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The study of surfaces in 3-space has certainly been pivotal in the development of differen-
tial geometry and geometric analysis. Real dimension two is of course special in a number
of ways: the possible topological types are easy to describe, one can take advantage of
complex analysis in dimension one, and visualization of the objects of study in computer
experiments allows many new conjectures to be formulated and tested. It is fair to say that
nowadays surface geometry serves as a terrain where one can quickly migrate between di-
verse areas of mathematics, such as integrable systems, moduli spaces of connections and
holomorphic bundles, surface group representations, algebraic geometry of special vari-
eties, non-linear variational problems, mathematical physics, and computational methods
and visualization, bringing the ideas and techniques of one to bear on another. This arti-
cle attempts to describe some of these topics and their relevance to classical problems in
surface geometry in a conceptual manner. We maintain an informal style with the hope of
leaving the reader with some impressions of the subject and a snapshot of some methods
under current development.
There is a long tradition of physics motivating advances in surface geometry. Early on
Riemann found that the limiting isotherms of the heat of a candle placed under a surface
provide it with conformal coordinates. The same method can be used to construct en-
ergy minimizing (harmonic) maps from surfaces into higher dimensional (non-positively
curved) target spaces. Material properties of surfaces in space, like surface tension or
bending energy, give rise to equilibrium shapes and interface models such as constant
mean curvature and Willmore surfaces. And from a more esoteric perspective, string
theory studies surfaces in appropriate target spaces subject to variational constraints.
It is perhaps not surprising then that the notion of a quantum field theory (albeit so far
only in its classical formulation) offers a unifying perspective on surface geometry. Roughly
speaking, a d-dimensional QFT is described by a d-dimensional space-time M , a space of
fields F over M , and an action functional L : F → R whose critical points are the classical
field configurations. The objective is to calculate the partition function

∫
F e

iL(f) or its
mathematically more rigorous variant

∫
F e

−L(f). In either case the critical points of L on
F—its classical solutions—can be used for perturbative calculations. Zero dimensional
QFTs are Gaussian integrals whereas one dimensional QFTs give rise to the path integral
formulation of quantum mechanics when applied to the space of curves describing particle
evolution in some target space. We are concerned with dimension two in which there are
a number of geometrically interesting action functionals:

• The non-linear sigma models, where F = Map(M,P ) is a space of maps from M
into some auxiliary target space P with the Dirichlet energy L(f) =

∫
M |df |2 as

the action functional. In dimension two the action is invariant under conformal
changes of metrics on M and is thus defined on a Riemann surface M . The
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classical solutions are harmonic maps, which play a fundamental role in surface
geometry.

• Constant mean curvature (CMC) surfaces in 3-space (see figure 1) which are the
classical solutions of the area functional on the space of immersions from M into
a 3-dimensional space form P when constrained by a constant enclosed volume,
the “Wess-Zumino term.” The Gauß normal map of such a surface is a harmonic
map, making this problem a special instance of a non-linear sigma model.

• Willmore surfaces which are classical solutions to the bending or Willmore en-
ergy, the average of the mean curvature squared L(f) =

∫
M H2, on the space of

immersions. This action is invariant under the Möbius group of the target space
P which can therefore be taken to be the conformal 3-sphere (and more generally
the conformal n-sphere). Again, this problem is a special example of a non-linear
sigma model: the conformal Gauß map, which assigns to each point of the surface
the unique touching 2-sphere whose mean curvature is that of the surface at that
point, is a harmonic map into de Sitter space, the space of round 2-spheres in the
3-sphere.

• More generally gauge theories in dimension four, where F is a space of bundles
with connections over M with the total field strength L(A) =

∫
M |FA|2 as the

action functional, have 2-dimensional reductions inducing Higgs fields which are
relevant to surface geometry. For instance, non-linear sigma models into a sym-
metric target space P = G/K are described by the Yang-Mills-Higgs equations,
a coupled system for a K-connection A and a TP -valued 1-form Φ, the Higgs
field. This formalism is reminiscent of one in which gauge theories describe a
moduli of integrable connections (the “closed forms”) whereas sigma models, un-
der certain conditions which non-abelian Hodge theory attempts to make precise,
describe the subspace of those integrable connections which serve as “harmonic
representatives of a cohomology class” by splitting “harmonically” into a metric
connection and a self-adjoint Higgs field.

Figure 1. Equivariant CMC tori in S3 with increasing numbers of lobes.
The surfaces are stereographically projected to R3.

One might hope that approaches used in physics to calculate the partition function of
a QFT might also shed some light on solved and unsolved questions of global surface
geometry. What are the classical solutions and the values of a particular action in a given
topology (for instance, compact surfaces with finitely many punctures)? What are the
properties of such surfaces? Which ones are embedded? And which conformal structures
on M can be realized by classical solutions? Are there non-trivial examples which can
be calculated in terms of special functions, such as hypergeometric functions or theta
functions? Does the moduli space of solutions have some special structure (such as being
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a symplectic manifold or an integrable system) allowing an explicit description in terms
of special functions, complementing the implicit description available from the existence
results of non-linear analysis? Could such a description involve holomorphic data? The
non-linear sigma model on a compact Riemann surface M with values in the 2-sphere
P1 = S2 is a prototypical test for intuitions about these questions. The absolute minima
of the Dirichlet action (within a given homotopy class) are the meromorphic functions
on M which are all described in terms of ratios of theta functions. For M of genus zero
the meromorphic functions comprise all the critical points and there is a complete theory
of the remaining critical points when M has genus one, where solutions are described
again by theta functions [3] defined this time not on M but on an auxiliary hyperelliptic
Riemann surface Σ. But we owe almost all of our current understanding of the case where
M has higher genus to existence proofs and gluing constructions from non-linear analysis
[25, 31, 36, 32].

The Fundamental Theorem of Surface Geometry. Connections on bundles appear
initially in surface theory as they often do in the study of differential equations: as a means
of using representations of the infinitesimal symmetries of an ambient space to formulate
conditions for the existence of maps into the space which solve certain equations. To
illustrate this, we recapitulate the fundamental theorem of surface geometry in R3 in
an historically familiar manner that makes a first approximation to a more convenient
approach we will elaborate later. A distinctive and essential feature of our setting is that
R3 generates its own infinitesimal symmetries via the vector cross product and translation.
We can then begin by using a map f : M → R3 to define a trivial bundle V = f∗TR3 over
M which we view as the bundle of skew-hermitian endomorphisms of an auxiliary trivial
hermitian bundle L = C2, that is, V = su(L) = su(2). V has a flat and, in fact, trivial
connection d as does L, which we also denote by d. (This notation is consistent with
the fact that the connection d on L induces a connection on End(L) which, restricted to
su(L) ⊂ End(L), is given by d on V .) If f is an immersion, it splits V into a direct sum

(1) V = TM ⊕ ν

of tangential and normal subbundles which is orthogonal for the standard inner product
< X,Y >= 1

2 tr(XY ∗) on su(2). And if f induces an orientation, then ν = NR for
a section N of V , the unit normal of f , which as an endomorphism of L has detN =
1
2 trN2 = 1. Besides spanning ν, the section N also serves as a complex structure on
L (since N2 = −1), and acts by conjugation on V to describe (1) as a ∓1-eigenbundle
decomposition (AdN |TM= −1 and AdN |ν= 1).
The connection d on V splits with respect to this decomposition,

(2) d = ∇V +B

as a diagonal connection ∇V and a skew-symmetric 1-form B. The restriction of ∇V to
TM is the Levi-Civita connection induced by f , and B acts as the second fundamental
form on ν and as the Weingarten map on TM . Equivalently, ∇V is the average of d and
the gauged connection (AdN)−1 · d ·AdN , whereas B is half their difference, from which
we can compute

(3) B(v) = 1
2 [NdN, v]

for v ∈ Γ(V ).
The connection d on L also has a splitting

(4) d = ∇L + φ
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defined by requiring that ∇L commute with N and φ anti-commute with N . Computing

(5) φ = 1
2(d+N · d ·N) = 1

2NdN

we see that (4) corresponds to the splitting (2) insofar as ∇V is the restriction to V of
the End(L) connection induced by ∇L. In the language of Clifford algebras, ∇L is the
spinor connection on the spinor bundle L corresponding to the spin structure on M which
f induces as the restriction of the trivial spin structure of R3 to TM . Accordingly, the
i eigenbundle L+ of N is a dual spin bundle for f on M , meaning that L2

+ with the
holomorphic structure induced by ∇L|L+ is isomorphic to the dual canonical bundle K−1

with the holomorphic structure induced by the conformal class of < df, df >. We will
arrive at this observation again later along a somewhat different route.
Writing ∇ = ∇L, the flatness of d on L is equivalent to

F∇ + d∇φ+
1
2
[φ ∧ φ] = 0.

Since N commutes with ∇ and anti-commutes with φ, we have AdN(d∇φ) = −d∇φ.
Thus, the V -valued curvature 2-form of d (on L) decomposes relative to (1) into the
Gauß–Codazzi equations

(6) F∇ +
1
2
[φ ∧ φ] = 0 (Gauß) and d∇φ = 0 (Codazzi)

for the surface. ∇ = ∇L is determined by the connection ∇V , which in turn is determined
by the Levi-Civita connection of g, the restriction of the inner product of su(2) to TM .
The Gauß–Codazzi equations can therefore be considered a coupled system of two non-
linear partial differential equations for the pair (g, φ). As a TM -valued 1-form on M ,
φ decomposes into a trace part H Id, where H : M → R is the mean curvature, and a
trace-free part which g makes into a bilinear form q + q̄, where q ∈ Γ(K2) is the Hopf
differential of f . The Gauß–Codazzi equations then take the form

Kg +H2 − |q|2g = 0 and g∂H = ∂̄q

regarding g as a section of KK̄. A choice of a conformal coordinate z on M gives the
local expressions g = e2u|dz|2 and q = qdz2, from which we obtain the classical form of
the Gauß–Codazzi equations

(7) 4u+ e2uH2 − e−2u|q|2 = 0 and Hze
2u = qz̄ .

The above construction can be reversed. We start with a Riemannian surface (M, g)
together with a real rank 3 bundle V := TM ⊕ R, the bundle metric g ⊕ dt2, and a
self-adjoint β ∈ End(TM) which determines a skew-symmetric B ∈ End(V ). If ∇ is the
Levi-Civita connection for g, we can augment it with the trivial connection on R to get
a metric connection ∇V on V . Then d = ∇V + B is a connection which, since V splits,
induces a connection with a corresponding splitting d = ∇L + φ as in (4) on a trivial
C2 bundle L for which we regard V = su(L). We assume that ∇L and φ satisfy the
Gauß–Codazzi equations so that d = ∇L + φ is flat. Then d on V is also flat, which in
turn pulls back to a flat metric connection, also called d, on the bundle π∗V over the
universal cover M̃ of M by the covering map π. Since π∗V is a flat bundle over a simply
connected manifold, there is a global trivialization Ψ : π∗V ∼= R3 of flat metric bundles
which restricts to an R3-valued 1-form α on the subbundle π∗TM . The projection of d
onto π∗TM is the pull-back of the Levi-Civita connection ∇ of g and thus torsion-free, so
that α is closed and therefore expressable as df for some isometric immersion f : M̃ → R3.
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Our interest lies, though, in immersions of M , so we view f as an equivariant function on
M̃ with two types of monodromy for the group of deck transformations: a translation re-
sulting from a constant of the integration of α, and a rotation resulting from the holonomy
representation ρ : π1(M) → SO(3,R) of the connection d. The task of adjusting our data
(g, β) so that these monodromies vanish and we obtain an immersion of M , rather than
its universal cover, is known as the period closing problem and represents an additional
challenge beyond the already difficult problem of solving the Gauß–Codazzi equations.

CMC Surfaces and Loops of Flat Connections. Before presenting our approach to
general surfaces in R3, we will focus on some techniques that have been successful for
constructing CMC surfaces—at least of low genus. Using the Riemann surface structure
on M induced by a given CMC immersion f : M → R3, we write the su(2)-valued 1-form
φ = Φ − Φ∗ with Φ now an sl(2,C)-valued (1, 0)-form on M , that is ∗Φ = iΦ. Since the
mean curvature H is constant, the equations (6) become

(8) F∇ = [Φ ∧ Φ∗] and ∂̄∇Φ = 0.

These are a version of the self-duality equations over a Riemann surface [22, 23] known
as the Yang-Mills-Higgs equations for the connection ∇ and the Higgs field Φ. The Hopf
differential q ∈ Γ(K2), which is holomorphic for H constant, appears in this situation
as q = 1

H det Φ. The equations (8) are invariant under the S1-action sending the pair
(∇,Φ) to (∇, λ−1Φ) for λ ∈ S1 and, as a consequence, are equivalent to the flatness of
the S1-family of connections

(9) dλ = ∇+ λ−1Φ− λΦ∗ .

In fact, dλ extends to a C∗-family of flat SL(2,C)-connections which are unitary for λ ∈ S1.
Since dλ arises from the solution of (8) given by an immersion of M , it is not only flat but
also solves the period closing problem at λ = 1. The vanishing of rotational monodromy for
this value just means that the family of holonomy representations ρλ : π1(M) → SL(2,C)
of dλ satisfies ρ1 = ±1. The vanishing of translational monodromy has the less obvious
consequence that d

dλ |λ=1ρ
λ = 0. To see this, one can integrate (9) around an element γ of

π1(M) to check that the zeroes of d
dλρ

λ(γ) coincide with those of
∫
γ λ

−2Φ+Φ∗. Evaluated
at λ = 1 this expression gives the period for γ of the form i ∗ φ which is closed by (8)
and can be shown to have the same period as df . Alternatively, we can view this first-
order condition as the limit at infinite radius of a zero-order condition for producing CMC
surfaces in the 3-sphere which is interesting in its own right. Namely, if the connection
dλ is trivial for λ = 1 and some µ ∈ S1, µ 6= 1, then the SU(2)-gauge between those
connections gives a CMC surface in S3 of mean curvature H = i1+µ

1−µ . A similar condition
exists for hyperbolic 3-space: if the connection dλ is trivial for some µ ∈ C, |µ| 6= 1, then
it is also trivial at λ = µ̄−1 and the gauge between those connections gives rise to a CMC
surface in hyperbolic space H3 of mean curvature H = 1+|µ|2

1−|µ|2 > 1.

Conversely, given a Riemann surface M , one solves the Gauß–Codazzi equations (8) (for
a metric in the given conformal class) by finding a C∗-family of flat connections dλ of
the form (9), that is, having simple poles at λ = 0 and ∞ with principal parts given by
forms of type (1, 0) and (0, 1) respectively. There is a method [13], based on the Riemann-
Hilbert factorization of matrix valued functions on contours, which builds such families
from meromorphic SL(2,C)-connections over M with unitarizable holonomy. To see the
basic idea, we assume that dλ is a flat family of the desired form and then gauge it, by a
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λ-dependent gauge g, to a meromorphic family of connections. In order for the family to
be meromorphic, g : M × C∗ → SL(2,C) has to solve the ∂̄-problem

(10) ∂̄g = (λ− 1)Φ∗g

where ∂̄ = 1
2(d+ i ∗ d) for the trivial connection d on L. Then the gauged connection has

the form

(11) g−1 · dλ · g = d+ Ψ , Ψ =
∑

k≥−1

λkΨk

where, due to the flatness of dλ, the Ψk are meromorphic 1-forms on M . Since the gauge
g extends holomorphically as a function of λ to λ = 0, comparing λ coefficients in the
usual relationship of gauge potentials under a gauge transformation shows that the Hopf
differential of our surface of constant mean curvature 1 is encoded in the first order pole
Ψ−1 in λ of Ψ via

(12) q = detΦ = detΨ−1 .

Since our mean curvature is already constant, we see that Ψ characterizes dλ up to a con-
stant gauge. Thus Ψ serves as a kind of “Weierstraß data” which decribes the associated
S1-family of (generally non-closing) CMC surfaces up to rigid motions. Restated in the
language of loop groups, we may view dλ as a flat ΛSU(2)-connection which is gauged
by the Λ+SL(2,C) gauge g to a meromorphic ΛSL(2,C) connection. Here, for a real Lie
group G we denote by ΛGC the group of holomorphic maps h : C∗ → GC, by Λ+GC those
holomorphic maps which extend into λ = 0, and by ΛG those maps in ΛGC which restrict
to “loops” with values in G for λ ∈ S1. Thus we arrive at the following method by which
any CMC surface could, in principle, be constructed:

(i) Write down a meromorphic ΛSL(2,C)-connection d+ Ψ of the form (11).
(ii) Gauge d + Ψ to a ΛSU(2)-connection dλ of the form (9). The existence of an

appropriate Λ+SL(2,C)-gauge g on the universal cover of M is guaranteed by the
analog of the Iwasawa decomposition for loop groups, in our case ΛSL(2,C) =
ΛSU(2) · Λ+SL(2,C).

(iii) Ensure that dλ descends to a connection on M . This is possible if the holonomy
ρΨ of d+ Ψ is unitarizable, that is, ρΨ : π1(M) → ΛSU(2) after a conjugation.

(iv) Ensure that the CMC surface arising from dλ at λ = 1 has vanishing periods. This
requires that the unitary holonomy ρλ satisfy the closing conditions ρ1 = ±1 and
d
dλ |λ=1ρ

λ = 0 as above (or the respective closing conditions for surfaces in S3 and
H3).

To carry out this program one then needs to understand which meromorphic connections
(11) can occur for CMC surfaces, or in other words, for what Weierstraß data (iii) and
(iv) are possible. There are two instances in which this has been resolved.
The first is the case when M = T 2 is a torus. It is then known [34, 23, 7, 9] that the
meromorphic connection d+ Ψ has a constant gauge potential of the form

Ψ = λd−1ηdz where η =
d∑

k=−d

λkηk ∈ Λsu(2)

is a rational loop whose only poles are at λ = 0,∞. At this point, we find an important
link with integrable systems theory. We express η in the dλ gauge by conjugating with g
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to obtain the section

(13) ξ =
d∑

k=−d

λkξk : M → Λsu(2) .

As the gauge of a section parallel for d+ Ψ, the section ξ is parallel for dλ, giving the Lax
equation

(14) dλξ = ∇ξ + [λ−1Φ− λΦ∗, ξ] = 0 .

Since (14) describes a flow on an adjoint orbit, the characteristic polynomial det(ξ − y)
is constant on T 2. Thus the conserved quantities are recorded by the spectral curve—a
hyperelliptic Riemann surface Σ which is the normalization of the possibly singular curve
defined by

(15) det(ξ − y) = y2 + det ξ = 0 .

The eigenline bundle L(p) → Σ of ξ evolves according to (14) as p ranges over the torus
T 2. In fact (by general arguments presented in [17]) the map

L : T 2 → Pic(Σ)

is a linearization of the flow since L has constant derivative along the tangent of the Abel
image of Σ at the origin. And because ξ is parallel for dλ, the holonomy representation

ρλ(p) : π1(M,p) → Sl(2,C)

of dλ commutes with ξ(p), so that L(p) coincides with the eigenline bundle of the family
ρλ(p). Thus dλ and its associated family of (possibly non-closing) CMC tori can be recon-
structed from algebro-geometric data: a hyperelliptic Riemann surface Σ and an initial
holomorphic line bundle over Σ subject to certain compatibility conditions. This was first
accomplished for certain data, along with the accompanying period closing problem, in
[23] and [34], where it was recognized as a geometric version of traditional soliton methods
of finding doubly periodic solutions (on C) to the sinh-Gordon equation

4u+ 2 sinh(2u) = 0 .

This is the Gauß equation (7) for a CMC torus since the Hopf differential can, in this case,
be normalized as q = dz2. In fact, [3] gives explicit formulas for all CMC tori in terms of
theta functions on Σ. The simplest examples occur for Σ of genus 1. In this case, only
one of the periods of the immersed torus can be closed if the ambient space is euclidean
space R3 or hyperbolic space H3, resulting in the classical Delaunay cylinders obtained
by revolving the focal trace of a conic rolled along an axis (see figure 2). In the 3-sphere
one can close both periods to obtain Delaunay tori (see figure 1), and more generally,
all ([8]) CMC tori equivariant under rotations of S3 in perpendicular planes of rationally
commensurable speed. The Wente tori appear for spectral genus 2 and the shapes of CMC
tori become more intricate as the spectral genus increases (see figure 3). The existence of
CMC tori of arbitrary spectral genera was later confirmed in [15, 24, 10].
It should be noted that the moduli space of spectral curves for CMC tori in R3 is discrete.
But for CMC tori in S3, the moduli space is a one real dimensional manifold parametrized
(away from singular points) by the mean curvature. This observation lies at the heart
of recent developments [27] concerning the Lawson conjecture, which says that the only
embedded minimal torus in S3 is the Clifford torus—the unique minimal torus in S3 whose
spectral curve has genus zero. The basic idea is to deform (as suggested by figure 4) an
embedded minimal torus via CMC tori in S3 until one arrives at a CMC torus of spectral
genus zero. With every drop in genus the spectral curve acquires double points so that
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Figure 2. Delaunay cylinders, the embedded unduloids and immersed
nodoids, have spectral genus 1.

Figure 3. The Wente and Dobriner CMC tori have respective spectral
genera 2 and 3.

if the initial spectral genus had been non-zero, one would arrive at a genus zero spectral
curve with real double points, a configuration known not to give rise to an embedded CMC
torus in S3. Therefore the initial embedded minimal torus must have had spectral genus
zero and thus must have been the Clifford torus. It is quite conceivable that a similar
strategy might work for proving the Willmore conjecture which states that among all
immersed tori, the bending energy

∫
H2 has a global minimum of 2π2 at the Clifford torus.

While the spectral curves of Willmore tori are discrete, the spectral curves of constrained
Willmore tori (the classical solutions for the bending energy in a fixed conformal class)
come again in families. Essentially one would try to deform the spectral curve of a
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Willmore torus through spectral curves of constrained Willmore tori to the Clifford torus
without increasing bending energy.

Figure 4. A path through the moduli space of equivariant CMC tori in
S3. The first five images show a sequence which starts at a flat torus and
passes through a chain of three spheres to arrive at a doubly-covered flat
torus. The sequence goes on through a five-lobed tori terminating at a
thrice-wrapped flat torus.

The second case where Weierstraß data allowing (iii) and (iv) have been determined is
when M = P1 \ {p1, . . . pn} is a punctured sphere. Here the method produces n-noids—
CMC surfaces of genus zero with ends asymptotic to Delaunay cylinders. An overlap with
the previous situation occurs for the Delaunay cylinders themselves which arise from the
meromorphic connection

(16) d+ ΨDel , ΨDel =
(

c aλ−1 + b
b+ aλ −c

)
dz

z

on the twice puncture sphere with simple poles at the ends [26, 40]. The coefficients deter-
mine the neck size of the Delaunay cylinder. Because an end of an n-noid is asymptotic to
a Delaunay cylinder, the holonomy for that end pi of the associated connection d+Ψ must
be conjugate to that of a Delaunay cylinder. This implies [30] that the residue respi Ψ
must be conjugate to the residue of some ΨDel suggesting [14, 37, 40, 39] an ansatz

(17) Ψ =
(

0 λ−1dz
λQ/dz 0

)
for the gauge potential with possible “apparent” singularities. The quadratic residue
of the meromorphic quadratic differential Q at pi is given by det ΨDel, which in turn
is determined by the asymptotic neck sizes of the Delaunay ends. A simple Riemann-
Roch count shows that Q, and thus the meromorphic ΛSL(2,C)-connection d + Ψ, is
determined up to n − 3 analytic functions hk(λ) which must be holomorphic at λ = 0.
Note that for 3-noids our meromorphic connection is then completely determined by the
asymptotic Delaunay neck sizes and the spherical triangle inequalities on these neck sizes
are the necessary and sufficient conditions for unitarizability (iii) of the holonomy [40].
This makes contact with the work of [18] in which embedded CMC 3-noids (and more
generally embedded n-noids with reflectional symmetry across a plane) were classified
using the conjugate cousin construction. Here a simply connected CMC surface in R3 is
generated by a conjugate minimal surface in S3 built from solutions to Plateau’s problem.
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For n ≥ 4 the spherical n-gon inequalities on the asymptotic Delaunay neck sizes are only
necessary conditions [2, 37] for the connection form (17) to have unitarizable holonomy.
Sufficient conditions on the undetermined functions hk(λ) are not known. However, a
recently uncovered ([12]) paper of Hilb [20] from 1908 has led to some interesting devel-
opments. In this and a sequel paper [21] Hilb, addressing a question that Felix Klein had
posed in one of his courses, treats exactly the problem of determining the unitarizability
of the holonomy of a Fuchsian equation with n ≥ 4 singular points. Since Hilb works with
what, in our language, is a meromorphic SL(2,C)-connection, one would need to “loop-
ify” his results. But even the loop-free version of Hilb’s results has the significant surface
geometric interpretation of showing the existence of n-oids of constant mean curvature 1
in hyperbolic space with non-degenerate catenoidal ends.

Figure 5. CMC n-noids. The trinoid, fournoid and fivenoid in the first
row have prismatic symmetry [37]. Shown in the second row are a trinoid
with a two-lobed bubbleton on one leg [28], a conjectural fournoid with
central rod, and a tetranoid with tetrahedral symmetry [39].

In principle, the methods discussed so far could also be applied to more complicated
variational problems in surface theory related to harmonic maps. But in most of these
cases the relevant symmetry groups have higher rank or are non-compact, making it far
more difficult to find explicit non-trivial examples. For instance, constructing Willmore
surfaces with this approach would require loop group factorizations for the group Sp(1, 1).

Conformally Immersed Surfaces and Quaternionic Holomorphic Structures. A
larger issue, however, seems to be how these methods might generalize to higher genus
surfaces. Even though we can formulate the equations for, say, CMC surfaces f : M → R3

in terms of holomorphic families of flat, or even meromorphic, connections on M , our
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ability to find solutions of those equations for a given M with non-trivial topology is
limited by our inadequate understanding of special holomorphic families of holonomy
representations of the fundamental group of M into SL(2,C). For the simplest cases of a
2-torus with its abelian holonomy, or a punctured P1 where holonomy is determined locally
by the residues of a meromorphic connection, the approaches outlined above have been
rather successful in the classification of solutions. But since a flat connection determines
and is determined (at least up to gauge) by its holonomy, we cannot hope to avoid non-
commutativity and non-local contributions in higher genus. Inspired by QFT, we then
try to overcome the rigidity of this description by placing it within a larger context where
the space of fields F being described is the space of all conformally immersed surfaces
in 3-space. This will hopefully allow solutions to variational problems to be identified
in terms of objects that are not as easily over-determined by topology and variational
constraints as are connections.
The basic idea is the following: even though there is a unique holonomy for a given flat
connection ∇ on a complex vector bundle, there is a range of possible monodromies for
the holomorphic structure ∂̄ = ∇′′ given by this connection. Of course, requiring the
monodromy to be unitary may again introduce restrictions, for example in the case of
stable bundles, but in principle the monodromy of such a “half-connection” will be less
rigid. To apply this idea to surfaces f : M → R3 we will have to work with a more
general object—a quaternionic holomorphic structure [33, 16] (a type of Dirac operator
with potential)—but the principle remains the same.
We view a surface in R3 as a map into the imaginary part of an affine subset of HP1 = S4,
that is, f : M → Im H ⊂ H ⊂ HP1. Then f is the same as a quaternionic line subbundle
L ⊂ H2 of the trivial H2-bundle over M where f(p) = Lp. In other words, L is the
pull-back of the tautological line bundle over HP1. By construction, our surface does
not include the point at infinity ∞ = (1, 0)H in HP1 and therefore L is spanned by the
section ψ = (f, 1). Moreover, the line bundle L is isotropic with respect to the hermitian
form < x, y >= x̄1y2 + x̄2y1 on H2 since < ψ,ψ >= 0 if and only if f takes values
in Im H = R3. Having the spanning section ψ allows us to define a flat quaternionic
connection d with trivial holonomy, by requiring dψ = 0, and a complex structure J , by
the formula Jψ = ψ(−N), where N : M → S2 ⊂ Im H is the unit normal of f as a surface
in Im H. Together, d and J give a quaternionic holomorphic structure

(18) D = d′′ : Γ(L) → Γ(K̄L)

for which ψ is holomorphic, that is, Dψ = 0. Since L ⊂ H2 is isotropic, we obtain the
skew hermitian pairing

(19) ( , ) : L× L→ TM∗ ⊗H given by (ϕ, ϕ̃) =< ϕ, dϕ̃ >

which, on the diagonal in L × L, gives imaginary valued forms (ϕ,ϕ) ∈ TM∗ ⊗ R3. If
f is also conformal, the pairing satisfies ∗(ϕ, ϕ̃) = (ϕ, Jϕ̃) = (Jϕ, ϕ̃). The quaternionic
holomorphic structure D is compatible with the pairing (19) as it obeys the product rule

(20) d(ϕ, ϕ̃) = (Dϕ, ϕ̃) + (ϕ,Dϕ̃) .

Therefore, the pairing of any holomorphic section ϕ ∈ H0(L) with itself is a closed R3-
valued 1-form (ϕ,ϕ) whose primitive

∫
(ϕ,ϕ) : M̃ → R3 gives a conformal immersion

(branched at the isolated zeros of ϕ) of the universal covering with translational periods.
In particular, as (19) indicates, the holomorphic section ψ = (f, 1) pairs to (ψ,ψ) = df .
To unravel the geometry of our setup and compare it to our previous descriptions of
surface geometry, we first split the quaternionic line bundle L = L+ ⊕ L− into the two
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complex line subbundles given by the ±i-eigenbundles of the complex structure J . Since
L− = L+j and J is quaternionic linear these complex line bundles are in fact isomorphic
and we may view the rank 2 complex vector bundle (L, J) = E ⊕ E as the double of the
complex line bundle E = L±. The flat connection d also decomposes as

(21) d = ∇+ φ , φ =
1
2
JdJ

where ∇J = 0, making ∇ a direct sum connection on E ⊕ E of two copies of a complex
connection on E, and φ, as the complex anti-linear part of d, is an End−(L)-valued 1-form
on M . Similarly, the holomorphic structure D = d′′ decomposes into

(22) D = ∂̄ + φ′′

with ∂̄ the double of a complex holomorphic structure on E and φ′′ an End−(L)-valued
(0, 1)-form with respect to the complex structure J . Thus by restricting (20) to sections
of E we see that the canonical holomorphic structure d of K corresponds to ∂̄ on E via
the Leibniz rule, making ( , ) : E2 → K a holomorphic isomorphism and E a spin bundle.
∇ is then the spin connection induced by the Levi-Civita connection on M . One might
have already suspected this to be the case since the relation between J and −N allows us
to use the Gauß-Bonnet theorem to calculate degE = g− 1 for compact M with genus g.
In order to understand the geometric content φ carries in our setting, we note that
End−(L) = Hom(Ē, E) so that K End−(L) = K2(ĒE)−1 and K̄ End−(L) = ĒE. Then
φ′ is given by the Möbius invariant Hopf differential q/|df | and φ′′ is given by the mean
curvature half-density H|df |. Here H is the mean curvature function on M and q is the
Hopf differential. Therefore φ is in essence the second fundamental form of the surface f .
It is also helpful to express our data in the more traditional “matrix” notation of, for
example, [23]. Since complex anti-linear maps cannot be written as complex matrices, we
will need to modify the splitting (L, J) = E ⊕ E. We decompose instead with respect to
the d-constant complex structure I which acts as multiplication by (the quaternion) i on
L, giving (L, I) = E⊕Ē. A quaternionic linear endomorphism of L is linear, in particular,
with respect to the complex structure I, and can therefore be written as a matrix. Since
J = diag(i,−i) in this decomposition, we have

(23) φ′ =
(

0 q/|df |
−q̄/|df | 0

)
and φ′′ =

(
0 H|df |

−H|df | 0

)
.

The holomorphic structure D is therefore given by the Dirac operator with potential

(24) D =
(
∂̄ U
−U ∂

)
, U = H|df |

on Γ(E ⊕ Ē). The relationship of our data to that of [23] is brought into view by decom-
posing the second fundamental form

φ = Φ− Φ∗ , Φ = φ(1,0)

into types with respect to the constant complex structure I, rather than J , resulting in
the more traditional expression

(25) Φ =
(

0 q/|df |
−H|df | 0

)
for the (1, 0)-part of the second fundamental form. In particular, we recover the forms
(8) and (9) of the Gauß–Codazzi equations for CMC surfaces written in terms of the spin
connection ∇ and the holomorphic Higgs field Φ.
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This formulation makes contact with the generalized Weierstraß representation for con-
formally immersed surfaces in R3 as presented in [33, 41, 38, 42]. Here one chooses a
complex holomorphic spin bundle E over a Riemann surface M along with a half density
U ∈ Γ(ĒE) and solves the equation Dϕ = 0 on the quaternionic spin bundle L = E ⊕ Ē
with complex structure J = diag(i,−i). Then f =

∫
(ϕ,ϕ) is a conformal immersion

(branched at the isolated zeros of ϕ) into R3 with normal N , where Jϕ = ϕ(−N). The
Willmore energy of f is given by

∫
U2. Notice that for U = 0 the formula for f be-

comes the classical Weierstraß representation for minimal surfaces in terms of complex
holomorphic spinors [29].
We remark that there is also a construction (see [16]) of conformal immersions of M which
(in our context) makes use of anti-holomorphic structures on L. For a given immersion
f : M → H the section ψ = (f, 1) ∈ Γ(L) is in the kernel of d′. Since f is conformal,
it scales ψ to another element of the kernel of d′, so that f appears as the ratio of the
two anti-holomorphic sections ψ and ψf (which are of course holomorphic sections if we
view d′ as a holomorphic structure for −J). Starting with an arbitrary anti-holomorphic
structure d′ = ∂ + φ′, where φ′ is determined as above by a choice of Möbius invariant
Hopf differential, we then produce conformal immersions of M without monodromy by
taking ratios of sections in the kernel of d′. It is important to notice, though, that while
the difference between anti-holomophic and holomorphic structures is only a matter of
the sign of J , this latter construction is not geometrically equivalent to the Weierstraß
representation. The ratio construction has the Möbius group as its symmetry group since
it depends on the Möbius invariant potential φ′. The Weierstraß representation, on the
other hand, uses the stretch-rotationally invariant potential φ′′ and therefore has the
euclidean similarities as its symmetry group.
Finally, note that both of these constructions define only conformal immersions, rather
than the isometric immersions guaranteed by the classical fundamental theorem of surface
geometry. For the latter we must choose a representative (M, g) of the conformal class of
the Riemann surface M . Then E is a Riemannian spin bundle, that is, E has a hermitian
structure inducing g on K and Ē = E−1. The density bundle is thus a trivial R-bundle
and φ is a putative second fundamental form determined by H and q. The Gauß–Codazzi
equations for our data, (6) and (7), express that d is a flat connection. From here we can
reconstruct an isometrically immersed surface up to rotational and translational periods.

The Spectral Variety of a Conformally Immersed Surface. After having intro-
duced our approach to conformal surface theory in 3-space, we outline a construction of
spectral data corresponding to the operator D defined by (18) for a general conformally
immersed surface in R3 of arbitrary genus. Our motivation, as alluded to earlier, is a
description of a surface f : M → R3 of genus g > 1 solving some variational problem
(CMC, Willmore, etc.) in terms of algebro-geometric data akin to the spectral curve and
line bundle flow defined previously for tori. But in higher genus the holonomy spectral
curve of the family (9) of flat connections dλ of a CMC surface f : M → R3 does not
provide much more than a holomorphic mapping of C∗ into the representation variety of
π1(M) in SL(2,C)2g (a hypersurface defined by the commutator relation on π1(M)). We
find that the non-commutativity of π1(M) leaves this picture largely impractical, so we
take advantage of the range of monodromies offered by the “half-connection” D to define
data that refer only to the abelian subset of this range. This also has the benefit that
our theory is extended to include all conformally immersed surfaces in R3 beyond just the
“classical solutions” such as CMC or Willmore surfaces.
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We then define the spectral variety Σ of D to be the set of abelian representations
h : π1(M) → H∗ realized by monodromies of non-trivial holomorphic sections for D. In
other words, the points h ∈ Σ are the abelian representations for which there are non-
trivial sections ϕ ∈ Γ(π∗L) on the universal cover π : M̃ → M solving Dϕ = 0 and
γ∗ϕ = ϕhγ for γ ∈ π1(M) acting by deck transformations on M̃ . Note that when ϕ is
scaled by a quaternion, the representation h gets conjugated. Due to the commutativ-
ity we may therefore assume that h : H1(M,Z) → C∗ is a representation into C∗ of the
abelianization of the fundamental group, the homology group of the surface M . Also,
since conjugation by j preserves C∗ ⊂ H∗ and L is spin, h ∈ Σ implies that h̄ and h−1 are
also contained in Σ giving rise to a real structure and a holomorphic involution on Σ.
The spectral variety Σ has the surface-geometric interpretation as a natural family of
conformal immersions fh : M̃ → R3 of the universal cover of M , containing the original
surface f , whose periods commute, meaning that the rotational periods all have the same
axis. This is provided by the generalized Weierstraß representation which for h ∈ Σ gives
the (branched) conformally immersed surface fh : M̃ → R3 as the integral of the 1-form
dfh = (ϕ,ϕ). Since h takes values in C∗ every surface fh then has stretch-rotational
periods given by γ∗dfh = h̄dfhh around the i-axis in R3 = Im H.
As the name “spectral variety” suggests, Σ is indeed an analytic variety and has a rather
special structure. If M is compact of genus g ≥ 1 any representation h : H1(M,Z) → C∗
is given by the periods of harmonic forms ω ∈ Harm(M,C) on M . Thus h = exp(

∫
ω)

and Σ ⊂ Harm(M,C)/Γ where Γ is the rank 2g lattice of integer period harmonic forms
η = η′ − η′ satisfying

∫
γ η ∈ 2πiZ. Equivalently, Σ ⊂ Harm(M,C) can be viewed a Γ-

periodic subset of harmonic forms on M . In this interpretation a harmonic form ω lies in
the spectral variety Σ if and only if the lift of D to the universal cover M̃ is gauged by
exp(

∫
∗ ω) to an operator

Dω = exp(−
∫
∗
ω) ·D · exp(

∫
∗
ω)

with non-trivial kernel. Notice that even though exp(
∫
∗ ω) is a function on M̃ , the gauged

operator Dω again descends to M . This can be seen from (24) which gives the explicit
expression

Dω =
(
∂̄ + ω′′ U
−U ∂ + ω′

)
showing also that Dω is a holomorphic family of Dirac type operators over Harm(M,C).
Since E is a spin bundle its degree is g− 1 and the Riemann-Roch theorem gives zero for
the index of ∂̄, which in turn gives the index of the family Dω. The techniques of [35, 1]
then provide a holomorphic determinant line bundle as will be shown in [19]. Therefore
Σ is the zero locus of the holomorphic determinant detDω on Harm(M,C) and as such is
an analytic variety. These same techniques yield evidence that Σ is asymptotic for large
ln |h| to the spectral variety Σ0 ⊂ Harm(M,C) of the “vacuum” operator

∂̄ω =
(
∂̄ + ω′′ 0

0 ∂ + ω′

)
.

But ∂̄ + ω′′ ranges over the Picard group Picg−1(M) of holomorphic structures of line
bundles of degree g − 1 and has non-trivial kernel along the theta divisor Θ ⊂ H0(K).
The vacuum spectrum Σ0 thus consists of Γ-translates of the hypersurface

Θ×H0(K) ∪H0(K)× Θ̄ .
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Using this, a deformation argument then shows that Σ is indeed an analytic hypersurface
in the complex cylinder Harm(M,C)/Γ asymptotic to Σ0 for large ln |h|.
The kernel of Dω is generically 1-dimensional for ω ∈ Σ and we obtain the kernel line
bundle L → Σ whose generic fiber Lω = ϕωC is spanned by a solution Dωϕ

ω = 0. Fixing
p ∈ M we can evaluate Lω(p) ⊂ Lp to obtain a line subbundle L(p) ⊂ Lp of the trivial
Lp-bundle over Σ.
There is some expectation that the spectral variety can be compactified if the original
surface is a “classical solution” of an elliptic variational problem. Algebro-geometric
techniques could then be applied to show that Σ and the map

(26) M → Pic(Σ) assigning p 7→ L(p)

into the Picard group of holomorphic line bundles over Σ provide sufficient data for the
reconstruction of the surface in R3. Ideally, (26) would be identified as the restriction to
the Abel image of M in Jac(M) of a linear embedding of Jac(M) into Pic(Σ). The only
evidence so far that this might be the case comes from the case when M = T 2 has genus
g = 1. Then Σ is one dimensional [6, 5], and can be compactified to a finite genus curve
for CMC [11] and Willmore tori [4, 38], both solutions to an elliptic variational problem.
Here the map (26) is a (real) linear embedding of T 2 ∼= Jac(T 2) into the Picard group of
Σ which is in fact tangent to the (real part of the) Abel image of Σ. Moreover, this case
is consistent insofar as Σ is indeed the spectral curve (15) defined by the holonomy of the
family of flat connections (9) and L(p) has the same flow with respect to p ∈ M as does
the eigenline bundle of the holonomy. At present it is still unclear though how to detect
spectral varieties arising from higher genus CMC surfaces.
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Franz Pedit, Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10,
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