Integrable Systeme : Blatt 11

Dr. Aaron Gerding

Diese Aufgaben sind schriftlich auszuarbeiten und bis zum 7. Juli abzugeben. Für jede Aufgabe gibt es 4 Punkte.

Aufgabe 1. Denote by \mathcal{A} the associative algebra over \mathbb{C} generated by ψ^* and ψ under the relations $\psi^2 = (\psi^*)^2 = 0$ and $\psi\psi^* + \psi^*\psi = 1$. Compute the dimension of \mathcal{A} . Compute the matrices representing the action of ψ and ψ^* on the Fock space $\mathcal{F} = \mathcal{A}/\mathcal{A}\psi$ with respect to the basis $|vac\rangle$ and $\psi^*|vac\rangle$.

Aufgabe 2. Compute how the vector

 $\psi_{m_1}...\psi_{m_r}\psi_{n_1}^*...\psi_{n_s}^*|vac\rangle,$

 $m_1 < ... < m_r < 0, n_1 < ... < n_s < 0$, is written with respect to the second ("semi-infinite wedge" or "Maya diagram") definition of fermionic Fock space given in the lecture (including the correct sign).

Aufgabe 3. Show that for given $l \in \mathbb{Z}$ the vector

$$|l\rangle = \begin{cases} \psi_{l+1/2}^{*}, ..., \psi_{-1/2}^{*} |vac\rangle & l < 0\\ |vac\rangle & l = 0\\ \psi_{-l+1/2} ... \psi_{-1/2} |vac\rangle & l > 0 \end{cases}$$

has minimal energy among all vectors of charge l in fermionic Fock space \mathcal{F} . Compute its energy. Give analogous minimal energy vectors of the dual fermionic Fock space \mathcal{F}^* . (The charge and energy gradings of the free Fermion algebra \mathcal{A} are characterized by the fact that ψ_i has charge +1 and energy -i while ψ_i^* has charge -1 and energy -i. The charge and energy gradings of the Fock spaces \mathcal{F} and \mathcal{F}^* are defined as follows: for monomial $a \in \mathcal{A}$, the charge and energy of $a|vac\rangle$ is equal to the charge/energy of a, while the charge and energy of $\langle vac|a$ is minus the charge/energy of a.)

26. Juni 2014