Übungen zur Kursvorlesung für Lehramtsstudierende Anordnungsaspekte in der Elementargeometrie

Sommersemester 2008

Blatt 4

W.Knapp

Tübingen, den 26. Mai 2008

Im Folgenden sei stets $\mathcal{E} = (\mathcal{P}, \mathcal{G}; \mathbf{I}, \perp, \mathcal{Z})$ eine angeordnete metrische Ebene und $P, Q, R \in \mathcal{P}$ seien Punkte von \mathcal{E} .

- 12. Beweisen Sie:
 - (i) Wenn (P, r) und (Q, r) Strahlen in \mathcal{E} sind, so gilt P = Q.
 - (ii) Wenn für eine Bewegung β von \mathcal{E} und zwei Strahlen (P, r) und (Q, s) die Beziehung $r^{\beta} = s$ gilt, so gilt auch $P^{\beta} = Q$. (4 Punkte)
- 13. Σ_P bezeichne die Menge aller Strahlen (P,r) mit Quellpunkt P, das "Strahlenbüschel" um P. Wir betrachten die Gruppe $G := B(\mathcal{E})_P$ aller Bewegungen, welche den Punkt P festlassen, $G^+ := B^+(\mathcal{E})_P$ die Gruppe aller eigentlichen Bewegungen, welche P festlassen; G^+ ist dann die Gruppe aller Drehungen um den Punkt P. G wirkt in natürlicher Weise auf Σ_P via $(P,r)^{\sigma} := (P,r^{\sigma})$. Beweisen Sie:
 - (i) G wirkt transitiv auf Σ_P und für alle Geraden $a \in [P]$ gilt $G_{(P,a^+)} = G_{(P,a^-)} = \langle \sigma_a \rangle$, wenn a^+ und a^- die beiden Seiten von P in a bezeichnen.
 - (ii) G^+ ist abelsch und wirkt scharf transitiv (regulär) auf Σ_P .
 - (iii) Für alle $a \in [P]$ ist $G_a = \{ id, \sigma_a, \sigma_b, \eta_P \} \cong Z_2 \times Z_2$ mit $b \in [P]$ derart, dass $a \perp b$ gilt; dabei ist $\eta_P = \sigma_a \sigma_b \in G^+$. $\langle \eta_P \rangle$ ist der Kern der Wirkung von G auf [P].
 - (iv) $G = \langle \sigma_a \rangle \ltimes G^+$ und G^+ ist ein Normalteiler von G vom Index 2.

(8 Punkte)

14. Sei $\mathcal E$ euklidisch. Dann führen wir in $\mathcal G$ eine ternäre Zwischenrelation $\overline{\mathcal Z}\subseteq\mathcal G^3$ ein durch:

$$(g,h,k)\in\overline{\mathcal{Z}}$$
genau dann, wenn $(P,Q,R)\in\mathcal{Z}$

gilt für P = gt, Q = ht, R = kt mit einer Gerade t derart, dass $g, h, k \perp t$ gilt.

- (i) Zeigen Sie, dass die Relation \overline{Z} wohldefiniert ist.
- (ii) Wie lassen sich die Resultate über die Zwischenanordnung von [t] auf die ganze (euklidische) Parallelenschar $O(t) = \{g \in \mathcal{G} : g \perp t\}$ für eine feste Gerade t übertragen? Wie sind hierbei die analogen Begriffe zu Seite bzw. Strahl zu bilden?

Die Übungsaufgaben 12 und 13 sind am Dienstag, dem 3. Juni 2008, vor der Vorlesung abzugeben.