8 Base extensions

Up to this point, we were discussing modules over a given commutative ring and their tensor products. For a complete picture, we need to understand what happens, when we vary the underlying rings.
8.1 Remark. Let $\left(R,+_{R}, \cdot{ }_{R}\right)$ and $\left(S,+_{S}, \cdot S\right)$ be commutative rings with multiplicative units. Let $j: R \rightarrow S$ be a homomorphism of commutative rings with units, that is, we have $j\left(1_{R}\right)=1_{S}$. We define an operation of R on S by

$$
\begin{array}{rlcc}
\lambda: & \rightarrow \times S & \rightarrow & S \\
(r, s) & \mapsto & r \cdot{ }_{\lambda} s:=j(r) \cdot s
\end{array}
$$

8.2 Lemma. The triple $\left(S,+_{S}, \lambda\right)$ from remark 8.1 is an R-module.

Proof. Straightforward, by direct verification of the axioms.
8.3 Definition. Let $j: R \rightarrow S$ be a homomorphism of commutative rings with units. Let $(M,+, \cdot)$ be an R-module. Then the tensor product

$$
M_{S}:=S \otimes_{R} M
$$

is called the extension of M with respect to j.
8.4 Remark. By lemma 8.2, we view S as an R-module. The extension of M is a tensor product of R-modules. Hence it has the structure of an R-module, which for the moment shall be denoted by $\left(M_{S},+\otimes, \cdot \otimes\right)$. (Don't worry, once we have established the formal setup, we will omit the subscripts.) Now we define an operation of S on M_{S} on generators $t=a \otimes m \in M_{S}$, with $a \in S$ and $m \in M$, by

$$
\begin{array}{rlc}
\Lambda: S \times M_{S} & \rightarrow & M_{S} \\
(s, t) & \mapsto & s \cdot \Lambda t:=\left(s \cdot \cdot_{S} a\right) \otimes m
\end{array}
$$

8.5 Lemma. The triple $\left(M_{S},+_{\otimes}, \Lambda\right)$ from remark 8.4 is an S-module.

Proof. The triple $\left(M_{S},+\otimes, \cdot \otimes\right)$ is an R-module, so $\left(M_{S},+_{\otimes}\right)$ is an Abelian group. The axioms of an S-module can be verified by direct computation.

For example, let $s, s^{\prime} \in S$ and let $t=a \otimes m \in M_{S}$ be a generating element, with $a \in S$ and $m \in M$. Then one computes

$$
\begin{aligned}
\left(s+_{S} s^{\prime}\right) \cdot \Lambda t & =\left(\left(s+S s^{\prime}\right) \cdot S a\right) \otimes m \\
& =\left(s \cdot S a+S s^{\prime} \cdot S a\right) \otimes m \\
& =(s \cdot S a) \otimes m+\otimes\left(s^{\prime} \cdot S a\right) \otimes m \\
& =s \cdot \lambda t+\otimes s^{\prime} \cdot \lambda t .
\end{aligned}
$$

This shows axiom ?? of definition ???, and the remaining axioms follow analogously.
8.6 Example. Consider the inclusion map $j: \mathbb{R} \rightarrow \mathbb{C}$ as a homomorphism of commutative rings with units. The operation λ of \mathbb{R} on \mathbb{C} with respect to this homomorphism is just the usual multiplication of complex numbers $x \cdot{ }_{\lambda} z=j(x) \cdot \mathbb{C} z:=x \cdot z$, for $x \in \mathbb{R}$ and $z \in \mathbb{C}$.
For some $n \in \mathbb{N}_{>0}$, consider $V:=\mathbb{R}^{n}$ as an \mathbb{R}-module. Then its extension with respect to j is $V_{\mathbb{C}}:=\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^{n}$. We have already seen in example ?? that as an \mathbb{R}-module, this tensor product is isomorphic to \mathbb{C}^{n}. Obviously, \mathbb{C}^{n} is a \mathbb{C}-module, and $V_{\mathbb{C}}$ is a \mathbb{C}-module, too, by lemma 8.5 . We want to see that the two \mathbb{C}-module structures are actually "the same". More precisely, we want to verify that the isomorphism between $V_{\mathbb{C}}$ and \mathbb{C}^{n} is an isomorphism of \mathbb{C}-modules.
If $\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the standard basis of \mathbb{R}^{n} as \mathbb{R}-module, then a basis of $V_{\mathbb{C}}$ over \mathbb{R} is given by $\left\{1 \otimes e_{1}, i \otimes e_{1}, \ldots, 1 \otimes e_{n}, i \otimes e_{n}\right\}$ by proposition ??. A basis of \mathbb{C}^{n} over \mathbb{R} is $\left\{e_{1}, i e_{1}, \ldots, e_{n}, i e_{n}\right\}$. An isomorphism $\psi: \mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^{n} \rightarrow \mathbb{C}^{n}$ can be defined on the basis by $\psi\left(\varepsilon \otimes e_{j}\right):=\varepsilon e_{j}$, for $j=1, \ldots, n$ and $\varepsilon \in\{1, i\}$. Now let $z \in \mathbb{C}$. We compute for all elements of the basis of $V_{\mathbb{C}}$

$$
\psi\left(z \cdot \Lambda\left(\varepsilon \otimes e_{i}\right)=\psi\left((z \varepsilon) \otimes e_{i}\right)=z \varepsilon e_{i}=z \cdot \Lambda \psi\left(\varepsilon \otimes e_{i}\right) .\right.
$$

This shows that $V_{\mathbb{C}}=\mathbb{C} \otimes_{\mathbb{R}} \mathbb{R}^{n}$ and \mathbb{C}^{n} are isomorphic as \mathbb{C}-modules.
8.7 Lemma. Let $j: R \rightarrow S$ be a homomorphism of commutative rings with units. Let $\alpha: M \rightarrow M^{\prime}$ be a homomorphism of R-modules. Then

$$
\alpha_{S}:=\operatorname{id}_{S} \otimes \alpha: \quad M_{S} \rightarrow M_{S}^{\prime}
$$

is a homomorphism of S-modules.

Proof. By definition, α_{S} is a homomorphism of R-modules. In particular, it is a group homomorphism of the underlying Abelian groups, independently whether they are considered as R-modules or as S-modules. So it only remains to show that α_{S} respects the multiplicative structures, too.

Let $s \in S$, and $t \in M_{S}$. Since we already know that the additive structures are respected, we may assume without loss of generality that t is a generating element. Let $t=a \otimes m$, with $a \in S$ and $m \in M$. Then we compute

$$
\begin{aligned}
\alpha_{S}(s \cdot \Lambda t) & =\alpha_{S}((s a) \otimes m) \\
& =\operatorname{id}{ }_{S} \otimes \alpha((s a) \otimes m) \\
& =(s a) \otimes \alpha(m) \\
& =s \cdot \Lambda(a \otimes \alpha(m)) \\
& =s \cdot \wedge_{\Lambda}\left(\operatorname{id}_{S} \otimes \alpha(a \otimes m)\right) \\
& =s \cdot \Lambda \alpha_{S}(t) .
\end{aligned}
$$

This shows that the map α_{S} is indeed S-linear.
8.8 Remark. Let $j: R \rightarrow S$ be a homomorphism of commutative rings with units. There is an extension functor

$$
\begin{array}{rlcc}
S \otimes_{R} \bullet:(R \text {-Mod }) & \rightarrow & (S \text {-Mod }) \\
M & \mapsto & M_{S} \\
M \xrightarrow{\alpha} M^{\prime} & \mapsto & M_{S} \xrightarrow{\alpha_{S}} M_{S}^{\prime}
\end{array}
$$

8.9 Example. A major motivation for dealing with tensor products is the fact that extensions provide a useful tool for dealing with torsion.
Consider a \mathbb{Z}-module M. In general, the module M is not torsion free, i.e. for the torsion submodule of M

$$
T(M):=\{m \in M: \exists a \in \mathbb{Z} \backslash\{0\} \text { such that } a m=0\}
$$

holds $T(M) \neq\{0\}$. We claim that the extension $M_{\mathbb{Q}}$ is always torsion free. Indeed, $M_{\mathbb{Q}}$ is a \mathbb{Q}-vector space by lemma 8.5 . Since any vector space admits a basis, it is in particular a free \mathbb{Q}-module. For any free \mathbb{Q}-module holds $T\left(M_{\mathbb{Q}}\right)=\{0\}$, compare exercise ??.
For example, let $n \in \mathbb{N}_{>0}$, and consider the \mathbb{Z}-module $M:=\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z}$. Then the extension of M is given by $M_{\mathbb{Q}} \cong \mathbb{Q}$.
8.10 Lemma. Let $j: R \rightarrow S$ and $j^{\prime}: S \rightarrow T$ be homomorphisms of rings with units. In particular, S is an R-module via j, and T is an S-module via j^{\prime}, as well as an R-module via the composition $j^{\prime} \circ j$. Then for all R-modules M there is a natural isomorphism of T-modules

$$
M_{T} \cong\left(M_{S}\right)_{T} .
$$

Proof. The proof of the claim is straightforward and left as an exercise to the reader.

