Übungen zur Elementaren Zahlentheorie (3)

- (9) Sei $m = p_1^{e_1} \cdots p_r^{e_r}$ die Primzahlzerlegung von $m \in \mathbb{N}_{\geq 2}$ ($p_i \in \mathbb{P}$ paarweise verschieden, $e_i \in \mathbb{N}_{>0}$). Nach (3.4) der Vorlesung ist $\varphi(m) = m m(\frac{1}{p_1} + \cdots + \frac{1}{p_r}) + n(\frac{1}{p_1p_2} + \frac{1}{p_1p_3} + \cdots) + \cdots + (-1)^r \frac{1}{p_1\cdots p_r}$. Man folgere, dass $\varphi(m) = \sum_{d|m} \mu(d) \frac{m}{d}$ ist, wobei μ die sog. Möbiusfunktion (A.F. Möbius, 1790-1868) ist mit
 - $\mu(d) = \begin{cases} 1 & \text{für } d = 1, \\ (-1)^k & \text{falls } d \text{ das Produkt von } k \text{ verschiedenen Primzahlen ist,} \\ 0 & \text{sonst.} \end{cases}$
- (10) Man zeige, dass $\sum_{d|m} \mu(d) = 0 = \sum_{k=0}^{m} (-1)^k {m \choose k}$ ist und wende diese Ausssage an beim Beweis der folgenden *Möbiusinversion*: Ist f eine Funktion auf $\mathbb N$ und g diejenige mit $g(n) = \sum_{d|n} f(n)$, so gilt $f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$.
- (11) Sei $n \in \mathbb{N}_{\geq 3}$ und d_n die Anzahl der fixpunktfreien Permutationen in der symmetrischen Gruppe S_n (mit $d_1 = 0, d_2 = 1$).
 - (a) Die Anzahl der fixpunktfreien Permutationen π , für welche $\pi^2(1) = 1$ ist, ist gleich $(n-1)d_{n-2}$.
 - (b) Man folgere aus (a) (oder beweise direkt per Induktion), dass die Rekursion $d_n = (n-1)(d_{n-1} + d_{n-2})$ gilt.
- (12) In einer Mathe-Vorlesung sind 67 StudentInnen. Davon können 47 Englisch, 35 Französisch und 20 Russisch sprechen, 23 sprechen Englisch und Französisch, 12 sprechen Deutsch und Russisch, 11 sprechen Französisch und Russisch, und 5 sprechen alle drei Sprachen. Wieviele StudentInnen sprechen weder Englisch noch Französisch, wieviele keine der drei Sprachen?