Analysis IV : Übungsblatt 4

Wjatscheslaw Kewlin, Florian Schmidt

5. Juni 2012

Diese Aufgaben sind schriftlich auszuarbeiten und am 19. Juni vor der Vorlesung abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Man bestimme die Laurentreihenentwicklung von $f(z) = \frac{1}{z(z-1)(z-2)}$ in den Gebieten, die durch 0 < |z| < 1, 1 < |z| < 2 bzw. 2 < |z| beschrieben werden.

Aufgabe 2. Zeigen Sie:

- i) Die logarithmische Ableitung $\frac{g'(z)}{g(z)}$ einer holomorphen Funktion $g\colon U\to\mathbb{C}$ hat Pole erster Ordnung an allen Nullstellen und Polstellen von g.
- ii) Sei $g(z) = e^{f(z)}$ und $f: U \to \mathbb{C}$ holomorph mit einer isolierten Singularität in $z_0 \in \mathbb{C} \setminus U$. Kann g in z_0 einen Pol haben?

Aufgabe 3. Man bestimme die Automorphismen von \mathbb{C} , d.h., die Gruppe der biholomorphen Abbildungen von \mathbb{C} nach \mathbb{C} .

Aufgabe 4. Sei $f: D \setminus S \to \mathbb{C}$ eine injektive holomorphe Abbildung definiert auf dem Komplement einer diskreten Teilmenge $S \subset D$ der offenen Kreisscheibe $D = \{z \in \mathbb{C} \mid |z| < 1\}$ ohne Häufungspunkt in D. Zeigen Sie:

- a) kein Punkt $s \in S$ ist eine wesentliche Singularität von f,
- b) ist $s \in S$ ein Pol, so ist die Polordnung gleich eins, und
- c) sind alle $s \in S$ hebbare Singularitäten, so ist die Fortsetzung $f \colon D \to \mathbb{C}$ eine injektive Abbildung.