Übungen zur Charaktertheorie (12)

Durchweg ist G eine endliche Gruppe.

- (45) Ist $G \neq 1$ isomorph zu einer Untergruppe von $SL_2(\mathbb{C})$, so ist $Z(G) \neq 1$. (Mandenke an Aufgabe 36.)
- (46) Hat G genau einen nichtlinearen irreduziblen Charakter χ (mit $\chi(1) > 1$), so ist die Kommutatorgruppe G' eine nichttriviale elementarabelsche p-Gruppe für eine Primzahl p.
- (47) Für jede positive natürliche Zahl n definiere man die Funktion $\delta_n:G\to\mathbb{N}$ durch

$$\delta_n(g) = |\{x \in G | x^n = g\}|.$$

- (a) δ_n ist eine (komplexe) Klassenfunktion von G.
- (b) Ist n teilerfremd zu |G|, so ist $\delta_n(g) = 1$ für alle $g \in G$.
- (c) Im allgemeinen ist $\delta_n = \sum_{\chi \in Irr(G)} \nu_n(\chi) \chi$ mit eindeutig bestimmten komplexen Zahlen $\nu_n(\chi)$. Man zeige

$$\nu_n(\chi) = \frac{1}{|G|} \sum_{g \in G} \chi(g^n).$$

- (48) Sei $\chi \in Irr(G)$ und V ein $\mathbb{C}G$ -Modul mit Charakter χ . Man definiere die Funktion $\chi^{(2)}$ auf G durch $\chi^{(2)}(g) = \chi(g^2)$.
 - (a) $\chi^{(2)}$ ist eine komplexe Klassenfunktion auf G.
 - (b) Es gilt $\langle \chi^{(2)}, 1_G \rangle = \nu_2(\chi)$, wobei $\nu_2(\chi)$ wie in Übung (47) erklärt ist (für n=2).
 - (c) Es gilt $\chi^{(2)} = \chi^2 2\chi_a$, wobei χ_a der Charakter von $\text{Alt}^2(V)$ in der Zerlegung von $V \otimes V = \text{Sym}^2(V) \oplus \text{Alt}^2(V)$ ist.
 - (d) Es ist $\nu_2(\chi) = 0, 1$ oder -1, und es gilt $\nu_2(\chi) \neq 0$ genau dann, wenn χ reellwertig ist.
 - (e) Hat G genau r Involutionen, so gilt $r+1=\sum_{\chi\in {\rm Irr}(G)}\nu_2(\chi)\chi(1)$ (Frobenius–Schur).