Prof. Dr. Christoph Bohle

Integrable Systeme : Blatt 2

Dr. Aaron Gerding

17. April 2014

Diese Aufgaben sind schriftlich auszuarbeiten und bis zum 28. April abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Verify that the formula for φ_{12} given in the Bianchi–Permutability theorem for the Sine–Gordon equation indeed defines a Bäcklund transformation of φ_1 with parameter α_2 and Bäcklund transformation of φ_2 with parameter α_1 . (You only have to check one of the four differential equations, because the computations are all essentially the same.)

Aufgabe 2. Compute the 2-soliton solutions of the Sine–Gordon equation. Also try 3-solitons if you feel like doing so... (Hint: use $\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x) \tan(y)}$.)

Aufgabe 3. (K-surfaces and Sine-Gordon equation) (Doppelte Punktzahl)

Our aim is to prove that there is a 1–1–correspondence between nowhere vanishing¹ solutions to the Sine–Gordon equation and special parametrizations of K–surfaces (up to Euclidean motion). For this we assume without proof that every surface with K < 0 admits an asymptotic line parametrisation, i.e., a parametrization for which the coefficients of the second fundamental form are off–diagonal.

Let $f: \mathcal{U} \subset \mathbb{R}^2 \to \mathbb{R}^3$ be an asymptotic line parametrisation of a K-surface and denote by N its Gauss-map. For simplicity we assume that \mathcal{U} is a rectangle.

- i) Explain that there is an SO(3)-frame F = (X, Y, N) such that X and Y bisect the angles between the parameter lines. (This is essentially a fact about the null-directions of an indefinite symmetric bilinear form on a 2-dimensional Euclidean vector space and the eigenspaces of the corresponding symmetric endomorphism.)
- ii) There are functions θ , ρ , $\tilde{\rho}$ with ρ , $\tilde{\rho} > 0$ such that

$$f_u = \rho(\sin(\theta)X + \cos(\theta)Y)$$

$$f_v = \tilde{\rho}(-\sin(\theta)X + \cos(\theta)Y)$$

(after possibly changing the sign of v).

¹We exclude zeros of the Sine–Gordon solution, because they would correspond to singularities of the surface.

iii) The connection matrices U, V in the frame equations $F_u = FU$ and $F_v = FV$ then take the form

$$U = \begin{pmatrix} 0 & -\omega & -\tau\rho\cos(\theta) \\ \omega & 0 & \tau\rho\sin(\theta) \\ \tau\rho\cos(\theta) & -\tau\rho\sin(\theta) & 0 \end{pmatrix}$$
$$V = \begin{pmatrix} 0 & -\eta & -\tilde{\tau}\tilde{\rho}\cos(\theta) \\ \eta & 0 & -\tilde{\tau}\tilde{\rho}\sin(\theta) \\ \tilde{\tau}\tilde{\rho}\cos(\theta) & \tilde{\tau}\tilde{\rho}\sin(\theta) & 0 \end{pmatrix}$$

for functions τ , $\tilde{\tau}$.

- iv) Show that because K = -1 one can assume (up to permutation of the coordinates) that $\tau = 1$ and $\tilde{\tau} = -1$. (Compute the coefficients of the Weingarten operator A given by $dN = -df \circ A$ with respect to the basis ∂_u , ∂_v and use $K = \det(A)$.)
- v) Derive $\rho_v = \tilde{\rho}_u = 0$ from the Maurer–Cartan equation

$$U_v - V_u = [U, V]$$

and the compatibility condition

$$f_{uv} = f_{vu}.$$

(Maurer-Cartan yields three scalar equations and $f_{uv} = f_{vu}$ yields two more scalar equations.) The condition $\rho_v = \tilde{\rho}_u = 0$ allows to change parameters in a way that $\rho = \tilde{\rho} = 1$.

- vi) Evaluate the remaining conditions obtained from the Maurer–Cartan equation for special parametrizations with $\rho = \tilde{\rho} = 1$.
- vii) Explain briefly, that the above procedure can be reversed and that a solution of the Sine–Gordon equation gives rise to a K–surface with asymptotic line parametrization so that f_u and f_v have length one.