W.Knapp

Tübingen, den 7. Juni 2010

- 42. Sei n eine ungerade natürliche Zahl > 1 mit der Primfaktorzerlegung $n = \prod_{k=1}^{r} p_k^{e_k}$ und x sei eine zu n teilerfremde natürliche Zahl. Beweisen Sie:
 - (a) x ist eine quadratischer Rest modulo n, d.h. es gilt $x \equiv y^2 \pmod{n}$ für ein $y \in \mathbb{Z}$, genau dann, wenn x ein quadratischer Rest modulo $p_k^{e_k}$ für alle k ist.
 - (b) x ist eine quadratischer Rest modulo $p_k^{e_k}$ für ein k genau dann, wenn x ein quadratischer Rest modulo p_k ist.
 - (c) Welche Konsequenzen ergeben sich daraus für das Jacobi-Symbol? Wie müsste demnach ein quadratisches Rest-Symbol modulo n definiert werden? (4 Punkte)
- 43. Sei p eine ungerade Primzahl und weiter $a,b,c\in\mathbb{Z}$ mit $a\not\equiv 0\pmod p$. Beweisen Sie: Die quadratische Kongruenz modulo p

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

hat modulo p genau $1 + \left(\frac{b^2 - 4ac}{p}\right)$ Lösungen. Hinweis: Betrachten Sie den Körper $\mathbb{F}_p = \mathbb{Z}/p$.

- 44. Sei $R=\mathbb{Z}[i]=\{z=x+iy\mid x,y\in\mathbb{Z}\}\subseteq\mathbb{C}$ der Ring der ganzen Gaußschen Zahlen. Für z=x+iy setze $\mathrm{N}(z):=z\overline{z}=x^2+y^2$. $\mathrm{N}(z)$ heiße die Norm von z. Beweisen Sie:
 - (a) $R = \mathbb{Z}[i]$ ist ein euklidischer Ring mit euklidischer Norm $z \mapsto N(z)$, d.h. R ist ein Integritätsbereich und für alle $z_1, z_2 \in R$ mit $z_2 \neq 0$ existieren $q, r \in R$ mit $z_1 = qz_2 + r$ und $N(r) < N(z_2)$ oder r = 0.
 - $(R \text{ ist deshalb ein Hauptidealring und die Begriffe "Primelement" und "irreduzibles Element" fallen in <math>R$ zusammen.)
 - (b) Für $z_1, z_2 \in R$ gilt $N(z_1z_2) = N(z_1)N(z_2)$. Für $a = u + iv \in R$ gilt N(a) = 1 genau dann, wenn a eine Einheit in R ist, d. h. $a \in \{1, -1, i, -i\}$.
 - (c) Wenn $\pi=x+iy$ ein Primelement in R ist, so ist auch $\overline{\pi}=x-iy$ ein Primelement in R. $\pi=x+iy$ mit x>0 ist genau dann ein Primelement in R, wenn $\pi=p\equiv 3\pmod 4$ mit einer ungeraden Primzahl p ist oder $N(\pi)=x^2+y^2$ eine Primzahl p=2 oder $p\equiv 1\pmod 4$ ist. (Hieraus folgt der Kehrsatz zum Resultat von Übungsaufgabe 19 (a).)

Die Übungsaufgaben 42 und 44 sind schriftlich zu bearbeiten und in der Vorlesungspause am Dienstag, dem 29. Juni 2010, abzugeben.