}) dx \wedge dy + \dots$

We leave it to the reader to fill in the dots. It gets more readable when we use the notation in coordinates with respect to the bases $\{dx, dy, dz\}$ of Ω^1_A

and $\{dy \wedge dz, dz \wedge dx, dx \wedge dy\}$ of Ω^2_A :

$$d_1 \begin{pmatrix} f \\ g \\ h \end{pmatrix} = \begin{pmatrix} -\frac{\partial g}{\partial z} + \frac{\partial h}{\partial y} \\ \frac{\partial f}{\partial z} - \frac{\partial h}{\partial x} \\ -\frac{\partial f}{\partial y} + \frac{\partial g}{\partial x} \end{pmatrix} =: \operatorname{rot} \begin{pmatrix} f \\ g \\ h \end{pmatrix}.$$

This is known as the *rotation* of the triple of functions (f, g, h). Analogously, we obtain for $d_2: \Omega^2_A \to \Omega^3_A$ for a general element

$$d_{2}(fdy \wedge dz + gdz \wedge dx + hdx \wedge dy) = = df \wedge dy \wedge dz + dg \wedge dz \wedge dx + dh \wedge dx \wedge dy = \left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz\right) \wedge dy \wedge dz + \dots = \left(\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}\right)dx \wedge dy \wedge dz.$$

With respect to the bases $\{dy \wedge dz, dz \wedge dx, dx \wedge dy\}$ of Ω^2_A and $\{dx \wedge dy \wedge dz\}$ of Ω^3_A we get

$$d_2 \begin{pmatrix} f \\ g \\ h \end{pmatrix} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} =: \operatorname{\mathbf{div}} \begin{pmatrix} f \\ g \\ h \end{pmatrix}.$$

This is the definition of the divergence of the triple of functions (f, g, h).

12.11 Proposition. The following identities hold:

$$\begin{array}{rcl} \mathbf{rot} \circ \mathbf{grad} &=& 0 \\ \mathbf{div} \circ \mathbf{rot} &=& 0. \end{array}$$

Proof. For the de Rham complex holds $d \circ d = 0$.