Integrable Systeme : Blatt 4

Dr. Aaron Gerding
29. April 2014

Diese Aufgaben sind schriftlich auszuarbeiten und bis zum 12. Mai abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Show that

$$
\mathcal{E}_{k} \circ \mathcal{E}_{l} \subset \mathcal{E}_{k+l}
$$

and that, provided the underlying differential algebra is commutative,

$$
\left[\mathcal{E}_{k}, \mathcal{E}_{l}\right] \subset \mathcal{E}_{k+l-1}
$$

Give an example for which the last inclusion doesn't hold. Explain why analogous results hold for \mathcal{D}_{k}.
Aufgabe 2. Denote by $Q=\partial+\sum_{i=1}^{\infty} q_{i} \partial^{-i}$ the N-th root of a family $L=Q^{N}$ of differential operators in $\partial=\partial_{x}$ with coefficients in $\mathbb{C}\left[\left[x, t_{r}\right]\right]$. Prove that

$$
\begin{equation*}
\partial_{t_{r}} Q=\left[\left(Q^{r}\right)_{+}, Q\right]=-\left[\left(Q^{r}\right)_{-}, Q\right] \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\partial_{t_{r}} L=\left[\left(L^{r / N}\right)_{+}, L\right]=-\left[\left(L^{r / N}\right)_{-}, L\right] . \tag{2}
\end{equation*}
$$

(That (1) implies (2) is elementary. To verify the converse, use that there is $W=1+\sum_{i=1}^{\infty} w_{i} \partial^{-i}$ with coefficients in $\mathbb{C}\left[\left[x, t_{r}\right]\right]$ such that $Q=W \circ \partial \circ W^{-1}$ and $L=W \circ \partial^{N} \circ W^{-1}$. From $\partial_{t_{r}} Q=\left[\partial_{t_{r}} W \circ W^{-1}, Q\right]$ and $\partial_{t_{r}} L=\left[\partial_{t_{r}} W \circ W^{-1}, L\right]$ conclude that $\partial_{t_{r}} W \circ W^{-1}$ coincides with $-\left(Q^{r}\right)_{-}=-\left(L^{r / N}\right)_{-}$up to stuff that commutes with L and hence with $Q \ldots$)
Aufgabe 3. Assume our differential algebra R has a "weight"-grading compatible with the product such that ∂ increases weights by 1 . Show that if $P=\sum_{i=0}^{\infty} p_{i} \partial^{\alpha-i}$ and $Q=\sum_{i=0}^{\infty} q_{i} \partial^{\beta-i}$ such that p_{i} has weight i and q_{i} has weight i, the coefficient of $\partial^{\alpha+\beta-i}$ in $P \circ Q$ has weight i.
Assume now that R is the free differential algebra generated a scalar function u. Let $L=\partial^{2}+u$ and denote by

$$
Q=\partial+\sum_{i=1}^{\infty} q_{i} \partial^{-i}
$$

the unique square root of L. Show that

$$
\hat{K}_{2 r+1}(u)=\left[\left(Q^{2 r+1}\right)_{+}, L\right]
$$

has weight $2 r+3$ if $u^{(j)}$ is assigned weight $2+j$. (Hint: use Exercise 3 on Sheet 3.)

