ÜBUNGEN ZUR ANALYSIS III

Blatt 3

Abgabe am Dienstag, den 5.11.2002, in der Vorlesung

Aufgabe 7

Man berechne unter alleiniger Verwendung der Definition von Kurvenintegralen

$$\int_{\partial K} \frac{1}{z} dz \quad \text{und} \quad \int_{\partial K} \operatorname{Re} z \, dz \;,$$

wobei

- 1. $K = \{z \in \mathbb{C} : |z| \le 2\},\$
- 2. K das Rechteck mit den Eckpunkten 1+i, -1+i, -1-i, 1-i ist.

Aufgabe 8

Es sei f die durch $f(z) = |e^z|$ auf ganz $\mathbb C$ definierte Funktion.

- 1. Man berechne $\int_{\gamma} f(z) dz$ für die Kurve $\gamma : [0,1] \to \mathbb{C}$, wobei
 - i. $\gamma(t) := t + it$,
 - ii. $\gamma(t) := t + it^2$.
- 2. Besitz
tfeine Stammfunktion auf $\mathbb{C}?$

Aufgabe 9

Sei $\gamma_1(t):=(\cos t)e^{it}$ und $\gamma_2(t):=(\cos 2t)e^{it}$ für $0\leq t\leq 2\pi$ sowie $\gamma_3(t):=te^{2\pi it}$ für $0\leq t\leq 1$.

- 1. Man skizziere die Kurven $\gamma_1, \gamma_2, \gamma_3$.
- 2. Man berechne die Länge von $\gamma_1.$
- 3. Man berechne für k=1,2,3 das Integral $I_k:=\int\limits_{\gamma_k}ze^zdz$.

[Hinweis: Man finde eine Stammfunktion].