ÜBUNGEN ZUR VORLESUNG ALGEBRA I

Prof. Dr. Ch. Hering

Wintersemester 2007/2008

13. Übungsblatt

Abgabe: Do, 7.2.08 in der Vorlesung.

Aufgabe 57

Sei $R = M_{n \times n}(K)$, der Ring aller $n \times n$ -Matrizen über dem kommutativen Körper K und I ein zweiseitiges Ideal in R. Für $1 \le s, t \le n$ sei $E_{st} = (a_{ij})_{1 \le i,j \le n}$ die Matrix mit $a_{st} = 1$ und $a_{ij} = 0$ für $(i,j) \ne (s,t)$.

- (a) Existieren $1 \leq i, j \leq n$ mit $E_{ij} \in I$, so gilt $aE_{st} \in I$ für alle $a \in K$ und alle $1 \leq s, t \leq n$.
- (b) Existieren $1 \le i, j \le n$ mit $E_{ij} \in I$, so ist I = R.
- (c) R besitzt nur die zweiseitigen Ideale $\{0\}$ und R.

Aufgabe 58

Sei p eine Primzahl. Zeige: Jeder Normalteiler der Ordnung p einer p-Gruppe G liegt im Zentrum von G.

Aufgabe 59

Sei $n \in \mathbb{Z}$, n > 1 und $a \in \mathbb{Z}$ so dass $1 \le a \le n$.

- (a) Ist $(a, n) \neq 1$, so existivt $b \in \mathbb{Z}$, so dass $1 \leq b \leq n$ und $ab \equiv 0 \pmod{n}$.
- (b) Ist (a, n) = 1, so existiert $b \in \mathbb{Z}$, so dass $1 \le b \le n$ und $ab \equiv 1 \pmod{n}$.
- (c) Die Einheitengruppe von $\mathbb{Z}/n\mathbb{Z}$ ist $\{a+n\mathbb{Z}\mid a\in\mathbb{Z}\ und\ (a,n)=1\}.$
- (d) Berechne direkt die Einheitengruppe von $\mathbb{Z}/12\mathbb{Z}$.

Aufgabe 60

Seien einerseits A eine abelsche Gruppe und andererseits V ein Vektorraum zusammen mit einem Endomorphismus φ von V. Beschreiben Sie beide Situationen durch geeignete Moduln.

Finden Sie äquivalente Objekte für

- (a) die Ordnung eines Gruppenelements $a \in A$
- (b) den Exponent von A.
- (c) eine direkte Zerlegung von A.
- (d) eine zyklische Untergruppe von A.
- (e) die Ordnung |A| von A.

Gibt es ein Äquivalent für den Satz von Lagrange?

Aufgabe 61

Sei p eine Primzahl und G eine Gruppe der Ordnung p^2 . Ist G abelsch?