Diese Aufgaben sind schriftlich auszuarbeiten und bis zum 28. April abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Verify that the formula for φ_{12} given in the Bianchi-Permutability theorem for the Sine-Gordon equation indeed defines a Bäcklund transformation of φ_{1} with parameter α_{2} and Bäcklund transformation of φ_{2} with parameter α_{1}. (You only have to check one of the four differential equations, because the computations are all essentially the same.)

Aufgabe 2. Compute the 2-soliton solutions of the Sine-Gordon equation. Also try 3-solitons if you feel like doing so... (Hint: use $\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$.)

Aufgabe 3. (K-surfaces and Sine-Gordon equation) (Doppelte Punktzahl)
Our aim is to prove that there is a $1-1$-correspondence between nowhere vanishing ${ }^{1}$ solutions to the Sine-Gordon equation and special parametrizations of K-surfaces (up to Euclidean motion). For this we assume without proof that every surface with $K<0$ admits an asymptotic line parametrisation, i.e., a parametrization for which the coefficients of the second fundamental form are off-diagonal.
Let $f: \mathcal{U} \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be an asymptotic line parametrisation of a K-surface and denote by N its Gauss-map. For simplicity we assume that \mathcal{U} is a rectangle.
i) Explain that there is an $S O(3)$-frame $F=(X, Y, N)$ such that X and Y bisect the angles between the parameter lines. (This is essentially a fact about the null-directions of an indefinite symmetric bilinear form on a 2-dimensional Euclidean vector space and the eigenspaces of the corresponding symmetric endomorphism.)
ii) There are functions $\theta, \rho, \tilde{\rho}$ with $\rho, \tilde{\rho}>0$ such that

$$
\begin{gathered}
f_{u}=\rho(\sin (\theta) X+\cos (\theta) Y) \\
f_{v}=\tilde{\rho}(-\sin (\theta) X+\cos (\theta) Y)
\end{gathered}
$$

(after possibly changing the sign of v).

[^0]iii) The connection matrices U, V in the frame equations $F_{u}=F U$ and $F_{v}=F V$ then take the form
\[

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
0 & -\omega & -\tau \rho \cos (\theta) \\
\omega & 0 & \tau \rho \sin (\theta) \\
\tau \rho \cos (\theta) & -\tau \rho \sin (\theta) & 0
\end{array}\right) \\
& V=\left(\begin{array}{ccc}
0 & -\eta & -\tilde{\tau} \tilde{\rho} \cos (\theta) \\
\eta & 0 & -\tilde{\tau} \tilde{\rho} \sin (\theta) \\
\tilde{\tau} \tilde{\rho} \cos (\theta) & \tilde{\tau} \tilde{\rho} \sin (\theta) & 0
\end{array}\right)
\end{aligned}
$$
\]

for functions $\tau, \tilde{\tau}$.
iv) Show that because $K=-1$ one can assume (up to permutation of the coordinates) that $\tau=1$ and $\tilde{\tau}=-1$. (Compute the coefficients of the Weingarten operator A given by $d N=-d f \circ A$ with respect to the basis $\partial_{u}, \partial_{v}$ and use $K=\operatorname{det}(A)$.)
v) Derive $\rho_{v}=\tilde{\rho}_{u}=0$ from the Maurer-Cartan equation

$$
U_{v}-V_{u}=[U, V]
$$

and the compatibility condition

$$
f_{u v}=f_{v u} .
$$

(Maurer-Cartan yields three scalar equations and $f_{u v}=f_{v u}$ yields two more scalar equations.) The condition $\rho_{v}=\tilde{\rho}_{u}=0$ allows to change parameters in a way that $\rho=\tilde{\rho}=1$.
vi) Evaluate the remaining conditions obtained from the Maurer-Cartan equation for special parametrizations with $\rho=\tilde{\rho}=1$.
vii) Explain briefly, that the above procedure can be reversed and that a solution of the Sine-Gordon equation gives rise to a K-surface with asymptotic line parametrization so that f_{u} and f_{v} have length one.

[^0]: ${ }^{1}$ We exclude zeros of the Sine-Gordon solution, because they would correspond to singularities of the surface.

