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9 The tensor algebra

9.1 Multi-fold tensor products

Up to this point, we have been considering tensor products of pairs of mod-
ules M1 and M2 over a ring R. In many applications, the modules involved
are free of finite ranks. In this special case, corollary ?? implies that we
can identify M1 ⊗RM2 with HomR(M∗1 ,M2). So for purely computational
purposes, working with matrices would suffice in these cases.

The theory of multilinear algebra unfolds its full strength in the natural
generalization to tensor products of several R-modules M1, M2, . . . , Mp for
some p ≥ 2.

Throughout this section let (R,+, ·) always be a commutative ring with a
multiplicative identity element.

9.1 Example. Consider M := R2 as an R-module. Let {e1, e2} ⊆ R2

denote the standard basis of R2. The standard inner product 〈 , 〉 : R2×R2 →
R is a bilinear map. It is easy to see that the map

ϕ : R2 × R2 × R2 → R
(u, v, w) 7→ 〈u, v〉 · 〈w, e1〉

is 3-linear. We claim that all of the information about the map ϕ can be
recovered from the family of real numbers {ϕ(ei, ej , ek)}1≤i,j,k≤2. Indeed, for
an arbitrary element (u, v, w) = ((u1, u2), (v1, v2), (w1, w2)) ∈ R2×R2×R2,
we compute applying the rules for multilinear maps

ϕ(u, v, w) = ϕ(u1e1 + u2e2, v1e1 + v2e2, w1e1 + w2e2)
=

∑
1≤i,j,k≤2

uivjwkϕ(ei, ej , ek).

In analogy to lemma 5.10 ??, we could think of the family {ai,j,k}1≤i,j,k≤2 :=
{ϕ(ei, ej , ek)}1≤i,j,k≤2 as a “3-dimensional matrix”, or a 2× 2× 2 cube with
entries in R, which represents the map ϕ by a suitably defined vector mul-
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tiplication. In our example we compute

a1,1,2 a1,2,2

a1,1,1 a1,2,1

a2,1,2 a2,2,2

a2,1,1 a2,2,1

=

0 0

1 0

0 0

0 1

For obvious reasons, this notation has not become standard for writing down
multilinear maps.

The first question, which arises when we are adding extra factors to the
tensor product, is about the associativity of the construction.

9.2 Proposition. Let L, M , and N be R-modules. Then there exists a
unique isomorphism of R-modules

(L⊗R N)⊗R N ∼= L⊗R (M ⊗R N)

such that for all elements m ∈ M , n ∈ N and l ∈ L, the decomposable
tensor (l⊗m)⊗ n gets identified with the decomposable tensor l⊗ (m⊗ n).

Proof. The proof follows from comparing the commutative diagrams ob-
tained from the respective universal properties. �

9.3 Definition. Let p ∈ N≥2, and let M1, . . . ,Mp be R-modules. A p-fold
tensor product of M1, . . . ,Mk over R is a p-linear map

τ : M1 × . . .×Mp → T,

where T is an R-module, which satisfies the following universal property of
the tensor product:

For any R-module Z, and any p-linear map ϕ : M1 × . . . ×Mp → Z, there
exists a unique homomorphism of R-modules ϕ̃ : T → Z, such that the
diagram

M1 × . . .×Mp
ϕ //

τ

��

Z

T

ϕ̃

55

commutes.
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9.4 Remark. a) As in the case of p = 2 before, one shows by an explicit
construction that a p-fold tensor product always exists. By its universal
property, it is again unique up to a unique isomorphism. For any p ∈ N≥3
and any p-tuple of R-modules M1, . . . ,Mp we choose once and for all a p-fold
tensor product, and denote it by

τ : M1 × . . .×Mp → M1 ⊗ . . .⊗Mp.

Note that, as compared to the bilinear case, we omit the subscript of the
tensor symbol ⊗R for better readability. Consequently, in the case p = 2 we
will write from now on M1 ⊗M2 := M1 ⊗RM2.

If p ≥ 2, and M1 = . . . = Mp =: M , we write for the p-fold tensor product⊗pM := M ⊗ . . .⊗M .

We also put
⊗1M := M and

⊗0M := R.

b) An element t ∈M1⊗ . . .⊗Mp is called a tensor of degree p. Analogously
to the case of tensor products of two modules one finds

M1 ⊗ . . .⊗Mp = im(τ) = spanR({τ(M1 × . . .×Mp)}.

In particular, for any tensor t ∈ M1 ⊗ . . . ⊗Mp there exists an n ∈ N and

finite families {m(i)
j }j=1,...,n with m

(i)
j ∈Mi for i = 1, . . . , p, such that

t =

n∑
j=1

m
(1)
j ⊗ . . .⊗m

(p)
j .

The tensor t is called decomposable, if such a representation exists with
n = 1.

c) In particular, if M1, . . . ,Mp are free R-modules with bases Ei = {e(i)ji }ji∈Ii
for i = 1, . . . , p, then M1 ⊗ . . . ⊗Mp is again a free R-module with basis

{e(1)j1 ⊗ . . . ⊗ e
(p)
jp
}(j1,...,jp)∈I1×...×Ip . The proof is analogous to ??. In the

special case of modules of finite rank we obtain the formula

rank(M1 ⊗ . . .⊗Mp) =

p∏
i=1

rank(Mi).

9.5 Proposition. Let p ∈ N≥2 and let τ : M1× . . .×Mp → T be a p-linear
map of R-modules, with im(τ) = T . Then τ is a p-fold tensor product of
M1, . . . ,Mp over R, if and only if the following property holds:
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For any R-module Z, and any p-linear map ϕ : M1 × . . . ×Mp → Z, there
exists a homomorphism of R-modules ϕ̃ : T → Z, such that the diagram

M1 × . . .×Mp
ϕ //

τ

��

Z

T

ϕ̃

55

commutes.

Proof. The proof is analogous to the proof of the weak universal property
of the tensor product of two modules of proposition ??. �

By now, the kind reader may wonder why we did not introduce in section ??
the tensor product in full generality, rather than now repeating the phrase
“analogous to the case p = 2” over and over again. Indeed, this text is first
of all written for learners. The mathematical ideas should not be obscured
by a clutter of indices, which is unavoidable when dealing with multiple
modules at the same time. It is a recommendable exercise to expand all of
the proofs of this section along the lines given in the case of 2-fold tensor
products. You may even discover new or more elegant proofs.

9.6 Remark. Let p ∈ N≥2. For i = 1, . . . , p let αi : Mi → M ′i be
homomorphisms of R-modules. As in ?? one shows that there exists a
unique homomorphism α1 ⊗ . . .⊗ αp of R-modules, such that the diagram

M1 × . . .×Mp
α1×...×αp //

τ

��

M ′1 × . . .×M ′p

τ ′

��
M1 ⊗ . . .⊗Mp α1⊗...⊗αp

//M ′1 ⊗ . . .⊗M ′p

commutes, where for a decomposable tensor m1⊗ . . .⊗mp ∈M1⊗ . . .⊗Mp

holds α1 ⊗ . . .⊗ αp(m1 ⊗ . . .⊗mp) = α1(m1)⊗ . . .⊗ αp(mp).

9.7 Proposition. Let p, q ∈ N≥1, and r := p + q. Let M1, . . . ,Mr be R-
modules. Then there is a unique isomorphism of R-modules, which is given
on generating elements by

λ : M1 ⊗ . . .⊗Mr → (M1 ⊗ . . .⊗Mp)⊗ (M1 ⊗ . . .⊗Mq)
m1 ⊗ . . .⊗mr 7→ (m1 ⊗ . . .⊗mp)⊗ (mp+1 ⊗ . . .⊗mq).
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Proof. The claim follows from the universal property of the tensor product,
applied to the obvious maps. Compare also proposition 9.2. �

9.8 Corollary. Let M be an R-module. Then for all p, q ∈ N there is a
canonical isomorphism

Mp+q ∼= Mp ⊗M q.

Proof. Directly from proposition 9.7. �

9.2 The tensor algebra of a module

9.9 Definition. Let (R,+, ·) be a commutative ring with a multiplicative
identity element. An R-algebra is a tuple (A,µ, λ, σ), where

(1) (A,µ, λ) is an R-module, and
(2) σ : A×A→ A is a bilinear map.

An R-algebra (A,µ, λ, σ) is called a commutative algebra, if for all a, b ∈ A
holds σ(a, b) = σ(b, a). It is called associative, if for all a, b, c ∈ A holds
σ(σ(a, b), c) = σ(a, σ(b, c)). An element e ∈ A is called unital, if for all
a ∈ A holds σ(e, a) = a and σ(a, e) = a.

Note that a unital element of an R-algebra, if it exists, is necessarily unique.

9.10 Remark. Let (A,µ, λ, σ) be an R-algebra. We then have

an Abelian group structure µ : A×A → A
(a, b) 7→ a+ b

an R-module multiplication λ : R×A → A
(r, a) 7→ ra

an R-algebra multiplication σ : A×A → A
(a, b) 7→ a · b

together with compatibility conditions coming from the bilinearity of σ: for
all a, a′, b, b′ ∈ A and r ∈ R hold r(a · b) = (ra) · b = a · (rb), as well as
(a+ a′) · b = a · b+ a′ · b and a · (b+ b′) = a · b+ a · b′.

9.11 Example. The ring R[X] of polynomials over R can be viewed as an
R-module. The composition σ is given by the multiplication of polynomials,
which is clearly bilinear, and even symmetric. Hence R[X] is an associative
commutative R-algebra, with unitary element 1R.
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9.12 Example. Let n ∈ N>0 be given. The R-module of square matrices
Mat(n, n,R), together with the usual matrix multiplication, is an associative
non-commutative R-algebra. The unit matrix is its unique unital element.

9.13 Example. Let (A,µ, λ, σ) be an associative commutative R-algebra
with a unital 1A element. Then (A,µ, σ) is a commutative ring with multi-
plicative identity element 1A.

Conversely, let λ : (R,+, ·)→ (A,µ, σ) be a homomorphism of commutative
rings with multiplicative identity elements, such that λ(1R) = λ(1A). Then
(A,µ, λ, σ) is an R-algebra.

9.14 Definition. Let (A,µ, λ, σ) and (A′, µ′, λ′, σ′) be R-algebras. A ho-
momorphism α : A → A′ of R-modules is called a homomorphism of R-
algebras, if for all a, b ∈ A holds

α(σ(a, b)) = σ′(α(a), α(b)).

9.15 Remark. Let M be an R-module. Let p, q ∈ N. By corollary 9.8,
there is a canonical isomorphism σ̃q,p :

⊗pM ⊗
⊗qM →

⊗p+qM . We
obtain a bilinear map σp,q :

⊗pM ×
⊗qM →

⊗p+qM by composition
with the tensor map as in the following diagram:⊗pM ×

⊗qM
σp,q //

τ

��

⊗p+qM

⊗pM ⊗
⊗qM

σ̃q,p

55

By abuse of notation, omitting the isomorphism σ̃q,p, we write for a tensor
s ∈

⊗pM of degree p and a tensor t ∈
⊗qM of degree q simply

s⊗ t := σp,q(s, t) ∈
⊗p+qM.

9.16 Definition. Let M be an R-module. The tensor algebra of M is the
R-module ⊗

M :=

∞⊕
p=0

(
⊗pM)

together with the bilinear map

σ :
⊗
M ×

⊗
M →

⊗
M

(
∑∞

i=0 si,
∑∞

j=0 tj) 7→
∑∞

k=0

∑
i+j=k si ⊗ tj

where si ∈
⊗iM and tj ∈

⊗jM for all i, j ∈ N.
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Recall that by the definition of the direct sum of modules, all sums in the
above definition have only finitely many summands, which are not equal to
zero.

9.17 Remark. In general, the tensor algebra is not commutative. It is
associative, and it hat 1R ∈

⊗0M as its unique unital element.

Moreover it is a graded algebra, which means the following. An element
t ∈

⊗
M is called homogeneous, if t ∈

⊗dM for some d ∈ N. Then d is
called the degree of t. Any element of the algebra is in a unique way the sum
of finitely many homogeneous elements. If t ∈

⊗
M is homogeneous of some

degree d, and t′ ∈
⊗
M is homogeneous of degree d′, then t⊗ t′ ∈

⊗t+t′ M ,
so t⊗ t′ is homogeneous of degree t+ t′.

Compare example 9.11: the algebra of polynomials R[X] is graded, too.

9.18 Example. Let M be a free R-module of rank 1. By definition, there
exists a basis element e1 ∈M , such that any m ∈M can be written uniquely
as m = re1, for some r ∈ R.

For any p ∈ N>0, a basis of
⊗pM is given by the p-fold product e1⊗ . . .⊗e1.

Thus by definition, an element t ∈
⊗
M =

⊕∞
p=0

⊗pM is given as a unique
sum t =

∑∞
p=0 ape1 ⊗ . . . ⊗ e1, where only finitely many of the coefficients

ap ∈ R are not equal to zero. Therefore we can construct a well-defined
R-linear map into R-module of polynomials by

α :
⊗
M → R[X]∑∞

p=0 ape1 ⊗ . . .⊗ e1 7→
∑∞

p=0 apX
p.

By comparing the definition of the algebra multiplication in
⊗
M with the

rules for multiplying polynomials, one immediately verifies that α is even an
isomorphism of R-algebras

⊗
M ∼= R[X].

9.19 Remark. All R-algebras, together with their homomorphisms, form
a category (R-Alg). The construction of the tensor algebra is functorial.

Indeed, let M and M ′ be R-modules, and let α : M → M ′ be a homomor-
phism of R-modules. Let p ∈ N≥2. The composed map

M × . . .×M α×...×α−→ M ′ × . . .×M ′ τ−→
⊗pM ′

is p-linear, so by the universal property of the tensor product, it defines an
R-linear map ⊗pα :

⊗pM →
⊗pM ′. This induces an R-linear map on the
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direct sums ⊗α :
⊗
M →

⊗
M ′. It is straightforward to verify that this

construction defines a (covariant) functor⊗
: (R-Mod) → (R-Alg)

M 7→
⊗
M

α : M →M ′ 7→ ⊗α :
⊗
M →

⊗
M ′

9.20 Proposition. Let M be an R-module. The tensor algebra
⊗
M has

the following universal property.

For any associative R-algebra A with a unital element 1A, and any homo-
morphism ϕ : M → A of R-modules, there exists a unique homomorphism
of R-algebras ϕ̃ :

⊗
M → A, such that ϕ̃(1R) = 1A and the diagram

M
ϕ //

i
��

A

⊗
M

ϕ̃

<<

commutes.

Proof. For all p ∈ N>0 consider the p-linear map

ϕp : M × . . .×M → A
(m1, . . . ,mp) 7→ ϕ(m1) · . . . · ϕ(mp)

By the universal property of the tensor product, there exists a unique R-
linear map ϕ̃p :

⊗pM → A such that the diagram

Mp ϕp //

τp
��

A

⊗pM

ϕ̃p

<<

commutes. For p = 0, using that A is an R-algebra with unital element
1A ∈ A, we define ϕ̃0 : R → A by ϕ̃0(r) := r · 1A. Putting everything
together, we define

ϕ̃ :
⊗
M → A∑∞

p=0 tp 7→
∑∞

p=0 ϕ̃p(tp)
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It is clear from the construction that for all m ∈M holds ϕ̃(m) = ϕ̃1(m) =
ϕ(m), and also ϕ̃(1R) = 1A. We leave it to the reader to verify that ϕ̃ is a
homomorphism of R-algebras.

It only remains to prove the uniqueness of ϕ̃. Let us consider a homomor-
phism of R-algebras ψ :

⊗
M → A which satisfies ψ(m) = ϕ(m) for all

m ∈M , and ψ(1R) = 1A. Because of their R-linearity, it is enough to prove
the equality of ψ and ϕ̃ on decomposable elements m1 ⊗ . . .⊗mp ∈

⊗pM
for p ∈ N. In the case p = 0 we have

⊕0M = R, so for r ∈ R we find
ψ(r) = rψ(1R) = r · 1A = rϕ̃(1R) = ϕ̃(r). From the fact that ψ is compati-
ble with the algebra multiplication “⊗” of

⊗
M we compute

ψ(m1 ⊗ . . .⊗mp) = ψ(m1) ·A . . . ·A ψ(mp)
= ϕ(m1) ·A . . . ·A ϕ(mp)
= ϕp(m1, . . . ,mp)
= ϕ̃p(m1 ⊗ . . .⊗mp)
= ϕ̃(m1 ⊗ . . .⊗mp)

Hence we obtain ψ = ϕ̃, as claimed. �
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