Übungen zu Analysis III (3)

- (9) Für die Funktion $f: \mathbb{C} \to \mathbb{C}$ mit $f(z) = 2z^2\bar{z} z\bar{z}^2$ berechne man die (partiellen) Ableitungen $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ und $\frac{\partial f}{\partial \bar{z}}$. In welchen Punkten $a \in \mathbb{C}$ ist f komplex differenzierbar? In diesen Punkten berechne man f'(a).
- (10) Sei $f: \mathbb{C} \to \mathbb{C}$ reell differenzierbar, und sei \bar{f} die Funktion mit $\bar{f}(z) = \overline{f(z)}$. Definiere das totale Differential von f durch $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$ sowie dz = $dx + i dy, d\bar{z} = dx - i dy.$
 - (a) Es gilt $\frac{\partial f}{\partial z} = \frac{\partial \bar{f}}{\partial \bar{z}}$ und $\frac{\partial \bar{f}}{\partial \bar{z}} = \frac{\partial \bar{f}}{\partial z}$.
 - (b) Es gilt $df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z}$.
 - (c) Genau dann ist f holomorph (auf \mathbb{C}), wenn df proportional zu dz ist.
- (11) Sei f(0) = 0 und $f(z) = e^{-1/|z|}$ für 0 < |z| < 1. In welchen Punkten der offenen Kreisscheibe $D = \{z \in \mathbb{C} \mid |z| < 1\}$ ist f stetig, partiell oder (total) reell differenzierbar, und wo ist f komplex differenzierbar?
- (12) Man beweise oder widerlege: Es gibt eine holomorphe Funktion f auf \mathbb{C} mit:
 - (a) $\operatorname{Re}(f) = x^3 6x^2y 3xy^2 + 2y^3$. (b) $\operatorname{Re}(f) = x^3 6x^2 3xy^2 + 2y^2$.