Blatt 2

W.Knapp

Tübingen, den 12. April 2007

- 4. Sei K ein kommutativer Körper, in welchem die Bedingung $x^2 + y^2 = 0 \Rightarrow (x, y) = (0, 0)$ erfüllt ist.
 - Zeigen Sie, dass $\mathrm{Eb}(K) = (\mathcal{P}, \mathcal{G}; \mathrm{I}, \perp)$ wie in (1.7) der Vorlesung definiert eine allgemeine metrische Ebene ist, d.h. die Axiome I.1, I.2, I.3, S.1, S.2 und S.3 sind in $\mathrm{Eb}(K)$ erfüllt. (6 Punkte)
- 5. Wiederholen Sie das (wahrscheinlich) aus der Schule bekannte Konzept von "Pol und Polare" in der folgenden Version:

Betrachte die Ebene Eb (\mathbb{R}) = ($\mathcal{P}, \mathcal{G}; I, \bot$) mit $\mathcal{P} = \mathbb{R}^2$. Es bezeichne $\mathcal{D} := \{X \mid X \in \mathcal{P} \text{ und } ||X|| < 1\}$ die offene Einheitskreisscheibe mit Mittelpunkt O = (0, 0); $\overline{\mathcal{D}} := \{X \mid X \in \mathcal{P} \text{ und } ||X|| \le 1\}$ bezeichene die abgeschlossene Einheitskreisscheibe. Damit können wir $\mathcal{S}^1 = \overline{\mathcal{D}} \setminus \mathcal{D}$ als die "Einheitskreislinie" verstehen.

- (a) Beweisen Sie: Ist $P \in \mathcal{P} \setminus \overline{\mathcal{D}}$, so gibt es genau 2 verschiedene Tangenten von P an die Einheitskreislinie \mathcal{S}^1 ; bezeichnen T_1 und T_2 die beiden Berührpunkte, so heißt die Verbindungsgerade $P^o := T_1T_2$ die Polare zu P (in Bezug auf P). Die Polare P^o ist eine Sekante von P^o , d.h. P^o 0; der Kreismittelpunkt P^o 0 ist niemals mit der Polaren P^o 0 inzident. P^o 1 und P^o 2 liegen spiegelbildlich zur Verbindungsgeraden P^o 1.
- (b) Beweisen Sie: Jede nicht mit O inzidente Sekante g von \mathcal{D} ist Polare eines eindeutig bestimmten Punkts $P = g^0 \in \mathcal{P} \setminus \overline{\mathcal{D}}$; dieser Punkt g^o heißt der Pol von g.
- (c) Diskutieren Sie Möglichkeiten, auch den mit O inzidenten Sekanten von \mathcal{D} (also den "Durchmessern" von \mathcal{D}) auf sinnvolle Weise einen eindeutig bestimmten Pol zuzuordnen. (Es gibt hier verschiedene Möglichkeiten, die allerdings die gleichen Einsichten umsetzen müssen.)

Hinweis: Sie dürfen hier alle analytisch-geometrischen Hilfsmittel der Schule verwenden.

- 6. Mit den Bezeichnungen von Übungsaufgabe 5 setzen wir $\mathcal{H} := (\mathcal{D}, \mathcal{G}_s; I, \bot)$, wobei \mathcal{G}_s die Menge aller Sekanten von \mathcal{D} bezeichne und die Inzidenzrelation $I := \{(X,g) \mid (X,g) \in \mathcal{D} \times \mathcal{G}_s \text{ und } X \in g\}$ ist. Die Orthogonalitäts-Relation $\bot \subseteq \mathcal{G}_s \times \mathcal{G}_s$ ist auf folgende Weise definiert:
 - Falls O I g gilt, gelte $g \perp h$ genau dann, wenn g und h sich in einem Punkt von \mathcal{D} schneiden und in Eb (\mathbb{R}) orthogonal sind.
 - Falls $O \not I g$ gilt, gelte $g \perp h$ genau dann, wenn g und h sich in einem Punkt von \mathcal{D} schneiden und h mit dem Pol von g in Eb (\mathbb{R}) inzident ist.

Beweisen Sie, dass \mathcal{H} eine allgemeine metrische Ebene ist. (6 Punkte) Hinweis: Sie dürfen die Ergebnisse der Übungsaufgabe 5 verwenden.

Die Übungsaufgaben 4 und 6 sind schriftlich zu bearbeiten und vor der Vorlesung am Dienstag, dem 15. Mai 2007, abzugeben.