Integrable Systeme : Blatt 1

Dr. Aaron Gerding
10. April 2014

Diese Aufgaben sind schriftlich auszuarbeiten und bis zum 21. April abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Verify the general solution formula for the wave equation

$$
\partial_{t}^{2} u-\partial_{x}^{2} u=0
$$

on \mathbb{R}^{2} as given in the lecture. (Hint: transform to lightcone coordinates $\xi=x+t$ and $\nu=x-t$.)

Aufgabe 2. Verify directly that the 1-soliton solutions given in the lecture solve the KdV-equation. Show that they are the only traveling wave solutions of the KdV -equation for which the derivatives up to order two vanish when $x \rightarrow \pm \infty$. (Hint: derive the ODE characterizing f 's such that $u(x, t)=f(x-c t)$ solves the KdV-equation. Integrate once, multiply by f^{\prime} and integrate again.)

Aufgabe 3. Determine the homogeneous differential polynomials $\hat{K}(u)$ of weight 7 that give rise to symmetries of the KdV-equation.

Aufgabe 4. Determine all linear differential operators of the form

$$
A=\partial_{x}^{n}+\sum_{k=0}^{n-1} a_{k}(x) \partial_{x}^{k}
$$

with $n=1, \ldots, 5$ such that the operator $[A, L]$ with $L=\partial_{x}^{2}+u(x)$ has order zero.

