Improvements and corrections to:

The Solution of the $k(G V)$ Problem

ICP Advanced Texts in Mathematics, Vol. 4
 Imperial College Press 2007

As usual the symbols a^{b} and a_{b} refer to line b on page a from above and below, respectively.
8^{15} : Replace " $\operatorname{Irr}(G / N)$ " by $" \operatorname{Irr}(X / N)$ ".
10^{9} : Delete "(some)".
18 : The following argument is missing before Theorem 1.10a:
In the proof for Theorem 1.9c we have seen that

$$
|\operatorname{Irr}(X \mid \theta)|=\frac{|G|}{|X|^{2}} \sum_{x \in X} \sum_{y \in C_{X}(N x)} \theta([x, y])
$$

Now $y \mapsto \theta([x, y])$ is a linear character of $C_{X}(N x)$ which is trivial if and only if the class of $N x$ is good for θ; otherwise $\sum_{y \in C_{X}(N x)} \theta([x, y])=0$. An obvious application of the Cauchy-Frobenius formula (1.4a) therefore yields the following.
28^{4} : Insert the following: Write $\sum_{\varphi \in \operatorname{IBr}(b)} d_{\chi \varphi}^{y} \varphi(1)=\sum_{j}\left(\sum_{\varphi} d_{\chi \varphi}^{(j)} \varphi(1)\right) \varepsilon^{j}$ with integers $d_{\chi \varphi}^{(j)}($ for each $\chi)$.
35^{3} : Delete "and has prime order".
35_{7} : A bracket is missing: $T=N_{\mathrm{GL}(V)}(S)$
36^{7} : Hence, using Theorem 1.4 b and the Clifford-Gallagher formula (1.10b), we get the (crude) estimate ...
39_{11} : The congruence should read $\equiv \psi(1) \chi\left(v^{-1}\right) \equiv \pm \chi(1)(\bmod \mathfrak{p})$.
41^{5} : Replace $1<n<m$ by $1 \leq n<m$.
$41_{1}:(3.4 \mathrm{~b}) \quad C_{H}(v)=\bigcap_{i} C_{H}\left(v_{i}\right)=1$.
47^{7} : Replace $1<i<n$ by $1 \leq i<n$.
47_{16} : "if and only if $r^{n}=2^{1}, 3^{1}$ or 2^{2}." (Of course $\mathrm{GL}_{2}(2)=\mathrm{Sp}_{2}(2)$.)
51^{9} : Replace $(3,1)$ by $(1,3)$.
54_{10} : Let Z be a cyclic central subgroup of X containg $Z(E)$, and let $U=E Z / Z$ (which may be identified with $E / Z(E)$).c
60_{15} : Let V be a coprime symplectic $\mathbb{F}_{p} G$-module \ldots
71^{4} : Delete"be".
72^{9} : The proof of step (3) is incomplete. Argue as follows:
Otherwise choose N so that this is false. Then $N \neq G$ by (1). Let W be the unique irreducible constituent of $\operatorname{Res}_{N}^{G}(V)$ (in view of (2)). By assumption $F_{0}=\operatorname{End}_{F N}(W)$ is a proper extension field of F. Let $\Gamma=\operatorname{Gal}\left(F_{0} \mid F\right)$ (a cyclic group), and regard $W_{0}=W$ as $F_{0} N$-module. Then $F_{0} \otimes_{F} W \cong \bigoplus_{\sigma \in \Gamma} W_{0}^{\sigma}$ where the Galois conjugate $F_{0} N$-modules W_{0}^{σ} are pairwise nonisomorphic (and absolutely irreducible). To every $x \in G$ there exists a unique $\sigma=\sigma_{x} \in \Gamma$ such that $\left(W_{0} x\right)^{\sigma} \cong W_{0}$, and the assignment $x \mapsto \sigma_{x}$ is a homomorphism making F_{0} into a " G-field". The kernel of this homomorphism is a normal subgroup \widetilde{N} of G containing N, and it is the inertia group of each W_{0}^{σ} in G. By (1) $F_{0} \otimes_{F} V$ is an (absolutely) irreducible $F_{0} G$-module, whose restriction to N contains all the W_{0}^{σ}. By Clifford's theorem, for each $\sigma \in \Gamma$, there is a unique (up to isomorphism) irreducible $F_{0} \widetilde{N}$-module lying above W_{0}^{σ} and inducing up to $F_{0} \otimes_{F} V$, and these modules are conjugate under G. We conclude that $\widetilde{N}=N$ and that $\Gamma \cong G / N$. It also follows that $\operatorname{Res}_{N}^{G}(V)=W$ is irreducible and that $F_{0} \otimes_{F} V \cong \operatorname{Ind}_{N}^{G}\left(W_{0}\right)$. Let $W_{0}=W=V$ be as sets in what follows.

Since $\operatorname{dim}_{\mathrm{F}_{0}} \mathrm{~W}_{0}<\operatorname{dim}_{\mathrm{F}} \mathrm{W}$, there is $v \in V$ such that the restriction of W_{0} to $H_{0}=$ $C_{N}(v)$ contains a faithful $F_{0} H$-module U_{0} which is self-dual. This is a direct summand of $\operatorname{Res}_{H_{0}}^{N}\left(W_{0}\right)$ by Maschke's theorem. Let $H=C_{G}(v)$. By Mackey decomposition $U=\operatorname{Ind}_{H_{0}}^{H}\left(U_{0}\right)$ is a direct summand of $F_{0} \otimes_{F} V$ with $C_{H}(U)=\bigcap_{h \in H} C_{H_{0}}\left(U_{0}\right)^{h}=1$. Of course U is self-dual. Let χ be the (absolutely irreducible, Frobenius) character of G afforded by V. Since U is a self-dual $F_{0} H$-module, for every character θ afforded by some irreducible summand of U, the character θ^{*} of H, given by $\theta^{*}(h)=\theta\left(h^{-1}\right)$ for $h \in H$, is the character of an irreducible summand of U likewise. So $\theta+\theta^{*}$ is a constituent of $\operatorname{Res}_{H}^{G}(\chi)$ if $\theta \neq \theta^{*}$. For each $\sigma \in \Gamma$ we also have $\left(\theta^{*}\right)^{\sigma}=\left(\theta^{\sigma}\right)^{*}$ as a constituent (as $\left.\chi=\chi^{\sigma}\right)$. Let U_{θ} be the irreducible $F H$-module affording the trace character $\operatorname{Tr}_{F(\theta) \mid F}(\theta)$. This U_{θ} appears in $\operatorname{Res}_{H}^{G}(V)$, as well as $U_{\theta^{*}}=U_{\theta}^{*}$ (the dual module). Either $U_{\theta} \cong U_{\theta^{*}}$ is self-dual or $U_{\theta} \oplus U_{\theta^{*}}$ appears as a (self-dual) $F H$-submodule of V. Now consider the direct sum of the distinct (nonisomorphic) $U_{\theta}, U_{\theta^{*}}$ obtained in this way. This is a faithful self-dual $F H$-submodule of V, as desired.
73_{12} : "Let $G_{0}=N_{G}\left(E_{0}\right)$, and let θ, θ_{0} be the Brauer characters of E, E_{0} afforded by W, W_{0}, respectively, and let $G(\theta), G_{0}\left(\theta_{0}\right)$ be the extended representation groups. So $G_{0}\left(\theta_{0}\right)$ is a central extension of G_{0} by a (cyclic) group of order dividing $\left|G_{0}\right|$."
73_{7} : Replace $G\left(\theta_{0}\right)$ by $G_{0}\left(\theta_{0}\right)$.
84^{9} : Of course Theorem 4.4 is meant.
$91^{17}: \ldots$, because 13 is a Zsigmondy prime divisor of $3^{3}-1$ and so $13: 3$ cannot be an irreducible subgroup of $\mathrm{Sp}_{6}(3)$ by Clifford's theorem.
97_{3} : Replace $V_{V}(g)$ by $C_{V}(\gamma)$ and $2 \cdot 3^{2}\left(2 r^{2}\right)$ by $2 \cdot 2^{2}\left(2 r^{2}\right)$.
100_{13} : Replace E by E_{0}.
105^{16} : Delete "(hence $r \geq 7$)".
$106_{3,4}$: Replace H_{0} by H; the same on 107^{2}.
112_{16} : Replace $r=19$ by $r=13$ (in the table).
113_{11} : Replace (5.1 b) by Lemma 5.1 b .
114^{2} : Correct as follows: "... where χ takes the value -1 . Hence $y_{V}=\left[z, z^{2}, z^{3}, z^{4}\right]$ for some element $z \in Z$ of order 5 . It follows that the regular E-orbit remains an orbit for $X=E \times\langle z\rangle$, and we may pick the vector v such that $C_{X}(v)=\left\langle z^{-1} y\right\rangle=H$. Since $N_{X}(H) / H$ has order 2 [Atlas] and $Z(G) / Z(X)$ order 3, we have $H=C_{G}(v)$ by Lemma 5.1b." (By Proposition 7.3c below, and the discussion on page 132, there are exactly $\frac{30}{6} \mu_{\chi, 1}^{6}(31)=1$ regular orbit on V for $E \circ Z_{6}$. This yields at once what we need.)
119^{13} : Replace "four G-orbits" by "one G-orbit".
129_{8} : There is a regular G-orbit since ...
130_{16} : Insert "by" (Theorem 4.5a).
140_{7} : "Let x be an element of L in the Atlas class $3 B$. Then x fixes a nonzero vector $v \in V$. From $\chi(2 A)=0$ and $N_{L}(F v) \subseteq N_{L}(\langle x\rangle) \cong 3^{2}: 2$ [Atlas] we infer that $C_{L}(v)=\langle x\rangle(r=5)$ and $N_{L}(F v) \cong S_{3}$. This S_{3} lies in a maximal subgroup of L of type $L_{2}(7)$. This implies that $C_{G}(v) \cong S_{3}$. The elements of order 6 of $L .2$ outside L have the property that there 3rd power belongs to the class $2 B$ outside L. Since every extension of S_{3} by a group of order 2 is isomorphic to $S_{3} \times Z_{2}$, this shows that $C_{G_{0}}(v)=C_{G}(v)$."
148_{11} : Insert indices: $C_{G}\left(w_{1}\right) / C_{G}\left(W_{1}\right) \times \cdots \times C_{G}\left(w_{n}\right) / C_{G}\left(W_{n}\right)$.
150^{14} : Deleete one bracket: $T=N(E Z) \mathrm{wr} \mathrm{S}_{\mathrm{n}}$
157_{16} : ... and we get a real vector in V as in the (revised) proof for Theorem 5.4.
159_{14} : A simplified argument is as follows: "Hence there are $|G / N|$ distinct G-conjugates of $\widetilde{V}_{0}=\widetilde{U}_{0} \otimes_{F} \widetilde{W}_{0}$ by Clifford's theorem (which are nonisomorphic $F_{0} N$-modules).

On the other hand, $\operatorname{Res}_{\widetilde{N}}^{\widetilde{G}}(V)$ has a unique irreducible constituent \widetilde{V}, which by (3) is absolutely irreducible. We conclude that $\widetilde{V}_{0} \cong F_{0} \otimes \widetilde{V}$ is the unique irreducible constituent of $\operatorname{Res} \underset{\widetilde{N}}{\widetilde{\widetilde{G}}}\left(F_{0} \otimes_{F} V\right)$, and we obtain the contradiction $N=G$."
161_{13} : Replace 5.3 b by 5.3 a.
162^{16} : Add one bracket: $T=N_{H}(P)$.
187_{20} : Replace $k\left(Y a / Y_{11}\right)$ by $k\left(Y_{a} / Y_{10}\right)$ (in the table).
190^{3} : Numbers like 2.400 should read 2400 (?).
197_{3} : For $p=2$ the congruences tell us nothing, however in this case the group G has odd order and so the Burnside congruence (1.5a) applies.
198^{2} : Just assert that $\chi(1) \equiv \pm 1(\bmod p)$ and $|G| \equiv \pm 1(\bmod p)$.
198_{12} : The proof should end with $|G|=|H| \cdot|G: H| \equiv \pm 1(\bmod p)$.
1984 : The term $\chi_{v, \zeta}(1)$ should read $\chi_{v, \theta}(1)$.
200^{9} : Though not needed in the text, we mention that the same holds if $H=C_{G}(v)$ is just abelian. Use that the kernel of an $F H$-module V_{i} agrees with the kernel of its dual module V_{i}^{*} (and use the direct decomposition of $H V$).
$232{ }^{7}$: "Spectral pattern, 76 " should follow after "Singer cycle, 43,195 " and should be followed by "Splitting field, 2". (One "Spectral pattern" is enough.)

