W.Knapp

Tübingen, den 1. Mai 2007

8. Im Folgenden schreiben wir $\Pr(n) := (\mathbb{Z}/n\mathbb{Z})^*$ für die Prime-Restklassen-Gruppe zum Modul $1 \le n \in \mathbb{N}$. Sei p eine ungerade Primzahl und $1 \le m \in \mathbb{N}$.

- (a) Beweisen Sie, dass $\Pr(p^m)$ isomorph zu $Z_{p-1} \times Z_{p^{m-1}}$ und somit zyklisch ist. Hinweis: Behandeln Sie zuerst den Fall m=1 und zeigen Sie dann, dass die Restklasse $1+p+p^m\mathbb{Z}$ den Kern des natürlichen Epimorphismus $\Pr(p^m) \to \Pr(p) = \mathbb{F}_p^*$ erzeugt. Verwenden Sie dann den Satz von Sylow (oder entsprechende Sätze über abelsche Gruppen) und den chinesischen Reste-Satz.
- (b) Beweisen Sie, dass $\Pr(2) \cong \{1\} \cong Z_1$ und $\Pr(4) = \langle 3+4\mathbb{Z} \rangle \cong Z_2$ gilt, hingegen für $3 \leq m \in \mathbb{N}$ die Isomorphie $\Pr(2^m) \cong Z_2 \times Z_{2^{m-2}}$ vorliegt, die Prime-Restklassen-Gruppe also nicht zyklisch ist.

Hinweis: Zeigen Sie, dass für $m \geq 3$ der Kern C des natürlichen Epimorphismus $\Pr(2^m) \to \Pr(4)$ von der Restklasse $5 + 2^m \mathbb{Z}$ erzeugt wird und dass $-1 + 2^m \mathbb{Z} \notin C$ gilt.

- 9. Es sei \mathbb{F}_q ein endlicher Körper der Charakteristik p mit genau $q=p^m$ Elementen. Beweisen Sie:
 - (a) In \mathbb{F}_q ist jedes Element Summe von 2 Quadraten.
 - (b) Die Gleichung $x^2 + y^2 = 0$ hat in \mathbb{F}_q^2 genau dann eine von (0,0) verschiedene Lösung, wenn p = 2 oder $q \equiv 1 \pmod{4}$ gilt. (7 Punkte)
- 10. Sei p eine Primzahl.
 - (a) Klären Sie, in welchen Fällen die diophantische Gleichung

$$x^2 + y^2 = pz^2$$

eine nichttriviale Lösung $(x, y, z) \in \mathbb{Z}^3 \setminus \{(0, 0, 0)\}$ besitzt.

(b) Klären Sie, in welchen Fällen die diophantische Gleichung

$$x^2 + y^2 = pz$$

eine nichttriviale Lösung $(x,y,z)\in\mathbb{Z}^3\setminus\{(0,0,0)\}$ besitzt. (7 Punkte)

- 11. Beweisen Sie:
 - (a) Ist p eine Primzahl und gilt $4x^2 + 1 \equiv 0 \pmod{p}$ für ein $x \in \mathbb{Z}$, so ist $p \equiv 1 \pmod{4}$.
 - (b) Beweisen Sie, dass es jeweils unendlich viele Primzahlen p gibt, für welche $p\equiv 3\pmod 4$ bzw. $p\equiv 1\pmod 4$ gilt.

Hinweis: Beachten Sie das Resultat von Übungsaufgabe 9. Verwenden Sie das Argument des Beweises von Euklid, dass es unendlich viele Primzahlen gibt, in Verbindung mit der Betrachtung von Zahlen der Art

$$4\prod_{i\in m} p_i - 1 \text{ bzw. } (2\prod_{i\in m} p_i)^2 + 1.$$
 (6 Punkte)

Die Übungsaufgaben 9, 10 und 11 sind schriftlich zu bearbeiten und vor der Vorlesung am Mittwoch, dem 9. Mai 2007, abzugeben.