5 Multilinear Maps

An invaluable feature of vector spaces over the field of real numbers is that they admit inner products. Geometric concepts, such as orthogonality or norm, can be introduced with respect to a given inner product. The definition of multilinear maps generalizes both inner products and linear maps in a natural way.
Throughout this section, let $(R,+, \cdot)$ always denote a commutative ring with a multiplicative identity element. For an R-module $(M,+, \cdot)$ we will simply write M.
5.1 Definition. Let $p \in \mathbb{N}_{>0}$. Let M_{1}, \ldots, M_{p} and N be R-modules. A p-linear map from $M_{1} \times \ldots \times M_{p}$ to N is a map

$$
\varphi: \quad M_{1} \times \ldots \times M_{p} \rightarrow N
$$

such that for all $\left(m_{1}, \ldots, m_{p}\right) \in M_{1} \times \ldots \times M_{p}$ and for all $i=1, \ldots, p$ the map

$$
\begin{array}{cccc}
\varphi_{m_{1}, \ldots, m_{p}}^{i}: & M_{1} \times \ldots \times M_{p} & \rightarrow & N \\
m & \mapsto & \varphi\left(m_{1}, \ldots, m_{i-1}, m, m_{i+1}, \ldots, m_{p}\right)
\end{array}
$$

is a homomorphism of R-modules.
5.2 Remark. a) An 1-linear map $\varphi: M_{1} \rightarrow N$ is a homomorphism of R-modules, or equivalently, an R-linear map. A 2-linear map is called bilinear. For a general $p \in \mathbb{N}_{>0}$, a p-linear map is called multilinear.
b) A map $\varphi: M_{1} \times M_{2} \rightarrow N$ is bilinear, if and only if for $i=1,2$, for all $m_{i}, m_{i}^{\prime} \in M_{i}$ and for all $r \in R$ hold
(1) $\varphi\left(m_{1}+m_{1}^{\prime}, m_{2}\right)=\varphi\left(m_{1}, m_{2}\right)+\varphi\left(m_{1}^{\prime}, m_{2}\right)$
(2) $\varphi\left(r \cdot m_{1}, m_{2}\right)=r \cdot \varphi\left(m_{1}, m_{2}\right)$
(3) $\varphi\left(m_{1}, m_{2}+m_{2}^{\prime}\right)=\varphi\left(m_{1}, m_{2}\right)+\varphi\left(m_{1}, m_{2}^{\prime}\right)$
(4) $\varphi\left(m_{1}, r \cdot m_{2}\right)=r \cdot \varphi\left(m_{1}, m_{2}\right)$.
5.3 Example. Let $(R,+, \cdot)=(K,+, \cdot)$ be a field. Consider the vector space $V:=K^{n}$ of dimension $n>0$ over K. For typographical reasons, we use throughout the "horizontal" notation for a vector $v \in K^{n}$, so that the corresponding column vector is written as the transpose ${ }^{t} v$.
a) The standard inner product

$$
\begin{array}{cccc}
\langle., .\rangle: \quad K^{n} \times K^{n} & \rightarrow & K \\
(u, v) & \mapsto & \langle u, v\rangle:=u \cdot{ }^{t} v
\end{array}
$$

is a bilinear map.
b) The determinant map det : $\operatorname{Mat}(n, n, K)=\left(K^{n}\right)^{n} \rightarrow K$, considered as a map in the columns of the respective matrices,

$$
\begin{array}{cccc}
\operatorname{det}: & K^{n} \times \ldots \times K^{n} & \rightarrow & K \\
\left(v_{1}, \ldots, v_{n}\right) & \mapsto & \operatorname{det}\left(v_{1}, \ldots, v_{n}\right)
\end{array}
$$

is an n-linear map.
5.4 Notation. Let $p \in \mathbb{N}_{>0}$. Let M_{1}, \ldots, M_{p} and N be R-modules. We denote by

$$
L_{R}\left(M_{1}, \ldots, M_{p} ; N\right):=\left\{\varphi: M_{1} \times \ldots \times M_{p} \rightarrow N \text { p-linear }\right\}
$$

the set of all p-linear maps from $M_{1} \times \ldots \times M_{p}$ to N. In particular, for $M_{1}=\ldots=M_{p}=: M$, we write for p-linear maps from the p-fold direct product of M to N simply

$$
L_{R}^{p}(M ; N):=L_{R}(M \times \ldots \times M ; N)
$$

5.5 Remark. a) The triple $\left(L_{R}\left(M_{1}, \ldots, M_{p} ; N\right),+_{p-w}, \cdot{ }_{p-w}\right)$ is again an R-module, with respect to the point-wise defined composition and operation.
b) For $p=1$, we clearly have $L_{R}(M ; N)=L_{R}^{1}(M ; N)=\operatorname{Hom}_{R}(M, N)$. In the special case $N=R$ we obtain the dual module $L_{R}^{1}(M ; R)=M^{*}$.
5.6 Exercise. Show that for any $p \in \mathbb{N}_{>0}$ there is an isomorphism of R-modules

$$
L_{R}^{p}(R ; R) \cong R
$$

5.7 Proposition. Let M, N and L be R-Modules. Then there is an isomorphism of R-modules

$$
L_{R}(M, N ; L) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, L)\right)
$$

Proof.
5.8 Corollary. Let M and N be R-modules. Then there is an isomorphism of R-modules

$$
L_{R}(M, N ; R) \cong \operatorname{Hom}_{R}\left(M, N^{*}\right) .
$$

Proof. Immediately from proposition 5.7, since $N^{*}=\operatorname{Hom}_{R}(N, R)$.
5.9 Example. To get an intuitive idea of the statement in corollary 5.8, we consider a standard problem from physics.
We think of a physical object as a point in real-world space, so its position is given by a vector $\vec{x} \in \mathbb{R}^{3}=: V$. Suppose that a constant force is present (e.g. gravitation). The force has a magnitude and a direction, so it is also represented by a vector $\vec{f} \in \mathbb{R}^{3}=: F$. Note that from a physicist's point of view $V \neq F$ (for a start, one is measured in "meters" m, while the other is measured in "Newton" $N=\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}$).
Moving the physical object involves work (measuring the change of its potential energy). The amount of work while moving our object from \vec{x} to $\vec{x}+\vec{y}$ is denoted by $W(\vec{f}, \vec{y}) \in \mathbb{R}$. Note that negative work occurs, when energy is released (think of dropping a stone).
Clearly, doubling the force doubles the work involved. Moreover, forces are additive: if they act in different directions, they may cancel each other out. Mathematically, we have an \mathbb{R}-linear map

$$
\begin{array}{rlcc}
w_{\vec{y}}: & F & \rightarrow & \mathbb{R} \\
& \vec{f} & \mapsto & W(\vec{f}, \vec{y})
\end{array}
$$

computing how much work is needed to move the object a fixed distance \vec{y}, depending on varying forces acting.
On the other hand, we may wish to compute the work needed to move the object an arbitrary distance \vec{y} in the presence of a constant force \vec{f}. Obviously, the longer the distance is, the more work is needed. Again, we have an \mathbb{R}-linear map

$$
\begin{array}{cccc}
w_{\vec{f}}: & V & \rightarrow & \mathbb{R} \\
& \vec{y} & \mapsto & W(\vec{f}, \vec{y}) .
\end{array}
$$

In summary, we found a bilinear map $W: F \times V \rightarrow \mathbb{R}$. The formula for computing the work in physics is simply

$$
W=\langle\vec{f}, \vec{y}\rangle
$$

where $\langle\vec{f}, \vec{y}\rangle$ denotes the standard inner product on \mathbb{R}^{3}, up to physical measuring units.

Let us relate this to corollary 5.8. Note that for any $\vec{f} \in F$ holds $w_{\vec{f}} \in$ $\operatorname{Hom}_{\mathbb{R}}(V, \mathbb{R})=V^{*}$. As a bilinear map, we have $W \in L_{\mathbb{R}}(F, V ; \mathbb{R})$. It corresponds uniquely to the map $\vec{f} \mapsto w_{f}$ in $\operatorname{Hom}\left(F, V^{*}\right)$.
5.10 Lemma. Let M be a free R-module of dimension $n<\infty$, together with a basis $E=\left\{e_{1}, \ldots, e_{n}\right\} \subset M$. Then there is a canonical isomorphism of R-modules

$$
L_{R}^{2}(M ; R) \cong \operatorname{Mat}(n, n, R)
$$

Proof. Let $\varphi \in L_{R}^{2}(M ; R)$. We define a matrix $A_{\varphi}:=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in$ $\operatorname{Mat}(n, n, R)$ by

$$
a_{i j}:=\varphi\left(e_{i}, e_{j}\right)
$$

With this notation, we obtain a map

$$
\begin{array}{ccc}
\alpha: \quad L_{R}^{2}(M ; R) & \rightarrow & \operatorname{Mat}(n, n, R) \\
\varphi & \mapsto & A_{\varphi}
\end{array}
$$

It is easy to verify for two bilinear maps $\varphi, \psi: M \times M \rightarrow R$ and elements $r \in R$ the equations

$$
A_{\varphi+\psi}=A_{\varphi}+A_{\psi} \quad \text { and } \quad A_{r \varphi}=r A_{\varphi}
$$

Thus α is a homomorphism of R-modules. It is even an isomorphism, where for a matrix $A \in \operatorname{Mat}(n, n, R)$ the image $\varphi_{A}:=\alpha^{-1}(A)$ under the inverse homomorphism is given by

$$
\begin{array}{cccc}
\varphi_{A}: & M \times M & \rightarrow & R \\
& \left(m_{1}, m_{2}\right) & \mapsto & m_{1} \cdot A \cdot{ }^{t} m_{2}
\end{array}
$$

Note that the isomorphism of lemma 5.10 is canonical only because a basis E is given a priory. In general, for a free R-module of finite dimension, all we can say is that such an isomophism always exists.
5.11 Lemma. Let $p \in \mathbb{N}_{>0}$. Let M_{1}, \ldots, M_{p} and N, N^{\prime} be R-modules, and let $\varphi: M_{1} \times \ldots \times M_{p} \rightarrow N$ be a p-linear map. Let $\beta: N \rightarrow N^{\prime}$ be a homomorphism of R-modules. Then $\beta \circ \varphi: M_{1} \times \ldots \times M_{p} \rightarrow N^{\prime}$ is p-linear.

Proof. Straightforward.
5.12 Remark. In the special case $M_{1}=\ldots=M_{p}=: M$, lemma 5.11 implies that for any homomorphism $\beta: N \rightarrow N^{\prime}$ of R-modules, there is a map

$$
\begin{array}{ccc}
\beta_{*}: \quad L_{R}^{p}(M ; N) & \rightarrow & L_{R}^{p}\left(M ; N^{\prime}\right) \\
\varphi & \mapsto & \beta \circ \varphi
\end{array}
$$

which is in fact a homomorphism of R-modules. We thus obtain for any given R-module M a (covariant) functor

$$
\begin{array}{cccc}
L_{R}^{p}(M, \bullet): & (R-\operatorname{Mod}) & \rightarrow & (R-\operatorname{Mod}) \\
N & \mapsto & L_{R}^{p}(M ; N) \\
\beta & \mapsto & \beta_{*}
\end{array}
$$

The verification of the details is left to the reader.
5.13 Exercises. a) Let $p \in \mathbb{N}_{>0}$, and let $\sigma \in \Sigma_{p}$ be a permutation of the set $\{1, \ldots, p\}$. Let M_{1}, \ldots, M_{p} and N be R-modules. Then there exists a natural isomorphism of R-modules

$$
L_{R}\left(M_{1}, \ldots, M_{p} ; N\right) \cong L_{R}\left(M_{\sigma(1)}, \ldots, M_{\sigma(p)} ; N\right)
$$

b) Let M_{1}, \ldots, M_{p} and M_{1}^{\prime} and N be R-modules. Then there exists a natural isomorphism of R-modules
$L_{R}\left(M_{1} \oplus M_{1}^{\prime}, M_{2}, \ldots, M_{p} ; N\right) \cong L_{R}\left(M_{1}, \ldots, M_{p} ; N\right) \oplus L_{R}\left(M_{1}^{\prime}, \ldots, M_{p} ; N\right)$.
c) Let M_{1}, M_{2} and N be R-modules, with submodules $M_{1}^{\prime} \subseteq M_{1}$ and $N^{\prime} \subseteq$ N. Let $\varphi \in L_{R}\left(M_{1}, M_{2} ; N\right)$ be a bilinear map. Suppose that for all $m_{1}^{\prime} \in M_{1}^{\prime}$ and all $m_{2} \in M_{2}$ holds $\varphi\left(m_{1}^{\prime}, m_{2}\right) \in N^{\prime}$. Then the map

$$
\begin{array}{cccc}
\bar{\varphi}: \quad M_{1} / M_{1}^{\prime} \times M_{2} & \rightarrow & N / N^{\prime} \\
& \left(\left[m_{1}\right], m_{2}\right) & \mapsto & {\left[\varphi\left(m_{1}, m_{2}\right)\right]}
\end{array}
$$

is well-defined and bilinear.
5.14 Remark. Let $\varphi: M_{1} \times \ldots \times M_{p} \rightarrow N$ be a p-linear map of R-modules. By looking a examples, it is easy to see that in general neither is $\varphi^{-1}(\{0\})$ a submodule of $M_{1} \times \ldots \times M_{p}$, nor is $\varphi\left(M_{1} \times \ldots \times M_{p}\right)$ a submodule of N.
5.15 Definition. Let $\varphi: M_{1} \times \ldots \times M_{p} \rightarrow N$ be a p-linear map of R modules. The image of φ is the smallest submodule of N, which contains the set-theoretic image of φ

$$
\operatorname{im}(\varphi):=\operatorname{span}\left(\varphi\left(M_{1} \times \ldots \times M_{p}\right)\right)
$$

