Übungen zur Elementaren Zahlentheorie (6)

- (21) Man gebe die kleinste natürliche Zahl an, deren Restklasse modulo 31 die multiplikative Gruppe von $\mathbb{F}_{31} = \mathbb{Z}/31\mathbb{Z}$ erzeugt.
- (22) Für jede ungerade Primzahl p gilt

$$[(\frac{p-1}{2})!]^2 \equiv (-1)^{(p-1)/2} \pmod{p}.$$

Für $p \equiv 1 \pmod{4}$ ist also $x = (\frac{p-1}{2})!$ eine Quadratwurzel von $-1 \mod p$.

- (23) Mit Hilfe des Schubfachprinzips ("shoe box principle") zeige man, dass für jede ungerade Primzahl p die Kongruenz $X^2 + Y^2 \equiv -1 \pmod{p}$ in $\mathbb{Z}^{(2)}$ lösbar ist.
- (24) Sei K ein endlicher Körper der Ordnung q. Sei $r \in \mathbb{N}$.
 - (a) $\sum_{x \in K} x^r = -1$, falls $r \ge 1$ durch q-1 teilbar ist. (b) $\sum_{x \in K} x^r = 0$ in jedem anderen Fall.