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6 Tensors products

Compared to the elegant simplicity of linear maps, the handling of multi-
linear maps feels somewhat clumsy, compare for example remark 5.14 ??.
The basic idea of multilinear algebra is to achieve a sort of “linearization”:
to give a one-to-one translation of multilinear maps into linear maps. For
these linear maps then the full machinery of linear algebra will be available,
like representations by matrices, kernels and cokernels, and so on.

In the case of bilinear maps originating from a pair of modules M × N ,
the price for obtaining such a linearization is that we need to understand a
single “universal” bilinear map τ : M × N → T . It has the property, that
any other bilinear map can be uniquely derived from τ by composition with
a linear map. This is what we will call a tensor product in definition 6.2
below.

Throughout this section, let (R,+, ·) denote a commutative ring with a
multiplicative identity element.

6.1 Example. Let (K,+, ·) be a field, and let m,n ∈ N>0. Consider the
K-vector spaces U := Kn and V := Km, together with the K-vector space
of matrices T := Mat(n,m,K). By the rules of matrix multiplication, the
map

τ : U × V → T
(u, v) 7→ tu · v

is clearly bilinear.

a) In general, the map τ is not surjective. For example, for n = m = 2, the
unit matrix is not contained in the set-theoretic image of τ .

b) For the image of τ holds im(τ) = T . Indeed, let {e1, . . . , en} ⊆ U and
{f1, . . . , fm} ⊆ V denote the standard bases. Then the set of matrices
Ei,j := τ(ei, fj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m forms the standard basis of T .
In particular, we have

im(τ) ⊇ spanK{Ei,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} = T,

so the image of the bilinear map τ equals T .

c) Let Z be an arbitrary K-vector space, and let ϕ : U × V → Z be a
bilinear map. On the standard basis of T , we define a K-linear map by

ϕ̃ : T → Z
Ei,j 7→ ϕ(ei, fj)
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Then the identity ϕ̃ ◦ τ = ϕ holds. Indeed, let u = (u1, . . . , un) ∈ U and
v = (v1, . . . , vm) ∈ V be arbitrary vectors. Then we compute

ϕ̃ ◦ τ(u, v) = ϕ̃
(
τ
(∑n

i=1 uiei,
∑m

j=1 vjfj

))
= ϕ̃

(∑n
i=1

∑m
j=1 uivj τ(ei, fj)

)
(τ is bilinear)

= ϕ̃
(∑n

i=1

∑m
j=1 uivj Ei,j

)
(definition of Ei,j)

=
∑n

i=1

∑m
j=1 uivj ϕ̃(Ei,j) (ϕ̃ is linear)

=
∑n

i=1

∑m
j=1 uivj ϕ(ei, fj) (definition of ϕ̃)

= ϕ
(∑n

i=1 uiei,
∑m

j=1 vjfj

)
(ϕ is bilinear)

= ϕ(u, v).

d) Since we defined ϕ̃ on the standard basis of T , it is necessarily the unique
K-linear map that satisfies ϕ̃ ◦ τ = ϕ.

6.2 Definition. Let M and N be R-modules. A tensor product of M and
N over R is a bilinear map τ : M × N → T into an R-module T , which
satisfies the following universal property of the tensor product:

For any R-module Z, and any bilinear map ϕ : M ×N → Z, there exists a
unique homomorphism of R-modules ϕ̃ : T → Z, such that the diagram

M ×N ϕ //

τ
��

Z

T
ϕ̃

;;

commutes.

6.3 Remark. The defining universal property characterizes a tensor prod-
uct uniquely up to a unique isomorphism: if τ : M × N → T and τ ′ :
M×N → T ′ are both tensor products of M and N over R, then there exists
a unique isomorphism of R-modules α : T → T ′ such that τ ′ = α ◦ τ .

6.4 Example. The bilinear map τ : Kn × Km → Mat(n,m,K) from
example 6.1 is a tensor product over K.

6.5 Proposition. A bilinear map τ : M ×N → T is a tensor product of
M and N over R, if and only if for all R-modules Z the map

Λ : HomR(T,Z) → LR(M,N ;Z)
ϕ̃ 7→ ϕ̃ ◦ τ

is an isomorphism on R-modules.
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Proof. Note that by lemma ?? the composition ϕ̃ ◦ τ : M × N → Z is
indeed a bilinear map. One verifies immediately that Λ is a homomorphism
of R-modules.

Suppose that τ is a tensor product. Then the universal property of τ implies
that for any bilinear map ϕ ∈ LR(M,N ;Z), there exists a R-linear map
ϕ̃ ∈ HomR(T,Z), such that ϕ = ϕ̃ ◦ τ = Λ(ϕ̃), and this ϕ̃ is unique. Hence
Λ is surjective and injective.

Conversely, if Λ is an isomorphism, then for any bilinear map ϕ : M ×N →
Z, the R-linear map Λ−1(ϕ) satisfies Λ−1(ϕ) ◦ τ = ϕ, and it is the unique
R-linear map with this propery. This shows that τ satisfies the universal
property. �

6.6 Remark. Let us look at proposition 6.5 from a physicists point of
view. Here, the motivation for studying tensor products it to obtain an
efficient formalism to handle multilinear maps.

Suppose we are given vector spaces U and V over a field K, where for
example K = R or K = C. We want to understand bilinear maps ϕ :
U × V → K. With the use of a tensor product τ : U × V → T , we can
translate bilinear maps into K-linear maps. So for applications, one would
not focus on the K-vector space T , but rather on the space of K-linear maps
from T to K. By definition, this is just the dual vector space T ∗.

So when physicists talk about tensors, they are thinking of elements in T ∗,
while we will be defining tensors as elements of the tensor product T , see
6.15 below. Since any finite dimensional vector space is isomorphic to its
dual, the two interpretations are interchangeable.

6.7 Remark. In fact, proposition 6.5 can be strengthened as follows: a
bilinear map τ : M ×N → T is a tensor product, if and only if there exists
an isomorphism η of functors from HomR(T, •) to LR(M,N ; •), such that
τ = ηT (id T ). In categorical language, this is expressed by saying that the
functor LR(M,N ; •) is represented by τ .

6.8 Definition. Let F : B → C be a functor. A pair (U, u), with U ∈
Ob (B) and u ∈ F (U) is called a universal pair for the functor F, if it satisfies
the following property:

(∗) for all objects B ∈ Ob (C) and all elements c ∈ F (B), there exists a
unique morphism f ∈ Mor B(U,B), such that c = F (f)(u).
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In this case, U is called a universal object and u is called a universal element
for F. The property (∗) is referred to as the universal property of u.

6.9 Example. Let a pair M and N of R-modules be given, and let
τ : M×N → T be a tensor product. As functor F, we consider LR(M,N ; •) :
(R-Mod) → (R-Mod). Then, for any R-module Z, and all elements ϕ ∈
LR(M,N ;Z), there exists a unique homomorphism ϕ̃ ∈ HomR(T,Z), such
that ϕ = ϕ̃∗(τ). Thus, by definition, the pair (T, τ) is a universal pair for
LR(M,N ; •).

6.10 Proposition. Let F : B → (Set) be a functor, and let (U, u) be a
pair with U ∈ Ob (B) and u ∈ F (U). Then the following are equivalent:

(1) the pair (U, u) is universal for F;

(2) there exists an isomorphism of functors η : Mor(U, •) ⇒ F such that
ηU (id U ) = u.

Proof. (i) Suppose that η is an isomorphism from Mor(U, •) to F which
satisfies ηU (id U ) = u. Then clearly u ∈ F (U), so we only need to verify the
universal property for u. Let B ∈ Ob (B), and let c ∈ F (B) be an arbitrary
element. Since ηB : Mor B(U,B) → F (B) is an isomorphism, there exists
a unique morphism f ∈ Mor B(U,B) such that c = ηB(f). Consider the
commutative diagram

Mor B(U,U)

f∗
��

ηU // F (U)

F (f)
��

Mor B(U,B) ηB
// F (B).

From this, we get F (f)(u) = F (f) ◦ ηU (id U ) = ηB ◦ f∗(id U ) = ηB(f) = c,
as desired.

(ii) Conversely, suppose that (U, u) is universal for F. Let B ∈ Ob (B). For
an element c ∈ F (B), let fc ∈ Mor B(U ;B) denote the unique morphism
with F (fc)(u) = c. We define a map

%B : F (B) → Mor B(U,B)
c 7→ fc
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which is bijective by the assumption on the universality of (U, u). To prove
that % := {%B}B∈Ob (B) is an isomorphism of functors, we need to show that
for any morphism g : B → B′ in B the diagram

F (B)

F (g)
��

%B //Mor B(U,B)

g∗
��

F (B′) %B′
//Mor B(U,B′).

is commutative. In other words, we need to verify the identity %B′ ◦F (g) =
g∗ ◦ %B of morphisms from F (B) to Mor B(U,B′). So consider an element
c ∈ F (B). Evaluating the left hand side of the equation gives %B′ ◦F (g)(c) =
fF (g)(c). For the right hand side, we obtain g∗◦%B(c) = g∗(fc) = g◦fc. Now,
applying the functor F, and evaluating at u, we obtain

F (g∗ ◦ %B(c))(u) = F (g) ◦ F (fc)(u) = F (g)(c).

By definition, the last equation is equivalent to g∗ ◦ %B(c) = fF (g)(c). Com-
paring both sides finally shows that % is a natural transformation. Since %
is invertible, defining η as its inverse concludes the proof. �

6.11 Lemma. Let τ : M ×N → T be a tensor product of two R-modules
M and N over R. Then im(τ) = T , and for any pair f, g : T → Z of
R-module homomorphisms, the identity f ◦ τ = g ◦ τ implies f = g.

Proof. Let T ′ := im(τ) = spanR(τ(M × N)). Let i : T ′ → T denote the
inclusion homomorphism. By the definition of T ′, the bilinear map τ can
obviously be written as a composition τ = i ◦ τ ′, where τ ′ : M ×N → T ′ is
given by τ ′(m,n) := τ(m,n) for all (m,n) ∈M ×N . The map τ ′ is bilinear,
so by the universal property of the tensor product, there exists a unique
R-linear map τ̃ ′ : T → T ′ such that τ ′ = τ̃ ′ ◦ τ . Consider the commutative
diagram

M ×N
τ
��

τ ′

##

τ

((
T

τ̃ ′ //

id T

66T ′
i // T

By the universal property of the tensor product, applied to the bilinear map
τ itself, we must have id T = i ◦ τ̃ ′. In particular, i must be surjective, and
hence T ′ = T .
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Now let f, g : T → Z be homomorphisms of R-modules with f ◦ τ = g ◦ τ .
Put γ := f ◦ τ . By lemma ??, the map γ is bilinear. The universal property
of the tensor product implies that the factorization of γ via τ is unique.
Hence we must have f = g. �

As an application of lemma 6.11, we obtain a very useful criterion to deter-
mine, whether a given bilinear map is a tensor product. If is often referred
to as the weak universal property.

6.12 Proposition. Let τ : M ×N → T be a bilinear map of R-modules,
with im(τ) = T . Then τ is a tensor product of M and N over R, if and
only if the following property holds:

For any R-module Z, and any bilinear map ϕ : M ×N → Z, there exists a
homomorphism of R-modules ϕ̃ : T → Z, such that the diagram

M ×N ϕ //

τ
��

Z

T
ϕ̃

;;

commutes.

Proof. Clearly, if τ is a tensor product, then the property of the proposition
is satisfied by a homomorphism ϕ̃, which is even uniquely determined.

Conversely, suppose that the property of proposition 6.12 holds true. Then
for any bilinear map ϕ : M × N → Z of R-modules, there exists a homo-
morphism ϕ̃ : T → Z with ϕ = ϕ̃ ◦ τ . To prove, that τ is a tensor product,
we need to show that ϕ̃ is uniquely determined by the condition ϕ = ϕ̃ ◦ τ .

To do this, we consider a second homomorphism ψ : T → Z satisfying
ϕ = ψ◦τ . Let t ∈ T . By assumption, T = im(τ) = spanR(τ(M×N)). Hence
there exists a number k ∈ N>0, together with elements m1, . . . ,mk ∈ M ,
n1, . . . , nk ∈ N , and a1, . . . , ak ∈ R such that t = a1τ(m1, n1) + . . . +
akτ(mk, nk). Using the R-linearity of ψ and ϕ̃, we compute

ψ(t) = a1ψ(τ(m1, n1)) + . . .+ akψ(τ(mk, nk))
= a1ϕ(m1, n1) + . . .+ akϕ(mk, nk)
= a1ϕ̃(τ(m1, n1)) + . . .+ akϕ̃(τ(mk, nk))
= ϕ̃(t).

Hence ψ = ϕ̃ as claimed. �
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6.13 Notation. For any pair of R modules M and N , for which a tensor
product exists (which, in fact, is the case for all R-modules, as we will see
in theorem 6.20 below), we choose once and for all one tensor product of M
and N over R. This tensor product shall be denoted by

τ : M ×N →M ⊗R N,

and for a pair (m,n) ∈ M × N we write m ⊗ n := τ(m,n) ∈ M ⊗R N .
By remark 6.3, any other tensor product of M and N over R is equal to
τ : M ×N →M ⊗R N up to composition with a unique isomorphism.

6.14 Remark. By lemma 6.11, we have M ⊗R N = im(τ) for any tensor
product τ : M × N → T over R. This is equivalent to saying that for any
element t ∈M⊗RN , there exists a number k ∈ N>0, together with elements
m1, . . . ,mk ∈M , n1, . . . , nk ∈ N , and a1, . . . , ak ∈ R such that

t = a1(m1 ⊗ n1) + . . .+ ak(mk ⊗ nk).

6.15 Definition. Let τ : M × N → T be a tensor product of two R-
modules M and N over R. An element t ∈ M ⊗R N is called a tensor. A
tensor t is called decomposable, if there exists a pair (m,n) ∈ M × N such
that t = m⊗ n.

6.16 Remark. Let τ : M × N → T be a tensor product of M and N
over R. To get a better idea of the R-module structure on M ⊗R N in the
notation of 6.13, we consider a tensor t ∈M ⊗R N and an element r ∈ R.

By construction, there exists a k ∈ N and decomposing tensors ti = mi⊗ni,
with m1, . . . ,mk ∈ M and n1, . . . , nk ∈ N , together with a1, . . . , ak ∈ R
such that t = a1 ·m1 ⊗ n1 + . . .+ ak ·mk ⊗ nk.
Consider a decomposing tensor t = m⊗ n, with m ∈ M and n ∈ N . Using
the bilinearity of τ , we compute

r · (m⊗ n) = r · τ(m,n) =

{
τ(rm, n) = (rm)⊗ n
τ(m, rn) = m⊗ (rn).

For future reference, we note the following rules for computation, for all
m,m′ ∈M , n, n′ ∈ N and r ∈ R:

(1) (rm)⊗ n = m⊗ (rn)
(2) (m+m′)⊗ n = m⊗ n+m′ ⊗ n
(3) m⊗ (n+ n′) = m⊗ n+m⊗ n′
(4) m⊗ 0 = 0
(5) 0⊗ n = 0.
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The equalities (2) and (3) are seen analogously to our argument for the first
equality. The last equality can be derived from (2) via 0⊗n = (0 + 0)⊗n =
0⊗ n+ 0⊗ n, and analogously for m⊗ 0 = 0.

6.17 Example. Let M be an R-module. By the definition of a module,
the operation λ : R ×M → M of R on M is bilinear. We claim that λ is a
tensor product of R and M over R, and hence in particular

R⊗RM ∼= M.

Obviously we have im(λ) = M , so we may apply proposition 6.12 to prove
the claim. Let Z be an arbitrary R-module, and let ϕ : R ×M → Z be
bilinear. We define ϕ̃ : M → Z by ϕ̃(m) := ϕ(1,m) for m ∈ M . Note that
ϕ̃ is R-linear, since ϕ is linear in the second argument by the definition of a
bilinear map. For any (r,m) ∈ R ×M we compute ϕ̃ ◦ λ(r,m) = ϕ̃(rm) =
ϕ(1, rm) = ϕ(r,m), so that ϕ̃ ◦ λ = ϕ.

6.18 Example. Let (K,+, ·) be a field. Consider the K-vector space
V := Kn for some n ∈ N>0. Consider a second field (L,+, ·), such that
K ⊆ L. Note that L can be viewed as a vector space over K, too. We claim

L⊗K Kn ∼= Ln.

As a special case, we obtain for R ⊂ C the identification C⊗R Rn ∼= Cn. To
prove the claim, we consider the map

τ : L×Kn → Ln

(a, (v1, . . . , vn)) 7→ (av1, . . . , avn)

which is bilinear. Note that τ(L ×Kn) = Ln, so we have in particular for
the image of the bilinear map τ the equality im(τ) = Ln. Therefore, in order
to prove that τ is a tensor product, it suffices to verify that τ satisfies the
weak universal property of proposition 6.12.

Let Z be a K-vector space, and ϕ : L ×Kn → Z be a bilinear map. Note
that Kn ⊆ Ln, and the standard basis {e1, . . . , en} ⊆ Kn is simultaneously
the standard basis for Ln. We define

ϕ̃ : Ln → Z
(a1, . . . , an) 7→ ϕ(a1, e1) + . . .+ ϕ(an, en).

8
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Using the bilinearity of ϕ with respect to K, we compute for a ∈ L and
(v1, . . . , vn) ∈ Kn

ϕ̃ ◦ τ(a, (v1, . . . , vn)) = ϕ̃(av1, . . . , avn)
= ϕ(av1, e1) + . . .+ ϕ(avn, en)
= v1ϕ(a, e1) + . . .+ vnϕ(a, en)
= ϕ(a, v1e1) + . . .+ ϕ(a, vnen)
= ϕ(a, v1e1 + . . .+ vnen)
= ϕ(a, (v1, . . . , vn)).

Hence ϕ̃ ◦ τ = ϕ, so proposition 6.12 implies that τ is a tensor product of
L and Kn. By the uniqueness property of remark 6.3 we conclude Ln ∼=
L⊗K Kn.

6.19 Example. Consider the ring (Z,+, ·). Let p, q ∈ N be prime numbers
with p 6= q. Let M := Z/pZ and N := Z/qZ, considered as modules over Z.
For two integers a, b ∈ Z, consider the decomposable tensor

a⊗ b ∈ Z/pZ⊗Z Z/qZ.

Since p and q have no non-trivial common divisor, the equivalence class
q ∈ Z/pZ is multiplicatively invertible. So there exists an r ∈ Z such that
q r = 1Z/pZ. Thus we compute with remark 6.16

a⊗ b = q r a⊗ b = q r a⊗ b = r a ⊗ q b = r a ⊗ q b = r a ⊗ 0 = 0.

Since any tensor product is generated by its decomposable tensors, we obtain
the identity of Z-modules

Z/pZ⊗Z Z/qZ = {0}.

6.20 Theorem. Let (R,+, ·) be a commutative ring with a multiplicative
identity element. Then for any two R-modules M and N , there exists a
tensor product τ : M ×N →M ⊗R N .

Proof. Let M and N be R-modules. We define W := R〈M×N〉 as the free
R-module generated by the set M ×N . Note that the module structures of
M and N get completely ignored. Thus

W :=

{
a1 · (m1, n1) + . . .+ ak · (mk, nk) :
k ∈ N, a1, . . . , ak ∈ R, m1, . . . ,mk ∈M, n1, . . . , nk ∈ N

}
9
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is the set of all finite formal sums of pairs in M ×N with coefficients in R.
As usual, for k = 0, we denote the empty sum by 0. We define a submodule
of W by

W0 := spanR


1 · (r1m1 + r2m2, n)− r1 · (m1, n)− r2 · (m2, n),
1 · (m, s1n1 + s2n2)− s1 · (m,n1)− s2 · (m,n2) :
r1, r2, s1, s2 ∈ R, m1,m2 ∈M, n1, n2 ∈ N


Consider the R-module quotient T := W/W0, and denote the canonical
quotient homomorphism by π : W → T . Let i : M × N → W denote the
natural inclusion map. We claim that a tensor product of M and N over R
is given by

τ := π ◦ i : M ×N → T
(m,n) 7→ [1 · (m,n)]

Indeed, for elements r, s ∈ R, m,m′ ∈M and n ∈ N , we compute

τ(rm+ sm′, n) = [1 · (rm+ sm′, n)]
= [1 · (rm+ sm′, n)]− [0]
= [1 · (rm+ sm′, n)]− [(1 · (rm+ sm′, n)− r · (m,n)− s · (m′, n))]
= [r · (m,n) + s · (m′, n)]
= r[1 · (m,n)] + s[1 · (m′, n)]
= r τ(m,n) + s τ(m′, n)

An analogous computation for the second argument shows that τ is a bilinear
map. The equality im(τ) = T is clear from the construction of τ . Hence
to prove the claim it suffices to prove that τ satisfies the weak universal
property of proposition 6.12.

Let Z be an R-module, together with a bilinear map ϕ : M ×N → Z. We
define an R-linear map on the generators of W by

Φ : W → Z
1 · (m,n) 7→ ϕ(m,n)

and extend R-linearly. We claim: W0 ⊆ ker(Φ). Indeed, consider a generator
w := 1 · (r1m1 +r2m2, n)−r1 · (m1, n)−r2 · (m2, n) of W0. Then we compute
from the definition of Φ:

Φ(w) = ϕ(r1m1 + r2m2, n)− r1ϕ(m1, n)− r2ϕ(m2, n)
= r1ϕ(m1, n) + r2ϕ(m2, n)− r1ϕ(m1, n)− r2ϕ(m2, n)
= 0,

10



J. Zintl: Part 3: The Tensor Product 6 TENSORS PRODUCTS

using the bilinearity of ϕ. Now the universal property of the quotient module
implies the existence of a homomorphism ϕ̃ : W/W0 → Z of R-modules, such
that ϕ̃ ◦ π = Φ. Consider the diagram

M ×N

ϕ

))
i

//

τ %%

W
Φ

//

π
��

Z

W/W0

ϕ̃

<<

We compute from the definition of τ := π ◦ i the identities

ϕ̃ ◦ τ = ϕ̃ ◦ π ◦ i = Φ ◦ i = ϕ

giving the desired factorization ϕ = ϕ̃ ◦ τ via the R-module T = W/W0. �

6.21 Remark. (The functorial property of the tensor product)

Let an R-module M be given. For any two R-modules N and N ′ let τ :
M ×N →M ⊗N and τ ′ : M ×N ′ →M ⊗N ′ denote the respective tensor
products with M . Consider a homomorphism α : N → N ′ of R-modules.
Clearly, the product map

idM × α : M ×N →M ×N ′

is R-linear. The composition % := τ ′ ◦ (idM × α) : M × N → M ⊗ N ′

is bilinear, as one easily verifies. By the universal property of the tensor
product τ , there exists a unique R-linear map %̃ which makes the following
diagram commutative:

M ×N id M×α //

τ

��

%

((

M ×N ′

τ ′

��
M ⊗N

%̃
//M ⊗N ′

This unique homomorphism shall be denoted by idM ⊗ α := %̃. It satisfies
the identity

(idM ⊗ α) ◦ τ = τ ′ ◦ (idM × α).

For a decomposing tensor m ⊗ n ∈ M ⊗R N , with m ∈ M and n ∈ N , we
compute

idM ⊗α(m⊗n) = (idM ⊗α) ◦ τ(m,n) = τ ′ ◦ (idM ×α)(m,n) = m⊗α(m).

11
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From this, we obtain for two additional homomorphisms α′ : N → N ′ and
β : N ′ → N ′′ the identities

idM ⊗ (α+ α′) = idM ⊗ α+ idM ⊗ α′
idM ⊗ (β ◦ α) = (idM ⊗ β) ◦ (idM ⊗ α).

Summing things up, we obtain for a given R-module M a functor

M ⊗R • : (R-Mod) → (R-Mod)

N 7→ M ⊗R N

N
α→ N ′ 7→ M ⊗R N

id M⊗α−→ M ⊗R N ′

which is covariant and additive.

6.22 Remark. In fact, one can prove that the functor M ⊗R • is exact on
the right. In particular, for any surjective homomorphism α : N → N ′ of
R-modules, the induced morphism idM⊗α : M⊗N →M⊗N ′ is surjective,
too.

6.23 Remark. Analogously as in remark 6.21, a given R-module N de-
termines a functor • ⊗ N by assigning to an R-module M the R-module
M ⊗R N . Consider a pair of homomorphisms of R-modules β : M → M ′

and α : N → N ′. We claim that the diagram

M ⊗N

β⊗id N

��

id M⊗α //M ⊗R N ′

β⊗id N′
��

M ′ ⊗R N
id M′⊗α

//M ′ ⊗R N ′.

is commutative. Indeed, consider the tensor product τ : M ×N →M ⊗RN .
If we compose τ with an R-linear map, the composition is still bilinear by
remark ??. Hence we obtain two bilinear maps ϕ1, ϕ2 : M ×N →M ′⊗RN ′
by defining ϕ1 := (β⊗idN ′)◦(idM⊗α)◦τ and ϕ2 := (idM ′⊗α)◦(β⊗idN )◦τ .
For any pair (m,n) ∈ M × N , we compute directly from the definitions
ϕ1(m,n) = ϕ2(m,n), so that ϕ1 = ϕ2. By the universal property of the
tensor product τ , the bilinear map ϕ1 factorizes in unique way as ϕ1 = ϕ̃1◦τ .
Therefore we must have ϕ̃1 = (β⊗idN ′)◦(idM⊗α) = (β⊗idN ′)◦(idM⊗α).

For this unique map, and its evaluation on decomposable elements, we write

β ⊗ α : M ⊗R N → M ′ ⊗R N ′
m⊗ n 7→ β(m)⊗ α(n).
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In categorical terms, this gives rise to a bifunctor

⊗ : (R-Mod)× (R-Mod)→ (R-Mod).

Be warned, however, that the above notation of β ⊗ α has its issues: In the
way, we introduced it, it denotes a homomorphism β ⊗ α ∈ HomR(M ⊗R
N,M ′ ⊗R N ′). At the same time, α and β are elements of their respective
R-modules of homomorphisms, so there is a well-defined element β ⊗ α ∈
HomR(M,N)⊗RHomR(M ′, N ′). In general, these two interpretations of the
symbol β ⊗ α are not the same, and not even corresponding to each other
under an isomorphism, since without some extra hypothesis we have

HomR(M,N)⊗R HomR(M ′, N ′) 6∼= HomR(M ⊗R N,M ′ ⊗R N ′).
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