Übungen zu Algebra II (2)

- (5) Jeder Körper K enthält einen eindeutig bestimmten kleinsten Teilkörper P, der von der 1 in K additiv erzeugt wird $(Primk\"{o}rper)$. Ist char(K) = 0, so ist $P \cong \mathbb{Q}$; ist $char(K) \neq 0$, so ist char(K) = p eine Primzahl und $P \cong \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. Zusatz. Welche Automorphismen hat der Körper P?
- (6) Sei K ein quadratischer Zahlkörper, d.h., ein Teilkörper von \mathbb{C} mit $[K:\mathbb{Q}]=2$. Man zeige, dass es eine eindeutig bestimmte quadratfreie ganze Zahl $d\neq 0,1$ gibt mit $K=\mathbb{Q}(\sqrt{d})$.
- (7) Sei $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ der durch die (positiven) Quadratwurzeln von 2 und 3 erzeugte
 - (a) Man berechne den Grad $[K:\mathbb{Q}]$.

Teilkörper von \mathbb{R} .

- (b) Man zeige, dass $\alpha = \sqrt{2} + \sqrt{3}$ ein *primitives* Element für $K|\mathbb{Q}$ ist, d.h., es gilt $K = \mathbb{Q}(\alpha)$.
- (c) Man berechne das Minimalpolynom $f = m_{\mathbb{Q},\alpha}$.
- (d) f zerfällt in K in (lauter verschiedene) Linearfaktoren.

Zusatz. Welche Automorphismen hat der Körper K?

Zusatz. Welche Automorphismen hat der Körper K?

(8) Man zeige, dass der Körper $K = \mathbb{Q}(\sqrt[4]{5})$ von \mathbb{R} den Grad 4 über \mathbb{Q} hat. Man zeige ferner, dass L = K(i) der kleinste Teilkörper von \mathbb{C} ist, über welchem das Polynom $X^4 - 5$ in Linearfaktoren zerfällt.

Zusatz. Welche Automorphismen haben die Körper K und L?