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Preface

The theory of one-parameter semigroups of linear operators on Banach
spaces started in the first half of this century, acquired its core in 1948
with the Hille–Yosida generation theorem, and attained its first apex with
the 1957 edition of Semigroups and Functional Analysis by E. Hille and
R.S. Phillips. In the 1970s and 80s, thanks to the efforts of many different
schools, the theory reached a certain state of perfection, which is well repre-
sented in the monographs by E.B. Davies [Dav80], J.A. Goldstein [Gol85],
A. Pazy [Paz83], and others.

Today, the situation is characterized by manifold applications of this
theory not only to the traditional areas such as partial differential equa-
tions or stochastic processes. Semigroups have become important tools for
integro-differential equations and functional differential equations, in quan-
tum mechanics or in infinite-dimensional control theory. Semigroup meth-
ods are also applied with great success to concrete equations arising, e.g.,
in population dynamics or transport theory. It is quite natural, however,
that semigroup theory is in competition with alternative approaches in all
of these fields, and that as a whole, the relevant functional-analytic toolbox
now presents a highly diversified picture.

At this point we decided to write a new book, reflecting this situation
but based on our personal mathematical taste. Thus, it is a book on semi-
groups or, more precisely, on one-parameter semigroups of bounded linear
operators. In our view, this reflects the basic philosophy, first and strongly
emphasized by A. Hadamard (see p. 152), that an autonomous determinis-
tic system is described by a one-parameter semigroup of transformations.

Among the many continuity properties of these semigroups that were

vii
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already studied by E. Hille and R.S. Phillips in [HP57], we deliberately
concentrate on strong continuity and show that this is the key to a deep
and beautiful theory. Referring to many concrete equations, one might ob-
ject that semigroups, and especially strongly continuous semigroups, are
of limited value, and that other concepts such as integrated semigroups,
regularized semigroups, cosine families, or resolvent families are needed.
While we do not question the good reasons leading to these concepts, we
take a very resolute stand in this book insofar as we put strongly continu-
ous semigroups of bounded linear operators into the undisputed center of
our attention. Around this concept we develop techniques that allow us to
obtain
• a semigroup on an appropriate Banach space even if at first glance the

semigroup property does not hold, and
• strong continuity in an appropriate topology where originally only

weaker regularity properties are at hand.
In Chapter VI we then show how these constructions allow the treatment

of many different evolution equations that initially do not have the form of
a homogeneous abstract Cauchy problem and/or are not “well-posed” in a
strict sense.

Structure of the Book
This is not a research monograph but an introduction to the theory of
semigroups. After developing the fundamental results of this theory we
emphasize spectral theory, qualitative properties, and the broad range of
applications. Moreover, our book is written in the spirit of functional anal-
ysis. This means that we prefer abstract constructions and general argu-
ments in order to underline basic principles and to minimize computations.
Some of the required tools from functional analysis, operator theory, and
vector-valued integration are collected in the appendices.

In Chapter I, we intentionally take a slow start and lead the reader
from the finite-dimensional and uniformly continuous case through multi-
plication and translation semigroups to the notion of a strongly continuous
semigroup.

To these semigroups we associate a generator in Chapter II and char-
acterize these generators in the Hille–Yosida generation theorem and its
variants. Semigroups having stronger regularity properties such as ana-
lyticity, eventual norm continuity, or compactness are then characterized,
whenever possible, in a similar way. A special feature of our approach is
the use of a rich scale of interpolation and extrapolation spaces associated
to a strongly continuous semigroup. A comprehensive treatment of these
“Sobolev towers” is presented by Simon Brendle in Section II.5.

In Chapter III we start with the classical Bounded Perturbation Theo-
rem III.1.3, but then present a new simultaneous treatment of unbounded
Desch–Schappacher and Miyadera–Voigt perturbations in Section III.3. In
the remaining Sections III.4 and 5 it was our goal to discuss a broad range
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of applications of the Trotter–Kato Approximation Theorem III.4.8.
Spectral theory is the core of our approach, and in Chapter IV we dis-

cuss in great detail under what conditions the so-called spectral mapping
theorem is valid. A first payoff is the complete description of the structure
of periodic groups in Theorem IV.2.27.

On the basis of this spectral theory we then discuss in Chapter V qualita-
tive properties of the semigroup such as stability, hyperbolicity, and mean
ergodicity. Inspired by the classical Liapunov stability theorem we try to
describe these properties by the spectrum of the generator. It is rewarding
to see how a combination of spectral theory with geometric properties of
the underlying Banach space can help to overcome many of the typical
difficulties encountered in the infinite-dimensional situation.

Only at the end of Chapter II do differential equations and initial value
problems appear explicitly in our text. This does not mean that we neglect
this aspect. On the contrary, the many applications of semigroup theory to
all kinds of evolution equations elaborated in Chapter VI are the ultimate
goal of our efforts. However, we postpone this discussion until a powerful
and systematic theory is at hand.

In the final chapter, Chapter VII, Tanja Hahn and Carla Perazzoli try
to embed today’s theory into a historical perspective in order to give the
reader a feeling for the roots and the raison d’être of semigroup theory.

Furthermore, we add to our exposition of the mathematical theory an
epilogue by Gregor Nickel, in which he discusses the philosophical question
concerning the relationship between semigroups and evolution equations
and the philosophical concept of “determinism.” This is certainly a matter
worth considering, but regrettably not much discussed in the mathematical
community. For this reason, we encourage the reader to grapple and come
to terms with this genuine philosophical question. It is enlightening to see
how such questions were formulated and resolved in different epochs of the
history of thought. Perhaps a deeper understanding will emerge of how
one’s own contemporary mathematical concepts and theories are woven
into the broad tapestry of metaphysics.

Guide to the Reader
The text is not meant to be read in a linear manner. Thus, the reader
already familiar with, or not interested in, the finite-dimensional situa-
tion and the detailed discussion of examples may start immediately with
Section I.5 and then proceed quickly to the Hille–Yosida Generation Theo-
rems II.3.5 and II.3.8 via Section II.1. To indicate other shortcuts, several
sections, subsections, and paragraphs are given in small print.

Such an individual reading style is particularly appropriate with regard
to Chapter VI, since our applications of semigroup theory to the various
evolution equations are more or less independent of each other. The reader
should select a section according to his/her interest and then continue
with the more specialized literature indicated in the notes. Or, he/she may
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even start with a suitable section of Chapter VI and then follow the back
references in the text in order to understand our arguments.

The exercises at the end of each section should lead to a better under-
standing of the theory. Occasionally, we state interesting recent results as
an exercise marked by ∗.

The notes are intended to identify our sources, to integrate the text into a
broader picture, and to suggest further reading. Inevitably, they also reflect
our personal perspective, and we apologize for omissions and inaccuracies.
Nevertheless, we hope that the interested reader will be put on the track
to uncover additional information.

Acknowledgments
Our research would not have been possible without the invaluable help
from many colleagues and friends. We are particularly grateful to

Jerome A. Goldstein, Frank Neubrander, Ulf Schlotterbeck, and Eugenio
Sinestrari,

who accompanied our work for many years in the spirit of friendship and
constructive criticism.

Wolfgang Arendt, Mark Blake, Donald Cartwright, Radu Cascaval, Ralph
Chill, Andreas Fischer, Helmut Fischer, Gisele Goldstein, John Haddock,
Matthias Hieber, Sen-Zhong Huang, Niels Jacob, Yuri Latushkin, Axel
Markert, Lahcen Maniar, Martin Mathieu, Mark McKibben, Jan van
Neerven, John Neuberger, Martin Newell, Tony O’Farrell, Frank Räbiger,
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an inexhaustible source of motivation and inspiration during the years of
our teaching on semigroups and while we were writing this book. We thank
them all for their enthusiasm, their candid criticism, and their personal
interest. Our coauthors
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Prelude

An Excerpt from Der Mann ohne Eigenschaften
(The Man Without Qualities) by Robert Musil∗

in German, followed by the English Translation

Es läßt sich verstehen, daß ein Ingenieur in seiner Besonderheit aufgeht,
statt in die Freiheit und Weite der Gedankenwelt zu münden, obgleich seine
Maschinen bis an die Enden der Erde geliefert werden; denn er braucht
ebensowenig fähig zu sein, das Kühne und Neue der Seele seiner Technik
auf seine Privatseele zu übertragen, wie eine Maschine imstande ist, die ihr
zugrunde liegenden Infinitesimalgleichungen auf sich selbst anzuwenden.
Von der Mathematik aber läßt sich das nicht sagen; da ist die neue Denk-
lehre selbst, der Geist selbst, liegen die Quellen der Zeit und der Ursprung
einer ungeheuerlichen Umgestaltung.

Wenn es die Verwirklichung von Urträumen ist, fliegen zu können und
mit den Fischen zu reisen, sich unter den Leibern von Bergriesen durch-
zubohren, mit göttlichen Geschwindigkeiten Botschaften zu senden, das
Unsichtbare und Ferne zu sehen und sprechen zu hören, Tote sprechen zu
hören, sich in wundertätigen Genesungsschlaf versenken zu lassen, mit le-
benden Augen erblicken zu können, wie man zwanzig Jahre nach seinem
Tode aussehen wird, in flimmernden Nächten tausend Dinge über und unter
dieser Welt zu wissen, die früher niemand gewußt hat, wenn Licht, Wärme,
Kraft, Genuß, Bequemlichkeit Urträume der Menschheit sind,—dann ist die

∗ Rowohlt Verlag, Hamburg 1978, by permission.

xvii
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heutige Forschung nicht nur Wissenschaft, sondern ein Zauber, eine Zere-
monie von höchster Herzens- und Hirnkraft, vor der Gott eine Falte seines
Mantels nach der anderen öffnet, eine Religion, deren Dogmatik von der
harten, mutigen, beweglichen, messerkühlen und -scharfen Denklehre der
Mathematik durchdrungen und getragen wird.

Allerdings, es ist nicht zu leugnen, daß alle diese Urträume nach Meinung
der Nichtmathematiker mit einemmal in einer ganz anderen Weise verwirk-
licht waren, als man sich das ursprünglich vorgestellt hatte. Münchhausens
Posthorn war schöner als die fabriksmäßige Stimmkonserve, der Sieben-
meilenstiefel schöner als ein Kraftwagen, Laurins Reich schöner als ein Ei-
senbahntunnel, die Zauberwurzel schöner als ein Bildtelegramm, vom Herz
seiner Mutter zu essen und die Vögel zu verstehen schöner als eine tierpsy-
chologische Studie über die Ausdrucksbewegung der Vogelstimme. Man hat
Wirklichkeit gewonnen und Traum verloren. Man liegt nicht mehr unter ei-
nem Baum und guckt zwischen der großen und der zweiten Zehe hindurch
in den Himmel, sondern man schafft; man darf auch nicht hungrig und
verträumt sein, wenn man tüchtig sein will, sondern muß Beefsteak essen
und sich rühren. (. . .). Man braucht wirklich nicht viel darüber zu reden,
es ist den meisten Menschen heute ohnehin klar, daß die Mathematik wie
ein Dämon in alle Anwendungen unseres Lebens gefahren ist. Vielleicht
glauben nicht alle diese Menschen an die Geschichte vom Teufel, dem man
seine Seele verkaufen kann; aber alle Leute, die von der Seele etwas ver-
stehen müssen, weil sie als Geistliche, Historiker, Künstler gute Einkünfte
daraus beziehen, bezeugen es, daß sie von der Mathematik ruiniert worden
sei und daß die Mathematik die Quelle eines bösen Verstandes bilde, der
den Menschen zwar zum Herrn der Erde, aber zum Sklaven der Maschine
macht. Die innere Dürre, die ungeheuerliche Mischung von Schärfe im Ein-
zelnen und Gleichgültigkeit im Ganzen, das ungeheure Verlassensein des
Menschen in einer Wüste von Einzelheiten, seine Unruhe, Bosheit, Herzens-
gleichgültigkeit ohnegleichen, Geldsucht, Kälte und Gewalttätigkeit, wie sie
unsre Zeit kennzeichnen, sollen nach diesen Berichten einzig und allein die
Folge der Verluste sein, die ein logisch scharfes Denken der Seele zufügt!
Und so hat es auch schon damals, als Ulrich Mathematiker wurde, Leute
gegeben, die den Zusammenbruch der europäischen Kultur voraussagten,
weil kein Glaube, keine Liebe, keine Einfalt, keine Güte mehr im Menschen
wohne, und bezeichnenderweise sind sie alle in ihrer Jugend- und Schul-
zeit schlechte Mathematiker gewesen. Damit war später für sie bewiesen,
daß die Mathematik, Mutter der exakten Naturwissenschaft, Großmutter
der Technik, auch Erzmutter jenes Geistes ist, aus dem schließlich auch
Giftgase und Kampfflieger aufgestiegen sind.

In Unkenntnis dieser Gefahren lebten eigentlich nur die Mathematiker
selbst und ihre Schüler, die Naturforscher, die von alledem so wenig in ih-
rer Seele verspüren wie Rennfahrer, die fleißig darauf los treten und nichts
in der Welt bemerken als das Hinterrad ihres Vordermanns. Von Ulrich
dagegen konnte man mit Sicherheit sagen, daß er die Mathematik liebte,
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wegen der Menschen, die sie nicht ausstehen mochten. Er war weniger wis-
senschaftlich als menschlich verliebt in die Wissenschaft. Er sah, daß sie in
allen Fragen, wo sie sich für zuständig hält, anders denkt als gewöhnliche
Menschen. Wenn man statt wissenschaftlicher Anschauungen Lebensan-
schauung setzen würde, statt Hypothese Versuch und statt Wahrheit Tat,
so gäbe es kein Lebenswerk eines ansehnlichen Naturforschers oder Mathe-
matikers, das an Mut und Umsturzkraft nicht die größten Taten der Ge-
schichte weit übertreffen würde. Der Mann war noch nicht auf der Welt, der
zu seinen Gläubigen hätte sagen können: Stehlt, mordet, treibt Unzucht—
unserer Lehre ist so stark, daß sie aus der Jauche eurer Sünden schäumend
helle Bergwässer macht; aber in der Wissenschaft kommt es alle paar Jahre
vor, daß etwas, das bis dahin als Fehler galt, plötzlich alle Anschauungen
umkehrt oder daß ein unscheinbarer und verachteter Gedanke zum Herr-
scher über ein neues Gedankenreich wird, und solche Vorkommnisse sind
dort nicht bloß Umstürze, sondern führen wie eine Himmelsleiter in die
Höhe. Es geht in der Wissenschaft so stark und unbekümmert und herrlich
zu wie in einem Märchen. Und Ulrich fühlte: die Menschen wissen das bloß
nicht; sie haben keine Ahnung, wenn man sie neu denken lehren könnte,
würden sie auch anders leben.

Nun wird man sich freilich fragen, ob es denn auf der Welt so verkehrt
zugehe, daß sie immerdar umgedreht werden müsse? Aber darauf hat die
Welt längst selbst zwei Antworten gegeben. Denn seit sie besteht, sind die
meisten Menschen in ihrer Jugend für das Umdrehen gewesen. Sie haben
es lächerlich empfunden, daß die Älteren am Bestehenden hingen und mit
ihrem Herzen dachten, einem Stück Fleisch, statt mit dem Gehirn. (. . .).
Dennoch haben sie, sobald sie in die Jahre der Verwirklichung gekommen
sind, nichts mehr davon gewußt und noch weniger wissen wollen. Darum
werden auch viele, denen Mathematik oder Naturwissenschaft einen Beruf
bedeuten, es als einen Mißbrauch empfinden, sich aus solchen Gründen wie
Ulrich für eine Wissenschaft zu entscheiden.

The Man Without Qualities∗

It is understandable that an engineer should be completely absorbed in his
speciality, instead of pouring himself out into the freedom and vastness of
the world of thought, even though his machines are being sent off to the
ends of the earth; for he no more needs to be capable of applying to his
own personal soul what is daring and new in the soul of his subject than a
machine is in fact capable of applying to itself the differential calculus on
which it is based. The same thing cannot, however, be said about math-
ematics; for here we have the new method of thought, pure intellect, the

∗ From The Man Without Qualities by Robert Musil, trans. Sophie Wilkins.
c©1995 by Alfred A. Knopf Inc. Reprinted by permission of the publisher.
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very wellspring of the times, the fons et origo of an unfathomable trans-
formation.

If the realization of primordial dreams is flying, traveling with the fishes,
boring one’s way under the bodies of mountain-giants, sending messages
with godlike swiftness, seeing what is invisible and what is in the distance
and hearing its voice, hearing the dead speak, having oneself put into a
wonder-working healing sleep, being able to behold with living eyes what
one will look like twenty years after one’s death, in glimmering nights to
know a thousand things that are above and below this world, things that
no one ever knew before, if light, warmth, power, enjoyment, and comfort
are mankind’s primordial dreams, then modern research is not only science
but magic, a ritual involving the highest powers of heart and brain, before
which God opens one fold of His mantle after another, a religion whose
dogma is permeated and sustained by the hard, courageous, mobile, knife-
cold, knife-sharp mode of thought that is mathematics.

Admittedly, it cannot be denied that in the nonmathematician’s opinion
all these primordial dreams were suddenly realized in quite a different way
from what people had once imagined. Baron Münchhausen’s post-horn was
more beautiful than mass-produced canned music, the Seven-League Boots
were more beautiful than a motor-car, Dwarf-King Laurin’s realm more
beautiful than a railway-tunnel, the magic mandrake-root more beautiful
than a telegraphed picture, to have eaten of one’s mother’s heart and so
to understand the language of birds more beautiful than an animal psy-
chologist’s study of the expressive values in bird-song. We have gained in
terms of reality and lost in terms of the dream. We no longer lie under a
tree, gazing up at the sky between our big toe and second toe; we are too
busy getting on with our jobs. And it is no good being lost in dreams and
going hungry, if one wants to be efficient; one must eat steak and get a
move on. (. . .). There is really no need to say much about it. It is in any
case quite obvious to most people nowadays that mathematics has entered
like a daemon into all aspects of our life. Perhaps not all of these people
believe in that stuff about the Devil to whom one can sell one’s soul; but
all those who have to know something about the soul, because they draw
a good income out of it as clergy, historians, or artists, bear witness to
the fact that it has been ruined by mathematics and that in mathemat-
ics is the source of a wicked intellect that, while making man the lord of
the earth, also makes him the slave of the machine. The inner drought, the
monstrous mixture of acuity in matters of detail and indifference as regards
the whole, man’s immense loneliness in a desert of detail, his restlessness,
malice, incomparable callousness, his greed for money, his coldness and vi-
olence, which are characteristic of our time, are, according to such surveys,
simply and solely the result of the losses that logical and accurate thinking
has inflicted on the soul! And so it was that even at that time, when Ul-
rich became a mathematician, there were people who were prophesying the
collapse of European civilization on the grounds that there was no longer
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any faith, any love, any simplicity or any goodness left in mankind; and
it is significant that these people were all bad at mathematics at school.
This only went to convince them, later on, that mathematics, the mother
of the exact natural sciences, the grandmother of engineering, was also the
arch-mother of that spirit from which, in the end, poison-gases and fighter
aircraft have been born.

Actually, the only people living in ignorance of these dangers were the
mathematicians themselves and their disciples, the natural scientists, who
felt no more of all this in their souls than racing-cyclists who are pedaling
away hard with no eyes for anything in the world but the back wheel of
the man in front. As far as Ulrich was concerned, however, it could at least
definitely be said that he loved mathematics because of the people who
could not endure it. He was not so much scientifically as humanly in love
with science. He could see that in all the problems that came into its orbit
science thought differently from the way ordinary people thought. If for
“scientific attitude” one were to read “attitude to life,” for “hypothesis”
“attempt” and for “truth” “action,” then there would be no considerable
natural scientist or mathematician whose life’s work did not in courage
and revolutionary power far outmatch the greatest deeds in history. The
man was not yet born who could have said to his disciples: “Rob, murder,
fornicate—our teaching is so strong that it will transform the cesspool of
your sins into clear, sparkling mountain-rills.” But in science it happens ev-
ery few years that something that up to then was held to be error suddenly
revolutionizes all views or that an unobtrusive, despised idea becomes the
ruler over a new realm of ideas; and such occurrences are not mere up-
heavals but lead up into the heights like Jacob’s ladder. In science the way
things happen is as vigorous and matter-of-fact and glorious as in a fairy-
tale. “People simply don’t know this,” Ulrich felt. “They have no glimmer
of what can be done with thinking. If one could teach them to think in a
new way, they would also live differently.”

Now someone is sure to ask, of course, whether the world is so topsy-
turvy that it is always having to be turned up the other way again. But
the world itself long ago gave two answers to this question. For ever since
it has existed most people have in their youth been in favor of turning
things upside-down. They have always felt that their elders were ridiculous
in being so attached to the established order of things and in thinking
with their heart—a mere lump of flesh—instead of with their brains. (. . .).
Nevertheless, by the time they reach years of fulfillment they have forgotten
all about it and are far from wishing to be reminded of it. That is why many
people for whom mathematics or natural science is a job feel it is almost
an outrage if someone goes in for science for reasons like Ulrich’s.



Chapter I

Linear Dynamical Systems

There are many good reasons—the reader may consult Section 1 of the
Epilogue for details—why an “autonomous deterministic system” should
be described by maps T (t), t ≥ 0, satisfying the functional equation

(FE) T (t+ s) = T (t)T (s).

Here, t is the time parameter, and each T (t) maps the “state space” of the
system into itself. These maps completely determine the time evolution of
the system in the following way: If the system is in state x0 at time t0 = 0,
then at time t it is in state T (t)x0.

However, in most cases a complete knowledge of the maps T (t) is hard, if
not impossible, to obtain. It was one of the great discoveries of mathemat-
ical physics, based on the invention of calculus, that, as a rule, it is much
easier to understand the “infinitesimal changes” occurring at any given
time. In this case, the system can be described by a differential equation
replacing the functional equation (FE).

In this chapter we analyze this phenomenon in the mathematical context
of linear operators on Banach spaces.

For this purpose, we take two opposite views.

V1. We start with a solution t 7→ T (t) of the above functional equation
(FE) and ask which assumptions imply that it is differentiable and satisfies
a differential equation.

V2. We start with a differential equation and ask how its solution can
be related to a family of mappings satisfying (FE).

1
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In the following we treat the finite-dimensional and the uniformly con-
tinuous situation in some detail, then discuss further examples in Section 4.
On the basis of this information we try to explain why strongly continuous
semigroups as introduced in Section 5 correspond to both views.

However, the impatient reader who does not need this kind of motivation
should start immediately with Section 5.

1. Cauchy’s Functional Equation

As a warm-up, this program will be performed in the scalar-valued case
first. In fact, it was A. Cauchy who in 1821 asked in his Cours d’Analyse,
without any further motivation, the following question:

Déterminer la fonction ϕ(x) de manière qu’elle reste continue entre deux
limites réelles quelconques de la variable x, et que l’on ait pour toutes
les valeurs réelles des variables x et y

ϕ(x+ y) = ϕ(x)ϕ(y).1

(A. Cauchy, [Cau21, p. 100])

Using modern notation, we restate his question as follows dropping the
continuity requirement for the moment.

1.1 Problem. Find all maps T (·) : R+ → C satisfying the functional
equation

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0,
T (0) = 1.

Evidently, the exponential functions

(EXP) t 7→ eta

satisfy (FE) for any a ∈ C. With his question, Cauchy suggested that these
canonical solutions should be all solutions of (FE).

Before giving an answer to Problem 1.1, we take a closer look at the
exponential functions (EXP) and observe that they, besides solving the
algebraic identity (FE), also enjoy some important analytic properties.

1 Determine the function ϕ(x) in such a way that it remains continuous between two
arbitrary real limits of the variable x, and that, for all real values of the variables x and
y, one has

ϕ(x + y) = ϕ(x)ϕ(y).
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1.2 Proposition. Let T (t) := eta for some a ∈ C and all t ≥ 0. Then
the function T (·) is differentiable and satisfies the differential equation (or,
more precisely, the initial value problem)

(DE)

{
d
dtT (t) = aT (t) for t ≥ 0,
T (0) = 1.

Conversely, the function T (·) : R+ → C defined by T (t) = eta for some
a ∈ C is the only differentiable function satisfying (DE). Finally, we observe
that a = d/dtT (t)

∣∣
t=0

.

Proof. We show only the assertion concerning uniqueness. Let S(·) :
R+ → C be another differentiable function satisfying (DE). Then the new
function Q(·) : [0, t] → C defined by

Q(s) := T (s)S(t− s) for 0 ≤ s ≤ t

for some fixed t > 0 is differentiable with derivative d/dsQ(s) ≡ 0. This
shows that

T (t) = Q(t) = Q(0) = S(t)

for arbitrary t > 0. �

This proposition shows that, in our scalar-valued case, V2 can be an-
swered easily using the exponential function. It is now our main point that
continuity is already sufficient to obtain differentiability in V1.

1.3 Proposition. Let T (·) : R+ → C be a continuous function satisfying
(FE). Then T (·) is differentiable, and there exists a unique a ∈ C such that
(DE) holds.

Proof. Since T (·) is continuous on R+, the function V (·) defined by

V (t) :=
∫ t

0

T (s) ds, t ≥ 0,

is differentiable with V̇ (t) = T (t). This implies2

lim
t↓0

1
t
V (t) = V̇ (0) = T (0) = 1.

Therefore, V (t0) is different from zero, hence invertible, for some small
t0 > 0.

2 In the sequel, we often denote a derivative with respect to the real variable t by “ ˙”,

i.e., V̇ (0) = d/dtV (t)
∣∣
t=0

.
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The functional equation (FE) now yields

T (t) = V (t0)−1V (t0)T (t) = V (t0)−1

∫ t0

0

T (t+ s) ds

= V (t0)−1

∫ t+t0

t

T (s) ds = V (t0)−1
(
V (t+ t0)− V (t)

)
for all t ≥ 0. Hence, T (·) is differentiable with derivative

d
dtT (t) = lim

h↓0

T (t+ h)− T (t)
h

= lim
h↓0

T (h)− T (0)
h

T (t) = Ṫ (0)T (t) for all t ≥ 0.

This shows that T (·) satisfies (DE) with a := Ṫ (0). �

The combination of both results leads to a satisfactory answer to Cauchy’s
Problem 1.1.

1.4 Theorem. Let T (·) : R+ → C be a continuous function satisfying
(FE). Then there exists a unique a ∈ C such that

T (t) = eta for all t ≥ 0.

With this answer we stop our discussion of this elementary situation and
close this section with some further comments on Cauchy’s Problem 1.1.

1.5 Comments. (i) Once shown, as in Theorem 1.4, that a certain
function T (·) : R+ → C is of the form T (t) = eta, it is clear that it can
be extended to all t ∈ R and even all t ∈ C still satisfying the functional
equation (FE) for all t, s ∈ C. In other words, this extension becomes
a homomorphism from the additive group (C,+) into the multiplicative
group (C \ {0}, ·).
(ii) Much weaker conditions than continuity, e.g., local integrability, are
sufficient to obtain the conclusion of Theorem 1.4. For a detailed account
on this subject we refer to [Acz66] and Exercise 1.7.
(iii) Even noncanonical solutions of (FE) can be found using a result of
Hamel. In [Ham05] he considered R as a vector space over Q. By linearly
extending an arbitrary function on the elements of a Q-vector basis of R
he obtained all additive functions. Composition of the exponential function
with the additive functions then yields the solutions of (FE). Again see
Exercise 1.7 and [Acz66] for further details.
(iv) It is important to keep in mind that (FE) is not just any formal identity
but gains its significance from the description of dynamical systems. If we
identify C with the space L(C) of all linear operators on C, we see that a
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map T (·) satisfying (FE) describes the time evolution (for time t ≥ 0) of
a linear dynamical system on C. More precisely, let x0 ∈ C be the state of
our system at time t = 0. Then

x(t) := T (t)x0

is the state at t ≥ 0. Then (FE) means that

x(t+ s) = T (t+ s)x0 = T (t)T (s)x0 = T (t)x(s);

hence the state x(t + s) at time t + s is the same as the state at time t
starting from x(s). In the Epilogue we try to explain how (FE) appears in
any mathematical description of deterministic dynamical systems.

1.6 Perspective. The basis for our solution of Problem 1.1 was the fact
that a solution of the algebraic equation (FE) that is continuous must
already be differentiable (even analytic) and therefore solves (DE). The
phenomenon

continuity + (FE) ⇒ differentiability
will be a fundamental and recurrent theme for our further investigations.
We already refer to Theorem 3.7, Lemma II.1.3.(ii), or Theorem II.4.6 for
particularly important manifestations of this phenomenon. It thus seems
justified to consider the subsequent theory of one-parameter semigroups as
a contribution to what Hilbert suggested at the 1900 International Congress
of Mathematicians at Paris in the second part of his fifth problem:

Überhaupt werden wir auf das weite und nicht uninteressante Feld der
Funktionalgleichungen geführt, die bisher meist nur unter Voraussetzung
der Differenzierbarkeit der auftretenden Funktionen untersucht worden
ist. Insbesondere die von Abel3 mit so vielem Scharfsinn behandelten
Funktionalgleichungen, die Differenzengleichungen und andere in der Li-
teratur vorkommende Gleichungen weisen an sich nichts auf, was zur For-
derung der Differenzierbarkeit der auftretenden Funktionen zwingt. . . . In
allen Fällen erhebt sich daher die Frage, inwieweit etwa die Aussagen, die
wir im Falle der Annahme differenzierbarer Funktionen machen können,
unter geeigneten Modifikationen ohne diese Voraussetzung gültig sind.4

(David Hilbert [Hil70, p. 20])

3 Werke Vol. 1, pages 1, 61, and 389.
4 Moreover, we are thus led to the wide and interesting field of functional equations,

which have been heretofore investigated usually only under the assumption of the differ-
entiability of the functions involved. In particular, the functional equations treated by
Abel with so much ingenuity, the difference equations . . . and other equations occurring
in the literature of mathematics, do not directly involve anything that necessitates the
requirement of the differentiability of the accompanying functions. . . . In all these cases,
then, the problem arises: To what extent are the assertions that we can make in the case
of differentiable functions true under proper modifications without this assumption?



6 Chapter I. Linear Dynamical Systems

1.7 Exercises. (1) A function f : R → R is called additive if it satisfies the
functional equation

f(s + t) = f(s) + f(t) for all s, t ∈ R.

Show that the following assertions are true.

(i) The function f : R+ → R is additive if and only if T (·) := exp ◦f solves
(FE).

(ii) There exist discontinuous additive functions on R. (Hint: Consider R as a
Q-vector space and choose an arbitrary basis B of R. Now take an arbitrary
real-valued function defined on B and extend it linearly.)

(iii) There exist discontinuous solutions of (FE) that are not identically zero for
t > 0.

(2) Show that any measurable solution T (·) : R+ → R of (FE) either is given by

(1.1) T (t) :=
{

1 if t = 0,
0 if t > 0,

or there exists a ∈ R such that T (t) = exp(ta) for all t ∈ R. In particular,
a solution of (FE) which is discontinuous in some t > 0 cannot be measurable.
(Hint: First show that every solution T (·) different from (1.1) has no zeros. Hence
for those T (·) the functions g : t 7→ exp(i·log T (t)) are well-defined and are locally
integrable solutions of (FE). Now a modification of the proof of Theorem 1.4
shows that g is given by g(t) = exp(ita) for some a ∈ R. Finally, use the fact that
the maps t 7→ log T (t) and t 7→ at are additive in order to derive the assertion.)

2. Finite-Dimensional Systems: Matrix Semigroups

In this section we pass to a more general setting and consider finite-
dimensional vector spaces X := Cn. The space L(X) of all linear operators
on X will then be identified with the space Mn(C) of all complex n×n ma-
trices, and a linear dynamical system on X will be given by a matrix -valued
function

T (·) : R+ → Mn(C)

satisfying the functional equation

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0,
T (0) = I.

As before, the variable t will be interpreted as “time.” The “time evolution”
of a state x0 ∈ X is then given by the function ξx0 : R+ → X defined as

ξx0(t) := T (t)x0.

We also call {T (t)x0 : t ≥ 0} the orbit of x0 under T (·). From the functional
equation (FE) it follows that an initial state x0 arrives after an elapsed time
t + s at the same state as the initial state y0 := T (s)x0 after time t. See
also the considerations in the Epilogue, Section 1.
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In this new context we study V1 and V2 from Section 1 and restate
Cauchy’s Problem 1.1.

2.1 Problem. Find all maps T (·) : R+ → Mn(C) satisfying the functional
equation (FE).

Imitating the arguments from Section 1 we first look for “canonical”
solutions of (FE) and then hope that these exhaust all (natural) linear
dynamical systems.

As in Section 1 the candidates for solutions of (FE) are the “exponential
functions,” and G. Peano seems to have been the first who in 1887 gave a
precise definition of matrix-valued exponential functions.

Se . . . le equazioni differenziali proposte sono a coefficienti costanti . . . si
ricava

x =
(

1 + αt+
(αt)2

2!
+

(αt)3

3!
+ · · ·

)
a;

e se si conviene di rappresentare con eαt, anche quando α è un com-

plesso qualunque, la somma della serie 1 + αt + (αt)2

2! + · · ·, l’integrale
dell’equazione differenziale proposta diventa

x = eαta.5

(G. Peano [Pea87], see also [Pea88])

In modern notation, Peano’s definition takes the following form.

2.2 Definition. For any A ∈ Mn(C) and t ∈ R the matrix exponential etA

is defined by

(2.1) etA :=
∞∑

k=0

tkAk

k!
.

Taking any norm on Cn and the corresponding matrix-norm on Mn(C)
one shows that the partial sums of the series above form a Cauchy sequence;
hence the series converges and satisfies

(2.2)
∥∥etA

∥∥ ≤ et‖A‖

for all t ≥ 0. Moreover, the map t 7→ etA has the following properties.

5 If . . . the equations considered have constant coefficients . . . one obtains

x =
(
1 + αt +

(αt)2

2!
+

(αt)3

3!
+ · · ·

)
a;

and, if we agree to write, even for α an arbitrary matrix, eαt for the sum of the series

1 + αt +
(αt)2

2!
+ · · · , the integral of the differential equation considered becomes

x = eαta.
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2.3 Proposition. For any A ∈ Mn(C) the map

R+ 3 t 7→ etA ∈ Mn(C)

is continuous and satisfies

(FE)

{
e(t+s)A = etAesA for t, s ≥ 0,

e0A = I.

Proof. Since the series
∑∞

k=0
tk‖A‖k

/k! converges, one can show, as for the
Cauchy product of scalar series, that

∞∑
k=0

tkAk

k!
·
∞∑

k=0

skAk

k!
=

∞∑
n=0

n∑
k=0

tn−kAn−k

(n− k)!
· s

kAk

k!

=
∞∑

n=0

(t+ s)nAn

n!
.

This proves (FE). In order to show that t 7→ etA is continuous, we first
observe that by (FE) one has

e(t+h)A − etA = etA
(
ehA − I

)
for all t, h ∈ R. Therefore, it suffices to show that limh→0 ehA = I. This
follows from the estimate

∥∥ehA − I
∥∥ =

∥∥∥∥ ∞∑
k=1

hkAk

k!

∥∥∥∥
≤

∞∑
k=1

|h|k · ‖A‖k

k!
= e|h|·‖A‖ − 1.

�

At this point, it is good to pause for a moment and try to understand
the meaning of the functional equation (FE) in terms of linear operators
(or matrices) on Cn. Obviously, the range of the function t 7→ T (t) := etA

in Mn(C) is a commutative semigroup of matrices depending continuously
on the parameter t ∈ R+. In fact, this is a straightforward consequence of
the following decisive property:

The mapping t 7→ T (t) is a homomorphism from the additive semigroup
(R+,+) into the multiplicative semigroup

(
Mn(C), ·

)
.

Keeping this in mind, we start to use the following terminology.

2.4 Definition. We call
(
etA
)
t≥0 the (one-parameter) semigroup generated

by the matrix A ∈ Mn(C).
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As the reader may have already realized, there is no need in Definition 2.2
(and 2.4) to restrict the (time) parameter t to R+. The definition, the
continuity, and the functional equation (FE) hold for any real and even
complex t. Then the map

T (·) : t 7→ etA

extends to a continuous (even analytic) homomorphism from the additive
group (R,+) (or, (C,+)) into the multiplicative group GL(n,C) of all in-
vertible, complex n × n matrices. We call

(
etA
)
t∈R the (one-parameter)

group generated by A.
Before proceeding with the abstract theory, the reader might appreciate

some examples of matrix semigroups.

2.5 Examples. (i) The (semi) group generated by a diagonal matrix
A = diag(a1, . . . , an) is given by

etA = diag
(
eta1 , . . . , etan

)
.

(ii) Less trivial is the case of a k × k Jordan block

A =


λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 λ


k×k

with eigenvalue λ ∈ C. Decompose A into a sum A = D+N where D = λI.
Then the kth power ofN is zero, and the power series (2.1) (with A replaced
by N) becomes

(2.3) etN =



1 t t2

2 · · · tk−1

(k−1)!

0 1 t · · · tk−2

(k−2)!

...
. . . . . . . . .

...
...

. . . . . . t
0 · · · · · · 0 1


k×k

.

Since D and N commute, we obtain

(2.4) etA = etλetN

(see Exercise 2.12.(1)).

For arbitrary matrices A, the direct computation of etA (using the above
definition) is very difficult if not impossible. Fortunately, thanks to the
existence of the Jordan normal form, the following lemma shows that in a
certain sense the Examples 2.5.(i) and (ii) suffice.
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2.6 Lemma. Let B ∈ Mn(C) and take an invertible matrix S ∈ Mn(C).
Then the (semi) group generated by the matrix A := S−1BS is given by

etA = S−1etBS.

Proof. Since Ak = S−1BkS for all k ∈ N and since S, S−1 are continuous
operators, we obtain

etA =
∞∑

k=0

tkAk

k!
=

∞∑
k=0

tkS−1BkS

k!

= S−1

( ∞∑
k=0

tkBk

k!

)
S = S−1etBS.

�

The content of this lemma is that similar matrices (for the definition
of similarity see 5.10) generate similar (semi) groups. Since we know that
any complex n × n matrix is similar to a direct sum of Jordan blocks, we
conclude that any matrix (semi) group is similar to a direct sum of (semi)
groups as in Example 2.5.(ii). Already in the case of 2 × 2 matrices, the
necessary computations are lengthy; however, they yield explicit formulas
for the matrix exponential function.

2.7 More Examples. (iii) Take an arbitrary 2 × 2 matrix A =
(

a b
c d

)
,

define δ := ad− bc, τ := a+ d, and take γ ∈ C such that γ2 = 1/4(τ2− 4δ).
Then the (semi) group generated by A is given by the matrices
(2.5)

etA =

 e tτ/2
(

1/γ sinh(tγ)A+
(
cosh(tγ)− 2τ/γ sinh(tγ)

)
I
)

if γ 6= 0,

e tτ/2 (tA+ (1− tτ/2)I) if γ = 0.

We list some special cases yielding simpler formulas:

A =
(

0 1
−1 0

)
, etA =

(
cos(t) sin(t)
− sin(t) cos(t)

)
,

A =
(

0 1
1 0

)
, etA =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
,

A =
(

1 1
−1 −1

)
, etA =

(
1 + t t
−t 1− t

)
.

We now return to the theory of the matrix exponential functions t 7→ etA.
We know from Proposition 2.3 that they are continuous and satisfy the
functional equation (FE). In the next proposition we see that they are
even differentiable and satisfy the differential equation (DE) (compare to
Proposition 1.2).
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2.8 Proposition. Let T (t) := etA for some A ∈ Mn(C). Then the function
T (·) : R+ → Mn(C) is differentiable and satisfies the differential equation

(DE)

{
d
dtT (t) = AT (t) for t ≥ 0,
T (0) = I.

Conversely, every differentiable function T (·) : R+ → Mn(C) satisfying
(DE) is already of the form T (t) = etA for some A ∈ Mn(C). Finally, we
observe that A = Ṫ (0).

Proof. We start by showing that T (·) satisfies (DE). Since the functional
equation (FE) in Proposition 2.3 implies

T (t+ h)− T (t)
h

=
T (h)− I

h
· T (t)

for all t, h ∈ R, (DE) is proved if limh→0
T (h)−I

h = A. This, however, follows,
since ∥∥∥∥T (h)− I

h
−A

∥∥∥∥ ≤ ∞∑
k=2

|h|k−1 · ‖A‖k

k!

=
e|h|·‖A‖ − 1

|h|
− ‖A‖ → 0 as h→ 0.

The remaining assertions are proved as in Proposition 1.2 by replacing the
complex number a by the matrix A. �

After these preparations, we are now ready to give an answer to Prob-
lem 2.1 that is in complete analogy to the result in Section 1.

2.9 Theorem. Let T (·) : R+ → Mn(C) be a continuous function satisfying
(FE). Then there exists A ∈ Mn(C) such that

T (t) = etA for all t ≥ 0.

Proof. Since T (·) is continuous and T (0) = I is invertible, the matrices

V (t0) :=
∫ t0

0

T (s) ds

are invertible for sufficiently small t0 > 0 (use that limt↓0 1/tV (t) = T (0) =
I). Now repeat the computations from the proof of Theorem 1.4. �

With this theorem we have characterized all continuous one-parameter
(semi) groups on Cn as matrix-valued exponential functions

(
etA
)
t≥0. As

in the scalar case, one can weaken the continuity assumption (see Com-
ment 1.5.(ii)), but not drop it entirely (see Comment 1.5.(iii)). However,
since continuity seems to be the natural assumption for our interpretation
of
(
etA
)
t≥0 as a dynamical system, we will not enter this discussion.
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Instead, we pursue another direction and are interested in the qualita-
tive behavior, in particular as t → ∞, of etA. Convergence, boundedness,
and unboundedness as t → ∞ are properties of

(
etA
)
t≥0 with a natural

interpretation in terms of dynamical systems.
In case we have an explicit formula for etA, it may be a good idea to try

to check these properties directly. However, these cases are rather rare, and
therefore it is important to understand the influence of properties of the
matrix A on etA without explicitly calculating etA. We give an example of
this procedure here.

Let us call a continuous one-parameter semigroup
(
etA
)
t≥0 stable if

lim
t→∞

∥∥etA
∥∥ = 0,

where ‖ ·‖ stands for any matrix norm on Mn(C). Since uniform and point-
wise convergence on Mn(C) coincide, stability can also be defined by the
fact that

lim
t→∞

∥∥etAx
∥∥ = 0

for each x ∈ Cn. The classical Liapunov stability theorem [Lia92] now char-
acterizes the stability of

(
etA
)
t≥0 in terms of the location of the eigenvalues

of A.

2.10 Theorem. (Liapunov 1892). Let
(
etA
)
t≥0 be the one-parameter

semigroup generated by A ∈ Mn(C). Then the following assertions are
equivalent.

(a) The semigroup is stable, i.e., limt→∞
∥∥etA

∥∥ = 0.

(b) All eigenvalues of A have negative real part, i.e., Reλ < 0 for all
λ ∈ σ(A).

Proof. The key to the following simple proof is the observation that sta-
bility remains invariant under similarity. Thus we can assume that A has
Jordan normal form. Then the semigroup

(
etA
)
t≥0 is stable if and only

if all semigroups
(
etAk

)
t≥0 generated by the Jordan blocks Ak of A are

stable. Due to the explicit calculation of etAk in Example 2.5.(ii) we see
immediately that this is the case if and only if the diagonal elements in the
Jordan blocks have negative real part. However, these diagonal elements
are exactly the eigenvalues of A. �

This theorem is of great theoretical and practical importance. Its main
purpose here is to serve as a first sample for results relating properties of
A to properties of

(
etA
)
t≥0. Later (see Section V.1) we will devote great

effort to find the appropriate generalizations of this theorem in the infinite-
dimensional case.
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Before closing this section we state another result that can be proved
exactly as Theorem 2.10 was.

2.11 Corollary. For the semigroup
(
etA
)
t≥0 generated by the matrix A ∈

Mn(C), the following assertions are equivalent.

(a) The semigroup is bounded, i.e., ‖etA‖ ≤ M for all t ≥ 0 and some
M ≥ 1.

(b) All eigenvalues λ of A satisfy Reλ ≤ 0, and whenever Reλ = 0, then
λ is a simple eigenvalue (i.e., the Jordan blocks corresponding to λ
have size 1).

2.12 Exercises. (1) If A, B ∈ Mn(C) commute, then eA+B = eAeB .

(2) Let A ∈ Mn(C) be an n×n matrix and denote by mA its minimal polynomial.
If p is a polynomial such that p ≡ exp (mod mA), i.e., if the function (p−exp)/mA

can be analytically extended to C, then p(A) = exp(A). Use this fact in order to
verify formula (2.5).

(3) Use Corollary 2.11 to show that A ∈ Mn(C) generates a bounded group, i.e.,
‖etA‖ ≤ M for all t ∈ R and some M ≥ 1, if and only if A is similar to a diagonal
matrix with purely imaginary entries.

(4) Characterize semigroups (etA)t≥0 satisfying eA = I in terms of the eigenval-
ues of the matrix A ∈ Mn(C).

(5) A semigroup (etA)t≥0 for A ∈ Mn(C) is called hyperbolic if there exists a
direct decomposition Cn = Xs ⊕Xu into A-invariant subspaces Xs and Xu and
constants M ≥ 1, ε > 0 such that

and

∥∥etAx
∥∥ ≤ Me−εt‖x‖ for all x ∈ Xs, t ≥ 0,∥∥etAy
∥∥ ≥ 1

M
eεt‖y‖ for all y ∈ Xu, t ≥ 0.

Use the idea of the proof of Theorem 2.10 to show that the following properties
are equivalent.

(a) The semigroup (etA)t≥0 is hyperbolic.

(b) The matrix etA has no eigenvalue of modulus 1, i.e., σ(etA) ∩ Γ = ∅ for
some/all t > 0, where Γ := {z ∈ C : |z| = 1} denotes the unit circle in C.

(c) The matrix A has no purely imaginary eigenvalue, i.e., σ(A) ∩ iR = ∅.
(6) For A ∈ Mn(C), we call λ ∈ σ(A) ∩ R a dominant eigenvalue if

Re µ < λ for all µ ∈ σ(A) \ {λ}

and if the Jordan blocks corresponding to λ are all 1×1. Show that the following
properties are equivalent.

(a) The eigenvalue 0 ∈ σ(A) is dominant.

(b) There exist P = P 2 ∈ Mn(C) and M ≥ 1, ε > 0 such that∥∥etA − P
∥∥ ≤ Me−εt for all t ≥ 0.
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3. Uniformly Continuous Operator Semigroups

With this section the level of technical prerequisites increases considerably.
In fact, we now turn our attention to dynamical systems (or semigroups)
on infinite-dimensional spaces. As a consequence, the reader has to be fa-
miliar with the basic theory of Banach spaces and bounded linear operators
thereon. In particular, we will use various topologies on these spaces, like
the norm and the weak topology or the uniform, strong, and weak operator
topology (see Appendix A).

From now on, we take X to be a complex Banach space with norm ‖ · ‖.
We denote by L(X) the Banach algebra of all bounded linear operators6
on X endowed with the operator norm, which again is denoted by ‖ · ‖. In
analogy to Sections 1 and 2, we can restate Cauchy’s question in this new
context.

3.1 Problem. Find all maps T (·) : R+ → L(X) satisfying the functional
equation

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0,
T (0) = I.

The search for answers to this question will be the main theme of this
book, and due to the infinite-dimensional framework, the answers will be
much more complex than what we encountered up to now. Fortunately,
there are again simple “typical” examples of functions T (·) satisfying (FE).
Before discussing these we introduce the terminology that we will adopt
throughout the following.

As observed before Definition 2.4, for every function T (·) : R+ → L(X)
satisfying (FE) the set {T (t) : t ≥ 0} is a commutative subsemigroup of
(L(X), ·). In addition, the map t 7→ T (t) is a homomorphism from (R+,+)
into (L(X), ·). This justifies calling the functional equation (FE) the semi-
group law and using the following terminology.

3.2 Definition. A family
(
T (t)

)
t≥0 of bounded linear operators on a Ba-

nach space X is called a (one-parameter) semigroup (or linear dynamical
system) on X if it satisfies the functional equation (FE). If (FE) holds even
for all t, s ∈ R, we call

(
T (t)

)
t∈R a (one-parameter) group on X.

3.3 Remark. The aspect that a semigroup
(
T (t)

)
t≥0 can be viewed as

a linear dynamical system should always be kept in mind and will domi-
nate much of the further discussion. In particular, the interpretation (see
Epilogue) of
• t as “time,”
• the functional equation (FE) as the “law of determinism,”
• {T (t)x : t ∈ R+} as the “orbit of the initial value x,”

6 In the sequel “operator” always means “linear operator.”
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is fundamental and serves as a guiding principle for the development of the
theory.

We now introduce the “typical” examples of one-parameter semigroups
of operators on a Banach space X. Take any operator A ∈ L(X). As
in the matrix case (see Definition 2.2), we can define an operator-valued
exponential function by

etA :=
∞∑

k=0

tkAk

k!
,

where the convergence of this series takes place in the Banach algebra L(X).
Using the same arguments as in Propositions 2.3 and 2.8, one shows that(
etA
)
t≥0 satisfies the functional equation (FE) and the differential equation

(DE), and hence Theorem 3.7 below follows as in Section 2.

However, for readers already possessing a solid knowledge of spectral theory,
we choose a different approach based on the functional calculus for bounded
linear operators on Banach spaces (see [DS58, Sec. VII.3] or [TL80, Sec. V.8]).
We briefly state the necessary notions.

For an operator A ∈ L(X), we denote by σ(A) its spectrum, while ρ(A) :=
C \ σ(A) is the resolvent set of A. Since σ(A) is a nonempty, compact subset of
C, ρ(A) is open, and one can show that the resolvent

R(λ, A) := (λ−A)−1 ∈ L(X)

yields an analytic map from ρ(A) into L(X) (see Section IV.1).

Consider now for each t ≥ 0 the function λ 7→ etλ, which is analytic on all of
C. Therefore, one can define (see [DS58, Def. VII.3.9] or [TL80, Sec. V.8, (8-3)])
the exponential of A through the operator-valued version of Cauchy’s integral
formula.

3.4 Definition. Let A ∈ L(X) and choose an open neighborhood U of σ(A)
with smooth, positively oriented boundary +∂U . Then we define

(3.1) etA :=
1

2πi

∫
+∂U

etλR(λ, A) dλ

for each t ≥ 0.

It follows from the general theory that etA is a bounded operator on X and
that its definition does not depend on the particular choice of U . Moreover, since
the functional calculus yields a homomorphism from an algebra of (analytic) func-
tions into the algebra L(X) (cf. [DS58, Thm. VII.3.10] or [TL80, Chap. V, Thm. 8.1]),

we obtain from e(t+s)λ = etλesλ for t, s ≥ 0 the functional equation (FE) for
(etA)t≥0. Similarly, the continuity of t 7→ etA ∈ L(X) follows from the continu-
ity of t 7→ et · for the topology of uniform convergence on compact subsets of C
(see [DS58, Lem. VII.3.13]). These arguments immediately yield (most of) the
following assertions.
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3.5 Proposition. For A ∈ L(X) define (etA)t≥0 by (3.1). Then the following
properties hold.

(i) (etA)t≥0 is a semigroup on X such that

R+ 3 t 7→ etA ∈ (L(X), ‖ · ‖)

is continuous.

(ii) The map R+ 3 t 7→ T (t) := etA ∈ (L(X), ‖ · ‖) is differentiable and satisfies
the differential equation

(DE)
d
dt

T (t) = AT (t) for t ≥ 0,

T (0) = I.

Conversely, every differentiable function T (·) : R+ → (L(X), ‖·‖) satisfying
(DE) is already of the form T (t) = etA for some A ∈ L(X).

Finally, we observe that A = Ṫ (0).

Proof. We only sketch the proof of (ii). The resolvent of A satisfies

λR(λ, A) = AR(λ, A) + I for all λ ∈ ρ(A).

Therefore, we obtain by using Cauchy’s integral theorem that

d

dt
etA =

d

dt

1

2πi

∫
+∂U

etλR(λ, A) dλ

=
1

2πi

∫
+∂U

λetλR(λ, A) dλ

=
1

2πi

∫
+∂U

etλAR(λ, A) dλ +
1

2πi

∫
+∂U

etλ dλ

= AetA

for all t ≥ 0. The uniqueness is again proved as for Proposition 1.2. �

The above properties of
(
etA
)
t≥0 for A ∈ L(X), proved using power

series as in Section 2 or via the functional calculus, will permit a simple
and satisfying answer to Problem 3.1. We will give it in terms of semigroups
using the following terminology.

3.6 Definition. A one-parameter semigroup
(
T (t)

)
t≥0 on a Banach space

X is called uniformly continuous (or norm continuous) if

R+ 3 t 7→ T (t) ∈ L(X)

is continuous with respect to the uniform operator topology on L(X).

With this terminology, we can restate Proposition 3.5.(i) by saying that(
etA
)
t≥0 is a uniformly continuous semigroup for any A ∈ L(X). The

converse is also true.
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3.7 Theorem. Every uniformly continuous semigroup
(
T (t)

)
t≥0 on a Ba-

nach space X is of the form

T (t) = etA, t ≥ 0,

for some bounded operator A ∈ L(X).

Proof. Since the following arguments were already used in the scalar and
matrix-valued cases (see Sections 1 and 2), we think that a brief outline of
the proof is sufficient.

For a uniformly continuous semigroup
(
T (t)

)
t≥0 the operators

V (t) :=
∫ t

0

T (s) ds, t ≥ 0,

are well-defined, and 1/tV (t) converges (in norm!) to T (0) = I as t ↓ 0.
Hence, for t > 0 sufficiently small, the operator V (t) becomes invertible.
Repeat now the computations from the proof of Theorem 1.4 in order to
obtain that t 7→ T (t) is differentiable and satisfies (DE). Then Proposi-
tion 3.5 yields the assertion. �

Before adding some comments and further properties of uniformly con-
tinuous semigroups we recall that in finite dimensions the only “noncontin-
uous” semigroups were quite pathological (see Exercises 1.7.(1) and (2)).
Therefore, the following question is natural and leads directly to the objects
forming the main objects of this book.

3.8 Problem. Do there exist “natural” one-parameter semigroups of linear
operators on Banach spaces that are not uniformly continuous?

3.9 Comments. (i) The operator A in Theorem 3.7 is determined
uniquely as the derivative of T (·) at zero, i.e., A = Ṫ (0). We call it the
generator of

(
T (t)

)
t≥0.

(ii) Since Definition 3.4 for etA works also for t ∈ R and even for t ∈ C,
it follows that each uniformly continuous semigroup can be extended to a
uniformly continuous group

(
etA
)
t∈R, or to

(
etA
)
t∈C, respectively.

(iii) From the differentiability of t 7→ T (t) it follows that for each x ∈ X
the orbit map R+ 3 t 7→ T (t)x ∈ X is differentiable as well. Therefore,
the map x(t) := T (t)x is the unique solution of the X-valued initial value
problem (or abstract Cauchy problem)

(ACP)

{
ẋ(t) = Ax(t) for t ≥ 0,
x(0) = x.
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3.10 Example. Only in few cases it is possible to find the explicit form
of etA for a given operator A. As one source of examples we refer to mul-
tiplication operators (see Sections 4.a and 4.b below). Here we study an
operator given by an infinite matrix. On X := `p, 1 ≤ p ≤ ∞, take the
(shift) operator given by the infinite matrix

A = (aij) with aij =
{ 1 if j = i+ 1, i, j ∈ N,

0 otherwise.

Then σ(A) = {λ ∈ C : |λ| ≤ 1} and R(λ,A) =
∑∞

k=0
Ak

λk+1 = (rij(λ))i,j∈N
for |λ| > 1, where

rij(λ) =
{(

1
λ

)j−i+1 if j − i ≥ 0,
0 if j − i < 0.

Computing the Cauchy integral from (3.1) (or the power series) one obtains

etA =
(
eij(t)

)
with eij(t) =

{
tj−i

(j−i)! if j − i ≥ 0,
0 if j − i < 0

for all t ∈ C.

Such an explicit representation formula can be used to deduce properties
of the semigroup

(
etA
)
t≥0 generated by some operator A. Since, however,

such formulas are seldom available, we pursue the idea that already suc-
cessfully led to the Liapunov Stability Theorem 2.10 in the matrix case, i.e.,
we try to characterize (stability) properties of

(
etA
)
t≥0 through (spectral)

properties of A. Before doing so, we define and discuss the basic stability
property in the Banach space setting.

3.11 Definition. A semigroup
(
T (t)

)
t≥0 on a Banach space X is called

uniformly exponentially stable if there exist constants ε > 0, M ≥ 1 such
that

‖T (t)‖ ≤Me−εt

for all t ≥ 0.

The following proposition contains a surprising characterization of sta-
bility by much weaker properties.

3.12 Proposition. For a uniformly continuous semigroup
(
T (t)

)
t≥0, the

following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is uniformly exponentially stable.

(b) limt→∞ ‖T (t)‖ = 0.
(c) There exists t0 > 0 such that ‖T (t0)‖ < 1.

(d) There exists t1 > 0 such that r
(
T (t1)

)
< 1, where r

(
T (t)

)
denotes

the spectral radius of T (t).

Proof. The implications (a) ⇒ (b) ⇒ (c) are trivial, while (c) implies (d),
since the norm dominates the spectral radius. Moreover, (d) ⇒ (c) holds,
since r

(
T (t1)

)
= limk→∞ ‖T (kt1)‖

1/k.
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It remains to show (c) ⇒ (a): To this end, we set q := ‖T (t0)‖ < 1 and
M := sup0≤s≤t0 ‖T (s)‖, which exists, since t 7→ ‖T (t)‖ is continuous. If we
decompose t = kt0 + s ∈ R+ with s ∈ [0, t0), we obtain

‖T (t)‖ ≤ ‖T (s)‖ · ‖T (kt0)‖ ≤M
∥∥T (t0)k

∥∥
≤Mqk = Mek log q ≤ M

q e−εt

with ε := − log q/t0 > 0. �

In order to arrive at a Liapunov stability theorem for uniformly contin-
uous semigroups analogous to Theorem 2.10 in the matrix case, we need
the following lemma. For the proof we refer to [DS58, Thm. VII.3.11].

3.13 Lemma. (Spectral Mapping Theorem). For every uniformly continu-
ous semigroup

(
etA
)
t≥0 and its generator A one has

(3.2) σ
(
etA
)

= etσ(A) :=
{
etλ : λ ∈ σ(A)

}
for all t ≥ 0.

With this spectral mapping theorem in hand, the characterization of
uniform exponential stability becomes easy. Due to property (d) in Propo-
sition 3.12, it suffices to show that σ

(
etA
)

is properly inside the unit circle,
which means, by Lemma 3.13, that σ(A) is contained in the open left half-
plane.

3.14 Theorem. For a uniformly continuous semigroup
(
T (t)

)
t≥0 with gen-

erator A, the statements (a)–(d) in Proposition 3.12 are equivalent to

(e) Reλ < 0 for all λ ∈ σ(A).

With this result we have achieved a theory for uniformly continuous
semigroups that is completely parallel to the one for matrix semigroups. In
particular, assuming uniform continuity, Cauchy’s problem allows a precise
answer. However, we will see in the subsequent sections that many new
phenomena appear in the infinite-dimensional setting.

Before starting this new discussion, we want to add some comments on
(semi) groups on Hilbert spaces. This may serve as a useful exercise for
the beginner, but also reflects the historical process. In fact, it was in this
context, and with applications to quantum mechanics in mind, that Stone
and von Neumann (see [Sto29], [Sto30], [Sto32b], [Neu32a], [Neu32b]) gave
the first precise definition of a one-parameter group of linear operators on
infinite-dimensional spaces.
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3.15 Semigroups on Hilbert Spaces. Let H be a Hilbert space and for
T ∈ L(H) denote by T ∗ its Hilbert space adjoint, i.e., the unique opera-
tor satisfying (Tx | y) = (x |T ∗y) for all x, y ∈ H. Now take a uniformly
continuous group

(
T (t)

)
t∈R on H and denote its generator by A, i.e.,

T (t) = etA for all t ∈ R.

Since T 7→ T ∗ is continuous on L(H), it follows that the adjoint group(
T (t)∗

)
t∈R is again uniformly continuous and that

T (t)∗ = etA∗ for all t ∈ R.

The groups for which all operators T (t) are unitary, i.e., satisfy T (t)−1 =
T (t)∗ for all t ∈ R, are particularly important and can be characterized as
follows.

Proposition. The group
(
etA
)
t∈R is unitary if and only if A is skew-

adjoint, i.e., A∗ = −A.

Proof. By definition, an operator etA is unitary if

etA∗ =
(
etA
)∗ =

(
etA
)−1 = e−tA = et(−A).

Since a (semi) group always determines uniquely its generator (see Com-
ment 3.9.(i)), we obtain A∗ = −A. On the other hand, if A is skew-adjoint,
the two groups (

etA∗
)
t∈R and

(
e−tA

)
t∈R

coincide. This implies

(etA)−1 = e−tA = etA∗ = (etA)∗ for all t ∈ R;

hence
(
etA
)
t∈R is unitary. �

It is one of the key ideas of quantum mechanics to use such unitary groups on
a Hilbert space H to “implement” new groups on the operator algebra L(H) (see
[BR79, Sec. 3.2]). We briefly indicate this construction, but will need concepts
from the theory of Banach algebras.

3.16 Semigroups on Operator Algebras L(H). We start from a unitary
group (etA)t∈R generated by a skew-adjoint operator A ∈ L(H). Then each etA

defines an implemented operator U(t) acting on the operator algebra L(H).

Definition. The implemented operator U(t) : L(H) → L(H) is defined by

(3.3) U(t)T := etA · T · etA∗

for each T ∈ L(H).
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It is now simple to check that

• each U(t) is a ∗-automorphism on the Banach∗-algebra L(H),

• (U(t))t∈R is a one-parameter operator group on L(H), and

• this group is uniformly continuous.

By Theorem 3.7, there exists an operator G : L(H) → L(H) such that

U(t) = etG for all t ∈ R.

On the other hand, differentiation of the map

t 7→ etA · T · etA∗

at t = 0 shows that
G(T ) = A · T − T ·A

for each T ∈ L(H). We state this information in the following proposition.

Proposition. The uniformly continuous group (U(t))t∈R of ∗-automorphisms on

L(H) implemented by the unitary group (etA)t∈R has generator G given by

(3.4) G(T ) = A · T − T ·A for all T ∈ L(H).

It is now a pleasant surprise that each uniformly continuous group of ∗-auto-
morphisms on L(H) is of this form, i.e., it is implemented by a unitary group on
H yielding the generator as in (3.4).

To show this nontrivial result, we first characterize uniformly continuous groups
consisting of ∗-automorphisms by an algebraic property of their generators. We
formulate this result in the context of Banach∗-algebras (see, e.g., [BD73, Chap. I, §12, Def. 8]).

Lemma 1. Let (etD)t∈R be a uniformly continuous group on a Banach∗-algebra
A with unit e ∈ A. The following assertions are equivalent.

(a) (etD)t∈R is a group of ∗-automorphisms.

(b) D is a ∗-derivation, i.e.,

(3.5) D(ab∗) = (Da)b∗ + a(Db)∗ for all a, b ∈ A.

Proof. (a) ⇒ (b). For a, b ∈ A we consider the differentiable function

t 7→ ξa,b(t) := etD(ab∗).

Since each etD is a ∗-automorphism, we obtain

ξa,b(t) = (etDa) · (etDb)∗;

hence its derivative at t = 0 is

D(ab∗) = ξ̇a,b(0) = (Da)b∗ + a(Db)∗,

and D is a ∗-derivation.
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(b) ⇒ (a). Again for a, b ∈ A and 0 ≤ s ≤ t, we define

s 7→ ηa,b(s) := e(t−s)D
(
(esDa)(esDb)∗

)
.

This function is differentiable, and since D is a ∗-derivation, its derivative satisfies

η̇a,b(s) = 0 for all 0 ≤ s ≤ t.

This implies

etD(ab∗) = ηa,b(0) = ηa,b(t) = (etDa)(etDb)∗,

i.e., etD is a ∗-homomorphism. An analogous argument on the interval [−t, 0]

shows the same property for the inverse operator e−tD; hence (a) holds. �

This lemma is remarkable not only for its assertions. In fact, the idea in the
proof of the implication (b) ⇒ (a) will be used many times in order to obtain
properties of the (semi) group from properties of its derivative at zero. Here
it allows us to reduce the study of groups of ∗-automorphisms to the study of
∗-derivations.

On the particular Banach∗-algebra L(H), things are particularly nice. First, we
observe that each skew-adjoint element A ∈ L(H) “implements” a ∗-derivation
by

D(T ) := AT − TA, T ∈ L(H).

This can be checked directly or follows from the proposition and Lemma 1. We
now show that also the converse is true, i.e., each ∗-derivation is of this form.

Lemma 2. Let D be a bounded ∗-derivation on A = L(H). Then there exists a
skew-adjoint operator A ∈ L(H) such that

D(T ) = AT − TA for all T ∈ L(H).

Proof. For each pair of elements x, y ∈ H we define the rank-one operator x⊗y
by

z 7→ x⊗ y(z) := (x | z)y.

Take now some fixed z ∈ H, ‖z‖ = 1, and define A ∈ L(H) by

Ay := D(z ⊗ y)(z) for all y ∈ H.

For T ∈ L(H) we obtain

(AT − TA)(y) = D(z ⊗ Ty)(z)− T
(
D(z ⊗ y)(z)

)
= D

(
T (z ⊗ y)

)
(z)−

(
T ·D(z ⊗ y)

)
(z)

=
(
DT · (z ⊗ y)

)
(z) +

(
T ·D(z ⊗ y)

)
(z)−

(
T ·D(z ⊗ y)

)
(z)

= DT (y) for all y ∈ H.

In the final step we show that the operator A ∈ L(H) for which

D(T ) = AT − TA for all T ∈ H

can be chosen as a skew-adjoint operator. In fact, since D is a ∗-derivation, we
have

AT ∗ − T ∗A = D(T ∗) = D(T )∗ = −A∗T ∗ + T ∗A∗,
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and hence
(A + A∗)T ∗ − T ∗(A + A∗) = 0

for all T ∈ L(H). Therefore,

Ã := A− A∗ + A

2
=

A−A∗

2
is a skew-adjoint operator still satisfying

ÃT − TÃ = AT − TA for all T ∈ H.
�

If we now start from a uniformly continuous group of ∗-automorphisms on
L(H), we know from Lemma 1 that its generator G is a ∗-derivation and hence,
by Lemma 2, is “implemented” by some skew-adjoint operator A ∈ L(H). On the
other hand, this operator A generates a unitary group (etA)t∈R that implements
an automorphism group whose generator, by the proposition, coincides with G.
Therefore, the original and the implemented automorphism groups coincide, and
we can state the final result.

Theorem. Let H be a Hilbert space and take (U(t))t∈R to be a uniformly con-
tinuous group on L(H). Then the following properties are equivalent.

(a) (U(t))t∈R is a group of ∗-automorphisms on the Banach∗-algebra L(H).

(b) There exists a skew-adjoint operator A ∈ L(H) and a unitary group (etA)t∈R
on H such that

U(t)T = etA · T · etA∗ for all T ∈ L(H).

3.17 Exercises. (1) On the Banach space X := C0(R) and for a fixed constant
α > 0, we define an operator Aα by the difference quotients

Aαf(s) := 1/α

(
f(s + α)− f(s)

)
, f ∈ X, s ∈ R.

Show that Aα ∈ L(X) with ‖Aα‖ = 2/α, and hence one has the estimate∥∥etAα
∥∥ ≤ e

2t/α for all t ≥ 0.

However, etAα can be computed explicitly as

and hence it satisfies
etAαf(s) = e

−t/α

∞∑
k=0

( t/α)k

k!
f(s + kα), f ∈ X, s ∈ R,∥∥etAα

∥∥ = 1 for all t ≥ 0.

What happens as α ↓ 0? (Hint: Use the results of Section III.4.)

(2) Which operators T ∈ L(X), X a Banach space, can be embedded into a
uniformly continuous semigroup, i.e., can we find A ∈ L(X) such that T = eA?
(Hint: Find (sufficient) conditions on T such that A := log T can be defined in
analogy to Definition 3.4.) Show that such operators T are infinitely divisible,
i.e., for each n ∈ N there exists S ∈ L(X) such that Sn = T .

(3) Show that for A, B ∈ L(X), X a Banach space, the following assertions are
equivalent.

(a) AB = BA.

(b) et(A+B) = etA · etB for all t ∈ R.

(Hint: To show that (a) implies (b) proceed as in the proof of Lemma 2.6. For the
converse implication, compute the second derivative of the functions appearing
in (b).)
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(4) As in Exercise 2.12.(5), we call a uniformly continuous semigroup (etA)t≥0

hyperbolic if there exist constants ε > 0, M ≥ 1 and a direct decomposition
X = Xs ⊕ Xu into A-invariant, closed subspaces Xs and Xu such that for all
t ≥ 0

and

∥∥etAx
∥∥ ≤ Me−εt‖x‖ for all x ∈ Xs, t ≥ 0,∥∥etAy
∥∥ ≥ 1

M
eεt‖y‖ for all y ∈ Xu, t ≥ 0.

In a first step, observe that the restrictions of (etA)t≥0 to Xs and of (e−tA)t≥0

to Xu are uniformly exponentially stable. Then use the spectral mapping theo-
rem (Lemma 3.13) and Theorem 3.14 to prove the equivalence of the following
assertions.

(a) (etA)t≥0 is hyperbolic.

(b) σ(etA) ∩ {λ ∈ C : |λ| = 1} = ∅ for one/all t > 0.

(c) σ(A) ∩ iR = ∅.
(5) The reader familiar with Banach algebras should reformulate Definition 3.6
and Theorem 3.7 by replacing the operator algebra L(X) by an arbitrary Banach
algebra.

4. More Semigroups

In order to convince the reader that new phenomena appear for semigroups
on infinite-dimensional Banach spaces, we first discuss several classes of
one-parameter semigroups on concrete spaces. These semigroups will not
be uniformly continuous and hence unlike those in Section 3, not of the form(
etA
)
t≥0 for some bounded operator A. On the other hand, they are not

“pathological” in the sense of being completely unrelated to any analytic
structure as, e.g., the semigroups mentioned in Comment 1.5.(iii) or in
Exercises 1.7.(1) and (2). In addition, these semigroups will accompany us
through the further development of the theory and provide a rich source
of illuminating examples and counterexamples. The reader eager to pursue
the general theory is recommended to skip this section and return to these
examples only when they are necessary or useful.

a. Multiplication Semigroups on C0(Ω)

Multiplication operators can be considered as an infinite-dimensional generaliza-
tion of diagonal matrices. They are extremely simple to construct, and most of
their properties are evident. Nevertheless, their value should not be underesti-
mated. They appear, for example, naturally in the context of Fourier analysis or
when one applies the spectral theorem for self-adjoint operators on Hilbert spaces
(see [Con85, Chap. 10, Thm. 4.19], [Hal63], or [Wei80, Chap. 7, Thm. 7.33]). We
therefore strongly recommend that any first attempt to illustrate a result or
disprove a conjecture on semigroups should be made using multiplication semi-
groups.
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We start by considering the Banach space (with sup-norm)

C0(Ω) :=

{
f ∈ C(Ω) :

for all ε > 0 there exists a compact Kε ⊂ Ω

such that |f(s)| < ε for all s ∈ Ω \Kε

}
of all continuous, complex-valued functions on some locally compact space Ω that
vanish at infinity. As a typical example the reader might always take Ω to be a
bounded or unbounded interval in R. To any continuous function q : Ω → C we
now associate a linear operator Mq defined on its “maximal domain” D(Mq) in
C0(Ω).

4.1 Definition. The multiplication operator Mq induced on C0(Ω) by some con-
tinuous function q : Ω → C is defined by

Mqf := q · f for all f in the domain

D(Mq) :=
{
f ∈ C0(Ω) : q · f ∈ C0(Ω)

}
.

The main feature of these multiplication operators is that most operator-
theoretic properties of Mq can be characterized by analogous properties of the
function q. In the following proposition we give some examples for this correspon-
dence.

4.2 Proposition. Let Mq with domain D(Mq) be the multiplication operator
induced on C0(Ω) by some continuous function q. Then the following assertions
hold.

(i) The operator (Mq, D(Mq)) is closed and densely defined.

(ii) The operator Mq is bounded (with D(Mq) = C0(Ω)) if and only if the
function q is bounded. In that case, one has

‖Mq‖ = ‖q‖ := sup
s∈Ω

|q(s)|.

(iii) The operator Mq has a bounded inverse if and only if the function q has a

bounded inverse 1/q, i.e., 0 /∈ q(Ω). In that case, one has

M−1
q = M1/q

.

(iv) The spectrum of Mq is the closed range of q, i.e.,

σ(Mq) = q(Ω).

Proof. (i) The domain D(Mq) always contains the space

Cc(Ω) :=
{
f ∈ C(Ω) : supp f is compact

}
of all continuous functions having compact support

supp f := {s ∈ Ω : f(s) 6= 0}.

In order to show that these functions form a dense subspace, we first observe that
the one-point compactification of Ω is a normal topological space (cf. [Dug66, Chap. XI, Thm. 8.4 and Thm. 1.2]
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or [Kel75, Chap. 5, Thm. 21 and Thm. 10]). Hence, by Urysohn’s lemma (cf. [Dug66, Chap. VII, Thm. 4.1]
or [Kel75, Chap. 4, Lem. 4]), for every compact subset K ⊆ Ω we can find a func-
tion hK ∈ C(Ω) still having compact support satisfying7

0 ≤ hK ≤ 1 and hK(s) = 1 for all s ∈ K.

Then, for each f ∈ C0(Ω), the function f · hK has compact support, and

‖f − f · hK‖ = sup
s∈Ω\K

∣∣f(s)
(
1− hK(s)

)∣∣
≤ 2 sup

s∈Ω\K

|f(s)|.

This implies that the continuous functions with compact support are dense in
C0(Ω); hence Mq is densely defined.

To show the closedness of Mq, we take a sequence (fn)n∈N ⊂ D(Mq) converging
to f ∈ C0(Ω) such that limn→∞ qfn =: g ∈ C0(Ω) exists. Clearly, this implies
g = qf and hence f ∈ D(Mq) and Mqf = g.

(ii) If q is bounded, we have

‖Mqf‖ = sup
s∈Ω

|q(s)f(s)| ≤ ‖q‖ · ‖f‖

for any f ∈ C0(Ω); hence Mq is bounded with ‖Mq‖ ≤ ‖q‖. On the other hand,
if Mq is bounded, for every s ∈ Ω we choose, again using Urysohn’s lemma, a
continuous function fs with compact support satisfying ‖fs‖ = 1 = fs(s). This
implies

‖Mq‖ ≥ ‖Mqfs‖ ≥ |q(s)fs(s)| = |q(s)| for all s ∈ Ω;

hence q is bounded with ‖Mq‖ ≥ ‖q‖.
(iii) If 0 /∈ q(Ω), then 1/q is a bounded continuous function and M1/q

is the

bounded inverse of Mq. Conversely, assume Mq to have a bounded inverse M−1
q .

Then we obtain

‖f‖ ≤ ‖M−1
q ‖ · ‖Mqf‖ for all f ∈ D(Mq),

whence

(4.1) δ :=
1

‖M−1
q ‖

≤ sup
s∈Ω

|q(s)f(s)| for all f ∈ D(Mq), ‖f‖ = 1.

Now assume infs∈Ω |q(s)| < δ/2. Then there exists an open set O ⊂ Ω such that
|q(s)| < δ/2 for all s ∈ O. On the other hand, by Urysohn’s lemma we find a
function f0 ∈ C0(Ω) such that ‖f0‖ = 1 and f0(s) = 0 for all s ∈ Ω \ O. This
implies sups∈Ω |q(s)f0(s)| ≤ δ/2, contradicting (4.1). Hence 0 < δ/2 ≤ |q(s)| for
all s ∈ Ω, i.e., M1/q

is bounded, and one easily verifies that it yields the inverse

of the operator Mq.
(iv) By definition, one has λ ∈ σ(Mq) if and only if λ − Mq = Mλ−q is not

invertible. Thus (iii) applied to the function λ− q yields the assertion. �

7 Here 1 denotes the constant function with 1 (s) = 1 for all s ∈ Ω.
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To any continuous function q : Ω → C we now associate the exponential
function

etq : s 7→ etq(s) for s ∈ Ω, t ≥ 0.

It is then immediate that the corresponding multiplication operators

Tq(t)f := etqf, f ∈ C0(Ω),

formally satisfy the semigroup law (FE) from Problem 3.1. So, in order to obtain
a one-parameter semigroup on C0(Ω), we have only to make sure that these multi-
plication operators Tq(t) are bounded operators on C0(Ω). Using Proposition 4.2.
(ii), we see that this is the case if and only if

sup
s∈Ω

|etq(s)| = sup
s∈Ω

et Re q(s)

= et sups∈Ω Re q(s) < ∞.

This observation leads to the following definition.

4.3 Definition. Let q : Ω → C be a continuous function such that

sup
s∈Ω

Re q(s) < ∞.

Then the semigroup (Tq(t))t≥0 defined by

Tq(t)f := etqf

for t ≥ 0 and f ∈ C0(Ω) is called the multiplication semigroup generated by the
multiplication operator Mq (or, the function q) on C0(Ω).

By Proposition 3.5.(i) and Theorem 3.7 the semigroup (Tq(t))t≥0 is uniformly
continuous if and only if it is of the form (etA)t≥0 for some bounded operator A.
As predicted, this can already be read off from the function q.

4.4 Proposition. The multiplication semigroup (Tq(t))t≥0 generated by q : Ω →
C is uniformly continuous if and only if q is bounded.

Proof. If q and hence Mq are bounded, it is easy to see that Tq(t) coincides with
the exponential etMq ; hence is uniformly continuous by Proposition 3.5.(i).

Now let q be unbounded and choose (sn)n∈N ⊂ Ω such that |q(sn)| → ∞ for
n →∞. Then we take tn := 1/|q(sn)|→ 0. Since ez 6= 1 for all |z| = 1, there exists
δ > 0 such that ∣∣1− etnq(sn)

∣∣ ≥ δ

for all n ∈ N. With functions fn ∈ C0(Ω) satisfying ‖fn‖ = 1 = fn(sn), we finally
obtain

‖Tq(0)− Tq(tn)‖ ≥
∥∥fn − etnqfn

∥∥
≥
∣∣1− etnq(sn)

∣∣ ≥ δ > 0

for all n ∈ N, i.e., (Tq(t))t≥0 is not uniformly continuous. �
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This means that for every unbounded continuous function q : Ω → C satisfying

sup
s∈Ω

Re q(s) < ∞,

we obtain a one-parameter semigroup that is not uniformly continuous, hence to
which Theorem 3.7 does not apply. In order to prepare for later developments,
we now show that these multiplication semigroups, while not being uniformly
continuous in general, still enjoy a nice continuity property.

4.5 Proposition. Let (Tq(t))t≥0 be the multiplication semigroup generated by
a continuous function q : Ω → C satisfying

w := sup
s∈Ω

Re q(s) < ∞.

Then the mappings

R+ 3 t 7→ Tq(t)f = etqf ∈ C0(Ω)

are continuous for every f ∈ C0(Ω).

Proof. Let f ∈ C0(Ω) with ‖f‖ ≤ 1. For ε > 0 take a compact subset K of Ω
such that |f(s)| ≤ ε/(e|w|+1) for all s ∈ Ω \K. Since the exponential function is
uniformly continuous on compact sets, there exists t0 ∈ (0, 1] such that∣∣etq(s) − 1

∣∣ ≤ ε

for all s ∈ K and 0 ≤ t ≤ t0. Hence, we obtain∥∥etqf − f
∥∥ ≤ sup

s∈K

(∣∣etq(s) − 1
∣∣ · |f(s)|

)
+
(
e|w| + 1

)
· sup
s∈Ω\K

|f(s)|

≤ 2ε

for all 0 ≤ t ≤ t0. �

Finally, we show that each semigroup consisting of multiplication operators on
C0(Ω) and satisfying the continuity property of Proposition 4.5 is a multiplication
semigroup in the sense of Definition 4.3.

4.6 Proposition. For t ≥ 0, let mt : Ω → C be bounded continuous functions
and assume that

(i) the corresponding multiplication operators

T (t)f := mt · f

form a semigroup (T (t))t≥0 of bounded operators on C0(Ω), and

(ii) the mappings
R+ 3 t 7→ T (t)f ∈ C0(Ω)

are continuous for every f ∈ C0(Ω).

Then there exists a continuous function q : Ω → C satisfying

sup
s∈Ω

Re q(s) < ∞

such that mt(s) = etq(s) for every s ∈ Ω, t ≥ 0.
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Proof. For fixed s ∈ Ω choose f ∈ C0(Ω) such that f ≡ 1 in some neighborhood
of s. Then, by assumption (ii),

R+ 3 t 7→
(
T (t)f

)
(s) = mt(s) ∈ C

is a continuous function satisfying the functional equation (FE) from Problem 1.1.

Therefore, by Theorem 1.4, there exists a unique q(s) ∈ C such that mt(s) = etq(s)

for all t ≥ 0. Since the map s 7→ mt(s) in a neighborhood of s coincides with

s 7→ (T (t)f)(s) ∈ C0(Ω), the functions Ω 3 s 7→ etq(s) ∈ C are continuous for all
t ≥ 0. In order to show that q is continuous, we first observe that q is bounded
on compact subsets of Ω. In fact, if K ⊂ Ω is compact, then (T (t))t≥0 induces a
uniformly continuous semigroup (TK(t))t≥0 on C(K) given by(

TK(t)f
)
(s) = etq(s)f(s), f ∈ C(K), s ∈ K,

and the same arguments as in the second part of the proof of Proposition 4.4
show that q is bounded on K. This implies that the convergence in

lim
t↓0

etq(s) − 1

t
= q(s)

is uniform on compact sets in Ω. Since every point in Ω possesses a compact
neighborhood, we conclude that q, being the uniform limit (on compact subsets)

of the continuous functions s 7→ (etq(s)−1)/t, is continuous as well.
Finally, the multiplication operators T (t)f = etq ·f are supposed to be bounded;

hence the real part of q must be bounded from above. �

We conclude this section with some simple observations and concrete examples.

4.7 Examples. (i) On a compact space, every multiplication operator given
by a continuous function is already bounded, and hence every multiplication
semigroup is uniformly continuous.

(ii) We can choose Ω and q in such a way that the closed range of q is a given
closed subset of C. When q generates a multiplication semigroup (Tq(t))t≥0, this
has obvious consequences for the operators Tq(t): Choose any closed subset Ω of
C and define

q(s) := s

for s ∈ Ω. Then σ(Mq) = Ω and σ (Tq(t)) = etΩ := {ets : s ∈ Ω} for all t ≥ 0. In
particular, if Ω ⊆ {λ ∈ C : Re λ ≤ 0} (or Ω ⊆ iR), we conclude that (Tq(t))t≥0

consists of contractions (or isometries, respectively) on C0(Ω).

(iii) For Ω := N each complex sequence (qn)n∈N ⊂ C defines a multiplication
operator

(xn)n∈N 7→ (qn · xn)n∈N
on the space C0(Ω) = c0. For qn := in we obtain a group of isometries

T (t)(xn)n∈N = (eintxn)n∈N, t ∈ R,

and for qn := −n2 we obtain a semigroup of contractions

T (t)(xn)n∈N = (e−n2txn)n∈N, t ≥ 0.

(iv) This simple example serves just to explain the first sentence in this subsec-
tion. Take Ω = {1, 2, . . . , m} to be a finite set. Then C0(Ω) is simply Cm, and
the multiplication operator (xn) 7→ (qn · xn) corresponds to the diagonal matrix
A = diag(q1, . . . , qm). The corresponding multiplication semigroup is given by
etA = diag(etq1 , . . . , etqm) as in Example 2.5.(i).
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4.8 Exercises. (1) For a sequence q = (qn)n∈N ⊂ C define the corresponding
multiplication operator Mq on X := c0 or X := `p, 1 ≤ p ≤ ∞. Show that its

point spectrum is given by Pσ(Mq) = {qn : n ∈ N} and that σ(Mq) = Pσ(Mq).

(2) Many properties of the multiplication semigroup (Tq(t))t≥0 generated by a
multiplication operator Mq on X := C0(Ω) can be characterized by properties of
the function q : Ω → C.

(i) (Tq(t))t≥0 is bounded (contractive) if and only if

Re q(s) ≤ 0 for all s ∈ Ω.

(ii) (Tq(t))t≥0 is uniformly exponentially stable (see Definition 3.11) if and only
if

Re q(s) ≤ −ε for all s ∈ Ω and some ε > 0.

(iii) (Tq(t))t≥0 is hyperbolic (see Exercise 2.12.(5)) if and only if

|Re q(s)| ≥ ε for all s ∈ Ω and some ε > 0.

(iv) (Tq(t))t≥0 is periodic with Tq(2π) = I (see Paragraph 4.18 and Defini-
tion IV.2.23) if and only if

q(Ω) ⊆ iZ.

(3) Take X := C0(R) and q(s) := −1
1+|s| + is, s ∈ R. Show that the corresponding

multiplication semigroup (Tq(t))t≥0 is not uniformly exponentially stable but
satisfies

lim
t→∞

‖Tq(t)f‖ = 0

for each f ∈ X.

b. Multiplication Semigroups on Lp(Ω, µ)
As mentioned at the beginning of the previous subsection, multiplication oper-
ators arise in a natural way in various instances. For example, if one applies
the Fourier transform to a linear differential operator on L2(Rn), this operator
becomes a multiplication operator on L2(Rn) (see Lemma VI.5.4.(ii)). More-
over, the classical “spectral theorem” asserts that each self-adjoint or, more gen-
erally, normal operator on a Hilbert space is (isomorphic to) a multiplication
operator on some L2-space. This view point is emphasized in Halmos’s arti-
cle [Hal63] and motivates our systematic analysis of multiplication operators.
We therefore formulate this version of the spectral theorem explicitly (see also
[Con85, Chap. 10, Thm. 4.19] or [Wei80, Chap. 7, Thm. 7.33]).

4.9 Spectral Theorem. If A is a normal operator on a separable Hilbert space
H, then there is a σ-finite measure space (Σ, Ω, µ) and a measurable function
q : Ω → C such that A is unitarily equivalent to the multiplication operator Mq

on L2(Ω, µ), i.e., there exists a unitary operator U ∈ L(H, L2(Ω, µ)) such that
the diagram

H ⊇ D(A) A - H

U

?

U

?

6
U∗=U−1

L2(Ω, µ)⊇D(Mq)
Mq - L2(Ω, µ)

commutes.
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In order to define what we mean by a multiplication operator, we take some
σ-finite measure space (Ω, Σ, µ); see, e.g., [Hal74, Chap. II] or [Rao87, Chap. 2].
Then, for fixed 1 ≤ p < ∞, we consider the Banach space

X := Lp(Ω, µ)

of all (equivalence classes of) p-integrable complex functions on Ω endowed with
the p-norm

‖f‖p :=

(∫
Ω

|f(s)|p dµ(s)

)1/p

.

Next, for a measurable function

q : Ω → C,

we call the set

qess(Ω) :=
{

λ ∈ C : µ
(
{s ∈ Ω : |q(s)− λ| < ε}

)
6= 0 for all ε > 0

}
,

its essential range and define the associated multiplication operator Mq by

(4.2)
Mqf := q · f for all f in the domain

D(Mq) :=
{
f ∈ Lp(Ω, µ) : q · f ∈ Lp(Ω, µ)

}
.

In analogy to Proposition 4.2, we now have the following result.

4.10 Proposition. Let Mq with domain D(Mq) be the multiplication operator
induced on Lp(Ω, µ) by some measurable function q. Then the following assertions
hold.

(i) The operator (Mq, D(Mq)) is closed and densely defined.

(ii) The operator Mq is bounded (with D(Mq) = Lp(Ω, µ)) if and only if the
function q is essentially bounded, i.e., the set qess(Ω) is bounded in C. In
this case, one has

‖Mq‖ = ‖q‖∞ := sup
{
|λ| : λ ∈ qess(Ω)

}
.

(iii) The operator Mq has a bounded inverse if and only if 0 /∈ qess(Ω). In that
case, one has

M−1
q = Mr

for r : Ω → C defined by

r(s) :=
{

1/q(s) if q(s) 6= 0,
0 if q(s) = 0.

(iv) The spectrum of Mq is the essential range of q, i.e.,

σ(Mq) = qess(Ω).

The proof uses measure theory and is left as Exercise 4.13.(3).
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Also, the other results of Section 4.a, after the appropriate changes, remain
valid in the Lp-case. For the convenience of the reader and due to their importance
for the applications, we state them explicitly. The proofs, however, are left as
Exercises 4.13.(4) and (5).

4.11 Proposition. Let (Tq(t))t≥0 be the multiplication semigroup generated by
a measurable function q : Ω → C satisfying

ess sup
s∈Ω

Re q(s) := sup
λ∈qess(Ω)

Re λ < ∞,

i.e.,
Tq(t)f := etqf for every f ∈ Lp(Ω, µ), t ≥ 0.

Then the mappings

R+ 3 t 7→ Tq(t)f = etqf ∈ Lp(Ω, µ)

are continuous for every f ∈ Lp(Ω, µ). Moreover, the semigroup (Tq(t))t≥0 is
uniformly continuous if and only if q is essentially bounded.

4.12 Proposition. For t ≥ 0, let mt : Ω → C be bounded measurable functions
and assume that

(i) the corresponding multiplication operators

T (t)f := mt · f

form a semigroup (T (t))t≥0 of bounded operators on Lp(Ω, µ), and

(ii) the mappings
R+ 3 t 7→ T (t)f ∈ Lp(Ω, µ)

are continuous for every f ∈ Lp(Ω, µ).

Then there exists a measurable function q : Ω → C satisfying

ess sup
s∈Ω

Re q(s) := sup
λ∈qess(Ω)

Re λ < ∞

such that mt = etq almost everywhere for every t ≥ 0.

4.13 Exercises. (1) On the spaces X := c0 and X := `p, 1 ≤ p < ∞, there exist
multiplication semigroups (Tq(t))t≥0 such that each Tq(t), t > 0, is a compact
operator. Construct concrete examples. Observe that this is not possible if

(i) the function spaces are X := C0(R) or X := Lp(R), or if

(ii) the function q is bounded.

(2) For multiplication semigroups (Tq(t))t≥0 generated by a multiplication op-
erator Mq on a space X := C0(Ω) or X := Lp(Ω, µ), the weak spectral mapping
theorem

(WSMT) σ
(
Tq(t)

)
= etσ(Mq) for t ≥ 0

holds (see Proposition IV.3.13). Find counterexamples to the Spectral Mapping
Theorem 3.13.



Section 4. More Semigroups 33

(3) Prove Proposition 4.10. (Hints: To prove that Mq is closed, use the fact that
every convergent sequence in Lp(Ω, µ) has a µ-almost everywhere convergent
subsequence; see, e.g., [Rud86, Chap. 3, Thm. 3.12]. In order to show that Mq is
densely defined, combine the fact that Ω is σ-finite with Lebesgue’s convergence
theorem (cf. [Rud86, Chap. 1, 1.34]). For the “only if” part of (ii), assume q not
to be essentially bounded and choose suitable characteristic functions to conclude
that Mq is unbounded. In the “only if” part of (iii), show first that M−1

q is given
by a multiplication operator and then apply (ii).)

(4) Prove Proposition 4.11. (Hint: Use Lebesgue’s convergence theorem.)

(5) Prove Proposition 4.12.

(6) For every measurable function q : Ω → C we can define the multiplication
operator Mq on L∞(Ω, µ) as we did for Lp(Ω, µ), 1 ≤ p < ∞. Show that Mq is
densely defined if and only if q is essentially bounded.

(7) Let A := Mq be a multiplication operator on Lp(Ω, µ), 1 ≤ p < ∞. Show
that λ ∈ C is an eigenvalue of A if and only if µ({s ∈ Ω : q(s) = λ}) > 0.

(8) A bounded linear operator T : Lp(Ω, µ) → Lp(Ω, µ), 1 ≤ p ≤ ∞, is called
local if for every measurable subset S ⊂ Ω one has Tf = Tg a.e. on S if f = g
a.e. on S. Show that every local operator is a multiplication operator Mq for
some q ∈ L∞(Ω, µ). Extend this characterization to unbounded multiplication
operators.

c. Translation Semigroups
The other important class of examples is obtained by “translating,” to the left or
to the right, complex-valued functions defined on (subsets of) R. We first define
these “translation operators” and only then specify the appropriate spaces.

4.14 Definition. For a function f : R → C and t ≥ 0, we call(
Tl(t)f

)
(s) := f(s + t), s ∈ R,

the left translation (of f by t), while(
Tr(t)f

)
(s) := f(s− t), s ∈ R,

is the right translation (of f by t).

It is immediately clear that the operators Tl(t) (and Tr(t)) satisfy the semi-
group law (FE). We have only to choose appropriate function spaces to produce
one-parameter operator semigroups. For that purpose, we start with spaces of
continuous or integrable functions and the translation on all of R.

4.15 Translations on R. As Banach space X we take one of the spaces

• X∞ := L∞(R) of all bounded, measurable functions on R,

• Xb := Cb(R) of all bounded, continuous functions on R,

• Xub := Cub(R) of all bounded, uniformly continuous functions on R,

• X0 := C0(R) of all continuous functions on R vanishing at infinity,

• X2π := C2π(R) of all 2π-periodic, continuous functions on R,

all endowed with the sup-norm ‖ · ‖∞, or we take the spaces

• Xp := Lp(R), 1 ≤ p < ∞, of all p-integrable functions on R
endowed with the corresponding p-norm ‖ · ‖p.
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Then each left translation operator Tl(t) is an isometry on each of these spaces,
having as inverse the right translation operator Tr(t). This means that (Tl(t))t∈R
and (Tr(t))t∈R form one-parameter groups on X, called the (left or right) trans-
lation group.

For our purposes, the following continuity properties of these translation groups
on the various function spaces are fundamental.

Proposition. The translation group (Tl(t))t∈R is not uniformly continuous on
any of the above spaces, while

R 3 t 7→ Tl(t)f ∈ L∞(R)

is continuous for the sup-norm only for f ∈ Xub. Finally,

R 3 t 7→
(
Tl(t)f

)
(s) ∈ C

is continuous for each f ∈ Xb and s ∈ R.

The proof is left as Exercise 4.19.(4), while the translation group on Lp(R) is
discussed in Example 5.4.

We now modify the spaces on which translation takes place. As a first case, we
consider functions defined on R+ only.

4.16 Translations on R+. In analogy to Paragraph 4.15, let X denote one of
the spaces

• X∞ := L∞(R+) of all bounded, measurable functions on R+,

• Xb := Cb(R+) of all bounded, continuous functions on R+,

• Xub := Cub(R+) of all bounded, uniformly continuous functions on R+,

• X0 := C0(R+) of all continuous functions on R+ vanishing at infinity,

• Xp := Lp(R+), 1 ≤ p < ∞, of all p-integrable functions on R+,

and observe that the left translations Tl(t) are well-defined contractions on these
spaces, but now yield a semigroup only, called the left translation semigroup
(Tl(t))t≥0 on R+.

For the right translations Tr(t), however, the value (Tr(t)f)(s) = f(s − t) is
not defined if s− t < 0. To overcome this obstacle, we put(

Tr(t)f
)
(s) :=

{
f(s− t) for s− t ≥ 0,
f(0) for s− t < 0

for f ∈ X = Xb, Xub, X0, and(
Tr(t)f

)
(s) :=

{
f(s− t) for s− t ≥ 0,
0 for s− t < 0

for f ∈ Xp. In this way, we again obtain semigroups of contractions on X called
the right translation semigroups (Tr(t))t≥0 on R+. Clearly, the continuity prop-
erties stated in the proposition in 4.15 prevail. Moreover, it is not difficult to see
that on Xp, for 1 < p < ∞, the semigroups (Tl(t))t≥0 and (Tr(t))t≥0 are adjoint
to each other, i.e., Tl(t)

′ on X ′
p coincides with Tr(t) on Xp′ where 1/p + 1/p′ = 1.

Even on function spaces on finite intervals, we can define translation semi-
groups.
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4.17 Translations on finite intervals. If we take the Banach space C[a, b] and
look at the left translations, we have to specify the values (Tl(t)f)(s) for s+t > b.
Imitating the idea above, we put(

Tl(t)f
)
(s) :=

{
f(s + t) for s + t ≤ b,
f(b) for s + t > b.

We note that this choice is not the only one to extend the translations to a semi-
group on C[a, b] (see, e.g., Paragraph II.3.29). In any case, we still call (Tl(t))t≥0

a left translation semigroup on C[a, b]. By a similar definition, involving fixing
the value at the left endpoint, we obtain a right translation semigroup (Tr(t))t≥0

on the space C[a, b].
On the Banach spaces Lp[a, b], 1 ≤ p ≤ ∞, we can modify this definition by

taking (
Tl(t)f

)
(s) :=

{
f(s + t) for s + t ≤ b,
0 for s + t > b,

and again this yields a semigroup. However, now a completely new phenomenon
appears: This semigroup, i.e., this “exponential function,” vanishes for t > b− a.

Proposition. The left translation semigroup (Tl(t))t≥0 is nilpotent on Lp[a, b],
that is,

Tl(t) = 0

for all t ≥ b− a.

4.18 Rotations on the torus. Take Γ := {z ∈ C : |z| = 1} and X := C(Γ).
Then the operators T (t), t ∈ R, defined by(

T (t)f
)
(s) := f

(
eit · s

)
for f ∈ C(Γ) and s ∈ Γ

form the so-called rotation group. It enjoys the same continuity properties as the
translation group on Xub in Paragraph 4.16. This can be seen by identifying C(Γ)
with the Banach space C2π(R) ⊂ Xub of all 2π-periodic continuous functions on
R. After this identification, the above rotation group becomes the translation
group (Tl(t))t∈R on C2π(R) satisfying

T (2π) = I.

We will call such a group periodic (of period 2π); see also Definition IV.2.23.

Since the operators T (t) are isometries for the p-norm and since C(Γ) is dense
in Lp(Γ, µ), 1 ≤ p < ∞, and µ the Lebesgue measure on Γ, the above definition
can be extended to f ∈ Lp(Γ, µ), and we obtain a periodic rotation group on each
Lp-space for 1 ≤ p < ∞.

4.19 Exercises. (1) Show that the space Cub(R) of all bounded, uniformly
continuous functions on R is the maximal subspace X of Cb(R) such that the
orbits of the left translation group (Tl(t))t∈R, i.e., the mappings

R 3 t 7→ Tl(t)f ∈ Cb(R),

become continuous for each f ∈ X.
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(2) Show that in the context of Paragraphs 4.15 and 4.16 and on the corre-
sponding Lp-spaces, the right translation semigroups are the adjoints of the left
translation semigroups, i.e.,

Tl(t)
′ = Tr(t) for t ≥ 0.

(3) Construct more (left) translation semigroups on Lp[a, b] by defining (Tl(t)f)(s)
for s + t > b in an appropriate way. For example, take α ∈ C and put8(
Tl(t)f

)
(s) := αkf

(
s+t−k(b−a)

)
for s+t−a ∈ [k(b−a), (k+1)(b−a)], k ∈ N0.

This semigroup becomes nilpotent for α = 0, while it is periodic for α = 1. For
which α is this semigroup contractive?

(4) Prove the proposition in Paragraph 4.15.

(5) Define translation semigroups on the vector-valued function spaces C0(R, X)
or Lp(R, X) (see Appendix A and Appendix C.a) and show that continuity prop-
erties as in the scalar-valued case hold.

5. Strongly Continuous Semigroups

As we have seen by the previous examples, uniform continuity is too strong
a requirement for many natural semigroups defined on concrete function
spaces. Instead, “strong” continuity as in Proposition 4.5 and in the propo-
sition in 4.15 holds in (most of) these examples. We take this as a motiva-
tion for a systematic investigation of such semigroups on abstract Banach
spaces.

5.1 Definition. A family
(
T (t)

)
t≥0 of bounded linear operators on a Ba-

nach space X is called a strongly continuous (one-parameter) semigroup (or
C0-semigroup9) if it satisfies the functional equation (FE) and is strongly
continuous.

For the convenience of the reader, we repeat this definition in a more
explicit form. Hence,

(
T (t)

)
t≥0 is a strongly continuous semigroup if the

functional equation

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0,
T (0) = I

holds and the orbit maps

(SC) ξx : t 7→ ξx(t) := T (t)x

are continuous from R+ into X for every x ∈ X.

8 Here N0 := N ∪ {0}.
9 While we prefer the terminology “strongly continuous,” we point out that the symbol

C0 abbreviates “Cesàro summable of order 0.”
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The property (SC) can also be expressed by saying that the map

t 7→ T (t)

is continuous from R+ into the space Ls(X) of all bounded operators on
X endowed with the strong operator topology (see Appendix A, (A.3)).

Finally, if these properties hold for R instead of R+, we call
(
T (t)

)
t∈R a

strongly continuous (one-parameter) group (or C0-group) on X.
These strongly continuous (semi) groups are the main objects in this

book, and we are going to show how rich a theory and how many appli-
cations arise from the interplay of the functional equation (FE) and the
requirement of strong continuity (SC).

a. Basic Properties

Our first goal is to facilitate the verification of the strong continuity (SC)
required in Definition 5.1. This is possible thanks to the uniform bound-
edness principle, which implies the following frequently used equivalence.
(See also the more abstract version in Proposition A.3 and Exercise 5.9.
(1).)

5.2 Lemma. Let X be a Banach space and let F be a function from a
compact setK ⊂ R into L(X). Then the following assertions are equivalent.

(a) F is continuous for the strong operator topology, i.e., the mappings
K 3 t 7→ F (t)x ∈ X are continuous for every x ∈ X.

(b) F is uniformly bounded onK, and the mappingsK 3 t 7→ F (t)x ∈ X
are continuous for all x in some dense subset D of X.

(c) F is continuous for the topology of uniform convergence on compact
subsets of X, i.e., the map

K × C 3 (t, x) 7→ F (t)x ∈ X

is uniformly continuous for every compact set C in X.

Proof. The implication (c) ⇒ (a) is trivial, while (a) ⇒ (b) follows from
the uniform boundedness principle, since the mappings t 7→ F (t)x are con-
tinuous, hence bounded, on the compact set K.

To show (b) ⇒ (c), we assume ‖F (t)‖ ≤M for all t ∈ K and fix some ε >
0 and a compact set C in X. Then there exist finitely many x1, . . . , xm ∈ D
such that C ⊂

⋃m
i=1 (xi + ε/M U), where U denotes the unit ball of X. Now

choose δ > 0 such that ‖F (t)xi − F (s)xi‖ ≤ ε for all i = 1, . . . ,m, and for
all t, s ∈ K, such that |t− s| ≤ δ. For arbitrary x, y ∈ C and t, s ∈ K with
‖x− y‖ ≤ ε/M |t− s| ≤ δ, this yields

‖F (t)x− F (s)y‖ ≤ ‖F (t)(x− xj)‖+
∥∥(F (t)− F (s)

)
xj

∥∥
+ ‖F (s)(xj − x)‖+ ‖F (s)(x− y)‖ ≤ 4 ε,
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where we choose j ∈ {1, . . . ,m} such that ‖x − xj‖ ≤ ε/M. This estimate
proves that (t, x) 7→ F (t)x is uniformly continuous with respect to t ∈ K
and x ∈ C. �

As an easy consequence of this lemma, in combination with the functional
equation (FE), we obtain that the continuity of the orbit maps

ξx : t 7→ T (t)x

at each t ≥ 0 and for each x ∈ X is already implied by much weaker
properties.

5.3 Proposition. For a semigroup
(
T (t)

)
t≥0 on a Banach space X, the

following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is strongly continuous.

(b) limt↓0 T (t)x = x for all x ∈ X.

(c) There exist δ > 0, M ≥ 1, and a dense subset D ⊂ X such that

(i) ‖T (t)‖ ≤M for all t ∈ [0, δ],
(ii) limt↓0 T (t)x = x for all x ∈ D.

Proof. The implication (a) ⇒ (c.ii) is trivial. In order to prove that
(a) ⇒ (c.i), we assume, by contradiction, that there exists a sequence
(δn)n∈N ⊂ R+ converging to zero such that ‖T (δn)‖ → ∞ as n → ∞.
Then, by the uniform boundedness principle, there exists x ∈ X such that(
‖T (δn)x‖

)
n∈N is unbounded, contradicting the fact that T (·) is continuous

at t = 0.
In order to verify that (c) ⇒ (b), we put K := {tn : n ∈ N} ∪ {0} for an

arbitrary sequence (tn)n∈N ⊂ [0,∞) converging to t = 0. Then K ⊂ [0,∞)
is compact, T (·)|K is bounded, and T (·)|Kx is continuous for all x ∈ D.
Hence, we can apply Lemma 5.2.(b) to obtain

lim
n→∞

T (tn)x = x

for all x ∈ X. Since (tn)n∈N was chosen arbitrarily, this proves (b).
To show that (b) ⇒ (a), let t0 > 0 and let x ∈ X. Then

lim
h↓0

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0)‖ · lim
h↓0

‖T (h)x− x‖ = 0,

which proves right continuity. If h < 0, the estimate

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0 + h)‖ · ‖x− T (−h)x‖
implies left continuity whenever ‖T (t)‖ remains uniformly bounded for t ∈
[0, t0]. This, however, follows as above first for some small interval [0, δ]
by the uniform boundedness principle and then on each compact interval
using (FE). �

Since in many cases the uniform boundedness of the operators T (t) for
t ∈ [0, t0] is obvious, one obtains strong continuity by checking (right)
continuity of the orbit maps ξx at t = 0 for a dense set of “nice” elements
x ∈ X only.
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We demonstrate the advantage of this procedure for the translation semi-
group on Lp(R).

5.4 Example. The (left) translation group is strongly continuous on Lp(R)
for all 1 ≤ p <∞.

Proof. It is evident that each T (t) is a contraction, so
(
T (t)

)
t≥0 is uni-

formly bounded on R. Now take a continuous function f on R with compact
support and observe that it is uniformly continuous. Therefore,

lim
t↓0

‖T (t)f − f‖∞ = lim
t↓0

sup
s∈R

∣∣f(t+ s)− f(s)
∣∣ = 0,

and since the p-norm (for functions on bounded intervals) is weaker,

lim
t↓0

‖T (t)f − f‖p = 0.

Since the continuous functions with compact support are dense in Lp(R)
for all 1 ≤ p < ∞, the assertion now follows from the adaptation of
Proposition 5.3 to groups (see Exercise 5.9.(5)). �

We repeat that for a strongly continuous semigroup
(
T (t)

)
t≥0 the finite

orbits {
T (t)x : t ∈ [0, t0]

}
are continuous images of a compact interval, hence compact and there-
fore bounded for each x ∈ X. So by the uniform boundedness principle,
each strongly continuous semigroup is uniformly bounded on each compact
interval, a fact that implies exponential boundedness on R+.

5.5 Proposition. For every strongly continuous semigroup
(
T (t)

)
t≥0, there

exist constants w ∈ R and M ≥ 1 such that

(5.1) ‖T (t)‖ ≤Mewt

for all t ≥ 0.

Proof. Choose M ≥ 1 such that ‖T (s)‖ ≤M for all 0 ≤ s ≤ 1 and write
t ≥ 0 as t = s+ n for n ∈ N and 0 ≤ s < 1. Then

‖T (t)‖ ≤ ‖T (s)‖ · ‖T (1)‖n ≤Mn+1

= Men log M ≤Mewt

holds for w := logM and each t ≥ 0. �

The infimum of all exponents w for which an estimate of the form (5.1)
holds for a given strongly continuous semigroup will play an important role
in the sequel. We therefore reserve a name for it.
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5.6 Definition. For a strongly continuous semigroup T =
(
T (t)

)
t≥0, we

call

ω0 := ω0(T) := inf

{
w ∈ R :

there exists Mw ≥ 1 such that
‖T (t)‖ ≤Mwewt for all t ≥ 0

}

its growth bound (or type). Moreover, a semigroup is called bounded if we
can take w = 0 in (5.1), and contractive if w = 0 and M = 1 is possible.
Finally, the semigroup

(
T (t)

)
t≥0 is called isometric if ‖T (t)x‖ = ‖x‖ for

all t ≥ 0 and x ∈ X.

In the following examples, we show that
• ω0 = −∞ may occur,
• the infimum in (5.1) may not be attained, and
• constants M > 1 may be necessary.

5.7 Examples. (i) By Proposition 5.5, we always have ω0 < ∞, while
ω0 = −∞ holds for each nilpotent strongly continuous semigroup, e.g., the
translation semigroup on L1[0, 1] from Paragraph 4.17.
(ii) For the semigroup defined by the matrices

T (t) :=
(

1 t
0 1

)
on X := C2 one has ω0 = 0, but limt→∞ ‖T (t)‖ = ∞, i.e.,

(
T (t)

)
t≥0 is not

bounded.
(iii) Take X := L1(R) and define a translation semigroup “with jump” by

(
T (t)f

)
(s) :=

{
2f(s+ t) if s ∈ [−t, 0],
f(s+ t) otherwise.

Then
(
T (t)

)
t≥0 is a strongly continuous semigroup with ‖T (t)‖ = 2 for

each t > 0 (since
∥∥T (t)1 [0,t]

∥∥ = 2
∥∥

1 [0,t]

∥∥). Hence
(
T (t)

)
t≥0 is bounded,

but no matter how big we choose w in (5.1) it is not possible to take M = 1.

We close this subsection by showing that using the weak operator topology
instead of the strong operator topology in Definition 5.1 will not change our class
of semigroups.

This is a surprising result, and its proof needs more sophisticated tools from
functional analysis than we have used up to this point.

5.8 Theorem. A semigroup (T (t))t≥0 on a Banach space X is strongly contin-
uous if and only if it is weakly continuous, i.e., if the mappings

R+ 3 t 7→
〈
T (t)x, x′

〉
∈ C

are continuous for each x ∈ X, x′ ∈ X ′.
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Proof. We have only to show that weak implies strong continuity. As a first step,
we use the principle of uniform boundedness twice to conclude that on compact
intervals, (T (t))t≥0 is pointwise and then uniformly bounded. Therefore (use
Proposition 5.3.(c)), it suffices to show that

E :=
{

x ∈ X : lim
t↓0

‖T (t)x− x‖ = 0
}

is a (strongly) dense subspace of X.
To this end, we define for x ∈ X and r > 0 a linear form xr on X ′ by〈

xr, x
′〉 :=

1

r

∫ r

0

〈
T (s)x, x′

〉
ds for x′ ∈ X ′.

Then xr is bounded and hence xr ∈ X ′′. On the other hand, the set{
T (s)x : s ∈ [0, r]

}
is the continuous image of [0, r] in the space X endowed with the weak topology,
hence is weakly compact in X. Krěın’s theorem (see Proposition A.1.(ii)) implies
that its closed convex hull

co
{
T (s)x : s ∈ [0, r]

}
is still weakly compact in X. Since xr is a σ(X ′′, X ′)-limit of Riemann sums, it
follows that

xr ∈ co
{
T (s)x : s ∈ [0, r]

}
,

whence xr ∈ X. (See also [Rud73, Thm. 3.27].)
It is clear from the definition that the set

D :=
{
xr : r > 0, x ∈ X

}
is weakly dense in X. On the other hand, for xr ∈ D we obtain

‖T (t)xr − xr‖ = sup
‖x′‖≤1

∣∣∣∣1r
∫ t+r

t

〈
T (s)x, x′

〉
ds− 1

r

∫ r

0

〈
T (s)x, x′

〉
ds

∣∣∣∣
≤ sup

‖x′‖≤1

∣∣∣∣1r
∫ r+t

r

〈
T (s)x, x′

〉
ds

∣∣∣∣+ ∣∣∣∣1r
∫ t

0

〈
T (s)x, x′

〉
ds

∣∣∣∣
≤ 2t

r
‖x‖ sup

0≤s≤r+t

‖T (s)‖ → 0

as t ↓ 0, i.e., D ⊂ E. We conclude that E is weakly, hence by Proposition A.1.(i)
strongly, dense in X. �

5.9 Exercises. (1) Let X be a Banach space and let (Tn)n∈N be a sequence in
L(X). Then the following assertions are equivalent.

(a) (Tnx)n∈N converges for all x ∈ X.

(b) (Tn)n∈N ⊂ L(X) is bounded and (Tnx)n∈N converges for all x in some
dense subset D of X.

(c) (Tnx)n∈N converges uniformly for all x ∈ C and every compact set C in X.
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(2) Show that the left translation semigroup (Tl(t))t≥0 is strongly continuous on
the Banach space

C1
0(R+) :=

{
f ∈ C0(R+) ∩ C1(R+) : lim

s→∞
f ′(s) = 0

}
endowed with the norm ‖f‖ := sups≥0 |f(s)|+ sups≥0 |f ′(s)|.
(3) Define (

T (t)f
)
(s) := f(set), s, t ≥ 0,

and show that (T (t))t≥0 yields strongly continuous semigroups on X∞ := C0[1,∞)
and Xp := Lp[1,∞) for 1 ≤ p < ∞. Show that their growth bounds satisfy
ωp = −1/p. (Hint: See the proof of the proposition in IV.3.3.)

(4) There are semigroups (T (t))t≥0 of bounded operators on a Banach space X
satisfying condition (ii), but not condition (i), in Proposition 5.3.(c). (Hint: On
C0(R+) consider the multiplication operator Mq for q(s) := −s + is2 and the as-

sociated semigroup (Tq(t))t≥0. Then T (t) :=
(

Tq(t) tMqTq(t)

0 Tq(t)

)
defines a semigroup

(T (t))t≥0 on X := C0(R+)× C0(R+) with the desired property.)

(5) For a group (T (t))t∈R on a Banach space X, the following conditions are
equivalent.

(a) The group (T (t))t≥0 is strongly continuous, i.e., the map R 3 t 7→ T (t)x ∈
X is continuous for all x ∈ X.

(b) limt→t0 T (t)x = T (t0)x for some t0 ∈ R and all x ∈ X.

(c) There exist constants t0 ∈ R, δ > 0, M ≥ 0 and a dense subset D ⊂ X
such that

(i) ‖T (t)‖ ≤ M for all t ∈ [t0, t0 + δ],

(ii) limt↓t0 T (t)x = T (t0)x for all x ∈ D.

(6) If the strongly continuous semigroup (T (t))t≥0 contains an invertible oper-
ator T (t0) for some t0 > 0, then the semigroup can be extended to a strongly
continuous group (T (t))t∈R.

(7) On X := C[0, 1], define bounded operators T (t), t > 0, by(
T (t)f

)
(s) :=

{
et log s[f(s)− f(0) log s] if s ∈ (0, 1],
0 if s = 0

for f ∈ X and put T (0) := I. Prove the following assertions.

(i) (T (t))t≥0 is a semigroup that is strongly continuous only on (0,∞).

(ii) limt↓0 ‖T (t)‖ = ∞.

(8) Construct a strongly continuous semigroup that is not nilpotent, but has

growth bound ω0 = −∞. (Hint: Take (T (t)f)(s) := e−t2+2stf(s−t) on C0(−∞, 0].)

b. Standard Constructions

We now explain how one can construct in various ways new strongly continuous
semigroups from a given one. This might seem trivial and/or boring, but there will
be many occasions to appreciate the toolbox provided by these considerations.
Clearly, this subsection might be skipped by the impatient reader. However, these
constructions might give the beginner the necessary exercise to familiarize him-
or herself with the concept of a strongly continuous semigroup.
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In the following, we always assume that (T (t))t≥0 is a strongly continuous
semigroup on a Banach space X.

5.10 Similar Semigroups. Given another Banach space Y and an isomorphism
V from Y onto X, we obtain (as in Lemma 2.6) a new strongly continuous
semigroup (S(t))t≥0 on Y , called similar to (T (t))t≥0, by defining

S(t) := V −1T (t)V for t ≥ 0.

Without explicit reference to the isomorphism V , we call the two semigroups
(T (t))t≥0 and (S(t))t≥0 isomorphic.

5.11 Rescaled Semigroups. For any numbers µ ∈ C and α > 0, we define the
rescaled semigroup (S(t))t≥0 by

S(t) := eµtT (αt)

for t ≥ 0.

For example, taking µ = −ω0 (or µ < −ω0) and α = 1 the rescaled semigroup
will have growth bound equal to (or less than) zero. This is an assumption we
will make without loss of generality in many situations.

5.12 Subspace Semigroups. If Y is a closed subspace of X such that T (t)Y ⊆
Y for all t ≥ 0, i.e., if Y is (T (t))t≥0-invariant , then the restrictions

T (t)| := T (t)|Y

form a strongly continuous semigroup (T (t)|)t≥0, called the subspace semigroup,
on the Banach space Y .

5.13 Quotient Semigroups. For a closed (T (t))t≥0-invariant subspace Y of
X, we consider the quotient space X/ := X/Y with canonical quotient map
q : X → X/. The quotient operators T (t)/ given by

T (t)/q(x) := q
(
T (t)x

)
for x ∈ X and t ≥ 0

are well-defined and form a strongly continuous semigroup, called the quotient
semigroup (T (t)/)t≥0 on the Banach space X/.

5.14 Adjoint Semigroups. The adjoint semigroup (T (t)′)t≥0 consisting of all
adjoint operators T (t)′ on the dual space X ′ is, in general, not strongly continu-
ous.

An example is provided by the (left) translation group on L1(R). Its adjoint is
the (right) translation group on L∞(R), which is not strongly continuous (see the
proposition in 4.15). However, it is easy to see that (T (t)′)t≥0 is always weak∗-
continuous in the sense that the maps

t 7→ ξx,x′(t) :=
〈
x, T (t)′x′

〉
=
〈
T (t)x, x′

〉
are continuous for all x ∈ X and x′ ∈ X ′.
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Since on a reflexive Banach space weak and weak∗ topology coincide, in this
case the adjoint semigroup is weakly, and hence by Theorem 5.8 strongly, con-
tinuous.

Proposition. The adjoint semigroup of a strongly continuous semigroup on a
reflexive Banach space is again strongly continuous.

5.15 Product Semigroups. Let (S(t))t≥0 be another strongly continuous semi-
group commuting with (T (t))t≥0, i.e., S(t)T (t) = T (t)S(t) for all t ≥ 0. Then
the operators

U(t) := S(t)T (t)

form a strongly continuous semigroup (U(t))t≥0, called the product semigroup of
(T (t))t≥0 and (S(t))t≥0.

Proof. Clearly, U(0) = I. In order to show the semigroup property for (U(t))t≥0,
we first show that T (s) and S(r) commute for all s, r ≥ 0. To this end, we first
take r = p1/q and s = p2/q ∈ Q+. Then

S(r)T (s) = S (1/q)
p1 · T (1/q)

p2

= T (1/q)
p2 · S (1/q)

p1 = T (s)S(r),

i.e., F (r, s) = G(r, s) for all r, s ∈ Q+, where

and
F : [0,∞)× [0,∞) → L(X), F (r, s) := S(r)T (s),

G : [0,∞)× [0,∞) → L(X), G(r, s) := T (s)S(r).

Now, for fixed x ∈ X, the functions F (·, ·)x and G(·, ·)x are continuous in each
coordinate and coincide on Q+×Q+; hence we conclude that F = G. This shows
that

S(r)T (s) = T (s)S(r)

for all s, r ≥ 0, and the semigroup property U(r + s) = U(r)U(s) for s, r ≥ 0
follows immediately. Finally, the strong continuity of (U(t))t≥0 follows from
Lemma B.15. �

5.16 Exercises. (1) Let (Tl(t))t≥0 be the left translation semigroup on C0(R+)
and take a nonvanishing, continuous function q on R+ such that q and 1/q are
bounded. The multiplication operator Mq yields a similarity transformation. De-
termine the semigroup (S(t))t≥0 defined by

S(t) := MqTl(t)M1/q
, t ≥ 0.

(2) On X := C0(R2), consider the strongly continuous semigroups (T (t))t≥0 and
(S(t))t≥0 defined by(

S(t)f
)
(x, y) := f(x + t, y) and

(
T (t)f

)
(x, y) := f(x, y + t)

for f ∈ X, t ≥ 0. What is their product semigroup?
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(3) In this exercise we introduce another, more sophisticated, “standard con-
struction.”

Let T = (T (t))t≥0 be a strongly continuous semigroup on the Banach space
X. Consider the new Banach space `∞(X) of all bounded X-valued sequences
and its closed subspace c0(X) of all null sequences in X. Finally, consider the
quotient space

X̂ := `∞(X)
/

c0(X)

and the semigroup thereon defined by

T̂ (t)
(
(xn)n∈N + c0(X)

)
:=
(
T (t)xn

)
n∈N + c0(X).

(i) Show that this semigroup is strongly continuous if and only if (T (t))t≥0 is
uniformly continuous.

(ii) Replace `∞(X) by the closed subspace

`∞T (X) :=

{
(xn)n∈N ∈ `∞(X) : lim

t↓0
sup
n∈N

‖T (t)xn − xn‖ = 0

}
and show that now the quotient semigroup in

X̂T := `∞T (X)
/

c0(X)

becomes strongly continuous.

(iii) Modify this construction by replacing the Fréchet filter by some free ultra-
filter on N (Hint: See [Nag86, A-I, Sec. 3.6].)

For a continuation see Exercises II.2.8.(3) and IV.2.22.(5).

(4) Consider the function space

Y :=
{
f : [0, 1] → C : |f(s)| ≤ ns for all s ∈ [0, 1] and some n ∈ N

}
,

which becomes a Banach space for the norm

‖f‖ := inf
{
c ≥ 0 : |f(s)| ≤ cs for all s ∈ [0, 1]

}
.

On X := C⊕Y , we define a “translation” semigroup (T (t))t≥0 by T (0) := I and

T (t)
(

α
f

)
:=
(
0
g

)
for t > 0,

where

g(s) :=

{
0 for s < t,
α for s = t,
f(s− t) for s > t.

(i) Show that ‖T (t)‖ = t−1 for t > 0, and hence (T (t))t≥0 is not exponentially
bounded.

(ii) Find the largest (T (t))t≥0-invariant closed subspace of X on which the
restriction of (T (t))t≥0 becomes strongly continuous for t > 0 (t ≥ 0,
respectively).
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Notes to Chapter I
The material treated in this chapter is quite standard; hence we make only some
brief historical comments or give references for further reading.

Section 1. Functional equations more complicated than Cauchy’s equation (FE)
are still an area of active research. We refer to the book of Aczél [Acz66] or to his
survey article [Acz89]. The historical ties with semigroup theory are indicated in
[Hof92] and [Law96].

Section 2. The matrix-valued exponential function as the “fundamental solu-
tion” of a system of linear differential equations with constant coefficients and its
Liapunov stability appears in every text on ordinary differential equations (e.g.,
[CL55], [Har64], [Bra75], [Ama90]), or in many books on matrix analysis (see
[Gan59], [Gan90], [HJ91, Chap. 2], [Hor91]). For numerical computations as well
as explicit formulas for the exponential of a matrix, we refer to [ML78], [BS93],
and [CY97].

Section 3. The first concrete definition of an exponential function with val-
ues in an infinite-dimensional space can be found in a rather unknown paper
by Maria Gramegna [Gra10], a student of G. Peano. Using the new concepts
of functional analysis, Nagumo [Nag36] characterized uniformly continuous one-
parameter groups with values in a Banach algebra. A nice and more recent treat-
ment can be found in the booklet [Sin82].

For the functional calculus used in Definition 3.4, we refer to [DS58], [TL80],
or any other book on spectral theory.

The implementation of one-parameter groups on the operator algebra L(H)
indicated in Paragraph 3.16 is an important construction in quantum mechanics.
The proofs presented are due to M. Mathieu. We refer to [BR79] for further
reading.

Section 4. Multiplication operators (and semigroups) occur frequently in ap-
plications via the spectral theorem for normal operators on Hilbert spaces (see
Halmos’s article [Hal63]), or via the Fourier transform of differential operators.
On Banach lattices such as Lp(Ω, µ)- or C0(Ω)-spaces, they can be characterized
abstractly as local or as central operators (see Exercise 4.13.(8), [Nag86, C-I.9]
and [Nag86, C-II.5.15]).

Translation semigroups are special cases of semigroups induced by a continuous
or measure-preserving (semi)flow or dynamical system (see Paragraph II.3.28).
This aspect is explained in [Nag91] and [Ves96b], and treated extensively in
[LM94]. For an abstract characterization of such semigroups see [Nag86, B-II.3.13].

Section 5. The still unsurpassed classic on one-parameter semigroups is E. Hille’s
Functional Analysis and Semigroups [Hil48], with its second edition coauthored
by R.S. Phillips. After that, the most widely diffused references were [DS58, Chap. XIII],
[Yos65, Chap. IX] and [Kre71]. The series of books entirely devoted to semigroups
started with [BM79], [Dav80], [Paz83], and then [Gol85], which contains an ex-
haustive list of books and papers on semigroup theory up to 1985. Other and
more recent books on the general theory of semigroups are, e.g., [Cas85], [McB87],
[CHA+87], [Ves96a]. The literature on special types of semigroups or on abstract
evolution equations will be mentioned in the notes of the relevant sections.



Chapter II

Semigroups, Generators,
and Resolvents

In this chapter it is our aim to achieve what we obtained, without too
much effort, for uniformly continuous semigroups in Section I.3. There, we
characterized every uniformly continuous semigroup

(
T (t)

)
t≥0 on a Ba-

nach space X as an operator-valued exponential function, i.e., we found an
operator A ∈ L(X) such that

T (t) = etA

for all t ≥ 0 (see Theorem I.3.7). For strongly continuous semigroups, we
will succeed in defining an analogue of A, called the generator of the semi-
group. It will be a linear, but generally unbounded, operator defined only
on a dense subspace D(A) of the Banach space X. In order to retrieve the
semigroup

(
T (t)

)
t≥0 from its generator

(
A,D(A)

)
, we will need a third

object, namely the resolvent operator

R(λ,A) := (λ−A)−1 ∈ L(X)

of A, which is defined for all complex numbers in the resolvent set ρ(A)
(see Definition IV.1.1).

To find and discuss the various relations between these objects is the
theme of this chapter, which can be illustrated by the following triangle.
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(
T (t)

)
t≥0

semigroup

�
�

�
� @

@
@
@

generator resolvent(
A,D(A)

) (
R(λ,A)

)
λ∈ρ(A)

1. Generators of Semigroups and Their Resolvents

We recall that for a one-parameter semigroup
(
T (t)

)
t≥0 on a Banach space

X uniform continuity implies differentiability of the map t 7→ T (t) ∈ L(X).
The right derivative of T (·) at t = 0 then yields a bounded operator A with
T (t) = etA for all t ≥ 0.

Following the suggestion expressed in Paragraph I.1.6, we hope that
strong continuity of a semigroup

(
T (t)

)
t≥0 might still imply some differen-

tiability of the orbit maps

ξx : t 7→ T (t)x ∈ X.

In order to pursue this idea we first show, in analogy to Proposition I.5.3,
that differentiability of ξx is already implied by right differentiability at
t = 0.

1.1 Lemma. Take a strongly continuous semigroup
(
T (t)

)
t≥0 and an el-

ement x ∈ X. For the orbit map ξx : t 7→ T (t)x, the following properties
are equivalent.

(a) ξx(·) is differentiable on R+.

(b) ξx(·) is right differentiable at t = 0.

Proof. We have only to show that (b) implies (a). For h > 0, one has

lim
h↓0

1
h

(
T (t+ h)x− T (t)x

)
= T (t) lim

h↓0
1
h

(
T (h)x− x

)
= T (t) ξ̇x(0),

and hence ξx(·) is right differentiable on R+.
On the other hand, for −t ≤ h < 0, we write

1
h

(
T (t+ h)x− T (t)x

)
− T (t)ξ̇x(0) = T (t+ h)

(
1
h

(
x− T (−h)x

)
− ξ̇x(0)

)
+ T (t+ h)ξ̇x(0)− T (t)ξ̇x(0).
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As h ↑ 0, the first term on the right-hand side converges to zero, since
‖T (t+ h)‖ remains bounded. The remaining part converges to zero by the
strong continuity of

(
T (t)

)
t≥0. Hence, ξx is also left differentiable, and its

derivative is

(1.1) ξ̇x(t) = T (t) ξ̇x(0)

for each t ≥ 0. �

On the subspace of X consisting of all those x ∈ X for which the orbit
maps ξx are differentiable, the right derivative at t = 0 then yields an
operator A from which, in a sense to be specified later, we can hope to
obtain the operators T (t) as the “exponentials etA.” This hope is expressed
in the choice of the term “generator” in the following definition.

1.2 Definition. The generator A : D(A) ⊆ X → X of a strongly continu-
ous semigroup

(
T (t)

)
t≥0 on a Banach space X is the operator

(1.2) Ax := ξ̇x(0) = lim
h↓0

1
h

(
T (h)x− x

)
defined for every x in its domain

(1.3) D(A) := {x ∈ X : ξx is differentiable}.

We observe from Lemma 1.1 that the domain D(A) is also given as the
set of all elements x ∈ X for which ξx(·) is right differentiable in t = 0, i.e.,

(1.4) D(A) =
{
x ∈ X : lim

h↓0
1
h

(
T (h)x− x

)
exists

}
.

The domain D(A), which is a linear subspace, is an essential part of the
definition of the generator A. Accordingly, we should always denote it by
the pair

(
A,D(A)

)
, but for convenience, we will often only write A and

assume implicitly that its domain is given by (1.4).
To ensure that the operator

(
A,D(A)

)
has reasonable properties, we

proceed as in Chapter I. There we used the “smoothing operators” V (t) :=∫ t

0
T (s) ds to prove differentiability of the semigroup

(
T (t)

)
t≥0 (see the

proof of Theorem I.3.7). Since we now assume that the orbit maps ξx are
only continuous, we need to look at “smoothed” elements of the form

yt :=
1
t

∫ t

0

ξx(s) ds =
1
t

∫ t

0

T (s)x ds for x ∈ X, t > 0.

It is a simple consequence of the definition of the integral as a limit of
Riemann sums that the vectors yt converge to x as t ↓ 0. In addition, they
always belong to the domain D(A). This and other elementary facts are
collected in the following result.
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1.3 Lemma. For the generator
(
A,D(A)

)
of a strongly continuous semi-

group
(
T (t)

)
t≥0, the following properties hold.

(i) A : D(A) ⊆ X → X is a linear operator.

(ii) If x ∈ D(A), then T (t)x ∈ D(A) and

(1.5) d
dtT (t)x = T (t)Ax = AT (t)x for all t ≥ 0.

(iii) For every t ≥ 0 and x ∈ X, one has

∫ t

0

T (s)x ds ∈ D(A).

(iv) For every t ≥ 0, one has

T (t)x− x = A

∫ t

0

T (s)x ds if x ∈ X,(1.6)

=
∫ t

0

T (s)Axds if x ∈ D(A).(1.7)

Proof. Assertion (i) is trivial. To prove (ii) take x ∈ D(A). Then it follows
from (1.1) that 1/h

(
T (t + h)x − T (t)x

)
converges to T (t)Ax as h ↓ 0.

Therefore,

lim
h↓0

1
h

(
T (h)T (t)x− T (t)x

)
exists, and hence T (t)x ∈ D(A) by (1.4) with AT (t)x = T (t)Ax.

The Proof of assertion (iii) is included in the following proof of (iv). For
x ∈ X and t ≥ 0, one has

1
h

(
T (h)

∫ t

0

T (s)x ds−
∫ t

0

T (s)x ds
)

=
1
h

∫ t

0

T (s+ h)x ds− 1
h

∫ t

0

T (s)x ds

=
1
h

∫ t+h

h

T (s)x ds− 1
h

∫ t

0

T (s)x ds

=
1
h

∫ t+h

t

T (s)x ds− 1
h

∫ h

0

T (s)x ds,

which converges to T (t)x− x as h ↓ 0. Hence (1.6) holds.
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If x ∈ D(A), then the functions s 7→ T (s)T (h)x−x
h converge uniformly on

[0, t] to the function s 7→ T (s)Ax as h ↓ 0. Therefore,

lim
h↓0

1
h

(
T (h)− I

) ∫ t

0

T (s)x ds = lim
h↓0

∫ t

0

T (s)
1
h

(
T (h)− I

)
x ds

=
∫ t

0

T (s)Axds.

�

With the help of this lemma we now show that the generator introduced
in Definition 1.2, although unbounded in general, has nice properties.

1.4 Theorem. The generator of a strongly continuous semigroup is a closed
and densely defined linear operator that determines the semigroup uniquely.

Proof. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup on a Banach

space X. As already noted, its generator
(
A,D(A)

)
is a linear operator.

To show that A is closed, consider a sequence (xn)n∈N ⊂ D(A) for which
limn→∞ xn = x and limn→∞Axn = y exist. By (1.7) in the previous lemma,
we have

T (t)xn − xn =
∫ t

0

T (s)Axn ds

for t > 0. The uniform convergence of T (·)Axn on [0, t] for n→∞ implies
that

T (t)x− x =
∫ t

0

T (s)y ds.

Multiplying both sides by 1/t and taking the limit as t ↓ 0, we see that
x ∈ D(A) and Ax = y, i.e., A is closed.

By Lemma 1.3.(iii) the elements 1/t
∫ t

0
T (s)x ds always belong to D(A).

Since the strong continuity of
(
T (t)

)
t≥0 implies

lim
t↓0

1
t

∫ t

0

T (s)x ds = x

for every x ∈ X, we conclude that D(A) is dense in X.
Finally, let

(
S(t)

)
t≥0 be another strongly continuous semigroup having

the same generator
(
A,D(A)

)
. For x ∈ D(A) and t > 0, we consider the

map
s 7→ ηx(s) := T (t− s)S(s)x

for 0 ≤ s ≤ t. Since for fixed s the set{
S(s+ h)x− S(s)x

h
: h ∈ (0, 1]

}
∪ {AS(s)x}
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is compact, the difference quotients

1
h

(
ηx(s+ h)− ηx(s)

)
= T (t− s− h)

1
h

(
S(s+ h)x− S(s)x

)
+

1
h

(
T (t− s− h)− T (t− s)

)
S(s)x

converge by Lemma I.5.2 and Lemma 1.3.(ii) to

d
dsηx(s) = T (t− s)AS(s)x−AT (t− s)S(s)x = 0.

From ηx(0) = T (t)x and ηx(t) = S(t)x we obtain

T (t)x = S(t)x

for all x in the dense domain D(A). Hence, T (t) = S(t) for each t ≥ 0. �

Combining these properties of the generator with the closed graph theo-
rem gives a new characterization of uniformly continuous semigroups, thus
complementing Theorem I.3.7.

1.5 Corollary. For a strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach

space X with generator
(
A,D(A)

)
, the following assertions are equivalent.

(a) The generator A is bounded, i.e., there exists M > 0 such that
‖Ax‖ ≤M ‖x‖ for all x ∈ D(A).

(b) The domain D(A) is all of X.

(c) The domain D(A) is closed in X.

(d) The semigroup
(
T (t)

)
t≥0 is uniformly continuous.

In each case, the semigroup is given by

T (t) = etA :=
∞∑

n=0

tnAn

n!
, t ≥ 0.

The proof of this corollary and of some more equivalences is left as
Exercise 1.15.(1).

Property (b) indicates that the domain of the generator contains impor-
tant information about the semigroup and therefore has to be taken into
account carefully. However, in many examples (see, e.g., Paragraph 2.7 and
Example 4.10 below) it is often routine to compute the expression Ax for
some or even many elements in the domain D(A), while it is difficult to
identify D(A) precisely. In these situations, the following concept helps to
distinguish between “small” and “large” subspaces of D(A).

1.6 Definition. A subspace D of the domain D(A) of a linear operator
A : D(A) ⊆ X → X is called a core for A if D is dense in D(A) for the
graph norm

‖x‖A := ‖x‖+ ‖Ax‖.
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We now state a useful criterion for subspaces to be a core for the gener-
ator.

1.7 Proposition. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0 on a Banach space X. A subspace D of D(A) that is

‖ · ‖-dense in X and invariant under the semigroup
(
T (t)

)
t≥0 is always a

core for A.

Proof. For every x ∈ D(A) we can find a sequence (xn)n∈N ⊂ D such that
limn→∞ xn = x. Since for each n the map s 7→ T (s)xn ∈ D is continuous
for the graph norm ‖ · ‖A (use (1.5)), it follows that

∫ t

0

T (s)xn ds,

being a Riemann integral, belongs to the ‖·‖A-closure of D. Similarly, the
‖·‖A-continuity of s 7→ T (s)x for x ∈ D(A) implies that

∥∥∥∥1
t

∫ t

0

T (s)x ds− x

∥∥∥∥
A

→ 0 as t ↓ 0 and∥∥∥∥1
t

∫ t

0

T (s)xn ds−
1
t

∫ t

0

T (s)x ds
∥∥∥∥

A

→ 0 as n→∞ and for each t > 0.

This proves that for every ε > 0 we can find t > 0 and n ∈ N such that

∥∥∥∥1
t

∫ t

0

T (s)xn ds− x

∥∥∥∥
A

< ε.

Hence, x ∈ D ‖·‖A . �

Important examples of cores are given by the domains D(An) of the
powers An of a generator A.

1.8 Proposition. For the generator
(
A,D(A)

)
of a strongly continuous

semigroup
(
T (t)

)
t≥0 the space

D(A∞) :=
⋂
n∈N

D(An),

hence each D(An) :=
{
x ∈ D(An−1) : An−1x ∈ D(A)

}
, is a core for A.
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Proof. Since the space D(A∞) is a
(
T (t)

)
t≥0-invariant subspace of D(A),

it remains to show that it is dense in X. To that purpose, we prove that for
each function ϕ ∈ C∞(−∞,∞) with compact support in (0,∞) and each
x ∈ X the element

xϕ :=
∫ ∞

0

ϕ(s)T (s)x ds

belongs to D(A∞). In fact, if we set

D :=
{
ϕ ∈ C∞(−∞,∞) : suppϕ is compact in (0,∞)

}
,

then for x ∈ X, ϕ ∈ D, and h > 0 sufficiently small we have

T (h)− I

h
xϕ =

1
h

∫ ∞

0

ϕ(s)
(
T (s+ h)− T (s)

)
x ds

=
1
h

∫ ∞

h

(
ϕ(s− h)− ϕ(s)

)
T (s)x ds− 1

h

∫ h

0

ϕ(s)T (s)x ds

=
∫ ∞

0

1
h

(
ϕ(s− h)− ϕ(s)

)
T (s)x ds.(1.8)

The integrand in (1.8) converges uniformly on [0,∞) to −ϕ′(s)T (s)x as
h ↓ 0. This shows that xϕ ∈ D(A) and

Axϕ = −
∫ ∞

0

ϕ′(s)T (s)x ds.

Since ϕ(n) ∈ D for all n ∈ N, we conclude by induction that xϕ ∈ D(An)
for all n ∈ N, i.e., xϕ ∈ D(A∞). Assume that the linear span

D := lin
{
xϕ : x ∈ X, ϕ ∈ D

}
is not dense in X. By the Hahn–Banach theorem there is a linear functional
0 6= x′ ∈ X ′ such that 〈y, x′〉 = 0 for all y ∈ D, that is,

(1.9)
∫ ∞

0

ϕ(s)
〈
T (s)x, x′

〉
ds =

〈∫ ∞

0

ϕ(s)T (s)x ds, x′
〉

= 0

for all x ∈ X and ϕ ∈ D. This implies that the continuous functions
s 7→

〈
T (s)x, x′

〉
vanish on [0,∞) for all x ∈ X. Otherwise there would

exist ϕ ∈ D such that the left-hand side of (1.9) does not vanish. Choosing
s = 0, we obtain 〈x, x′〉 = 0 for all x ∈ X; hence x′ = 0. This contradicts
the choice of x′ 6= 0, and therefore D ⊂ X is dense.

Since we have seen in the first step that D ⊂ D(A∞), and since D(A∞)
is invariant under

(
T (t)

)
t≥0, the assertion follows from Proposition 1.7. �

In the remaining part of this section we introduce some basic spectral
properties for generators of strongly continuous semigroups. Recall from
Section IV.1 the notions
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spectrum σ(A) := {λ ∈ C : λ−A is not bijective},
resolvent set ρ(A) := C \ σ(A), and
resolvent R(λ,A) := (λ−A)−1 at λ ∈ ρ(A)

for a closed operator
(
A,D(A)

)
on a Banach space X.

Our starting point are the following two identities, which are easily de-
rived from their predecessors in Lemma 1.3.(iv). We stress that these iden-
tities will be continually used throughout the book.

1.9 Lemma. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0. Then, for every λ ∈ C and t > 0, the following

identities hold:

e−λtT (t)x− x = (A− λ)
∫ t

0

e−λsT (s)x ds if x ∈ X,(1.10)

=
∫ t

0

e−λsT (s)(A− λ)x ds if x ∈ D(A).(1.11)

Proof. It suffices to apply Lemma 1.3.(iv) to the rescaled semigroup

S(t) := e−λtT (t), t ≥ 0,

whose generator is B := A− λ with domain D(B) = D(A). �

Next, we give an important formula relating the semigroup to the resol-
vent of its generator.

1.10 Theorem. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup on the

Banach space X and take constants w ∈ R, M ≥ 1 (see Proposition I.5.5)
such that

(1.12) ‖T (t)‖ ≤Mewt

for t ≥ 0. For the generator
(
A,D(A)

)
of
(
T (t)

)
t≥0 the following properties

hold.

(i) If λ ∈ C such that R(λ)x :=
∫∞
0

e−λsT (s)x ds exists for all x ∈ X,
then λ ∈ ρ(A) and R(λ,A) = R(λ).

(ii) If Reλ > w, then λ ∈ ρ(A), and the resolvent is given by the integral
expression in (i).

(iii) ‖R(λ,A)‖ ≤ M
Re λ−w for all Reλ > w.

The formula for R(λ,A) in (i) is called the integral representation of
the resolvent . Of course, the integral has to be understood as an improper
Riemann integral, i.e.,

(1.13) R(λ,A)x = lim
t→∞

∫ t

0

e−λsT (s)x ds

for all x ∈ X.
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Having in mind this interpretation, we will frequently write

(1.14) R(λ,A) =
∫ ∞

0

e−λsT (s) ds.

Proof of Theorem 1.10. (i) By a simple rescaling argument (cf. Para-
graph I.5.11) we may assume that λ = 0. Then, for arbitrary x ∈ X and
h > 0, we have

T (h)− I

h
R(0)x =

T (h)− I

h

∫ ∞

0

T (s)x ds

=
1
h

∫ ∞

0

T (s+ h)x ds− 1
h

∫ ∞

0

T (s)x ds

=
1
h

∫ ∞

h

T (s)x ds− 1
h

∫ ∞

0

T (s)x ds

= − 1
h

∫ h

0

T (s)x ds.

By taking the limit as h ↓ 0, we conclude that rgR(0) ⊆ D(A) and AR(0) =
−I. On the other hand, for x ∈ D(A) we have

and
lim

t→∞

∫ t

0

T (s)x ds = R(0)x,

lim
t→∞

A

∫ t

0

T (s)x ds = lim
t→∞

∫ t

0

T (s)Axds = R(0)Ax,

where we have used Lemma 1.3.(iv) for the second equality. Since by
Theorem 1.4A is closed, this impliesR(0)Ax = AR(0)x = −x and therefore
R(0) = (−A)−1 as claimed.

Parts (ii) and (iii) then follow easily from (i) and the estimate∥∥∥∥∫ t

0

e−λsT (s) ds
∥∥∥∥ ≤M

∫ t

0

e(w−Re λ)s ds,

since for Reλ > w the right-hand side converges to M/(Re λ−w) as t→∞.
�

The above integral representation can now be used to represent and
estimate the powers of R(λ,A).

1.11 Corollary. For the generator
(
A,D(A)

)
of a strongly continuous

semigroup
(
T (t)

)
t≥0 satisfying

‖T (t)‖ ≤Mewt for all t ≥ 0,
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one has, for Reλ > w and n ∈ N, that

R(λ,A)nx =
(−1)n−1

(n− 1)!
· d

n−1

dλn−1
R(λ,A)x(1.15)

=
1

(n− 1)!

∫ ∞

0

sn−1e−λsT (s)x ds(1.16)

for all x ∈ X. In particular, the estimates

(1.17) ‖R(λ,A)n‖ ≤ M

(Reλ− w)n

hold for all n ∈ N and Reλ > w.

Proof. Equation (1.15) is actually valid for every operator with nonempty
resolvent set. We postpone its proof until Chapter IV, Proposition 1.3. On
the other hand, by Theorem 1.10.(i), one has

d

dλ
R(λ,A)x =

d

dλ

∫ ∞

0

e−λsT (s)x ds

= −
∫ ∞

0

se−λsT (s)x ds

for Reλ > w and all x ∈ X. Proceeding by induction, we deduce (1.16).
Finally, the estimate (1.17) follows from

‖R(λ,A)nx‖ =
1

(n− 1)!
·
∥∥∥∥∫ ∞

0

sn−1e−λsT (s)x ds
∥∥∥∥

≤ M

(n− 1)!
·
∫ ∞

0

sn−1e(w−Re λ)s ds · ‖x‖

=
M

(Reλ− w)n
· ‖x‖

for all x ∈ X. �

Property (ii) in Theorem 1.10 says that the spectrum of a semigroup
generator is always contained in a left half-plane. The number determining
the smallest such half-plane is an important characteristic of any linear
operator and is defined as follows.

1.12 Definition. To any linear operator A we associate its spectral bound
defined by

s(A) := sup{Reλ : λ ∈ σ(A)}.

As an immediate consequence of Theorem 1.10.(ii) the following relation
holds between the growth bound of a strongly continuous semigroup (see
Definition I.5.6) and the spectral bound of its generator.
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1.13 Corollary. For a strongly continuous semigroup
(
T (t)

)
t≥0 with gen-

erator A, one has
−∞ ≤ s(A) ≤ ω0 < +∞.

1.14 Diagram. To conclude this section, we collect in a diagram the infor-
mation obtained so far on the relations between a semigroup, its generator,
and its resolvent. (

T (t)
)
t≥0

�
�

�
�

�
�

�

	

Ax=lim
t↓0

T (t)x−x
t

@
@

@
@

@
@

@R

R(λ,A)=

∞∫
0

e−λtT (t) dt, Re λ>ω0

(
A,D(A)

) R(λ,A)=(λ−A)−1
-�

A=λ−R(λ,A)−1

(
R(λ,A)

)
λ∈ρ(A)

By developing our theory further, we will be able to add one of the
missing links in this diagram (see Diagram III.5.6).

1.15 Exercises. (1) Prove that the statements (a)–(d) in Corollary 1.5 are
equivalent to each of the follows conditions.

(e) ‖T (t)− I‖ ≤ ct for 0 ≤ t ≤ 1 and some c > 0.

(f) limλ→∞ ‖λAR(λ, A)‖ < ∞.

(2) Show that for a closed linear operator (A, D(A)) on a Banach space X and
a linear subspace Y ⊂ D(A) the following assertions are equivalent.

(a) Y is a core for (A, D(A)).

(b) A|Y = A.

If, in addition, ρ(A) 6= ∅, then these assertions are equivalent to

(c) (λ−A)Y is dense in X for one/all λ ∈ ρ(A).

(3) Show that the space of all continuous functions with compact support forms
a core for each multiplication operator Mq on C0(Ω).

(4) Decide whether D :=
{
f ∈ C∞(R+) : f ′(0) = 0 and supp f is compact

}
is a

core for

(i) the generator of the left translation semigroup on C0(R+), and

(ii) the generator of the right translation semigroup on C0(R+),

as defined in Paragraph I.4.16. (Hint: Compare the hint in (Exercise 6.iii).)

(5) Consider the Banach space X := C0(Ω) for some locally compact space Ω.
Show that for a strongly continuous semigroup (T (t))t≥0 with generator (A, D(A))
on X the following statements are equivalent.

(a) (T (t))t≥0 is a semigroup of algebra homomorphisms on X, i.e., T (t)(f ·g) =
T (t)f · T (t)g for f, g ∈ X and t ≥ 0.

(b) (A, D(A)) is a derivation, i.e., D(A) is a subalgebra of X and

A(f · g) = (Af) · g + f ·Ag

for f, g ∈ D(A).

(Hint: For the implication (b) ⇒ (a) consider the maps s 7→ T (t−s)[T (s)f ·T (s)g]
for each 0 ≤ s ≤ t and f, g ∈ D(A).)
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(6) Let (A, D(A)) be the generator of a contraction semigroup (T (t))t≥0 on some
Banach space X. Establish the following assertions.

(i) The Landau–Kolmogorov Inequality , which states that

‖Ax‖2 ≤ 4
∥∥A2x

∥∥ · ‖x‖
for each x ∈ D(A2). (Hint: As a first step, verify Taylor’s formula

T (t)x = x + tAx +

∫ t

0

(t− s)T (s)A2x ds

for x ∈ D(A2).)

(ii) If (T (t))t≥0 is a group of isometries, then (i) can be improved to

‖Ax‖2 ≤ 2
∥∥A2x

∥∥ · ‖x‖
for x ∈ D(A2).

(iii) Apply (i) and (ii) to the various translation semigroups of Section I.4.c, in
particular to the left translation semigroup on Lp(R+). (Hint: The gener-
ator of the (left) translation semigroup is the differentiation operator with
appropriate domain; see Paragraph 2.10.)

2. Examples Revisited

Before proceeding with the abstract theory, we pause for a moment and
examine the concrete semigroups from Section I.4 and the semigroup con-
structions established in Section I.5.b. In each case, we try to identify the
corresponding

generator , its spectrum and resolvent ,
so that our abstract definitions gain a more concrete meaning. However, the
impatient reader might skip these examples and look at them only later.

a. Standard Constructions
Let (T (t))t≥0 be a strongly continuous semigroup with generator (A, D(A)) on
a Banach space X. For each of the semigroups constructed in Section I.5.b, we
now characterize its generator and its resolvent.

2.1 Similar Semigroups. If V is an isomorphism from a Banach space Y onto
X and (S(t))t≥0 is the strongly continuous semigroup on Y given by S(t) :=
V −1T (t)V , then its generator is

B = V −1AV with domain D(B) =
{
y ∈ Y : V y ∈ D(A)

}
.

Equality of the spectra
σ(A) = σ(B)

is clear, and the resolvent of B is R(λ, B) = V −1R(λ, A)V for λ ∈ ρ(A).
A particularly important example of this situation is given by the Spectral The-

orem I.4.9, which states that every normal or self-adjoint operator on a Hilbert
space is similar to a multiplication operator on an L2-space.
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2.2 Rescaled Semigroups. The rescaled semigroup (eµtT (αt))t≥0 for some
fixed µ ∈ C and α > 0 has generator

B = αA + µI with domain D(A) = D(B).

Moreover, σ(B) = ασ(A) + µ and R(λ, B) = 1/αR (λ−µ/α, A) for λ ∈ ρ(B).
This shows that we can switch quite easily between the original and the rescaled

objects.

2.3 Subspace Semigroups. While we considered in Paragraph I.5.12 the sub-
space semigroup

(
T (t)|Y

)
t≥0

only for closed subspaces Y in X, we begin here

with a more general situation.
Let Y be a Banach space that is continuously embedded in X (in symbols:

Y ↪→ X). Assume also that the restrictions T (t)| leave Y invariant and form a
strongly continuous semigroup (T (t)|)t≥0 on Y . In order to be able to identify

the generator of
(
T (t)|Y

)
t≥0

, we introduce the following concept.

Definition. The part of A in Y is the operator A| defined by

with domain
A|y := Ay

D(A|) :=
{
y ∈ D(A) ∩ Y : Ay ∈ Y

}
.

In other words, A| is the “maximal” operator induced by A on Y and, as will
be seen, coincides with the generator of the semigroup (T (t)|)t≥0 on Y .

Proposition. Let (A, D(A)) be the generator of a strongly continuous semigroup
(T (t))t≥0 on X and assume that the restricted semigroup (T (t)|)t≥0 is strongly
continuous on some (T (t))t≥0-invariant Banach space Y ↪→ X. Then the genera-
tor of (T (t)|)t≥0 is the part (A|, D(A|)) of A in Y .

Proof. Let (C, D(C)) denote the generator of (T (t)|)t≥0. Since Y is continuously
embedded in X, we immediately have that C is a restriction of A|. For the
converse inclusion, choose λ ∈ R large enough such that both R(λ, C) and R(λ, A)
are given by the integral representation from Theorem 1.10.(i). Then

R(λ, C)y =

∫ ∞

0

e−λsT (s)y ds = R(λ, A)y for all y ∈ Y.

For x ∈ D(A|), we obtain that

x = R(λ, A)(λ−A)x = R(λ, C)(λ−A)x ∈ D(C),

and hence D(A|) = D(C). �

If Y is a (T (t))t≥0-invariant closed subspace of X, then the strong continuity
of (T (t)|)t≥0 is automatic. Moreover, the existence of

z := lim
t↓0

1

t

(
T (t)y − y

)
∈ X

for some y ∈ Y implies that z ∈ Y . Therefore, the part A| simply becomes the
“restriction” of A.
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Corollary. If Y is a (T (t))t≥0-invariant closed subspace of X, then the generator
of (T (t)|)t≥0 is

with domain
A|y = Ay,

D(A|) = D(A) ∩ Y.

Example. A typical example for the situation considered here occurs when we
take X := L1(Γ, m) and Y := C(Γ). The rotation group from I.4.18 is strongly
continuous on both spaces; hence its generator on C(Γ) is the part of its generator
on L1(Γ, m). The generator on L1(Γ, m) can now be obtained by modifying the
arguments from the proposition in Paragraph 2.10.(ii) below.

2.4 Quotient Semigroup. Let Y be a (T (t))t≥0-invariant closed subspace of

X. Then the generator (A/, D(A/)) of the quotient semigroup
(
T (t)/Y

)
t≥0

on

the quotient space X/ := X/Y is given (with the notation from Paragraph I.5.13)
by

A/q(x) = q(Ax) with domain D(A/) = q
(
D(A)

)
.

This follows from the fact that each element x̂ := q(x) ∈ D(A/) can be written
as

x̂ =

∫ ∞

0

e−λsT (s)/ŷ ds

for some ŷ = q(y) ∈ X/Y and some λ > ω0 (use 1.10.(i)). Therefore,

x̂ =

∫ ∞

0

e−λsq
(
T (s)y

)
ds = q

(∫ ∞

0

e−λsT (s)y ds

)
= q(z)

with z ∈ D(A). This means that for every x̂ ∈ D(A/) there exists a representative
z ∈ X belonging to D(A).

For a concrete example, we refer to IV.2.14.

2.5 Adjoint Semigroups. Even though the adjoint semigroup (T (t)′)t≥0 is not
necessarily strongly continuous on X ′, it is still possible to associate a “generator”
to it. In fact, defining

on the domain

Aσx′ := σ(X ′, X)- lim
h↓0

1

h

(
T (h)′x′ − x′

)
D(Aσ) :=

{
x′ ∈ X ′ : σ(X ′, X)- lim

h↓0

1

h

(
T (h)′x′ − x′

)
exists

}
,

one obtains a linear operator called the weak∗ generator of (T (t)′)t≥0. It is a
σ(X ′, X)-closed and σ(X ′, X)-densely defined operator and coincides with the
adjoint A′ of A (see Definition B.8), i.e.,

D(Aσ) =

{
x′ ∈ X ′ :

there exists y′ ∈ X ′ such that〈
x, y′

〉
=
〈
Ax, x′

〉
for all x ∈ D(A)

}
and

Aσx′ = A′x′.

(See Exercise 2.8.(1).) By Corollary B.12 it then follows that σ(Aσ) = σ(A) =
σ(A′) and R(λ, Aσ) = R(λ, A′) = R(λ, A)′ for λ ∈ ρ(A).
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2.6 Sun Dual Semigroups. To overcome the handicap that the adjoint semi-
group (T (t)′)t≥0 may not be strongly continuous on X ′, we restrict it to its
so-called (closed) subspace of strong continuity .

Definition. Corresponding to a strongly continuous semigroup (T (t))t≥0 on a
Banach space X, we define its sun dual (or semigroup dual) by

X� :=
{

x′ ∈ X ′ : lim
t↓0

∥∥T (t)′x′ − x′
∥∥ = 0

}
and call the semigroup given by the restricted operators

T (t)� := T (t)′|
X� , t ≥ 0,

the sun dual semigroup.

Without loss of generality, we now assume (T (t))t≥0 to be bounded (use
Paragraph 2.2), i.e.,∥∥T (t)′

∥∥ = ‖T (t)‖ ≤ M for all t ≥ 0.

Then it follows from Proposition I.5.3 that X� is a closed subspace of X ′ and
that the sun dual semigroup (T (t)�)t≥0 is in fact strongly continuous. As a first
step, we show that X� is reasonably large.

Lemma. One always has D(A′) ⊂ X�.

Proof. Take y′ ∈ D(A′). Then, by (1.6), we have∣∣〈x, T (t)′y′ − y′
〉∣∣ =

∣∣〈T (t)x− x, y′
〉∣∣

=

∣∣∣∣〈A

∫ t

0

T (s)x ds, y′
〉∣∣∣∣

≤ tM ‖x‖ ·
∥∥A′y′

∥∥
for all x ∈ X. As t ↓ 0 this expression converges to zero uniformly for ‖x‖ ≤ 1.
Hence,

lim
t↓0

∥∥T (t)′y′ − y′
∥∥ = 0,

and we obtain y′ ∈ X�. �

A consequence of this lemma are the estimates

(2.1) sup
y′∈D(A′)
‖y′‖≤1

∣∣〈x, y′
〉∣∣ ≤ ‖x‖ ≤ sup

y′∈D(A′)
‖y′‖≤M

∣∣〈x, y′
〉∣∣

for x ∈ X and

(2.2)
∥∥T (t)�

∥∥ ≤ ∥∥T (t)′
∥∥ = ‖T (t)‖ ≤ M

∥∥T (t)�
∥∥

for all t ≥ 0. To establish (2.1) we use the fact that limn→∞ nR(n, A)x = x for
each x ∈ X (see Lemma 3.4.(i)). Then, for arbitrary x′ ∈ X ′, we obtain that〈

x, x′
〉

= lim
n→∞

〈
nR(n, A)x, x′

〉
= lim

n→∞

〈
x, nR(n, A′)x′

〉
.
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This proves (2.1), since nR(n, A′)x′ ∈ D(A′) and ‖nR(n, A′)x′‖ ≤ M‖x′‖ by
Theorem 1.10.(iii). Again by Lemma 3.4.(i) one has that〈

x, T (t)′x′
〉

= lim
n→∞

〈
x, T (t)�nR(n, A′)x′

〉
for x ∈ X and x′ ∈ X ′. This implies first that∣∣ 〈x, T (t)′x′

〉 ∣∣ ≤ lim
n→∞

‖x‖ ·
∥∥nR(n, A′)x′

∥∥ · ∥∥T (t)�
∥∥

≤ M ‖x‖ · ‖x′‖ ·
∥∥T (t)�

∥∥
and then (2.2). �

Next we relate the generator (A�, D(A�)) of the sun dual semigroup (T (t)�)t≥0

to the adjoint operator (A′, D(A′)).

Proposition. The generator (A�, D(A�)) of the strongly continuous semigroup
(T (t)�)t≥0 is the part of (A′, D(A′)) in X�, i.e.,

A�x′ = A′x′ for x′ ∈ D(A�) =
{
x′ ∈ D(A′) : A′x′ ∈ X�}.

Proof. Since the weak∗ topology on X ′ is weaker than the norm topology, it is
clear that A′ is an extension of A�. Now take x′ ∈ D(A′) such that A′x′ ∈ X�.
Since A′ is a weak∗-closed operator, it follows as in Lemma 1.3 that

T (t)�x′ − x′ = A′
∫ t

0

T (s)�x′ ds =

∫ t

0

T (s)�A′x′ ds

for each t > 0. From the norm continuity of s 7→ T (s)�A′x′, we obtain

‖·‖ - lim
t↓0

1

t

(
T (t)�x′ − x′

)
= A′x′.

�

Since D(A�) is dense in X� (by Theorem 1.4), it follows that

X� = D(A′).

Accordingly, the strongly continuous semigroup (T (t)�)t≥0 is obtained by re-
stricting (T (t)′)t≥0 to the closure of the domain D(A′) of the operator A′. We
will encounter such a situation again, without involving dual spaces and adjoint
operators, in Corollary 3.21 below. Here we conclude with two examples in which
we can identify the sun duals X�.

Examples. (i) It is easy to see that the right translations Tr(t) on L∞(R) are
the adjoints of the left translations Tl(t) on X := L1(R) (see Definition I.4.14).
The largest subspace of L∞(R) on which these translation operators form a
strongly continuous semigroup for the sup-norm is the space Cub(R) of all bounded,
uniformly continuous functions on R (cf. Exercise I.4.19.(1)), i.e.,

X� = Cub(R).
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In addition, one obtains from the generator (A, D(A)) of (T (t))t≥0 as identified
in the proposition in 2.10.(ii) below and Example B.9 that

D(A′) =
{
f ∈ L∞(R) : f absolutely continuous, f ′ ∈ L∞(R)

}
and

D(A�) =
{
f ∈ L∞(R) : f ∈ C1(R), f ′ ∈ Cub(R)

}
.

Recall that a function f is absolutely continuous if and only if for every ε > 0
there corresponds δ > 0 such that for arbitrary disjoint intervals Ik = [ak, bk],
k = 1, . . . , n,

n∑
k=1

(bk − ak) < δ implies

n∑
k=1

|f(bk)− f(ak)| < ε;

see [Tay85, 9-8]. The function s 7→ | sin s| serves as an example showing that
D(A�) 6= D(A′) in general.

(ii) Now consider the left translation (semi) group on C0(R). By the Riesz–
Markov theorem (see [Rud86, Thm. 6.19]), the dual of C0(R) is the space Mb(R)
of all bounded, regular (signed or complex) Borel measures. The dual operators
form the right translation semigroup on Mb(R), and the sun dual semigroup is
the right translation semigroup on X� = L1(R) as a subspace of Mb(R).

The details are left as Exercise 2.8.(2), and for a continuation see Example 5.22.

2.7 Product Semigroups. Let (B, D(B)) be the generator of a second strongly
continuous semigroup (S(t))t≥0 commuting with (T (t))t≥0. It is easy to deduce
some information on the generator (C, D(C)) of the product semigroup (U(t))t≥0,
defined by U(t) := S(t)T (t) for t ≥ 0; see Paragraph I.5.15.

We first show that D(A)∩D(B) satisfies the conditions of Proposition 1.7 and
so is a core for C.

Since (T (t))t≥0 and (S(t))t≥0 commute, each domain D(A) and D(B) is in-
variant under both semigroups. Hence D(A)∩D(B) is (U(t))t≥0-invariant. Take λ

large enough such that R(λ, A) =
∫∞
0

e−λsT (s) ds and R(λ, B) =
∫∞
0

e−λsS(s) ds.
From these representations we deduce that the resolvent operators commute, i.e.,
R(λ, A)R(λ, B) = R(λ, B)R(λ, A). Therefore, R(λ, B) maps D(A) into D(A),
and so R(λ, B)R(λ, A)X is contained in D(A) ∩ D(B). Since both R(λ, A) and
R(λ, B) are continuous and have dense range, we conclude that D(A) ∩D(B) is
dense in X, i.e., is a core for C.

Now, by Lemma B.16, the map R+ 3 t 7→ U(t)x is differentiable for all elements
x ∈ D(A) ∩D(B). Moreover, its derivative at t = 0 is[

d
dt

U(t)x
]
(0) = Cx = Ax + Bx,

which determines the generator C of (U(t))t≥0 on the core D(A) ∩D(B).

2.8 Exercises. (1) Show that the operator Aσ defined in Paragraph 2.5 is
σ(X ′, X)-closed, σ(X ′, X)-densely defined, and that it coincides with the adjoint
A′ of A.

(2) Work out the details for the examples in Paragraph 2.6.

(3) Let (A, D(A)) be the generator of the strongly continuous semigroup T =

(T (t))t≥0 on the Banach space X and take the semigroup T̂ = (T̂ (t))t≥0 on X̂T

from Exercise I.5.16.(3). Show that the generator (Â, D(Â)) of T̂ is given by

Â
(
(xn) + c0(X)

)
= (Axn) + c0(X),

D(Â) =
{
(xn) + c0(X) : xn ∈ D(A) and (xn), (Axn) ∈ `∞T (X)

}
.
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b. Standard Examples

In this subsection we return to the examples of strongly continuous semigroups
introduced in Chapter I, Section 4, and identify the corresponding generators
and resolvent operators. We start with multiplication semigroups for which all
operators involved can be computed explicitly.

2.9 Multiplication Semigroups. We saw in Proposition I.4.6 (or Proposi-
tion I.4.12) that strongly continuous multiplication semigroups on spaces C0(Ω)
(or Lp(Ω, µ)) are multiplications by etq, t ≥ 0, for some continuous (or measur-
able) function q : Ω → C with real part (essentially) bounded above. It should
be no surprise that this function also yields the generator of the semigroup.

Lemma. The generator (A, D(A)) of a strongly continuous multiplication semi-
group (T (t))t≥0 on X := C0(Ω) or X := Lp(Ω, µ) defined by

Tq(t)f := etq · f, f ∈ X and t ≥ 0,

is given by the multiplication operator

Af = Mqf := q · f

with domain D(A) = D(Mq) := {f ∈ X : qf ∈ X}.

Proof. Let X := C0(Ω) and take f ∈ D(A). Then

lim
t↓0

etqf − f

t
(s) = lim

t↓0

etq(s)f(s)− f(s)

t
= q(s)f(s)

exists for all s ∈ Ω, and we obtain qf ∈ C0(Ω). This shows that D(A) ⊆ D(Mq)
and Af = Mqf . Since by Theorem 1.10.(ii) and Proposition I.4.2.(iv), respec-
tively, A− λ and Mq − λ are both invertible for λ sufficiently large. This implies
A = Mq (use Exercise IV.1.21.(5)). The proof for X := Lp(Ω, µ) is left as Exer-
cise 2.14.(2). �

This lemma, in combination with Propositions I.4.5 and I.4.6 (or Proposi-
tions I.4.11 and I.4.12), completely characterizes the generators of strongly con-
tinuous multiplication semigroups. We restate this in the following result by iden-
tifying the closed (or the essential) range of q with the spectrum of Mq; see
Proposition I.4.2.(iv) (or Proposition I.4.10.(iv)).

Proposition. For an operator (A, D(A)) on the Banach space C0(Ω) or Lp(Ω, µ),
1 ≤ p < ∞, the following assertions are equivalent.

(a) (A, D(A)) is the generator of a strongly continuous multiplication semi-
group.

(b) (A, D(A)) is a multiplication operator such that

{λ ∈ C : Re λ > w} ⊆ ρ(A) for some w ∈ R.

The remarkable feature of this proposition is the fact that condition (b), which
corresponds to the spectral condition (ii) from Theorem 1.10, already guarantees
the existence of a corresponding semigroup. This is in sharp contrast to the
situation for general semigroups (see Generation Theorems 3.5 and 3.8 below).



66 Chapter II. Semigroups, Generators, and Resolvents

2.10 Translation Semigroups. As seen in Section I.4.c and Example I.5.4, the
(left) translation operators

Tl(t)f(s) := f(s + t), s, t ∈ R,

define a strongly continuous (semi) group on the spaces Cub(R) and Lp(R), 1 ≤
p < ∞. In each case, the generator (A, D(A)) is given by differentiation, but we
have to adapt its domain to the underlying space.

Proposition 1. The generator of the (left) translation semigroup (Tl(t))t≥0 on
the space X is given by

Af := f ′

with domain:

(i)

D(A) =
{
f ∈ Cub(R) : f differentiable and f ′ ∈ Cub(R)

}
,

if X := Cub(R), and

(ii)

D(A) =
{
f ∈ Lp(R) : f absolutely continuous and f ′ ∈ Lp(R)

}
,

if X := Lp(R), 1 ≤ p < ∞.

Proof. It suffices to show that the generator (B, D(B)) of (Tl(t))t≥0 is a re-
striction of the operator (A, D(A)) defined above. In fact, since (Tl(t))t≥0 is a
contraction semigroup on X, Theorem 1.10.(ii) implies 1 ∈ ρ(B). On the other
hand, by Proposition 2 below, we know that 1 ∈ ρ(A), and therefore the inclusion
B ⊆ A will imply A = B by Exercise IV.1.21.(5).

(i) Fix f ∈ D(B). Since δ0 is a continuous linear form on Cub(R), the function

R+ 3 t 7→ δ0

(
Tl(t)f

)
= f(t)

is differentiable by Lemma 1.1 and Definition 1.2, and

Bf =
[

d
dt

Tl(t)f
]

t=0
=
[

d
dt

f(t + ·)
]

t=0
= f ′.

This proves D(B) ⊆ D(A) and A|D(B) = B. Hence, A = B as mentioned above.
(ii) Take f ∈ D(B) and set g := Bf ∈ Lp(R). Since integration over compact

intervals is continuous in Lp(R), we obtain for every a, b ∈ R that

1

h

∫ b+h

b

f(s) ds− 1

h

∫ a+h

a

f(s) ds =

∫ b

a

f(s + h)− f(s)

h
ds

converges to
∫ b

a
g(s) ds as h ↓ 0. However, the left-hand side converges to f(b)−

f(a) for almost all a, b; see [Tay85, Thm. 9-8 VI]. By redefining f on a null set
we obtain

f(b) =

∫ b

a

g(s) ds + f(a), b ∈ R,

which is an absolutely continuous function with derivative (almost everywhere)
equal to g. Again this shows that D(B) ⊆ D(A) and A|D(B) = B. It follows that
A = B as above. �
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In order to finish this proof, we give an explicit formula for the resolvent of
the differentiation operator A with “maximal” domain D(A) as specified in the
previous result. The simple proof is left to Exercise 2.14.(1).

Proposition 2. The resolvent R(λ, A) for Re λ > 0 of the differentiation oper-
ator A with maximal domain D(A) (i.e., of the generator of the left translation
semigroup) on any of the above spaces X is given by

(2.3)
(
R(λ, A)f

)
(s) =

∫ ∞

s

e−λ(τ−s)f(τ) dτ for f ∈ X, s ∈ R.

Clearly, there are many other function spaces on which the translations define a
strongly continuous semigroup. As soon as they are contained in Lp(R) or Cub(R),
for example, Proposition 2.3 allows us to identify the generator as the part of the
differentiation operator. This, and the quotient construction from Paragraph 2.4,
yields the generators of the translation semigroups on R+ and on finite intervals
(see Paragraphs I.4.16 and I.4.17).

We present an example of this argument.

2.11 Translation Semigroups (Continued). Consider the (left) translation
(semi) group from Paragraph 2.10 on the space X := L1(R). Then the closed
subspace

Y :=
{
f ∈ L1(R) : f(s) = 0 for s ≥ 1

}
,

which is isomorphic to L1(−∞, 1), is (T (t))t≥0-invariant. The generator of the
subspace semigroup (T (t)|)t≥0 is

A|f = f ′

with domain

D(A|) =

{
f ∈ L1(R) :

f is absolutely continuous,

f ′ ∈ L1(R) and f(s) = 0 for s ≥ 1

}
.

In Y and for the subspace semigroup (T (t)|)t≥0, the space

Z :=
{
f ∈ Y : f(s) = 0 for 0 ≤ s ≤ 1

}
is again closed and invariant. The quotient space Y/Z is isomorphic to L1[0, 1],
and the quotient semigroup is isomorphic to the nilpotent (left) translation semi-
group from Paragraph I.4.17. By Paragraph 2.4, we obtain for its generator A|/
that

A|/f = f ′

with domain

D(A|/) =

{
f ∈ L1[0, 1] :

f is absolutely continuous,

f ′ ∈ L1[0, 1] and f(1) = 0

}
.

As above, its resolvent can be determined explicitly using (1.13). We obtain for
every λ ∈ C that

(2.4)
(
R(λ, A|/)f

)
(s) =

∫ 1

s

e−λ(τ−s)f(τ) dτ for f ∈ L1[0, 1], s ∈ [0, 1].

In the previous examples we always started with an explicit semigroup and
then identified its generator. In the final two examples we look at (second-order)
differential operators and show by direct computation that they generate strongly
continuous semigroups.
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2.12 Diffusion Semigroups (one-dimensional). Consider the Banach space
X := C[0, 1] and the differential operator

with domain
Af := f ′′

D(A) :=
{
f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0

}
.

This domain is a dense subspace of X that is complete for the graph norm; hence
(A, D(A)) is a closed, densely defined operator. Each function

s 7→ en(s) :=
{

1 if n = 0,√
2 cos(πns) if n ≥ 1,

belongs to D(A) and satisfies

(2.5) Aen = −π2n2en.

By the Stone–Weierstrass theorem and elementary trigonometric identities we
conclude that

(2.6) Y := lin{en : n ≥ 0}
is a dense subalgebra of X. Consider the rank-one operators

en ⊗ en : f 7→ 〈f, en〉 en :=

(∫ 1

0

f(s)en(s) ds

)
en,

which satisfy
‖en ⊗ en‖ ≤ 2

and

(2.7) (en ⊗ en) em = δnmem

for all n, m ≥ 0. They can be used to define, for t > 0, the operators

(2.8) T (t) :=

∞∑
n=0

e−π2n2t · en ⊗ en.

For f ∈ C[0, 1] and s ∈ [0, 1], this means that(
T (t)f

)
(s) =

∫ 1

0

kt(s, r)f(r) dr,(2.9)

where

kt(s, r) : = 1 + 2
∑
n∈N

e−π2n2t cos(πns) · cos(πnr).

The Jacobi identity

wt(s) :=
1√
4πt

∑
n∈Z

e−
(s+2n)2

4t =
1

2
+
∑
n∈N

e−π2n2t cos(πns)

(see [SD80, Kap. I, Satz 10.4]) and various trigonometric relations imply that for
each t > 0, the kernel kt(·, ·) satisfies

kt(s, r) = wt(s + r) + wt(s− r).

Hence, kt(·, ·) is a positive, continuous function on [0, 1]2, and we obtain

‖T (t)‖ = ‖T (t)1 ‖ = sup
s∈[0,1]

∫ 1

0

kt(s, r) dr = 1.

Using the identity (2.7), one easily verifies that on the one-dimensional subspaces
generated by en, n ≥ 0, the operators T (t) satisfy the semigroup law (FE), which
by continuity then holds on all of X. Similarly, the strong continuity holds on Y
and hence, by Proposition I.5.3, on X.
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These considerations already prove most of the following result.

Proposition. The above operators T (t), t ≥ 0, with T (0) = I form a strongly
continuous semigroup on X := C[0, 1] whose generator is given by

with domain
Af = f ′′,

D(A) =
{
f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0

}
.

Proof. It remains only to show that the generator B of (T (t))t≥0 coincides with
A. To this end, we first observe that the subspace Y defined by (2.6) is dense in
X, contained in D(B), and (T (t))t≥0-invariant. Hence, by Proposition 1.7, it is a
core for B. Next, using the definition of T (t) and formula (2.7), it follows that A

and B coincide on Y . Therefore, we obtain that B = A|Y and, in particular, that
B is a restriction of A. From the theory of linear ordinary differential equations
it follows that 1 ∈ ρ(A). Moreover, by Theorem 1.10.(ii), we know that 1 ∈ ρ(B),
and therefore A = B. �

2.13 Diffusion Semigroups (n-dimensional). The following classical example
was one of the main sources for the development of semigroup theory. It describes
heat flow, diffusion processes, or Brownian motion and bears names like heat
semigroup, Gaussian semigroup, or diffusion semigroup. We consider it on X :=
Lp(Rn), 1 ≤ p < ∞, where it is defined explicitly by

(2.10) T (t)f(s) := (4πt)
−n/2

∫
Rn

e
−|s−r|2/4tf(r) dr

for t > 0, s ∈ Rn, and f ∈ X. By putting

µt(s) := (4πt)
−n/2e

−|s|2/4t,

this can be written as
T (t)f(s) = µt ∗ f(s).

Proposition. The above operators T (t), for t > 0 and with T (0) = I, form
a strongly continuous semigroup on Lp(Rn), 1 ≤ p < ∞, and its generator A
coincides with the closure of the Laplace operator

∆f(s) :=

n∑
i=1

∂2

∂s2
i

f(s1, . . . , sn)

defined for every f in the Schwartz space S (Rn) (see Definition VI.5.1).

Proof. The integral defining T (t)f(s) exists for every f ∈ Lp(Rn), since µt ∈
S (Rn). Moreover,

‖T (t)f‖p ≤ ‖µt‖1 · ‖f‖p ≤ ‖f‖p

by Young’s inequality (see [RS75, p. 28]). Hence, each T (t) is a contraction on
Lp. Since S (Rn) is dense in Lp and invariant under T (t), it suffices to study
T (t)|S (Rn). This is done using the Fourier transformation F, which leaves S (Rn)
invariant. By the usual properties of F (see Lemma C.12 or [Rud73, Thm. 7.2])
one obtains

F(µt ∗ f) = F(µt) · F(f)
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for each f ∈ S (Rn). Since

F(µt)(ξ) = e−|ξ|
2t

for ξ ∈ Rn, where |ξ| := (
∑n

i=1
ξ2

i )
1/2 (cf. Example VI.5.3), we see that F trans-

forms (T (t)|S (Rn)
)t≥0 into a multiplication semigroup on S (Rn), which is point-

wise continuous for the usual topology on S (Rn). Moreover, direct computations
as in Lemma 2.9 show that the right derivative at t = 0 is the multiplication op-
erator

Bg(ξ) := −|ξ|2g(ξ)

for ξ ∈ Rn, g ∈ S (Rn). Pulling this information back via the inverse Fourier
transformation shows that (T (t))t≥0 satisfies the semigroup law. Since the topol-
ogy of S (Rn) is finer than the one induced from Lp(Rn), we also obtain strong
continuity on S (Rn), hence on Lp(Rn). Finally, we observe that the inverse
Fourier transformation of the multiplication operator B is the Laplace operator.
Since S (Rn) is dense and (T (t))t≥0-invariant, by Proposition 1.7 we have there-
fore determined the generator A of (T (t))t≥0 on a core of its domain. �

For generalizations of this example we refer to Section VI.5.

2.14 Exercises. (1) Compute the resolvent operators of the generators of the
various translation semigroups on R, R+, or on finite intervals. In particular,
deduce the resolvent representation (2.3). (Hint: Use the integral representation
1.14.) Determine from this the generator and its domain as already found in
Paragraph 2.10 and Paragraph 2.11.

(2) Prove the lemma in Paragraph 2.9 for X := Lp(Ω, µ).

(3) Let X := L∞(R). Show that

(i) a multiplication semigroup on X is strongly continuous if and only if it is
uniformly continuous, and

(ii) the translation (semi) group is not strongly continuous.

Remark that Lotz in [Lot85] showed that a strongly continuous semigroup on a
class of Banach spaces containing all L∞-spaces is necessarily uniformly contin-
uous. See also [Nag86, A-II.3].

(4∗) Consider the translation (semi) group (T (t))t∈R on X := L∞(R) and the
closed, (T (t))t∈R-invariant subspace Y := Cub(R). The quotient operators T (t)/

define a contraction (semi) group on X/Y whose orbits t 7→ T (t)/ are continuous

(differentiable) only if f̂ = 0. Note that in this way we obtained a noncontinuous,
but not pathological, solution of Problem I.3.1. (Hint: See [NP94].)

3. Hille–Yosida Generation Theorems

We now turn to the fundamental problem of semigroup theory, which is to
find arrows in Diagram 1.14 leading from the generator (or its resolvent) to
the semigroup. More precisely, this means that we will discuss the following
problem.

3.1 Problem. Characterize those linear operators that are the generator
of some strongly continuous semigroup.
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a. Generation of Groups and Semigroups

In Theorems 1.4 and 1.10, we already saw that generators
• are necessarily closed operators,
• have dense domain, and
• have their spectrum contained in some proper left half-plane.
These conditions, however, are not sufficient.

3.2 Example. On the space

X :=
{
f ∈ C0(R+) : f continuously differentiable on [0, 1]

}
endowed with the norm

‖f‖ := sup
s∈R+

|f(s)|+ sup
s∈[0,1]

|f ′(s)|,

we consider the operator
(
A,D(A)

)
defined by

Af := f ′ for f ∈ D(A) :=
{
f ∈ C1

0(R+) : f ′ ∈ X
}
.

Then A is closed and densely defined, its resolvent exists for Reλ > 0, and
can be expressed by

(
R(λ,A)f

)
(s) =

∫ ∞

s

e−λ(τ−s)f(τ) dτ for f ∈ X, s ≥ 0

(compare (2.3)). Assume now that A generates a strongly continuous semi-
group

(
T (t)

)
t≥0 on X. For f ∈ D(A) and 0 ≤ s, t we define

ξ(τ) :=
(
T (t− τ)f

)
(s+ τ), 0 ≤ τ ≤ t,

which is a differentiable function. Its derivative satisfies

ξ̇(τ) := −
(
T (t− τ)Af

)
(s+ τ) +

(
T (t− τ)f ′

)
(s+ τ) = 0,

and hence (
T (t)f

)
(s) = ξ(0) = ξ(t) = f(s+ t).

This proves that
(
T (t)

)
t≥0 must be the (left) translation semigroup. The

translation operators, however, do not map X into itself.

This indicates that we need more assumptions on A, and the norm esti-
mates
• ‖R(λ,A)‖ ≤ M

Re λ−w , Reλ > w,

proved in Theorem 1.10.(iii) may serve for this purpose.
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To tackle the above problem, it is helpful to recall the results from the
introductory Sections I.1–I.3 and to think of the semigroup generated by
an operator A as an “exponential function”

t 7→ etA.

3.3 Exponential Formulas. We pursue this idea by recalling the vari-
ous ways by which we can define “exponential functions.” Each of these
formulas and each method will then be checked for a possible generaliza-
tion to infinite-dimensional Banach spaces and, in particular, to unbounded
operators. Here are some more or less promising formulas for “etA.”
Formula (i) As in the matrix case (see Section I.2) we might use the
power series and define

(3.1) etA :=
∞∑

n=0

tn

n!
An.

Comment. For unbounded A, it is unrealistic to expect convergence of
this series. In fact, there exist strongly continuous semigroups such that for
its generator A the series

∞∑
n=0

tn

n!
Anx

converges only for t = 0 or x = 0. See Exercise 3.12.(2).
Formula (ii) As in Section I.3, for uniformly continuous semigroups we
might use the Cauchy integral formula and define

(3.2) etA :=
1

2πi

∫
+∂U

eλtR(λ,A) dλ.

Comment. As already noted, the generator A, hence also its spectrum
σ(A), may be unbounded. Therefore, the path +∂U surrounding σ(A) will
be unbounded, and so we need extra conditions to make the integral con-
verge. See Section 4.a for a class of semigroups for which this approach
does work.
Formula (iii) At least in the one-dimensional case, the formulas

etA = lim
n→∞

(
1 +

t

n
A

)n

= lim
n→∞

(
1− t

n
A

)−n

are well known (indeed Euler used them; see Section VII.3).
Comment. While the first formula again involves powers of the unbounded
operator A and therefore will rarely converge, we can rewrite the second
(using the resolvent operators R(λ,A) := (λ−A)−1) as

(3.3) etA = lim
n→∞

[
n/tR (n/t, A)

]
n.
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This yields a formula involving only powers of bounded operators. It was
Hille’s idea to use this formula and to prove that under appropriate condi-
tions, the limit exists and defines a strongly continuous semigroup (cf. also
Corollary III.5.5).
Formula (iv) Since it is well understood how to define the exponential
function for bounded operators (see Section I.3), one can try to approximate
A by a sequence (An)n∈N of bounded operators and hope that

(3.4) etA := lim
n→∞

etAn

exists and is a strongly continuous semigroup.

Comment. This was Yosida’s idea and will now be examined in detail
in order to obtain strongly continuous semigroups and therefore a general
solution of Problem I.3.1.

We start with an important convergence property for the resolvent under
the assumption that ‖λR(λ,A)‖ remains bounded as λ→∞.

3.4 Lemma. Let
(
A,D(A)

)
be a closed, densely defined operator. Suppose

there exist w ∈ R andM > 0 such that [w,∞) ⊂ ρ(A) and ‖λR(λ,A)‖ ≤M
for all λ ≥ w. Then the following convergence statements hold for λ→∞.

(i) λR(λ,A)x→ x for all x ∈ X.

(ii) λAR(λ,A)x = λR(λ,A)Ax→ Ax for all x ∈ D(A).

Proof. If y ∈ D(A), then λR(λ,A)y = R(λ,A)Ay + y by (1.1) in Chap-
ter IV. This expression converges to y as λ → ∞, since ‖R(λ,A)Ay‖ ≤
M/λ ‖Ay‖. Since ‖λR(λ,A)‖ is uniformly bounded for all λ ≥ w, statement
(i) follows by Proposition A.3. The second statement is then an immediate
consequence of the first one. �

This lemma suggests immediately which bounded operators An should
be chosen to approximate the unbounded operator A. Since for contraction
semigroups the technical details of the subsequent proof become much eas-
ier (and since the general case can then be deduced from this one), we first
give the characterization theorem for generators in this special case.

3.5 Generation Theorem. (Contraction Case, Hille, Yosida, 1948).
For a linear operator

(
A,D(A)

)
on a Banach space X, the following prop-

erties are all equivalent.

(a)
(
A,D(A)

)
generates a strongly continuous contraction semigroup.

(b)
(
A,D(A)

)
is closed, densely defined, and for every λ > 0 one has

λ ∈ ρ(A) and

(3.5) ‖λR(λ,A)‖ ≤ 1.
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(c)
(
A,D(A)

)
is closed, densely defined, and for every λ ∈ C with Reλ >

0 one has λ ∈ ρ(A) and

(3.6) ‖R(λ,A)‖ ≤ 1
Reλ

.

Proof. In view of Theorem 1.4 and Theorem 1.10, it suffices to show
(b) ⇒ (a). To that purpose, we define the so-called Yosida approximants

(3.7) An := nAR(n,A) = n2R(n,A)− nI,

which are bounded operators for each n ∈ N and commute with one an-
other. Consider then the uniformly continuous semigroups given by

(3.8) Tn(t) := etAn , t ≥ 0.

Since An converges to A pointwise on D(A) (by Lemma 3.4.(ii)), we antic-
ipate that the following properties hold.

(i) T (t)x := limn→∞ Tn(t)x exists for each x ∈ X.
(ii)

(
T (t)

)
t≥0 is a strongly continuous semigroup on X.

(iii) This semigroup has generator
(
A,D(A)

)
.

By establishing these statements we will complete the proof.
(i) Each

(
Tn(t)

)
t≥0 is a contraction semigroup, since

‖Tn(t)‖ ≤ e−nte‖n2R(n,A)‖t ≤ e−ntent = 1 for t ≥ 0.

So, again by Proposition A.3, it suffices to prove convergence just on D(A).
By (the vector-valued version of) the fundamental theorem of calculus,
applied to the functions

s 7→ Tm(t− s)Tn(s)x

for 0 ≤ s ≤ t, x ∈ D(A), and m,n ∈ N, and using the mutual commutativ-
ity of the semigroups

(
Tn(t)

)
t≥0 for all n ∈ N, one has

Tn(t)x− Tm(t)x =
∫ t

0

d
ds

(
Tm(t− s)Tn(s)x

)
ds

=
∫ t

0

Tm(t− s)Tn(s)(Anx−Amx) ds.

Accordingly,

(3.9) ‖Tn(t)x− Tm(t)x‖ ≤ t ‖Anx−Amx‖.

By Lemma 3.4.(ii), (Anx)n∈N is a Cauchy sequence for each x ∈ D(A).
Therefore,

(
Tn(t)x

)
n∈N converges uniformly on each interval [0, t0].
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(ii) The pointwise convergence of
(
Tn(t)x

)
n∈N implies that the limit fam-

ily
(
T (t)

)
t≥0 satisfies the functional equation (FE), hence is a semigroup,

and consists of contractions. Moreover, for each x ∈ D(A), the correspond-
ing orbit map

ξ : t 7→ T (t)x, 0 ≤ t ≤ t0,

is the uniform limit of continuous functions (use (3.9)) and so is continuous
itself. This suffices to obtain strong continuity via Proposition I.5.3.

(iii) Denote by
(
B,D(B)

)
the generator of

(
T (t)

)
t≥0 and fix x ∈ D(A).

On each compact interval [0, t0], the functions

ξn : t 7→ Tn(t)x

converge uniformly to ξ(·) by (3.9), while the differentiated functions

ξ̇n : t 7→ Tn(t)Anx

converge uniformly to

η : t 7→ T (t)Ax.

This implies differentiability of ξ with ξ̇(0) = η(0), i.e., D(A) ⊂ D(B) and
Ax = Bx for x ∈ D(A).

Now choose λ > 0. Then λ − A is a bijection from D(A) onto X, since
λ ∈ ρ(A) by assumption. On the other hand, B generates a contraction
semigroup, and so λ ∈ ρ(B) by Theorem 1.10. Hence, λ − B is also a
bijection from D(B) onto X. But we have seen that λ− B coincides with
λ − A on D(A). This is possible only if D(A) = D(B) and A = B (see
Exercise IV.1.21.(5)). �

If a strongly continuous semigroup
(
T (t)

)
t≥0 with generator A satisfies,

for some w ∈ R, an estimate

‖T (t)‖ ≤ ewt for t ≥ 0,

then we can apply the above characterization to the rescaled contraction
semigroup given by

S(t) := e−wtT (t) for t ≥ 0.

Since the generator of
(
S(t)

)
t≥0 is B = A−w (see Paragraph 2.2), Gener-

ation Theorem 3.5 takes the following form.
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3.6 Corollary. Let w ∈ R. For a linear operator
(
A,D(A)

)
on a Banach

space X the following conditions are equivalent.

(a)
(
A,D(A)

)
generates a strongly continuous semigroup

(
T (t)

)
t≥0 sat-

isfying

(3.10) ‖T (t)‖ ≤ ewt for t ≥ 0.

(b)
(
A,D(A)

)
is closed, densely defined, and for each λ > w one has

λ ∈ ρ(A) and

(3.11) ‖(λ− w)R(λ,A)‖ ≤ 1.

(c)
(
A,D(A)

)
is closed, densely defined, and for each λ ∈ C with Reλ >

w one has λ ∈ ρ(A) and

(3.12) ‖R(λ,A)‖ ≤ 1
Reλ− w

.

Semigroups satisfying (3.10) are also called quasicontractive.
Note, by Paragraph 3.11 below, that an operator A generates a strongly

continuous group if and only if both A and −A are generators. Therefore,
we can combine the conditions of the Generation Theorem 3.5 for A and −A
simultaneously and obtain a characterization of generators of contraction
groups, i.e., of groups of isometries.

3.7 Corollary. For a linear operator
(
A,D(A)

)
on a Banach space X the

following properties are equivalent.

(a)
(
A,D(A)

)
generates a strongly continuous group of isometries.

(b)
(
A,D(A)

)
is closed, densely defined, and for every λ ∈ R \ {0} one

has λ ∈ ρ(A) and

(3.13) ‖λR(λ,A)‖ ≤ 1.

(c)
(
A,D(A)

)
is closed, densely defined, and for every λ ∈ C \ iR one

has λ ∈ ρ(A) and

(3.14) ‖R(λ,A)‖ ≤ 1
|Reλ|

.

It is now a pleasant surprise that the characterization of generators of
arbitrary strongly continuous semigroups can be deduced from the above
result for contraction semigroups. However, norm estimates for all powers
of the resolvent are needed.
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3.8 Generation Theorem. (General Case, Feller, Miyadera, Phil-
lips, 1952). Let

(
A,D(A)

)
be a linear operator on a Banach space X

and let w ∈ R, M ≥ 1 be constants. Then the following properties are
equivalent.

(a)
(
A,D(A)

)
generates a strongly continuous semigroup

(
T (t)

)
t≥0 sat-

isfying

(3.15) ‖T (t)‖ ≤Mewt for t ≥ 0.

(b)
(
A,D(A)

)
is closed, densely defined, and for every λ > w one has

λ ∈ ρ(A) and

(3.16)
∥∥[(λ− w)R(λ,A)

]n∥∥ ≤M for all n ∈ N.

(c)
(
A,D(A)

)
is closed, densely defined, and for every λ ∈ C with Reλ >

w one has λ ∈ ρ(A) and

(3.17) ‖R(λ,A)n‖ ≤ M

(Reλ− w)n
for all n ∈ N.

Proof. The implication (a) ⇒ (c) has been proved in Corollary 1.11, while
(c) ⇒ (b) is trivial. To prove (b) ⇒ (a) we use, as for Corollary 3.6, the
rescaling technique from Paragraph 2.2. So, without loss of generality, we
assume that w = 0, i.e.,

‖λnR(λ,A)n‖ ≤M for all λ > 0, n ∈ N.

For every µ > 0, define a new norm on X by

‖x‖µ := sup
n≥0

‖µnR(µ,A)nx‖.

These norms have the following properties.
(i) ‖x‖ ≤ ‖x‖µ ≤M ‖x‖, i.e., they are all equivalent to ‖·‖.
(ii) ‖µR(µ,A)‖µ ≤ 1.
(iii) ‖λR(λ,A)‖µ ≤ 1 for all 0 < λ ≤ µ.
(iv) ‖λnR(λ,A)nx‖ ≤ ‖λnR(λ,A)nx‖µ ≤ ‖x‖µ for all 0 < λ ≤ µ and

n ∈ N.
(v) ‖x‖λ ≤ ‖x‖µ for 0 < λ ≤ µ.

We give the proof only of (iii). Due to the Resolvent Equation IV.1.2, we
have that

y := R(λ,A)x = R(µ,A)x+(µ−λ)R(µ,A)R(λ,A)x = R(µ,A)(x+(µ−λ)y).

This implies, by using (ii), that

‖y‖µ ≤
1
µ
‖x‖µ +

µ− λ

µ
‖y‖µ , whence λ ‖y‖µ ≤ ‖x‖µ .
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On the basis of these properties one can define still another norm by

(3.18) []x[] := sup
µ>0

‖x‖µ ,

which evidently satisfies
(vi) ‖x‖ ≤ []x[] ≤M ‖x‖ and
(vii) []λR(λ,A)[] ≤ 1 for all λ > 0.
Thus, the operator

(
A,D(A)

)
satisfies condition (3.5) for the equivalent

norm []·[] and so, by the Generation Theorem 3.5, generates a []·[]-contraction
semigroup

(
T (t)

)
t≥0. Using (vi) again, we obtain ‖T (t)‖ ≤M. �

3.9 Comment. As a general rule, we point out that for an operator(
A,D(A)

)
to be a generator one needs

• conditions on the location of the spectrum σ(A) in some left half-plane
and

• growth estimates of the form

‖R(λ,A)n‖ ≤ M

(Reλ− w)n

for all powers of the resolvent R(λ,A) in some right half-plane (or on
some semiaxis (w,∞)).

This last condition is rather complicated and can be checked only for
nontrivial examples in the (quasi) contraction case, i.e., only if n = 1 is
sufficient as in Generation Theorem 3.5 and Corollary 3.6.

On the other hand, every strongly continuous semigroup can be rescaled
(see Paragraph I.5.11) to become bounded. For a bounded semigroup, we
can find an equivalent norm making it a contraction semigroup. This does
not help much in concrete examples, since only in rare cases will it be
possible to compute this new norm. However, this fact is extremely helpful
in abstract considerations and will be stated explicitly.

3.10 Lemma. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semigroup

on a Banach space X. Then the norm

|||x||| := sup
t≥0

‖T (t)x‖, x ∈ X,

is equivalent to the original norm on X, and
(
T (t)

)
t≥0 becomes a contrac-

tion semigroup on
(
X, |||·|||

)
.

The proof is left as Exercise 3.12.(1).

3.11 Generators of Groups. This paragraph is devoted to the question
of which operators are generators of strongly continuous groups (see the
explanation following Definition I.5.1). In order to make this more precise
we first adapt Definition 1.2 to this situation.
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Definition. The generator A : D(A) ⊆ X → X of a strongly continuous
group

(
T (t)

)
t∈R on a Banach space X is the operator

Ax := lim
h→0

1
h

(
T (h)x− x

)
defined for every x in its domain

D(A) :=
{
x ∈ X : lim

h→0

1
h

(
T (h)x− x

)
exists

}
.

Given a strongly continuous group
(
T (t)

)
t∈R with generator

(
A,D(A)

)
,

we can define T+(t) := T (t) and T−(t) := T (−t) for t ≥ 0. Then, from the
previous definition, it is clear that

(
T+(t)

)
t≥0 and

(
T−(t)

)
t≥0 are strongly

continuous semigroups with generators A and −A, respectively. Therefore,
if A is the generator of a group, then both A and −A generate strongly
continuous semigroups. The next result shows that the converse of this
statement is also true.

Generation Theorem for Groups. Let w ∈ R and M ≥ 1 be con-
stants. For a linear operator

(
A,D(A)

)
on a Banach space X the following

properties are equivalent.

(a)
(
A,D(A)

)
generates a strongly continuous group

(
T (t)

)
t∈R satisfying

the growth estimate

‖T (t)‖ ≤Mew|t| for t ∈ R.

(b)
(
A,D(A)

)
and

(
−A,D(A)

)
are the generators of strongly continuous

semigroups
(
T+(t)

)
t≥0 and

(
T−(t)

)
t≥0, respectively, which satisfy

‖T+(t)‖, ‖T−(t)‖ ≤Mewt for all t ≥ 0.

(c)
(
A,D(A)

)
is closed, densely defined, and for every λ ∈ R with |λ| > w

one has λ ∈ ρ(A) and∥∥[(|λ| − w)R(λ,A)
]n∥∥ ≤M for all n ∈ N.

(d)
(
A,D(A)

)
is closed, densely defined, and for every λ ∈ C with

|Reλ| > w one has λ ∈ ρ(A) and

(3.19) ‖R(λ,A)n‖ ≤ M(
|Reλ| − w

)
n

for all n ∈ N.

Proof. (a) implies (b) as already mentioned above.
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(b) ⇒ (d). We first recall, by Theorem 1.4, that the generator
(
A,D(A)

)
is closed and densely defined. Moreover, using the assumptions on A, we
obtain from Generation Theorem 3.8 the estimate (3.19) for the case Reλ >
w. In order to verify (3.19) for Reλ < −w, observe that R(−λ,A) =
−R(λ,−A) for all λ ∈ −ρ(A) = ρ(−A). Then, using the conditions on −A,
the required estimate follows as above.

Since the implication (d) ⇒ (c) is trivial, it suffices to prove that (c) ⇒
(a). To this end we first note, by Generation Theorem 3.8, that both A
and −A are generators of strongly continuous semigroups

(
T+(t)

)
t≥0 and(

T−(t)
)
t≥0, respectively, which satisfy ‖T±(t)‖ ≤ Mewt for t ≥ 0. More-

over, the Yosida approximants (cf. (3.7)) A+,n and A−,n of A and −A,
respectively, commute. Since, as in the contractive case (cf. (i)–(iii) in the
proof of Generation Theorem 3.5, p. 74), we have

T+(t)x = lim
n→∞

exp(tA+,n)x and T−(t)x = lim
n→∞

exp(tA−,n)x

for all x ∈ X, we see that
(
T+(t)

)
t≥0 and

(
T−(t)

)
t≥0 commute. Hence, by

what was shown in Paragraph 2.7, the products

U(t) := T+(t)T−(t), t ≥ 0,

define a strongly continuous semigroup with generator C that satisfies

Cx = Ax−Ax = 0

for all x ∈ D(A) ∩D(−A) = D(A) ⊂ D(C). From (1.6) in Lemma 1.3 we
then obtain U(t)x = x for all x ∈ X, i.e., T−(t) = T+(t)−1. Finally, the
operators

T (t) :=
{
T+(t) if t ≥ 0,
T−(−t) if t < 0,

form a one-parameter group
(
T (t)

)
t∈R and satisfy the estimate ‖T (t)‖ ≤

Mew|t|. Since the map R 3 t 7→ T (t) is strongly continuous if and only if it
is strongly continuous at some arbitrary point t0 ∈ R, the group

(
T (t)

)
t∈R

is strongly continuous. This completes the proof. �

The following result is quite useful in order to check whether a given
semigroup can be embedded in a group.

Proposition. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup on a Ba-

nach space X. If there exists some t0 > 0 such that T (t0) is invertible, then(
T (t)

)
t≥0 can be embedded in a group

(
T (t)

)
t∈R on X.
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Proof. First, we show that T (t) is invertible for all t ≥ 0. This follows for
t ∈ [0, t0] from

T (t0) = T (t0 − t)T (t) = T (t)T (t0 − t),

since by assumption, T (t0) is bijective. If t ≥ t0, we write t = nt0 + s for
n ∈ N, s ∈ [0, t0) and conclude from

T (t) = T (t0)nT (s)

that T (t) is invertible. Hence, we can extend
(
T (t)

)
t≥0 to all of R by

T (t) := T (−t)−1 for t ≤ 0,

thereby obtaining a group
(
T (t)

)
t∈R. Since the map R 3 t 7→ T (t) is

strongly continuous if and only if it is strongly continuous at some arbitrary
point, the proof is complete. �

3.12 Exercises. (1) Prove Lemma 3.10 concerning the renorming of bounded
semigroups.

(2) For a strongly continuous semigroup (T (t))t≥0 with generator A on a Banach
space X, we call a vector x ∈ D(A∞) entire if the power series

(3.20)

∞∑
n=0

tn

n!
Anx

converges for every t ∈ R. Show the following properties.

(i) If x is an entire vector of (T (t))t≥0, then T (t)x is given by (3.20) for every
t ≥ 0.

(ii) If (T (t))t≥0 is nilpotent, then the set of entire vectors consists of x = 0
only.

(iii) If (T (t))t∈R is a strongly continuous group, then the set of entire vectors
is dense in X. Moreover, if x is an entire vector of (T (t))t∈R, then T (t)x is
given by (i) for every t ∈ R. (Hint: For given x ∈ X consider the sequence

xn := (n/2π)
1/2
∫∞
−∞ e

−ns2/2T (s)x ds. See also [Gel39].)

(3) Let Mq be a multiplication operator on X := C0(R+) and define the operator

A :=
(

Mq Mq

0 Mq

)
with domain D(A) := D(Mq)×D(Mq) on X := X ×X.

(i) If q(s) := is, s ≥ 0, then A satisfies ‖R(λ, A)‖ ≤ 2/λ for λ > 0, but is not
the generator of a strongly continuous semigroup on X.

(ii) Find an unbounded function q on R+ such that A becomes a generator.

(iii) Find necessary and sufficient conditions on q such that A becomes a gen-
erator on X. (Hint: Compare Exercise 4.12.(7).)

(4) Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space X. Show
that (T (t))t≥0 can be embedded in a group (T (t))t∈R if there exists t0 > 0 such
that I − T (t0) is compact. (Hint: By the proposition in Paragraph 3.11 and the
compactness assumption, it suffices to show that 0 is not an eigenvalue of T (t0).)
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b. Dissipative Operators and Contraction Semigroups

Due to their importance, we now return to the study of contraction semi-
groups and look for a characterization of their generator that does not
require explicit knowledge of the resolvent. The following is a key notion
towards this goal.

3.13 Definition. A linear operator
(
A,D(A)

)
on a Banach space X is

called dissipative if

(3.21) ‖(λ−A)x‖ ≥ λ ‖x‖

for all λ > 0 and x ∈ D(A).

To familiarize ourselves with these operators we state some of their basic
properties.

3.14 Proposition. For a dissipative operator
(
A,D(A)

)
the following

properties hold.

(i) λ−A is injective for all λ > 0 and

∥∥(λ−A)−1z
∥∥ ≤ 1

λ
‖z‖

for all z in the range rg(λ−A) := (λ−A)D(A).
(ii) λ − A is surjective for some λ > 0 if and only if it is surjective for

each λ > 0. In that case, one has (0,∞) ⊂ ρ(A).
(iii) A is closed if and only if the range rg(λ−A) is closed for some (hence

all) λ > 0.

(iv) If rg(A) ⊆ D(A), e.g., if A is densely defined, then A is closable. Its
closure A is again dissipative and satisfies rg(λ−A) = rg(λ−A) for
all λ > 0.

Proof. (i) is just a reformulation of estimate (3.21).
To show (ii) we assume that (λ0 − A) is surjective for some λ0 > 0.

In combination with (i), this yields λ0 ∈ ρ(A) and ‖R(λ0, A)‖ ≤ 1/λ0.
The series expansion for the resolvent (see Proposition IV.1.3.(i)) yields
(0, 2λ0) ⊂ ρ(A), and the dissipativity of A implies that

‖R(λ,A)‖ ≤ 1
λ

for 0 < λ < 2λ0. Proceeding in this way, we see that λ−A is surjective for
all λ > 0, and therefore (0,∞) ⊂ ρ(A).
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(iii) The operator A is closed if and only if λ−A is closed for some (hence
all) λ > 0. This is again equivalent to

(λ−A)−1 : rg(λ−A) → D(A)

being closed. By (i), this operator is bounded. Hence, by Theorem B.6, it
is closed if and only if its domain, i.e., rg(λ−A), is closed.

(iv) Take a sequence (xn)n∈N ⊂ D(A) satisfying xn → 0 and Axn → y.
By Proposition B.4, we have to show that y = 0. The inequality (3.21)
implies that

‖λ(λ−A)xn + (λ−A)w‖ ≥ λ ‖λxn + w‖

for every w ∈ D(A) and all λ > 0. Passing to the limit as n→∞ yields

‖−λy + (λ−A)w‖ ≥ λ ‖w‖, and hence
∥∥∥−y + w − 1

λ
Aw
∥∥∥ ≥ ‖w‖.

For λ→∞ we obtain that

‖−y + w‖ ≥ ‖w‖,

and by choosing w from the domain D(A) arbitrarily close to y ∈ rg(A),
we see that

0 ≥ ‖y‖.
Hence y = 0.

In order to verify that A is dissipative, take x ∈ D
(
A
)
. By definition of

the closure of a linear operator, there exists a sequence (xn)n∈N ⊂ D(A)
satisfying xn → x and Axn → Ax when n→∞. Since A is dissipative and
the norm is continuous, this implies that ‖(λ−A)x‖ ≥ λ‖x‖ for all λ > 0.
Hence A is dissipative. Finally, observe that the range rg(λ − A) is dense
in rg

(
λ−A

)
. Since by assertion (iii) rg

(
λ−A

)
is closed in X, we obtain

the final assertion in (iv). �

From the resolvent estimate (3.5) in Generation Theorem 3.5, it is evident
that the generator of a contraction semigroup satisfies the estimate (3.21),
and hence is dissipative. On the other hand, many operators can be shown
directly to be dissipative and densely defined. We therefore reformulate
Generation Theorem 3.5 in such a way as to single out the property that
ensures that a densely defined, dissipative operator is a generator.

3.15 Theorem. (Lumer, Phillips, 1961). For a densely defined, dissi-
pative operator

(
A,D(A)

)
on a Banach space X the following statements

are equivalent.

(a) The closure A of A generates a contraction semigroup.

(b) rg(λ−A) is dense in X for some (hence all) λ > 0.

Proof. (a) ⇒ (b). Generation Theorem 3.5 implies that rg(λ − A) = X
for all λ > 0. Since rg(λ − A) = rg(λ−A), by Proposition 3.14.(iv), we
obtain (b).
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(b) ⇒ (a). By the same argument, the density of the range rg(λ − A)
implies that (λ−A) is surjective. Proposition 3.14.(ii) shows that (0,∞) ⊂
ρ(A), and dissipativity of A implies the estimate∥∥R(λ,A)

∥∥ ≤ 1
λ

for λ > 0.

This was required in Generation Theorem 3.5 to assure that A generated
a contraction semigroup. �

The above theorem gains its significance when viewed in the context of
the abstract Cauchy problem associated to an operator A (see Section 6).

3.16 Remark. Assume that the operator A is known to be closed, densely
defined, and dissipative. Then Theorem 3.15 in combination with Proposi-
tion 6.2 below yields the following fact.

In order to solve the (time-dependent) initial value problem

(ACP) ẋ(t) = Ax(t), x(0) = x

for all x ∈ D(A), it is sufficient to solve the (stationary) resolvent equa-
tion

(RE) x−Ax = y

for all y in some dense subset in the Banach space X.

In many examples (RE) can be solved explicitly while (ACP) cannot, cf.
Paragraph 3.29 or Section VI.6.

The following result, in combination with the characterization of dissi-
pativity in Proposition 3.23 below, gives an even simpler condition for an
operator to generate a contraction semigroup.

3.17 Corollary. Let
(
A,D(A)

)
be a densely defined operator on a Banach

space X. If both A and its adjoint A′ are dissipative, then the closure A of
A generates a contraction semigroup on X.

Proof. By the Lumer–Phillips Theorem 3.15, it suffices to show that
the range rg(I − A) is dense in X. By way of contradiction, assume that
rg(I −A) 6= X. By the Hahn–Banach theorem there exists 0 6= x′ ∈ X ′

such that 〈
(I −A)x, x′

〉
= 0 for all x ∈ D(A).

It follows that x′ ∈ D(A′) and〈
x, (I −A′)x′

〉
= 0 for all x ∈ D(A).

Since D(A) is dense in X, we conclude that (I − A′)x′ = 0, thereby con-
tradicting Proposition 3.14.(i). �
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At this point we insert various considerations emphasizing the density of the
domain, which up to now was a more or less standard assumption in our results.
In the next two corollaries we show how dissipativity can be used to get around
this hypothesis. However, based on the properties stated in Proposition 3.14, we
assume that the dissipative operator A is such that λ− A is surjective for some
λ > 0. Hence (0,∞) ⊂ ρ(A).

3.18 Corollary. Let (A, D(A)) be a dissipative operator on the Banach space
X such that λ − A is surjective for some λ > 0. Then the part A| of A in the

subspace X0 := D(A) is densely defined and generates a contraction semigroup
in X0.

Proof. We recall from Definition 2.3 that

A|x := Ax

for x ∈ D(A|) := {x ∈ D(A) : Ax ∈ X0} = R(λ, A)X0. Since R(λ, A) exists
for λ > 0, this implies that R(λ, A)| = R(λ, A|). Hence (0,∞) ⊂ ρ(A|). Due
to the Generation Theorem 3.5, it remains to show that D(A|) is dense in X0.
Take x ∈ D(A) and set xn := nR(n, A)x. Then xn ∈ D(A) and limn→∞ xn =
limn→∞ R(n, A)Ax + x = x, since ‖R(n, A)‖ ≤ 1/n (see Proposition 3.14.(i) and
Lemma 3.4). Therefore, the operators nR(n, A) converge pointwise on D(A) to
the identity. Since ‖nR(n, A)‖ ≤ 1 for all n ∈ N, we obtain convergence of

yn := nR(n, A)y → y

for all y ∈ X0. Since each yn is in D(A|), the density of D(A|) in X0 is proved. �

We now give two rather typical examples for dissipative operators with non-
dense domains, one concrete and one abstract.

3.19 Examples. (i) Let X := C[0, 1] and consider the operator

with domain
Af := −f ′

D(A) :=
{
f ∈ C1[0, 1] : f(0) = 0

}
.

It is a closed operator whose domain is not dense. However, it is dissipative, since
its resolvent can be computed explicitly as

R(λ, A)f(t) :=

∫ t

0

e−λ(t−s)f(s) ds

for t ∈ [0, 1], f ∈ C[0, 1]. Moreover,

‖R(λ, A)‖ ≤ 1

λ

for all λ > 0. Therefore, (A, D(A)) is dissipative.
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Let X0 := D(A) = {f ∈ C[0, 1] : f(0) = 0}, and consider the part A| of A in
X0, that is

A|f = −f ′,

D(A|) =
{
f ∈ C1[0, 1] : f(0) = f ′(0) = 0

}
.

By the above corollary, this operator generates a semigroup on X0. In fact, this
semigroup (T0(t))t≥0 can be identified as the nilpotent right translation semi-
group, cf. Paragraph I.4.17, given by

T0(t)f(s) :=
{

f(s− t) for t ≤ s,
0 for t > s.

Observe that the same definition applied to an arbitrary function f ∈ C[0, 1]
does not yield necessarily a continuous function again. Therefore, the semigroup
(T0(t))t≥0 does not extend to the space C[0, 1].

(ii) Consider a strongly continuous contraction semigroup (T (t))t≥0 on a Banach
space X. Its generator A is dissipative with (0,∞) ⊂ ρ(A). The same holds for its
adjoint A′, since R(λ, A′) = R(λ, A)′ and ‖R(λ, A′)‖ = ‖R(λ, A)‖ for all λ > 0.
The domain D(A′) of the adjoint is not dense in X ′ in general (see the example in

Paragraph 2.6). However, taking the part of A′ in X� := D(A′) ⊂ X ′, we obtain
the generator of a contraction semigroup (given by the restrictions of T (t)′ to
X�; see Paragraph 2.6 on sun dual semigroups).

In the next corollary we show that the phenomenon discussed in Corollary 3.18
and Example 3.19 cannot occur in reflexive Banach spaces.

3.20 Corollary. Let (A, D(A)) be a dissipative operator on a reflexive Banach
space such that λ−A is surjective for some λ > 0. Then A is densely defined and
generates a contraction semigroup.

Proof. We only have to show the density of D(A). Take x ∈ X and define
xn := nR(n, A)x ∈ D(A). The element y := R(1, A)x also belongs to D(A).
Moreover, by the proof of Corollary 3.18 the operators nR(n, A) converge towards

the identity pointwise on X0 := D(A). It follows that

yn := R(1, A)xn = nR(n, A)R(1, A)x → y for n →∞.

Since X is reflexive and {xn : n ∈ N} is bounded, there exists a subsequence, still
denoted by (xn)n∈N, that converges weakly to some z ∈ X. Since xn ∈ D(A),

Proposition A.1.(i) implies that z ∈ D(A). On the other hand, the elements xn =
(1−A)yn converge weakly to z, so the weak closedness of A (see Definition B.1)

implies that y ∈ D(A) and x = (1−A)y = z ∈ D(A). �

In Corollary 3.18 and Corollary 3.20, we considered not necessarily densely
defined operators and showed that dissipativity and the range condition rg(λ −
A) = X for some λ > 0 imply certain generation properties. It is now a direct
consequence of the renorming trick used in the proof of Generation Theorem 3.8
that these results also hold for all operators satisfying the Hille–Yosida resolvent
estimates (3.16). We state this extension of Generation Theorem 3.8.
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3.21 Corollary. Let w ∈ R and (A, D(A)) be an operator on a Banach space X.
Suppose that (w,∞) ⊂ ρ(A) and

(3.22) ‖R(λ, A)n‖ ≤ M

(λ− w)n

for all n ∈ N, λ > w and some M ≥ 1. Then the part A| of A in X0 := D(A)

generates a strongly continuous semigroup (T0(t))t≥0 satisfying ‖T0(t)‖ ≤ Mewt

for all t ≥ 0. If in addition the Banach space X is reflexive, then X0 = X.

Proof. As in many previous cases we may assume that w = 0. Then the renorm-
ing procedure (3.18) from the proof of the implication (b) ⇒ (a) in Generation
Theorem 3.8 yields an equivalent norm for which A a dissipative operator. The
assertions then follow from Corollary 3.18 (after returning to the original norm)
and, in the reflexive case, from Corollary 3.20. �

It is sometimes convenient to use the following terminology.

3.22 Definition. Operators satisfying the assumptions of Corollary 3.21 and, in
particular, the resolvent estimate (3.22) are called Hille–Yosida operators.

Observe that Corollary 3.21 states that Hille–Yosida operators satisfy all as-
sumptions of the Hille–Yosida Generation Theorem 3.8 on the closure of their
domains. Moreover, the Banach space X can always be identified with a closed
subspace of the extrapolated Favard space F0. See Section 5.b and Exercise 5.23.
(3).

We now return to dissipative operators, which represent, up to renorm-
ing, the most general case. When introducing them we had aimed for an
easy (or at least more direct) way to characterizing generators. However,
up to now, the only way to arrive at the norm inequality (3.21) was explicit
computation of the resolvent and then deducing the norm estimate

‖R(λ,A)‖ ≤ 1
λ

for λ > 0.

This was done in Example 3.19.(i). Fortunately, there is a simpler method
that works particularly well in concrete function spaces such as C0(Ω) or
Lp(µ).

To introduce this method we start with a Banach space X and its dual
space X ′. By the Hahn–Banach theorem, for every x ∈ X there exists
x′ ∈ X ′ such that

〈x, x′〉 = ‖x‖2 = ‖x′‖2.

For every x ∈ X, the following set, called its duality set ,

(3.23) J(x) :=
{
x′ ∈ X ′ : 〈x, x′〉 = ‖x‖2 = ‖x′‖2

}
,

is nonempty. Such sets allow a new characterization of dissipativity.
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3.23 Proposition. An operator
(
A,D(A)

)
is dissipative if and only if for

every x ∈ D(A) there exists j(x) ∈ J(x) such that

(3.24) Re 〈Ax, j(x)〉 ≤ 0.

If A is the generator of a strongly continuous contraction semigroup, then
(3.24) holds for all x ∈ D(A) and arbitrary x′ ∈ J(x).

Proof. Assume (3.24) is satisfied for x ∈ D(A), ‖x‖ = 1, and some j(x) ∈
J(x). Then 〈x, j(x)〉 = ‖j(x)‖2 = 1 and

‖λx−Ax‖ ≥ | 〈λx−Ax, j(x)〉 |
≥ Re 〈λx−Ax, j(x)〉 ≥ λ

for all λ > 0. This proves one implication.
To show the converse, we take x ∈ D(A), ‖x‖ = 1, and assume that

‖λx−Ax‖ ≥ λ for all λ > 0. Choose y′λ ∈ J(λx − Ax) and consider the
normalized elements

z′λ :=
y′λ
‖y′λ‖

.

Then the inequalities

λ ≤ ‖λx−Ax‖ = 〈λx−Ax, z′λ〉
= λRe 〈x, z′λ〉 − Re 〈Ax, z′λ〉
≤ min

{
λ− Re 〈Ax, z′λ〉 , λRe 〈x, z′λ〉+ ‖Ax‖

}
are valid for each λ > 0. This yields

Re 〈Ax, z′λ〉 ≤ 0 and 1− 1
λ
‖Ax‖ ≤ Re 〈x, z′λ〉 .

Let z′ be a weak∗ accumulation point of z′λ as λ→∞. Then

‖z′‖ ≤ 1, Re 〈Ax, z′〉 ≤ 0, and Re 〈x, z′〉 ≥ 1.

Combining these facts, it follows that z′ belongs to J(x) and satisfies (3.24).
Finally, assume that A generates a contraction semigroup

(
T (t)

)
t≥0 on

X. Then, for every x ∈ D(A) and arbitrary x′ ∈ J(x), we have

Re 〈Ax, x′〉 = lim
h↓0

(Re 〈T (h)x, x′〉
h

− Re 〈x, x′〉
h

)
≤ lim

h↓0

(‖T (h)x‖ · ‖x′‖
h

− ‖x‖2

h

)
≤ 0.

This completes the proof. �
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Using the previous results we easily arrive at the following generaliza-
tion of the characterization of unitary groups on Hilbert spaces from Para-
graph I.3.15. Its discovery by Stone was one of the major steps towards
the construction of the exponential function in infinite dimensions, hence
towards the solution of Problem I.3.8; cf. Chapter VII.

3.24 Theorem. (Stone, 1932). Let
(
A,D(A)

)
be a densely defined op-

erator on a Hilbert space H. Then A generates a unitary group
(
T (t)

)
t∈R

on H if and only if A is skew-adjoint , i.e., A∗ = −A.

Proof. First, assume that A generates a unitary group
(
T (t)

)
t∈R. By

Paragraph 3.11, we have

T (t)∗ = T (t)−1 = T (−t) for all t ∈ R.

Moreover, by (the Hilbert space version of) Paragraph 2.6 on sun dual
semigroups, the generator of

(
T (t)∗

)
t∈R is given by A∗. This implies that

A∗ = −A.
On the other hand, if A∗ = −A, then we conclude from

(Ax |x) = (x |A∗x) = −(x |Ax) = −(Ax |x) for all x ∈ D(A) = D(A∗)

that (Ax |x) ∈ iR. Combining Proposition 3.23 with the identification of
the duality set as J(x) = {x} (see Exercise 3.25.(i) below), this shows
that both ±A are dissipative and closed. From Corollary 3.17 and the
characterization of group generators in Paragraph 3.11, it follows that the
operator A generates a contraction group

(
T (t)

)
t∈R. Since T (t)−1 = T (−t),

we conclude that each T (t) is a surjective isometry and therefore unitary
(see [Ped89, Sec. 3.2.15]). �

3.25 Exercise. Prove the following statements for a Hilbert space H.

(i) For every x ∈ H, one has J(x) = {x}.
(ii) If A is a normal operator on H, then A is a generator of a strongly contin-

uous semigroup if and only if

s(A) < ∞.

(iii) Prove Stone’s theorem by arguing via multiplication semigroups.

(Hint: For (ii) and (iii) use the Spectral Theorem I.4.9 and the results of Para-

graph 3.11.)

c. More Examples

We close this section with a rather long discussion of all of these notions and
results for concrete examples. We begin by identifying the sets J(x) for some
standard function spaces.
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3.26 Examples. (i) Consider X := C0(Ω), Ω locally compact. For 0 6= f ∈ X,
the set J(f) ⊂ X ′ contains (multiples of) all point measures supported by those
points s0 ∈ Ω where |f | reaches its maximum. More precisely,

(3.25)
{
f(s0) · δs0 : s0 ∈ Ω and |f(s0)| = ‖f‖

}
⊂ J(f).

(ii) Let X := Lp(Ω, µ) for 1 ≤ p < ∞, and 0 6= f ∈ Lp(Ω, µ). Then

ϕ ∈ J(f) ⊂ Lq(Ω, µ), 1/p + 1/q = 1,

where ϕ is defined by

(3.26) ϕ(s) :=
{

f(s) · |f(s)|p−2 · ‖f‖2−p if f(s) 6= 0,
0 otherwise.

Note that for the reflexive Lp-spaces, as for every Banach space with a strictly
convex dual, the sets J(f) are singletons (see [Bea82]). Hence, for 1 < p < ∞,
one has J(f) = {ϕ}, while for p = 1 every function ϕ ∈ L∞(Ω, µ) satisfying

(3.27) ‖ϕ‖∞ ≤ ‖f‖1 and ϕ(s) |f(s)| = f(s) ‖f‖1 if f(s) 6= 0

belongs to J(f).

(iii) It is easy, but important, to state the result for Hilbert spaces H. After the
canonical identification of H with its dual H ′, the duality set of x ∈ H is

(3.28) J(x) = {x};

cf. Exercise 3.25.(i). Hence, a linear operator on H is dissipative if and only if

(3.29) Re(Ax |x) ≤ 0

for all x ∈ D(A).

These examples suggest that dissipativity for concrete operators on such func-
tion spaces can be verified via the inequality (3.24). In the following examples
we do this and establish the dissipativity and generation property for various
operators. We start with a concrete version of Theorem 3.24.

3.27 Example. (Self-Adjoint Operators). On the Hilbert space H := L2(Ω, µ)
consider a multiplication operator A := Mq for some (measurable) function q :
Ω → C. Since its adjoint is A∗ = Mq, this operator is self-adjoint if and only if q
is real-valued. In this case, it follows by Theorem 3.24 that the group (Tiq(t))t∈R
generated by Miq is unitary.

However, this can be seen more directly by inspection of the corresponding
multiplication group (Tiq(t))t∈R, for which we have

Tiq(t)
∗ = Tiq(t) = T−iq(t) = Tiq(−t) for all t ∈ R.

It is this argument for multiplication operators and semigroups that can be used
to give a simple proof of Stone’s Theorem 3.24. In fact, an application of the
Spectral Theorem I.4.9 transforms the unitary group (T (t))t∈R and its (skew-
adjoint) generator A on an arbitrary Hilbert space into multiplication operators
on some L2-space. See Exercise 3.25.(iii).
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The same argument, i.e., passing from a self-adjoint operator to a (real-valued)
multiplication operator, yields the following characterization of self-adjoint semi-
groups.

Proposition. A self-adjoint operator (A, D(A)) on a Hilbert space H generates
a strongly continuous semigroup (of self-adjoint operators) if and only if it is
bounded above, i.e., there exists w ∈ R such that

(Ax |x) ≤ w ‖x‖2 for all x ∈ D(A).

Proof. It suffices to consider the multiplication operator Mq that is isomorphic,
via the Spectral Theorem I.4.9, to A. Then the boundedness condition (Ax |x) ≤
w ‖x‖2 for all x ∈ D(A) means that the real-valued function q satisfies

ess sup
s∈Ω

Re q(s) ≤ w.

This, however, is exactly what is needed for Mq to generate a semigroup (see
Propositions I.4.11 and I.4.12). �

3.28 First-Order Differential Operators and Flows. We begin by consider-
ing a continuously differentiable vector field F : Rn → Rn satisfying the estimate
sups∈Rn ‖DF (s)‖ < ∞ for the derivative DF (s) of F at s ∈ R. To this vector
field we associate the following operator on the space X := C0(Rn).

Definition 1. The first-order differential operator on C0(Rn) corresponding to
the vector field F : Rn → Rn is

Af(s) : = 〈grad f(s), F (s)〉

=

n∑
i=1

Fi(s)
∂f

∂si
(s)

for f ∈ C1
c(Rn) := {f ∈ C1(Rn) : f has compact support} and s ∈ Rn.

Using Example 3.26.(i) and the fact that ∂f(s0)/∂si = 0 if |f(s0)| = ‖f‖, it is
immediate that A is dissipative. However, in order to show that the closure of
A is a generator, there is a natural and explicit choice for what the semigroup
generated by A should be. By writing it down, one simply checks that its generator
is the closure of A.

Since F is globally Lipschitz, it follows from standard results that there exists
a continuous flow Φ : R × Rn → Rn, i.e., Φ is continuous with Φ(t + r, s) =
Φ(t, Φ(r, s)) and Φ(0, s) = s for every r, t ∈ R and s ∈ Rn, which solves the
differential equation

∂

∂t
Φ(t, s) = F

(
Φ(t, s)

)
for all t ∈ R, s ∈ Rn (see [Ama90, Thm. 10.3]). To such a flow we associate a
one-parameter group of linear operators on C0(Rn) as follows.

Definition 2. The group defined by the operators

T (t)f(s) := f
(
Φ(t, s)

)
for f ∈ C0(Rn), s ∈ Rn and t ∈ R, is called the group induced by the flow Φ on
the Banach space C0(Rn).
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The group property and the strong continuity follow immediately from the
corresponding properties of the flow; we refer to Exercise 3.31.(1) for a closer
look at the relations between (nonlinear) semiflows and (linear) semigroups. We
now determine the generator of (T (t))t∈R.

Proposition. The generator of the group (T (t))t∈R on C0(Rn) is the closure of
the first-order differential operator

with domain
Af(s) := 〈grad f(s), F (s)〉

D(A) := C1
c(Rn).

Proof. Let (B, D(B)) denote the generator of (T (t))t∈R. For f ∈ C1
c(Rn) con-

sider g := f − Af ∈ Cc(Rn) and compute the resolvent using the integral repre-
sentation (1.13) in Chapter II. This yields

R(1, B)g(s) =

∫ ∞

0

e−tf
(
Φ(t, s)

)
dt−

∫ ∞

0

e−t
〈
grad f

(
Φ(t, s)

)
, F
(
Φ(t, s)

)〉
dt

= f(s)

after an integration by parts. Accordingly, C1
c(Rn) ⊂ D(B) and A ⊂ B. On the

other hand, C1
c(Rn) is dense in C0(Rn) and invariant under the group (T (t))t∈R

induced by the flow. So, C1
c(Rn) is a core by Proposition 1.7, and the assertion

is proved. �

For analogous results on first-order differential operators on bounded domains
Ω ⊂ Rn, we refer to [Ulm92].

3.29 Delay Differential Operators. On the space X := C[−1, 0], consider the
operator

with domain
Af := f ′

D(A) :=
{
f ∈ C1[−1, 0] : f ′(0) = Lf

}
,

where L is a continuous linear form on C[−1, 0]. This can be rewritten as

D(A) = ker ϕ,

where ϕ is the linear form on C1[−1, 0] defined by

C1[−1, 0] 3 f 7→ f ′(0)− Lf ∈ C.

Since this functional is bounded on the Banach space C1[−1, 0] but unbounded for
the sup-norm, we deduce that D(A) is dense in C[−1, 0] and closed in C1[−1, 0];
cf. Proposition B.5.

Next, we show that the rescaled operator A−‖L‖ ·I is dissipative. To this end,

take f ∈ D(A). As seen in Example 3.26.(i), the linear form f(s0) δs0 belongs
to J(f) if |f(s0)| = ‖f‖ for some s0 ∈ [−1, 0]. This means that A − ‖L‖ I is
dissipative, provided that

(3.30) Re
〈
f ′ − ‖L‖ f, f(s0) δs0

〉
≤ 0 or Re f(s0)f

′(s0) ≤ ‖L‖ · ‖f‖2 .

In the case −1 < s0 < 0 we have f ′(s0) = 0, so that (3.30) certainly holds.

The same is true if s0 = −1, since then 2Re f(−1)f ′(−1) = (f · f)′(−1) ≤ 0. It
remains to consider the case where s0 = 0. Here, we use f ′(0) = Lf for f ∈ D(A)
to obtain

Re f(0)f ′(0) = Re f(0)Lf ≤ ‖f‖ · ‖L‖ · ‖f‖.
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So, we are now well prepared to apply Theorem 3.15 to conclude that A is a
generator.

Proposition. Let L ∈ C[−1, 0]′. The delay differential operator

Af := f ′ with D(A) :=
{
f ∈ C1[−1, 0] : f ′(0) = Lf

}
on the Banach space C[−1, 0] generates a strongly continuous semigroup (T (t))t≥0

satisfying

‖T (t)‖ ≤ e‖L‖t for t ≥ 0.

Proof. By the rescaling technique, the assertion follows from Theorem 3.15 and
the above consideration, provided that λ−A is surjective for some λ > ‖L‖. This
means we have to show that for every g ∈ C[−1, 0] there exists f ∈ C1[−1, 0]
satisfying both

λf − f ′ = g

and
f ′(0) = Lf, i.e., f ∈ D(A).

The first equation has

f(s) := c eλs −
∫ s

0

eλ(s−τ)g(τ) dτ

=: c ελ(s)− h(s), s ∈ [−1, 0],

as a solution for every constant c ∈ C. If λ > ‖L‖, then we can choose this
constant as

c :=
g(0)− Lh

λ− Lελ

in order to obtain f ∈ D(A). �

The importance (and name) of this operator stems from the fact that the
semigroup it generates solves a delay differential equation of the form{

u̇(t) = Lut for t ≥ 0,

u(s) = f(s) for −1 ≤ s ≤ 0,

where f is an initial function from C[−1, 0]. Here, ut ∈ C[−1, 0] is defined by
ut(s) := u(t + s) for s ∈ [−1, 0]. In Section VI.6 we will return to the study of
such equations and show how they are related to semigroups. We also refer to
Paragraph IV.2.8, where the spectrum of the above delay differential operator is
computed.

3.30 Second-Order Differential Operators. (i) We first reconsider the
operator from Paragraph 2.12, i.e., we take on X := C[0, 1] the operator

Af := f ′′, D(A) :=
{
f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0

}
.

This time, instead of constructing the generated semigroup, we verify the con-
ditions of Theorem 3.15. It is simple to show that (A, D(A)) is densely defined
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and closed. To show dissipativity, we take f ∈ D(A) and s0 ∈ [0, 1] such that
|f(s0)| = ‖f‖. By Example 3.26.(i) we have

f(s0) δs0 ∈ J(f).

Since t 7→ Re f(s0) · f(t) takes its maximum at s0, it follows that

Re
〈
f ′′, f(s0) δ0

〉
=
(
Re f(s0)f

)′′
(s0) ≤ 0,

where we need to use the boundary condition

f ′(0) = f ′(1) = 0

if s0 = 0 or s0 = 1. We finally show that λ2 − A is surjective for λ > 0. Take
g ∈ C[0, 1] and define

k(s) :=
1

2λ

[
eλs

∫ 1

s

e−λτg(τ) dτ − e−λs

∫ 1

s

eλτg(τ) dτ

]
for s ∈ [0, 1].

Then k is in C2[0, 1] and satisfies

λ2k − k′′ = g.

On the other hand, for each a, b ∈ C, the function

ha,b(s) := a eλs + b e−λs, s ∈ [0, 1],

satisfies
λ2ha,b − h′′a,b = 0.

It is now an exercise in linear algebra to determine ã, b̃ ∈ C such that the function

f := k + hã,b̃

satisfies f ′(0) = f ′(1) = 0. Then f ∈ D(A) and λ2f − f ′′ = g, i.e., λ2 − A is
surjective. It follows from Theorem 3.15 that (A, D(A)) generates a contraction
semigroup on C[0, 1].

(ii) The above method is now applied to the same differential operator on a
different space and with different boundary conditions. Let X := L2[0, 1] and

Af := f ′′, D(A) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}.
Then D(A) is dense in X, and for f ∈ D(A) one has

(3.31) (Af | f) =

∫ 1

0

f ′′f ds = f ′f

∣∣∣1
0
−
∫ 1

0

f ′f ′ ds ≤ 0.

By Example 3.26.(iii), this means that A is dissipative on the Hilbert space
L2[0, 1]. As in the previous case, for every g ∈ C2[0, 1] there exists a function
f ∈ C2[0, 1] satisfying f(0) = f(1) = 0 and

λ2f − f ′′ = g,

i.e., rg(λ2 − A) is dense. Again by Theorem 3.15 we conclude that (A, D(A))
generates a contraction semigroup on L2[0, 1].

(iii) As a somewhat less canonical second-order differential operator on X :=
C[0, 1], consider (A, D(A)) defined by

Af(s) := s(1− s)f ′′(s), s ∈ [0, 1],

for f ∈ D(A) :=
{
f ∈ C[0, 1] ∩ C2(0, 1) : lims→0,1 s(1 − s)f ′′(s) = 0

}
. We show

that it generates a strongly continuous contraction semigroup by verifying the
conditions of Theorem 3.15.



Section 3. Hille–Yosida Generation Theorems 95

As above, it is easy to show that (A, D(A)) is closed, densely defined, and
dissipative. Therefore, it suffices to prove that λ−A is surjective for some λ > 0.
Observe first that the functions h0 : s 7→ 1 and h1 : s 7→ s belong to D(A) and
satisfy

(3.32) (λ−A)hi = λhi, i = 0, 1 and λ > 0.

Hence, it suffices to consider the part A0 of A in the closed subspace X0 :=

{f ∈ X : f(0) = f(1) = 0} with domain D(A0) :=
{
f ∈ X0 ∩ C2(0, 1) :

lims→0,1 s(1 − s)f ′′(s) = 0
}
. Then (A0, D(A0)) is still dissipative, but is now

injective. Its inverse R can be computed as

Rf(s) =

∫ 1

0

σ(s, t)
f(t)

t(1− t)
dt,

where

σ(s, t) :=
{

s(t− 1) for 0 ≤ s ≤ t ≤ 1,
t(s− 1) for 0 ≤ t ≤ s ≤ 1,

and f ∈ X0. This shows that 0 ∈ ρ(A0) and hence [0,∞) ⊂ ρ(A0). From (3.32)
we conclude that (0,∞) ⊂ ρ(A). Accordingly, A is a generator.

3.31 Exercises. (1) Let Ω be a compact space and take X := C(Ω). A semiflow
Φ : R+ × Ω → Ω is defined by the properties

(3.33)
Φ(t + r, s) = Φ

(
t, Φ(r, s)

)
,

Φ(0, s) = s

for every s ∈ Ω and r, t ∈ R+. Establish the following facts.

(i) The semiflow Φ is continuous if and only if it induces a strongly continuous
semigroup (T (t))t≥0 on X by the formula

(3.34)
(
T (t)f

)
(s) := f

(
Φ(t, s)

)
for s ∈ Ω, t ≥ 0, f ∈ X.

(ii) The generator (A, D(A)) of (T (t))t≥0 is a derivation (cf. Exercise 1.15.(5)).

(iii∗) Every strongly continuous semigroup (T (t))t≥0 on X that consists of alge-
bra homomorphisms originates, via (3.34), from a continuous semiflow on
Ω. (Hint: See [Nag86, B-II, Thm. 3.4].)

(2) Show that the semigroup (T (t))t≥0 on X := C[−1, 0] generated by the delay
differential operator from Paragraph 3.29 satisfies the translation property , i.e.,

(TP)
(
T (t)f

)
(s) =

{
f(t + s) if t + s ≤ 0,
[T (t + s)f ](0) if t + s > 0,

for all f ∈ X (cf. also Lemma VI.6.2).
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4. Special Classes of Semigroups

Up to now, we have classified semigroups only as being strongly continuous
in the general case or being uniformly continuous as a somewhat uninterest-
ing case. Between these two extreme cases there is room for a wide range
of continuity properties. We now introduce several classes of semigroups
identified by these continuity, or regularity , properties.

We begin with the most important class.

a. Analytic Semigroups

We return to the exponential formula (3.2), but now impose conditions on
the operator A (and its resolvent R(λ,A)) that make the contour integrals
converge even if A and σ(A) are unbounded.

4.1 Definition. A closed linear operator
(
A,D(A)

)
with dense domain

D(A) in a Banach space X is called sectorial (of angle δ) if there exists
0 < δ ≤ π/2 such that the sector

Σπ/2+δ :=
{
λ ∈ C : | arg λ| < π

2
+ δ
} ∖

{0}

is contained in the resolvent set ρ(A), and if for each ε ∈ (0, δ) there exists
Mε ≥ 1 such that

(4.1) ‖R(λ,A)‖ ≤ Mε

|λ|
for all 0 6= λ ∈ Σπ/2+δ−ε.

For sectorial operators and appropriate paths γ, the exponential function
“etA” can now be defined via the Cauchy integral formula.

4.2 Definition. Let
(
A,D(A)

)
be a sectorial operator of angle δ. Define

T (0) := I and operators T (z), for z ∈ Σδ, by

(4.2) T (z) :=
1

2πi

∫
γ

eµzR(µ,A) dµ,

where γ is any piecewise smooth curve in Σπ/2+δ going from ∞ e−i(π/2+δ′)

to ∞ ei(π/2+δ′) for some δ′ ∈ (| arg z|, δ).1

As a first step, we need to justify this definition. In particular, we show
that the essential properties of the analytic functional calculus for bounded
operators (cf. Definition I.3.4) prevail in this situation.

1 See Figure 1.
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4.3 Proposition. Let
(
A,D(A)

)
be a sectorial operator of angle δ. Then,

for all z ∈ Σδ, the maps T (z) are bounded linear operators on X satisfying
the following properties.

(i) ‖T (z)‖ is uniformly bounded for z ∈ Σδ′ if 0 < δ′ < δ.

(ii) The map z 7→ T (z) is analytic in Σδ.

(iii) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.

(iv) The map z 7→ T (z) is strongly continuous in Σδ′ ∪ {0} if 0 < δ′ < δ.

Proof. We first verify that for z ∈ Σδ′ , with δ′ ∈ (0, δ) fixed, the integral
in (4.2) defining T (z) converges uniformly in L(X) with respect to the
operator norm. Since the integrand is analytic in µ ∈ Σπ/2+δ, this integral,
if it exists, is by Cauchy’s integral theorem independent of the particular
choice of γ. Hence, we may choose γ = γr as in Figure 1, i.e., γ consists of
the three parts

(4.3)

γr,1 :
{
−ρe−i(π/2+δ−ε) : −∞ ≤ ρ ≤ −r

}
,

γr,2 :
{
reiα : −(π/2 + δ − ε) ≤ α ≤ (π/2 + δ − ε)

}
,

γr,3 :
{
ρei(π/2+δ−ε) : r ≤ ρ ≤ ∞

}
,

where ε := (δ−δ′)/2 > 0 and r := 1/|z|.
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δ − ε

Figure 1

Then, for µ ∈ γr,3, z ∈ Σδ′ , we can write

µz = |µz| ei(arg µ+arg z),
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where π/2 + ε ≤ argµ+ arg z ≤ 3π
2 − ε. Hence, we have

1
|µz|

Re(µz) = cos(arg µ+ arg z) ≤ cos (π/2 + ε) = − sin ε,

and therefore

(4.4) |eµz| ≤ e−|µz| sin ε

for all z ∈ Σδ′ and µ ∈ γr,3. Similarly, one shows that (4.4) is true for
z ∈ Σδ′ and µ ∈ γr,1, from which we conclude

(4.5) ‖eµzR(µ,A)‖ ≤ e−|µz| sin ε Mε

|µ|
for all z ∈ Σδ′ and µ ∈ γr,1 ∪ γr,3. On the other hand, the estimate

(4.6) ‖eµzR(µ,A)‖ ≤ e
Mε

|µ|
= eMε|z|

holds for all z ∈ Σδ′ and µ ∈ γr,2. Using the estimates (4.5) and (4.6), we
then conclude∥∥∥∫

γr

eµzR(µ,A) dµ
∥∥∥ ≤ 3∑

k=1

∥∥∥∫
γr,k

eµzR(µ,A) dµ
∥∥∥

≤ 2Mε

∫ ∞

1/|z|

1
ρ

e−ρ|z| sin εdρ+ eMε|z| ·
2π
|z|

= 2Mε

∫ ∞

1

1
ρ

e−ρ sin εdρ+ 2πeMε

for all z ∈ Σδ′ . This shows that the integral defining T (z) converges in
L(X) absolutely and uniformly for z ∈ Σδ′ , i.e., the operators T (z) are
well-defined and satisfy (i).

Moreover, from the above considerations, it follows that the map z 7→
T (z) is analytic for z ∈ Σδ = ∪0<δ′<δΣδ′ , which proves (ii).

Next, we verify the semigroup property (iii). To this end, we choose some
constant c > 0 such that γ ∩ γ′ := γ1 ∩ (γ1 + c) = ∅, where γ1 is as in (4.3)
with r = 1. Then, for z1, z2 ∈ Σδ′ , we obtain using the resolvent equation
in Paragraph IV.1.2 and Fubini’s theorem that

T (z1)T (z2) =
1

(2πi)2

∫
γ

∫
γ′

eµz1eλz2R(µ,A)R(λ,A) dλ dµ

=
1

(2πi)2

∫
γ

∫
γ′

eµz1eλz2

λ− µ

(
R(µ,A)−R(λ,A)

)
dλ dµ

=
1

2πi

∫
γ

eµz1R(µ,A)
(

1
2πi

∫
γ′

eλz2

λ− µ
dλ

)
dµ

− 1
2πi

∫
γ′

eλz2R(λ,A)
(

1
2πi

∫
γ

eµz1

λ− µ
dµ

)
dλ.
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By closing the curves γ and γ′ by circles with increasing diameter on the
left and using the fact that γ lies to the left of γ′, Cauchy’s integral theorem
implies

1
2πi

∫
γ

eµz1

λ− µ
dµ = 0 and

1
2πi

∫
γ′

eλz2

λ− µ
dλ = eµz2 .

Thus, we conclude

T (z1)T (z2) =
1

2πi

∫
γ

eµz1eµz2R(µ,A) dµ

= T (z1 + z2)

for all z1, z2 ∈ Σδ′ , which proves (iii).
It remains only to show (iv), i.e., that the map z 7→ T (z) is strongly

continuous in Σδ′ ∪ {0} for every 0 < δ′ < δ. By (i) and (ii), it suffices, as
usual, to verify that

(4.7) lim
Σδ′3z→0

T (z)x− x = 0 for all x ∈ D(A).

We start from estimate (4.4) and Cauchy’s integral formula and obtain for
γ = γ1 that

1
2πi

∫
γ

eµz

µ
dµ = 1

for all z ∈ Σδ′ . Hence, the identityR(µ,A)Ax = µR(µ,A)x−x for x ∈ D(A)
yields

T (z)x− x =
1

2πi

∫
γ

eµz

(
R(µ,A)− 1

µ

)
x dµ

=
1

2πi

∫
γ

eµz

µ
R(µ,A)Axdµ

for all z ∈ Σδ′ . Now, by (4.1) and (4.5), we have∥∥∥∥eµz

µ
R(µ,A)Ax

∥∥∥∥ ≤ Mε

|µ|2
(
1 + e|z|

)
‖Ax‖

for all µ ∈ γ and z ∈ Σδ′ . Using this estimate and since limz→0 eµz = 1,
Lebesgue’s dominated convergence theorem implies

lim
Σδ′3z→0

T (z)x− x =
1

2πi

∫
γ

1
µ
R(µ,A)Axdµ = 0,

where the second equality follows from Cauchy’s integral theorem by closing
the path γ by circles with increasing diameter on the right. This proves
(4.7), and the proof is complete. �
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If in Definition 4.2 we only consider values z ∈ R+, we obtain, by the pre-
vious proposition, a strongly continuous semigroup

(
T (t)

)
t≥0 on X. Having

in mind Proposition I.3.5, the following result determining its generator is
not very surprising.

4.4 Proposition. The generator of the strongly continuous semigroup de-
fined by (4.2) is the sectorial operator

(
A,D(A)

)
.

Proof. Denoting by
(
B,D(B)

)
the generator of

(
T (t)

)
t≥0, it suffices to

show that

(4.8) R(λ,A) = R(λ,B)

for λ = |ω0 | + 2, where ω0 denotes the growth bound of
(
T (t)

)
t≥0, cf.

Definition I.5.6. However, from Theorem 1.10 we know that the resolvent
of B in λ is given as the integral

R(λ,B)x =
∫ ∞

0

e−λtT (t)x dt for all x ∈ X.

Take now t0 > 0 and choose γ = γ1 as in (4.3). Then, by Fubini’s theorem,
we obtain∫ t0

0

e−λtT (t)x dt =
1

2πi

∫
γ

et0(µ−λ) − 1
µ− λ

R(µ,A)x dµ

= R(λ,A)x+
1

2πi

∫
γ

et0(µ−λ)

µ− λ
R(µ,A)x dµ.

Here, we used the formula
∫

γ
R(µ,A)

µ−λ x dµ = −2πiR(λ,A)x, which can be
verified using Cauchy’s integral formula and by closing γ on the right by
circles of diameter converging to ∞. Since Re(µ−λ) ≤ −1, for ε = (δ−δ′)/2
we can estimate∥∥∥∥∫

γ

et0(µ−λ)

µ− λ
R(µ,A)x dµ

∥∥∥∥ ≤ e−t0 · ‖x‖
∫

γ

Mε

|µ− λ| · |µ|
|dµ|

and obtain (4.8) by taking the limit as t0 →∞. �

Combining the two previous results, we see that a sectorial operator
is always the generator of a strongly continuous semigroup that can be
extended analytically to some sector Σδ containing R+. At this point, we
remark that sectorial operators are characterized by the single resolvent
estimate (4.1), while the Hille–Yosida Generation Theorem 3.8 requires
estimates on all powers of the resolvent.
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As we will see later (e.g. in Theorem III.2.10, Corollary IV.3.12, Corol-
lary VI.3.6, and Corollary VI.7.17), semigroups that can be extended ana-
lytically enjoy many nice properties. Therefore, we will give various charac-
terizations of these analytic semigroups. First, we introduce the appropriate
terminology.

4.5 Definition. A family of operators
(
T (z)

)
z∈Σδ∪{0} ⊂ L(X) is called an

analytic semigroup (of angle δ ∈ (0, π/2]) if

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.

(ii) The map z 7→ T (z) is analytic in Σδ.

(iii) limΣδ′3z→0 T (z)x = x for all x ∈ X and 0 < δ′ < δ.

If, in addition,

(iv) ‖T (z)‖ is bounded in Σδ′ for every 0 < δ′ < δ,

we call
(
T (z)

)
z∈Σδ∪{0} a bounded analytic semigroup.

In our next result, we give various equivalences characterizing generators
of bounded analytic semigroups.

4.6 Theorem. For an operator
(
A,D(A)

)
on a Banach space X, the fol-

lowing statements are equivalent.

(a) A generates a bounded analytic semigroup
(
T (z)

)
z∈Σδ∪{0} on X.

(b) There exists ϑ ∈ (0, π/2) such that the operators e±iϑA generate
bounded strongly continuous semigroups on X.

(c) A generates a bounded strongly continuous semigroup
(
T (t)

)
t≥0 on

X such that rg
(
T (t)

)
⊂ D(A) for all t > 0, and

(4.9) M := sup
t>0

‖tAT (t)‖ <∞.

(d) A generates a bounded strongly continuous semigroup
(
T (t)

)
t≥0 on

X, and there exists a constant C > 0 such that

(4.10) ‖R(r + is, A)‖ ≤ C

|s|

for all r > 0 and 0 6= s ∈ R.

(e) A is sectorial.

Proof. We will show that (a) ⇒ (b) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (a).
(a) ⇒ (b). For ϑ ∈ (0, δ), we define Tϑ(t) := T (eiϑt). Then, by Defi-

nition 4.5, the operator family
(
Tϑ(t)

)
t≥0 ⊂ L(X) is a bounded strongly

continuous semigroup on X. In order to determine its generator, we define
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γ : [0,∞) → C by γ(r) := eiϑr. Then, by analyticity and Cauchy’s integral
theorem, we obtain

R(1, A)x =
∫ ∞

0

e−tT (t)x dt =
∫

γ

e−rT (r)x dr

= eiϑ

∫ ∞

0

e−eiϑrTϑ(r)x dr = eiϑR
(
eiϑ, Aϑ

)
x

for all x ∈ X, hence Aϑ = eiϑA. Similarly, it follows that
(
T (e−iϑt)

)
t≥0 is

a bounded strongly continuous semigroup with generator e−iϑA, i.e., (b) is
proved.

(b) ⇒ (d). Let e−iϑ = a− ib for a, b > 0. Then, applying the Hille–Yosida
Generation Theorem 3.8 to the generator e−iϑA, we obtain a constant C̃ ≥
1 such that

‖R(r + is, A)‖ =
∥∥e−iϑR

(
e−iϑ(r + is), e−iϑA

)∥∥
≤ C̃

ar + bs
≤ C

s

for all r, s > 0 and C := C̃/b. For s < 0, we obtain a similar estimate using
the fact that eiϑA is a generator on X.

(d) ⇒ (e). By assumption, A generates a bounded strongly continuous
semigroup, and therefore we have Σπ/2 ⊂ ρ(A) by Theorem 1.10. From
Corollary IV.1.14, we know that

‖R(λ,A)‖ ≥ 1
dist(λ, σ(A))

for all λ ∈ ρ(A).

Therefore, the estimate (4.10) implies iR \ {0} ⊂ ρ(A) and, by continuity
of the resolvent map,

(4.11) ‖R(µ,A)‖ ≤ C

|µ|
for all 0 6= µ ∈ iR.

We now develop the resolvent of A in 0 6= µ ∈ iR in its Taylor series (see
Proposition IV.1.3)

(4.12) R(λ,A) =
∞∑

n=0

(µ− λ)nR(µ,A)n+1.

This series converges uniformly in L(X), provided that |µ−λ|·‖R(µ,A)‖ ≤
q < 1 for some fixed q ∈ (0, 1). In particular, for µ = i Imλ, we see from
(4.11) that this is the case if |Reλ| ≤ q/C | Imλ|. Since this is true for
arbitrary 0 < q < 1, we conclude that{

λ ∈ C : Reλ ≤ 0 and
∣∣∣∣Reλ
Imλ

∣∣∣∣ < 1
C

}
⊂ ρ(A),

and hence Σπ/2+δ ⊆ ρ(A) for δ := arctan 1/C.
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It remains to estimate ‖R(λ,A)‖ for λ ∈ Σπ/2+δ−ε and ε ∈ (0, δ). We
assume first that Reλ > 0. Then, by the Hille–Yosida Generation The-
orem 3.8 for the bounded semigroup

(
T (t)

)
t≥0, there exists a constant

M̃ ≥ 1 such that ‖R(λ,A)‖ ≤ M̃/Re λ. Moreover, by (4.10), we have
‖R(λ,A)‖ ≤ C/| Im λ|; hence there exists M ≥ 1 such that

‖R(λ,A)‖ ≤ M

|λ|
if Reλ > 0.

In the case Reλ ≤ 0, we choose q ∈ (0, 1) such that δ − ε = arctan(q/C).
Then |Re λ/Im λ| ≤ q/C, and from estimate (4.11) combined with the Taylor
expansion (4.12) for µ = i Imλ we obtain

‖R(λ,A)‖ ≤
∞∑

n=0

|Reλ|n Cn+1

| Imλ|n+1

≤ 1
1− q

· C

| Imλ|
≤
√
C2 + 1
1− q

· 1
|λ|
.

(e) ⇒ (c). By Propositions 4.3 and 4.4, A generates a bounded strongly
continuous semigroup

(
T (t)

)
t≥0, and the map

(0,∞) 3 t 7→ T (t)x ∈ X
is differentiable for all x ∈ X. In particular, the limit

lim
h↓0

T (t+ h)− T (t)
h

x = lim
h↓0

T (h)− I

h
T (t)x

exists for all x ∈ X and t > 0; hence rg
(
T (t)

)
⊂ D(A) for t > 0.

Since for t > 0 the operator AT (t) is closed with domain D
(
AT (t)

)
= X,

it is bounded by the closed graph theorem.
To estimate its norm, we use the integral representation (4.2) of T (t)

and obtain, using the closedness of A, the resolvent equation, and Cauchy’s
integral theorem that

AT (t) = A
1

2πi

∫
γ

eµtR(µ,A) dµ

=
1

2πi

∫
γ

eµt
(
µR(µ,A)− I

)
dµ

=
1

2πi

∫
γ

µeµtR(µ,A) dµ.

Since by analyticity we may choose γ = γr for r := 1/t as in the proof of
Proposition 4.3, we conclude, using (4.5) and (4.6), that∥∥∥∥∫

γ

µeµtR(µ,A) dµ
∥∥∥∥ ≤ 2Mε

∫ ∞

1/t

e−ρt sin εdρ+
2πeMε

t

≤ 2Mε

(
1

sin ε
+ πe

)
· 1
t
,

where ε := (δ−δ′)/2 for some δ′ ∈ (0, δ). This proves (c).
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(c) ⇒ (a). We claim first that the map t 7→ T (t)x ∈ X is infinitely many
times differentiable for all t > 0 and x ∈ X. In fact, using the formula
AT (s)y = T (s)Ay, valid for s ≥ 0 and y ∈ D(A) (see Lemma 1.3), one
easily verifies by induction that rg

(
T (t)

)
⊂ D(A∞) = ∩n∈ND(An) and

AnT (t) =
(
AT ( t/n)

)
n

for all t > 0 and n ∈ N. We now fix some ε ∈ (0, t). Then, by Lemma 1.3,

AnT (t)x = AT (t− ε)An−1T (ε)x

= d
dtT (t− ε)An−1T (ε)x

...

= dn

dtnT (t)x

for all x ∈ X. This establishes our claim. Combining this with (4.9) and
the inequality2 n! en ≥ nn, we obtain, while writing T (n)(t) := dn

dtnT (t),

(4.13)
1
n!

∥∥T (n)(t)
∥∥ ≤ (eM

t

)n

for all n ∈ N and t > 0.

Next, we develop T (t) in its Taylor series. To this end, we choose t > 0 and
x ∈ X arbitrary. Then, by Taylor’s theorem, we have for |h| < t and all
n ∈ N

(4.14) T (t+ h)x =
n∑

k=0

hk

k!
T (k)(t)x+

1
n!

∫ t+h

t

(t+ h− s)nT (n+1)(s)x ds.

Denoting the integral term on the right-hand side of (4.14) by Rn+1(t+h)x,
we see from (4.13) that

lim
n→∞

‖Rn+1(t+ h)‖ = 0

uniformly for |h| ≤ q · t/eM for every fixed q ∈ (0, 1). On the other hand,
the series

T (z) :=
∞∑

k=0

(z − t)k

k!
T (k)(t)

converges uniformly for all z ∈ C satisfying |z − t| ≤ q · t/eM; hence it
extends the given semigroup

(
T (t)

)
t≥0 analytically to the sector Σδ for

δ := arctan (1/eM). This proves (ii) of Definition 4.5.

2 Taking logarithms, this inequality can be restated as 1/n

∑n

k=1
log k/n ≥ −1, which

follows from
∫ 1

0
log x dx = −1.
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In order to verify the semigroup property for
(
T (z)

)
z∈Σδ∪{0}, we first

take some t > 0. Then the map Σδ 3 z 7→ T (t)T (z) ∈ L(X) is analytic and
satisfies T (t)T (z) = T (t+ z) for z ≥ 0. Hence, by the identity theorem for
analytic functions, we conclude that T (t)T (z) = T (t + z) for all z ∈ Σδ.
Now fix some z1 ∈ Σδ and consider the map Σδ 3 z 7→ T (z1)T (z) ∈
L(X). This map is analytic as well and satisfies T (z1)T (z) = T (z1 + z)
for z ≥ 0. Using the analyticity again, we obtain the functional equation
T (z1)T (z2) = T (z1 + z2) for all z1, z2 ∈ Σδ.

To verify that z 7→ T (z) is uniformly bounded on the sector Σδ′ for every
0 < δ′ < δ, we choose q ∈ (0, 1) such that δ′ := arctan (q/eM). Then, by
equation (4.14),

‖T (z)‖ =
∥∥∥∥ ∞∑

k=0

(i Im z)k

k!
T (k)(Re z)

∥∥∥∥
≤

∞∑
k=0

| Im z|k
( eM

Re z

)k

≤ 1
1− q

.(4.15)

It remains only to prove that the map

Σδ′ ∪ {0} 3 z 7→ T (z) ∈ L(X)

is strongly continuous in z = 0. To this end, we choose x ∈ X and ε >
0. Since

(
T (t)

)
t≥0 is strongly continuous, there exists h0 > 0 such that

‖T (h)x− x‖ < ε(1− q) for all 0 < h < h0. Then, using (4.15), we obtain

‖T (z)x− x‖ ≤
∥∥T (z)

(
x− T (h)x

)∥∥+ ‖T (z + h)x− T (h)x‖+ ‖T (h)x− x‖
< 2ε+ ‖T (z + h)− T (h)‖ · ‖x‖

for all h ∈ (0, h0). Since the map z 7→ T (z + h) ∈ L(X) is analytic in
some neighborhood of z = 0, we have limz→0 ‖T (z+h)−T (h)‖ = 0, which
completes the proof of the implication (c) ⇒ (a). �

After this long proof, we pause for a moment and give some abstract and
concrete examples of analytic semigroups.

4.7 Corollary. If A is a normal operator on a Hilbert space H satisfying

(4.16) σ(A) ⊆ {z ∈ C : arg(−z) < δ}

for some δ ∈ [0, π/2), then A generates a bounded analytic semigroup.

Proof. Since A is normal, the same is true for R(λ,A) for all λ ∈ ρ(A).
Hence, by [TL80, Thm. VI.3.5] or [Wei80, Thm. 5.44], we have

‖R(λ,A)‖ = r
(
R(λ,A)

)
,

and the assertion follows from Theorem 4.6.(d) combined with the Spectral
Mapping Theorem for the Resolvent IV.1.13. �

A different proof of the previous result is indicated in Exercise 4.12.(9).
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In particular, Corollary 4.7 shows that the semigroup generated by a
self-adjoint operator that is bounded above (see Example 3.27) is analytic
of angle π/2.

4.8 Example. In Paragraph 3.30.(ii) we showed that the closure A of the
operator

Af := f ′′, D(A) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}

generates a strongly continuous contraction semigroup
(
T (t)

)
t≥0 on the

Hilbert space H = L2[0, 1]. Since it is not difficult to show that

Af := f ′′, D(A) := {f ∈ H2[0, 1] : f(0) = f(1) = 0}

is self-adjoint, the semigroup
(
T (t)

)
t≥0 is analytic. See Exercise 4.12.(10)

and, for more general operators, Section VI.4.d.
It is, however, even simpler to verify the inequality in (3.31) with A

replaced by e±iϑA for some ϑ ∈ (0, π/2) in order to conclude that e±iϑA are
dissipative. Since ρ(e±iϑA) = e±iϑρ(A), we then conclude by the Lumer–
Phillips Theorem 3.15 that e±iϑA are generators of contraction semigroups.
Hence, Theorem 4.6.(b) implies that the operator A generates a bounded
analytic semigroup on H.

Another important class of generators of analytic semigroups is provided
by squares of group generators.

4.9 Corollary. Let A be the generator of a strongly continuous group.
Then A2 generates an analytic semigroup of angle π/2.

Proof. Here we consider only the case where A generates a bounded group
and refer to [Nag86, A-II, Thm. 1.15] for the general case.

Take some 0 < δ′ < π/2 and λ ∈ Σπ/2+δ′ . Then there exists a square root
reiα of λ with 0 < r and |α| < (π/2+δ′)/2 < π/2, and we obtain

(λ−A2) = (reiα −A)(reiα +A).

This implies λ ∈ ρ(A2) and R(λ,A2) = R(reiα, A)R(reiα,−A). Since A
generates a bounded group, there exists a constant M̃ ≥ 1 such that

‖R(µ,±A)‖ ≤ M̃

Reµ
for all µ ∈ Σπ/2.

Consequently, one has∥∥R(λ,A2)
∥∥ ≤ M̃2

(r cosα)2
≤ 1
r2

(
M̃

cos
( π/2+δ′

2

))2

=
M

|λ|
for all λ ∈ Σπ/2+δ′ ,

and the assertion follows from Propositions 4.3 and 4.4. �
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4.10 Example. It is immediately clear from the discussion of the transla-
tion groups in Paragraph 2.10 that starting from Af := f ′ (and appropriate
domain) on C0(R) or Lp(R), 1 ≤ p <∞, the operator

A2f = f ′′

generates a bounded analytic semigroup.
We now consider the slightly more involved case of several space dimen-

sions, i.e., we consider the spaces C0(Rn) or Lp(Rn), 1 ≤ p < ∞. Denote
by
(
Ui(t)

)
t∈R the strongly continuous group given by

(
Ui(t)f

)
(x) := f(x1, . . . , xi−1, xi + t, . . . , xn),

where x ∈ Rn, t ∈ R, and 1 ≤ i ≤ n, and let Ai be its generator. Obviously,
these semigroups commute as do the resolvents of Ai and hence of A2

i . De-
note by

(
Ti(t)

)
t≥0 the semigroup generated by A2

i , which by Corollary 4.9
has an analytic extension

(
Ti(z)

)
z∈Σπ/2

. These extensions also commute,
and therefore

T (z) := T1(z) · · ·Tn(z), z ∈ Σπ/2,

defines a bounded analytic semigroup of angle π
2 . The domain D(A) of

the generator A of
(
T (z)

)
z∈Σπ/2∪{0} contains D(A2

1) ∩ · · · ∩ D(A2
n) by

Paragraph 2.7. In particular, it contains

D0 :=
{
f ∈ X ∩C2(Rn) : Dαf ∈ X for every multi-index α with |α| ≤ 2

}
,

and for every f ∈ D0 the generator is given by

Af =
(
A2

1 + · · ·+A2
n

)
f =

n∑
i=1

∂2

∂x2
i

f = ∆f.

For the characterization of multiplication operators generating analytic
semigroups, we refer to Paragraph 4.32.

4.11 Comment. We point out that in most of the above results the den-
sity of the domain of A is not needed. In fact, the integral (4.2) exists even
for non-densely defined sectorial operators and yields an analytic semi-
group without, however, the strong continuity in Proposition 4.3.(iv). This
is treated in detail in [Lun95], but we indicate how this can be obtained
within our semigroup framework (see Exercise 4.12.(8).)
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We close this subsection by adding an arrow to Diagram 1.14 in the case
of analytic semigroups. (

T (t)
)
t≥0

�
�

�
�

�
�

�
�

��

	

Ax=lim
t↓0

T (t)x−x
t

@
@

@
@

@
@

@
@

@@

I@
@

@
@

@
@

@
@

@@R

R(λ,A)=

∞∫
0

e−λtT (t) dt

T (t)= 1
2πi

∫
γ

eµtR(µ,A) dµ

(
A,D(A)

) R(λ,A)=(λ−A)−1
-�

A=λ−R(λ,A)−1

(
R(λ,A)

)
λ∈ρ(A)

4.12 Exercises. (1) Let X be a Banach space and consider a function F :
Ω → L(X) defined on an open set Ω ⊆ C. Show that the following assertions are
equivalent.

(a) F : Ω → L(X) is analytic.

(b) F (·)x : Ω → X is analytic for all x ∈ X.

(c) 〈F (·)x, x′〉 : Ω → C is analytic for all x ∈ X and x′ ∈ X ′.

(Hint: Use Cauchy’s integral formula and the uniform boundedness principle.)

(2) Show that an analytic semigroup (T (z))z∈Σδ∪{0} is exponentially bounded
on Σδ′ for every 0 < δ′ < δ.

(3) Show that the generator A of an analytic semigroup (T (z))z∈Σδ∪{0} coincides
with the “complex” generator, i.e.,

Ax = lim
Σδ′3z→0

T (z)x− x

z
, D(A) =

{
x ∈ X : lim

Σδ′3z→0

T (z)x− x

z
exists

}
for every 0 < δ′ < δ

(4) Show that for an analytic semigroup (T (z))z∈Σδ∪{0} on a Banach space X
one always has T (t)X ⊂ D(A∞) for all t > 0.

(5∗) Give a proof of Corollary 4.9 in case the group (T (t))t∈R is not necessarily
bounded. (Hint: See [Nag86, A-II, Thm. 1.15].)

(6) Let (A, D(A)) be a closed, densely defined linear operator on a Banach
space X. If there exist constants δ > 0, r > 0, and M ≥ 1 such that Σ :=
{λ ∈ C : |λ| > r and | arg(λ)| < π/2 + δ} ⊆ ρ(A) and ‖R(λ, A)‖ ≤ M/|λ| for all
λ ∈ Σ, then A− w is sectorial for w sufficiently large. In particular, A generates
an analytic semigroup.

(7) For an operator (A, D(A)) on a Banach space X define on X := X ×X the
operator matrix

A :=
(

A A
0 A

)
with domain D(A) := D(A)×D(A).

Show that the following assertions are equivalent.

(i) A generates an analytic semigroup on X.

(ii) A generates a strongly continuous semigroup on X.

(iii) A generates an analytic semigroup on X.
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(Hint: If A generates the semigroup (T (t))t≥0, then the candidate for the semi-

group (T(t))t≥0 generated by A is given by T(t) =
(

T (t) tAT (t)

0 T (t)

)
. Now use Theo-

rem 4.6.(c).)

(8) Let (A, D(A)) be a sectorial operator, i.e., satisfying (4.1), with not necessar-
ily dense domain in the Banach space X. Prove the following assertions in order
to obtain an analytic semigroup generated by A.

(i) The part (A0, D(A0)) of A in X0 := D(A) is densely defined and sectorial,
hence generates a bounded analytic semigroup (T0(z))z∈Σδ∪{0} on X0.

(ii) Construct the associated Sobolev spaces Xn, n ∈ Z, and observe that each
of the extended/restricted semigroups (Tn(z))z∈Σδ∪{0} is also analytic.

(iii) For 0 6= z ∈ Σδ, the operators Tn(z) are bounded from Xn to Xm whenever
m ≥ n, and the integral (4.2) converges in the corresponding operator norm.

(iv) For the given Banach space X, one has

X0 ⊂ X ↪→ X−1,

and hence (T−1(z))z∈Σδ∪{0} induces an analytic semigroup on X that is
not strongly continuous in the case X0 6= X. (Hint: See also Exercise 5.23.
(3).)

(9) Give an alternative proof of Corollary 4.7 based on the Spectral Theorem I.4.9
and multiplication semigroups from Section I.4.b. (Hint: Observe the theorem in
Paragraph 4.32.)

(10) Show that the operator A in Example 4.8 is self-adjoint.

(11∗) Show that for every closed and densely defined operator T on a Hilbert
space H the operator T ∗T is self-adjoint and positive semidefinite. (Hint: See
[Ped89, Thm. 5.1.9].)

(12) Consider the first derivative D := d/dx on L2[a, b] with the domains

D
(
D0) := H1

0[a, b] := {f ∈ H1[a, b] : f(a) = 0 = f(b)
}

and D
(
Dm) := H1[a, b].

(i) Show that (D0)
∗ = −Dm and (Dm)∗ = −D0.

(ii) Show that ∆D := DmD0 and ∆N := D0Dm generate analytic semigroups.
Write down these operators explicitly. Compare this with Example 4.8.
(Hint: Use Exercises (11).)

b. Differentiable Semigroups
To motivate the class of semigroups to be introduced now, we recall that for a
strongly continuous semigroup (T (t))t≥0 with generator A on a Banach space X
the orbit maps

ξx : t 7→ T (t)x

are differentiable for t ≥ 0 if (and only if) x ∈ D(A) (see (1.3)). Hence, these
orbits are differentiable for all x ∈ X only if A is bounded (and D(A) = X). In
the following definition, we now require ξx to be differentiable for all x ∈ X, but
not for all t ≥ 0.

4.13 Definition. A strongly continuous semigroup (T (t))t≥0 on a Banach space
X is called eventually differentiable if there exists t0 ≥ 0 such that the orbit maps
ξx : t 7→ T (t)x are differentiable on (t0,∞) for every x ∈ X. The semigroup is
called immediately differentiable if t0 can be chosen as t0 = 0.
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Using the definition of D(A) and the semigroup law (FE), eventual differentia-
bility for (T (t))t≥0 means that the operators T (t) map X into D(A) as soon as
t > t0. Since A is closed and T (t) is bounded, it follows from the closed graph the-
orem that AT (t) is bounded on X for t > t0, or, in other words, T (t) ∈ L(X0, X1),
where X1 denotes the Sobolev space (D(A), ‖ · ‖A) as in Definition 5.1 below.
Moreover, it follows again from the semigroup law (FE) that the nth derivative

dn

dtn
ξx(t) = AnT (t)x =

(
AT ( t/n)

)
nx

exists on (nt0,∞) for all x ∈ X and that T (t) ∈ L(X0, Xn) for t > nt0. In
particular, for an immediately differentiable semigroup, the orbit maps ξx are
infinitely differentiable on (0,∞) for every x ∈ X. This property already appeared
in the proof of (c) ⇒ (a) in Theorem 4.6 and clearly holds for analytic semigroups.

We now look for a characterization of differentiable semigroups in terms of the
spectrum and the growth of the resolvent of its generator. We obtain that the
spectrum has to be limited by a function of (at most) exponential growth. This
should be compared with the fact, already shown in Sections 1 and 4.a, that the
spectrum is included in a left half-plane (for strongly continuous semigroups) or
in a sector (for analytic semigroups).

4.14 Theorem. For a strongly continuous semigroup (T (t))t≥0 satisfying the
norm estimate ‖T (t)‖ ≤ Mewt and having generator (A, D(A)), the following
properties are equivalent.

(a) (T (t))t≥0 is eventually differentiable.

(b) There exist constants a > 0, b > 0, and C > 0 such that

(4.17) Θ :=
{

λ ∈ C : a e−b Re λ ≤ | Im λ|
}
⊂ ρ(A)

and

(4.18) ‖R(λ, A)‖ ≤ C| Im λ|

for all λ ∈ Θ with Re λ ≤ w.

Proof. Here we show only that (a) ⇒ (b) and refer to [Paz83, Chap. 2, Thm. 4.7]
for the other implication.

Assume (T (t))t≥0 to be differentiable for t > t0. Then from Lemma 1.9, we
obtain

λetλx−AT (t)x = (λ−A)
(
T (t) + λ

∫ t

0

eλ(t−s)T (s) ds
)
x for x ∈ X(4.19)

=
(
T (t) + λ

∫ t

0

eλ(t−s)T (s) ds
)
(λ−A)x for x ∈ D(A)(4.20)

for all λ ∈ C. This implies that λetλ−AT (t) fails to be bijective for all λ ∈ σ(A),
and hence we conclude that

(4.21) λetλ ∈ σ
(
AT (t)

)
for all λ ∈ σ(A).

Therefore, if we set a(t) := ‖AT (t)‖, we obtain

σ(A) ⊆
{
λ ∈ C : λetλ ∈ σ

(
AT (t)

)}
⊆
{
λ ∈ C :

∣∣λetλ
∣∣ ≤ a(t)

}
.
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Consequently, we have

ρ(A) ⊃
{

λ ∈ C : (1 + δ)a(t)e−Re λt ≤ | Im λ|
}

for all δ > 0. This shows (4.17) for

a := (1 + δ)a(t) and b := t.

In order to prove the resolvent estimate (4.18), we multiply (4.20) by R(λ, A)
from the right and obtain

(4.22) λeλtR(λ, A) = AT (t)R(λ, A) + T (t) + λeλt

∫ t

0

e−λsT (s) ds.

If λ ∈ Θ, we have

(4.23)
a(t)e−t Re λ

| Im λ| ≤ 1

1 + δ
,

and together with (4.22) this implies

‖R(λ, A)‖ ≤ e−t Re λ

| Im λ|

(
a(t)‖R(λ, A)‖+ Mewt

)
+ M

∫ t

0

e(w−Re λ)s ds

≤ 1

1 + δ
‖R(λ, A)‖+

Mewt

(1 + δ)a(t)
+ Mte(w−Re λ)t

if Re λ ≤ w. Using (4.23) again, this yields

‖R(λ, A)‖ ≤ 1 + δ

δ
Mewt

(
1

(1 + δ)a(t)
+ te−Re λt

)
≤ Mewt

δa(t)

(
ewt

(1 + δ)a(t)
+ t

)
· | Im λ| =: C · | Im λ|

for all λ ∈ Θ satisfying Re λ ≤ w. This shows (4.18), and the proof of (a) ⇒ (b)
is complete. �

The above proof shows that for a strongly continuous semigroup that is dif-
ferentiable for t > t0 the following holds: For every b > t0, we can find positive
constants a := ab and C := Cb such that condition (b) in Theorem 4.14 is satis-
fied. This remark proves one-half of the following characterization for immediately
differentiable semigroups. For the proof of the converse implication we refer to
[Paz83, Chap. 2, Thm. 4.8].

4.15 Corollary. For a strongly continuous semigroup (T (t))t≥0 with generator
(A, D(A)) and satisfying ‖T (t)‖ ≤ Mewt, the following properties are equivalent.

(a) (T (t))t≥0 is immediately differentiable.

(b) For all b > 0, there exist constants ab > 0 and Cb > 0 such that

Θb :=
{

λ ∈ C : ab e−b Re λ ≤ | Im λ|
}
⊂ ρ(A)

and
‖R(λ, A)‖ ≤ Cb| Im λ|

for all λ ∈ Θb with Re λ ≤ w.
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The simplest example of a strongly continuous semigroup being eventually
differentiable but not immediately differentiable is provided by a nilpotent semi-
group. More examples, e.g., semigroups that are immediately differentiable but
not analytic, can be obtained from multiplication semigroups (see Counterexam-
ple 4.33).

4.16 Exercises. (1) Show that for a strongly continuous semigroup (T (t))t≥0

on a Banach space X the following assertions are equivalent.

(i) (T (t))t≥0 is eventually differentiable for t > t0.

(ii) The map t0 < t 7→ T (t) ∈ (L(X), ‖ · ‖) is differentiable.

(2∗) Let (T (t))t≥0 be a strongly continuous semigroup on a Banach space X with
generator A and growth bound ω0. If for some r > ω0

lim
|s|→∞

log |s| · ‖R(r + is, A)‖ = 0,

then (T (t))t≥0 is immediately differentiable. (Hint: Use a Taylor series expansion
of R(λ, A) in order to verify the condition (b) of Corollary 4.15.)

c. Eventually Norm-Continuous Semigroups

Continuity of t 7→ T (t) on [0,∞) for the operator norm makes the semi-
group

(
T (t)

)
t≥0 “trivial” in the sense of Theorem I.3.7. Norm continuity

at some later time s0 > 0, however, is an interesting property. Before stat-
ing the adequate definition, we observe that due to the semigroup law, the
condition

lim
t↓s0

‖T (t)− T (s0)‖ = 0 for some s0 ≥ 0

already implies that the function t 7→ T (t) is norm continuous on the half-
line [s0,∞). This leads to the following concept.

4.17 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 is called

eventually norm continuous if there exists t0 ≥ 0 such that the function

t 7→ T (t)

is norm continuous from (t0,∞) into L(X). The semigroup is called imme-
diately norm continuous if t0 can be chosen to be t0 = 0.

This is a very important class of semigroups. In particular, it is non-
trivial in the sense that the generator of a semigroup in this class can be
unbounded, but it still enjoys special properties like the spectral mapping
theorem stated in Lemma I.3.13 (see Section IV.3). In addition, it includes
analytic and differentiable semigroups; see Exercise 4.21.(1).
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General semigroup Eventually norm-
continuous semigroup

Eventually differ-
entiable semigroup

Analytic semigroup

Figure 2

As before, we now strive for a characterization of eventually norm-contin-
uous semigroups through the spectrum of its generator. From the previous
results on analytic and differentiable semigroups, we expect some kind of
“imaginary boundedness.” Before stating the result precisely, we visualize
in Figure 2 the location of the spectrum for the various classes of semigroups
introduced so far.

We now prove the statement expressed by this figure.

4.18 Theorem. Let
(
A,D(A)

)
be the generator of an eventually norm-

continuous semigroup
(
T (t)

)
t≥0. Then, for every b ∈ R, the set

{
λ ∈ σ(A) : Reλ ≥ b

}
is bounded.

Proof. Fix a ∈ R larger than the growth bound ω0 of
(
T (t)

)
t≥0. If we

show that for every ε > 0, there exist n ∈ N and r0 ≥ 0 such that

‖R(a+ ir,A)n‖
1/n < ε for all r ∈ R with |r| ≥ r0,

then the assertion follows from the inequality

dist
(
a+ ir, σ(A)

)
=

1
r
(
R(a+ ir,A)

)
≥ ‖R(a+ ir,A)n‖

−1/n >
1
ε

(see Corollary IV.1.14).
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First, we obtain from the integral representation of the resolvent (see
Corollary 1.11) that

R(λ,A)n+1x =
1
n!

∫ ∞

0

e−λttnT (t)x dt

for all x ∈ X, n ∈ N, and Reλ > ω0 . Now choose t1 > 0 such that t 7→ T (t)
is norm continuous on [t1,∞) and choose w ∈ (ω0, a), M ≥ 1 such that
‖T (t)‖ ≤ Mewt for t ≥ 0. Finally, set N := M ·

∫ t1
0

e−atewt dt and take
ε > 0. Then there exist n ∈ N and t2 > t1 such that

N · tn1
n!

<
εn+1

3
and

1
n!

∫ ∞

t2

tne−at ‖T (t)‖ dt < εn+1

3
.

Now apply the Riemann–Lebesgue lemma (see Theorem C.8) to the norm-
continuous function t 7→ tne−atT (t) on [t1, t2] to obtain r0 ≥ 0 such that∥∥∥∥ 1

n!

∫ t2

t1

tne−irte−atT (t) dt
∥∥∥∥ < εn+1

3

whenever |r| ≥ r0. The combination of these three estimates yields

∥∥R(a+ ir,A)n+1x
∥∥ =

1
n!

∥∥∥∥∫ ∞

0

e−(a+ir)ttnT (t)x dt
∥∥∥∥

≤ 1
n!

∫ t1

0

e−attn ‖T (t)x‖ dt+
1
n!

∥∥∥∥∫ t2

t1

tne−irte−atT (t)x dt
∥∥∥∥

+
1
n!

∫ ∞

t2

e−attn ‖T (t)x‖ dt

≤
(

1
n!
tn1

∫ t1

0

e−atMewt dt+
2
3
εn+1

)
· ‖x‖

≤
(

1
n!
tn1N +

2
3
εn+1

)
· ‖x‖ ≤ εn+1 · ‖x‖

for all x ∈ X. �

By analyzing the previous proof, one sees that in the case where
(
T (t)

)
t≥0

is immediately norm continuous, one can choose t1 = 0 and n = 0. This
observation yields the following result.

4.19 Corollary. If
(
A,D(A)

)
is the generator of an immediately norm-

continuous semigroup
(
T (t)

)
t≥0, then

(4.24) lim
r→±∞

‖R(a+ ir,A)‖ = 0

for all a > ω0.
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4.20 Immediately Norm-Continuous Semigroups on Hilbert Spaces. A
satisfactory characterization of eventually norm-continuous semigroups is still
lacking. On Hilbert spaces, however, the converse of Corollary 4.19 is true, i.e.,
(4.24) characterizes generators of immediately norm-continuous semigroups. More
precisely, we have the following result.

Theorem. Let A be the generator of a uniformly exponentially stable strongly
continuous semigroup (T (t))t≥0 on a Hilbert space H. Then the following condi-
tions are equivalent.

(a) (T (t))t≥0 is immediately norm-continuous.

(b) lim
R3r→±∞

‖R(ir, A)‖ = 0.

Proof. The assertion that (a) ⇒ (b) is just Corollary 4.19.
In order to prove that (b) ⇒ (a), it suffices to show that the operator family(

t2T (t)
)

t≥0
is norm continuous for t > 0. To this end, we choose k = 3 in

Corollary III.5.16 below and obtain∥∥t2T (t)x− s2T (s)x
∥∥ =

1

π

∥∥∥∥∫ ∞

−∞

(
eiλt − eiλs

)
R(iλ, A)3x dλ

∥∥∥∥
≤ 1

π

∥∥∥∥∫
|λ|≥N

(
eiλt − eiλs

)
R(iλ, A)3x dλ

∥∥∥∥
+

1

π

∫
|λ|≤N

∣∣eiλt − eiλs
∣∣ · ∥∥R(iλ, A)3x

∥∥ dλ

=: I1(N) + I2(N).

Let ε > 0. Then I1(N) < ε ‖x‖ for N sufficiently large. To prove this claim take
x∗ ∈ H. Then, by the Cauchy–Schwarz and Hölder inequalities, we conclude that
(4.25)∣∣∣∣∣
(∫

|λ|≥N

(
eiλt − eiλs

)
R(iλ, A)3x dλ

∣∣∣x∗)∣∣∣∣∣
≤ 2

∫
|λ|≥N

∣∣(R(iλ, A)2x |R(iλ, A)∗x∗
)∣∣ dλ

≤ 2

(∫
|λ|≥N

∥∥R(iλ, A)2x
∥∥2

dλ

)1/2

·
(∫

|λ|≥N

‖R(iλ, A)∗x∗‖2 dλ

)1/2

≤ 2 sup
|r|≥N

‖R(ir, A)‖ ·
(∫ ∞

−∞
‖R(iλ, A)x‖2 dλ

)1/2

·
(∫ ∞

−∞
‖R(iλ, A)∗x∗‖2 dλ

)1/2

= 4π sup
|r|≥N

‖R(ir, A)‖ · ‖T (·)x‖2 · ‖T (·)∗x∗‖2 ,

where in the last step we used the equality

‖T (·)x‖2 : =

(∫ ∞

0

‖T (t)x‖2 dt

)1/2

=

(∫ ∞

−∞

∥∥∥∥ 1√
2π

∫ ∞

0

e−λitT (t)x dt

∥∥∥∥2

dλ

)1/2

=
1√
2π

(∫ ∞

−∞
‖R(iλ, A)x‖2 dλ

)1/2

,
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which follows from Plancherel’s theorem for the Hilbert space-valued Fourier
transform (see Theorem C.14). Since (T (t))t≥0 and its adjoint (T (t)∗)t≥0 are
both uniformly exponentially stable, there exists M > 0 such that

‖T (·)x‖2 ≤ M ‖x‖ and ‖T (·)∗x∗‖2 ≤ M ‖x∗‖.

Combining this with estimate (4.25), we obtain∥∥∥∥∫
|λ|≥N

(
eiλt − eiλs

)
R(iλ, A)3x dλ

∥∥∥∥
= sup

‖x∗‖≤1

∣∣∣∣(∫
|λ|≥N

(
eiλt − eiλs

)
R(iλ, A)3x dλ

∣∣∣x∗)∣∣∣∣
≤ 4πM2 · sup

|r|≥N

‖R(ir, A)‖ · ‖x‖,

and hence
I1(N) ≤ 4M2 · sup

|r|≥N

‖R(ir, A)‖ · ‖x‖.

Since lim
R3r→±∞

‖R(ir, A)‖ = 0, there exists N > 0 such that

4M2 · sup
|r|≥N

‖R(ir, A)‖ < ε,

which yields the desired estimate I1(N) < ε ‖x‖ for every x ∈ D(A2).
In order to estimate I2(N), choose δ ∈ (0, t) such that∣∣eiλt − eiλs

∣∣ · ∥∥R(iλ, A)3
∥∥ <

ε

2N

for all s ∈ (t− δ, t + δ), λ ∈ [−N, N ]. Then I2(N) < ε‖x‖ for all x ∈ H.
Using these estimates and the fact that D(A2) is dense in H we obtain∥∥t2T (t)− s2T (s)

∥∥ < 2ε

for all s ∈ (t− δ, t + δ). This completes the proof. �

Clearly, the assumption of exponential stability can be achieved by a simple
rescaling of the original semigroup; cf. Paragraph I.5.11.

On general Banach spaces it seems to be unknown whether the condition (4.24)
forces a semigroup to be immediately norm continuous, cf. [EME96] or [BM96].

4.21 Exercises. (1) If a strongly continuous semigroup is eventually differ-
entiable for some t0 ≥ 0, then it is eventually norm continuous for the same
t0.

(2) Let A be the generator of an eventually norm-continuous semigroup (T (t))t≥0

of positive operators on a Banach lattice X. If (T (t))t≥0 is bounded and s(A) = 0,
or if A has compact resolvent, then the boundary spectrum

σ+(A) := σ(A) ∩
(
s(A) + iR

)
of A satisfies σ+(A) ⊆ {s(A)}. (Hint: Use Theorem VI.1.12.(i) or [Nag86, C-III, Sec. 2].)
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d. Eventually Compact Semigroups

Up to now we have classified the semigroups according to the smoothness
(or regularity) properties of the maps t 7→ T (t). In this subsection we
introduce a property of the semigroup based on the “regularity” of a single
operator. We prepare for the definition with the following lemma.

4.22 Lemma. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup on a

Banach space X. If T (t0) is compact for some t0 > 0, then T (t) is compact
for all t ≥ t0, and the map t 7→ T (t) is norm continuous on [t0,∞).

Proof. The first assertion follows immediately from the semigroup law
(FE). By Lemma I.5.2, we know that limh→0 T (s + h)x = T (s)x for all
s ≥ 0 uniformly for x in any compact subset K of X. Let U be the unit
ball in X. Since T (t0) is compact, we have that K := T (t0)U is compact,
and hence

lim
s→t

(
T (t)x− T (s)x

)
= lim

s→t

(
T (t− t0)− T (s− t0)

)
T (t0)x = 0

for arbitrary t ≥ t0 and uniformly for x ∈ U . �

4.23 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 is called im-

mediately compact if T (t) is compact for all t > 0 and eventually compact
if there exists t0 > 0 such that T (t0) is compact.

From Lemma 4.22 we obtain that an immediately (eventually) compact
semigroup is immediately (eventually) norm continuous. In addition, one
might expect some relation between the compactness of the semigroup and
compactness of the resolvent of its generator. Before introducing the ap-
propriate terminology, we observe that due to the resolvent equation, a
resolvent operator is compact for one λ ∈ ρ(A) if and only if it is compact
for all λ ∈ ρ(A).

4.24 Definition. A linear operator A with ρ(A) 6= ∅ has compact resolvent
if its resolvent R(λ,A) is compact for one (and hence all) λ ∈ ρ(A).

Operators with compact resolvent on infinite-dimensional Banach spaces
are necessarily unbounded (see Exercise 4.30.(1)). For concrete operators,
the following characterization is quite useful.

4.25 Proposition. Let
(
A,D(A)

)
be an operator on X with ρ(A) 6= ∅ and

take X1 :=
(
D(A), ‖ · ‖A

)
(see Section 5.a and Exercise 5.9.(1)). Then the

following assertions are equivalent.
(a) The operator A has compact resolvent.
(b) The canonical injection i : X1 ↪→ X is compact.
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Proof. Observe that for every λ ∈ ρ(A), the graph norm ‖·‖A is equivalent
to the norm

|||x|||λ := ‖(λ−A)x‖

(see the proof of Proposition 5.2.(i)). Therefore, the operator

R(λ,A) : X → X1

is an isomorphism with continuous inverse λ−A. The assertion then follows
from the following factorization.

X
R(λ,A) -X

R(λ,A)

?

6
λ−A

���
���*

i

X1 �

This proposition allows us to prove that differential operators on certain
function spaces have compact resolvent. It suffices to apply appropriate
Sobolev embedding theorems; see, e.g., [RR93, Sec. 6.4]. Here is a very sim-
ple example.

4.26 Example. Let Ω be a bounded domain in Rn and take X = C0(Ω).
Assume that

(
A,D(A)

)
is an operator on X such that D(A) is a continu-

ously embedded subspace of the Banach space

C1
0(Ω) :=

{
f ∈ C0(Ω) : f is differentiable and f ′ ∈ C0(Ω)

}
.

By the Arzelà–Ascoli theorem, the injection i : C1
0(Ω) ↪→ C0(Ω) is compact,

whence A has compact resolvent whenever ρ(A) 6= ∅. See Exercise 4.30.(4)
for the analogous Lp-result.

The relation between compactness of the semigroup and the resolvent is
not simple. We show first what is not true.

4.27 Examples. (i) Consider the translation semigroup on the Banach
space L1([0, 1]× [0, 1]) defined by

T (t)f(r, s) :=
{
f(r + t, s) for r + t ≤ 1;
0 for r + t > 1.

This semigroup is nilpotent, hence eventually compact. However, its gen-
erator does not have compact resolvent. (See Exercise 4.30.(5).)
(ii) The generator of the periodic translation group (or rotation group, see
Paragraph I.4.18 and Example IV.2.29) has compact resolvent. The group,
however, does not have any of the smoothness properties defined above.
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4.28 Lemma. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with gen-

erator A. Moreover, assume that the map t 7→ T (t) is norm continuous at
some point t0 ≥ 0 and that R(λ,A)T (t0) is compact for some (and hence
all) λ ∈ ρ(A). Then the operators T (t) are compact for all t ≥ t0.

Proof. As usual, we may assume that 0 ∈ ρ(A). For the operators V (t)
defined by V (t)x :=

∫ t

0
T (s)x ds for x ∈ X and t ≥ 0 one has

hence
AV (t)x = T (t)x− x for all x ∈ X;

V (t) = R(0, A)
(
I − T (t)

)
.

The norm continuity for t ≥ t0 implies

T (t0) = lim
h↓0

1
h

(
V (t0 + h)− V (t0)

)
in operator norm. Since it follows from the assumptions that V (t0 + h) −
V (t0) is compact for all h > 0, this implies that T (t0) as the norm limit of
compact operators is compact as well. �

4.29 Theorem. For a strongly continuous semigroup
(
T (t)

)
t≥0 the follow-

ing properties are equivalent.

(a)
(
T (t)

)
t≥0 is immediately compact.

(b)
(
T (t)

)
t≥0 is immediately norm continuous, and its generator has

compact resolvent.

Proof. If
(
T (t)

)
t≥0 is immediately compact, it is immediately norm con-

tinuous by Lemma 4.22. Therefore, the integral representation for the re-
solvent in Theorem 1.10.(i) exists in the norm topology; hence R(λ,A) is
compact. The converse implication follows from Lemma 4.28. �

We close these considerations by visualizing the implications between the
various classes of semigroups in the following diagram:

(4.26)

analytic =⇒ immediately differentiable =⇒ eventually differentiable

⇓ ⇓
immediately norm continuous =⇒ eventually norm continuous

⇑ ⇑
immediately compact =⇒ eventually compact

That all these classes are different will be shown in the following subsec-
tion.
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4.30 Exercises. (1) A bounded operator A ∈ L(X) has compact resolvent if
and only if X is finite-dimensional.

(2) Let (A, D(A)) be an operator on a Banach space X having compact resolvent
and let B ∈ L(X) be such that ρ(A+B) 6= ∅. Then A+B has compact resolvent.
(Hint: Use the formula U−1 − V −1 = U−1(V − U) − V −1 valid for each pair of
invertible operators having the same domain.)

(3) Let (A, D(A)) be an operator on a Banach space X having finite-dimensional
kernel ker(A). If A1, A2 ⊂ A are two invertible restrictions of A, then A1 has
compact resolvent if and only if A2 has.

(4) Let X := Lp(Ω) for 1 ≤ p < ∞ and a bounded domain Ω ⊂ Rn with
smooth boundary ∂Ω. If (A, D(A)) is an operator on X satisfying ρ(A) 6= ∅ and
D(A) ⊂ W1,p(Ω), then A has compact resolvent. (Hint: Use Corollary B.7 and
Sobolev’s embedding theorem.)

(5) Show that the generator of the semigroup in Example 4.27 does not have
compact resolvent. (Hint: Compute the resolvent, using the integral representa-
tion (1.14), on functions of the form f(r, s) := h(r)g(s) for 0 ≤ r, s ≤ 1 and
h, g ∈ L1[0, 1].)

(6) Show that an analytic, eventually compact semigroup (T (t))t≥0 is imme-
diately compact. (Hint: Use the power series expansion of T (t) near the point
a := inf{s > 0 : T (s) compact}.)

e. Examples

First, we show that the “eventual” do not imply the “immediate” proper-
ties.

4.31 Nilpotent Semigroups. The nilpotent semigroup

T (t)f(s) :=
{
f(s+ t) for s+ t ≤ 1,
0 for s+ t > 1,

on C0[0, 1) (or Lp[0, 1]) is the standard example for a semigroup with
“good” properties for t > 1, but no smoothing effect for t < 1. In particu-
lar, it is eventually differentiable, eventually compact, and eventually norm
continuous, but is not immediately norm continuous and consequently not
immediately differentiable nor immediately compact. For a characterization
of nilpotent semigroups see Exercise 4.34.(4).

Next, we study regularity properties of multiplication semigroups and
characterize them in terms of the function defining its generator.

4.32 Multiplication Semigroups. As in Definition I.4.3, we consider a
multiplication operator

Mq : f 7→ q · f
onX := C0(Ω) (or, if one prefers, on Lp(Ω, µ)) for some continuous function
q : Ω → C. If sups∈Ω Re q(s) <∞, then

Tq(t)f := etq · f
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defines a strongly continuous semigroup (see Proposition I.4.5) for which
the following holds.

Theorem. Let
(
Tq(t)

)
t≥0 be the strongly continuous multiplication semi-

group on X generated by the multiplication operator Mq. Then
(
Tq(t)

)
t≥0

has one of the above regularity properties if and only if the spectrum
σ(Mq) = q(Ω) satisfies the conditions stated in Theorem 4.6, Theorem 4.14,
or Theorem 4.18. More precisely, the following holds.

(i)
(
Tq(t)

)
t≥0 is bounded analytic of angle δ if and only if

Σδ+π/2 ⊂ C \ q(Ω) = ρ(Mq).

(ii)
(
Tq(t)

)
t≥0 is eventually differentiable for t > t0 if and only if there

exists c > 0 such that

(4.27)
{
λ ∈ C : | Imλ| > c · e−t0 Re λ

}
⊂ C \ q(Ω) = ρ(Mq).

(iii)
(
Tq(t)

)
t≥0 is eventually (and immediately) norm continuous if and

only if
q(Ω) ∩ {λ ∈ C : Reλ ≥ b}

is bounded for every b ∈ R.

We point out that for multiplication semigroups eventual and immediate
norm continuity coincide. Moreover, the location of the spectrum of the
generator already characterizes the properties of the semigroup, and no
estimates on the resolvent are needed. Since the spectrum of the generator
is just the (closure of the) range of the function, we again confirm the
statement made before Proposition I.4.2:

Properties of the function q directly correspond to properties of the oper-
ator Mq and then to properties of the semigroup

(
Tq(t)

)
t≥0.

Proof. (i) The condition is necessary by Theorem 4.6. Conversely, if
Σδ+π/2 is contained in C \ q(Ω), it follows that the functions q± := e±iδ · q
still have nonpositive real part. By Proposition I.4.5, this implies that

e±iδ ·Mq

are both generators of bounded strongly continuous semigroups. By Theo-
rem 4.6.(b), this proves that Mq generates a bounded analytic semigroup.

(ii) (Right) differentiability in t0 for
(
Tq(t)

)
t≥0 means that Tq(t0)X ⊂

D(Mq), i.e., et0q ·f · q ∈ X for all f ∈ X. This is true (by Proposition I.4.2.
(ii)) if and only if et0q · q is bounded. Since sups∈Ω Re q(s) < ∞, we know
that et0q ·Re q is bounded. Hence et0q ·q is bounded if and only if et0 Re q ·Im q
is bounded, which again is equivalent to the existence of c > 0 such that

q(Ω) ⊂
{
λ ∈ C : et0 Re λ| Imλ| ≤ c

}
,

hence to condition (4.27).
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(iii) Take t0 > 0, ε > 0 and choose b ∈ R such that 2e(t0+1)b < ε. If
Re q(s) ≤ b, then∣∣etq(s) − et0q(s)

∣∣ ≤ et Re q(s) + et0 Re q(s) ≤ 2e(t0+1)b < ε,

whenever |t − t0| < 1. By hypothesis, H := {q(s) : s ∈ Ω, Re q(s) ≥ b}
is bounded in C. Thus, limt↓t0 |etz − et0z| = 0 exists uniformly for z ∈ H.
Now choose 1 > δ > 0 such that

sup
{∣∣etq(s) − et0q(s)

∣∣ : s ∈ Ω, Re q(s) > b
}
< ε,

whenever |t− t0| < δ. This and the inequality above imply

‖Tq(t)− Tq(t0)‖ = sup
{∣∣etq(s) − et0q(s)

∣∣ : s ∈ Ω
}
< ε,

whenever |t − t0| < δ. Since t0 > 0 was arbitrary, we obtain immediate
norm continuity for the semigroup

(
Tq(t)

)
t≥0. �

In order to proceed, we characterize compact multiplication operators.

Lemma. For a (bounded) multiplication operator Mq on X := C0(Ω), Ω
locally compact, the following assertions are equivalent.

(a) Mq is compact.

(b) The range q(Ω) = {λn : n ∈ N} is finite or a null sequence, such that
q−1(λn) is a finite set for each 0 6= λn.

Proof. If (a) holds, then q(Ω) = σ(Mq) is countable with only zero as
an accumulation point. Moreover, each 0 6= λ ∈ q(Ω) is an eigenvalue with
finite-dimensional eigenspace Fλ. Since Ωλ := q−1(λ) is open and closed in
Ω and the eigenspace Fλ coincides with C0(Ωλ), this forces q−1(λ) to be
finite. If (b) holds, one can approximate Mq by finite-dimensional, hence
compact, (multiplication) operators. �

As a consequence of this lemma, we observe that on spaces like C0(R)
there are no (nonzero) compact multiplication operators. On the other
hand, on X := c0 (or X := `p) a multiplication operator defined by a
sequence (qn)n∈N is compact if and only if (qn)n∈N is a null sequence. This
yields directly to the following characterizations.

Proposition. Let X := c0 and Mq be the multiplication operator defined
by the sequence q := (qn)n∈N satisfying supn Re qn <∞.

(i) The operator Mq has compact resolvent if and only if limn→∞ |qn| =
∞.

(ii) The semigroup
(
Tq(t)

)
t≥0 is eventually (and immediately) compact

if and only if lim
n→∞

Re qn = −∞.
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As a consequence of the above characterizations, we can now construct
semigroups with prescribed behavior showing that none of the arrows in
diagram (4.26) can be reversed.

4.33 Counterexamples. On the Banach space X := c0 take the multi-
plication operator Mq corresponding to one of the sequences q = (qn)n∈N
below. Then the following holds.
(i) If qn := −n + ien2

, then the semigroup generated by Mq is immedi-
ately compact and (consequently) immediately norm continuous, but is
not eventually differentiable.
(ii) If qn := −n+iet0n, then the semigroup generated byMq is differentiable
for t > t0, but not differentiable in [0, t0).
(iii) If qn := −n+in2, then the semigroup generated by Mq is immediately
differentiable, but is not analytic.

4.34 Exercises. (1) Show that the operator A := d2/dx2 with domain D(A) :=
{f ∈ C2[0, 1] : f ′(0) = 0 = f ′(1)} generates an immediately compact, analytic
contraction semigroup (T (t))t≥0 on X := C[0, 1]. In addition, show that T (t)f ≥
0 for every f ≥ 0, i.e., (T (t))t≥0 is positive (see Section VI.1.b). (Hint: Observe
Paragraphs 2.12 and 3.30. Moreover, use Example 4.26 and Theorem 4.29 to show
that (T (t))t≥0 is immediately compact.)

(2) Take p(s) := −s2 for s ∈ R and q(n) := in for n ∈ N. Show that the
semigroups generated by the multiplication operators Mp on C0(R) and Mq on
c0, resp., have the following properties.

(i) (Tp(t))t≥0 is analytic, but not eventually compact.

(ii) (Tq(t))t≥0 is not eventually compact, but its generator has compact resol-
vent.

(3) Show that the multiplication semigroup on X := C0(R) associated to the
function q(s) := is2− log(1 + s2) is immediately norm continuous and eventually
differentiable for t > 1.

(4∗) Let (T (t))t≥0 be a strongly continuous contraction semigroup on a Banach
space X with generator A. Show that (T (t))t≥0 is eventually nilpotent with
T (r) = 0 if and only if(

n! ‖R(1, A)n‖
)1/n ≤ r for all n ∈ N.

(Hint: See [Sin82, Thm. 6.11].)

5. Interpolation and Extrapolation Spaces for Semigroups
(by Simon Brendle)

In the spirit of Section 2.a, we continue to associate new semigroups on new
spaces to a given strongly continuous semigroup. The constructions here
are inspired by the classical Sobolev and distribution spaces and yield an
important tool for the abstract theory as well as for concrete applications.
We start by defining semigroups on a discrete scale of spaces.
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a. Sobolev Towers

Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with generator

(
A,D(A)

)
on a Banach space X. After applying the rescaling procedure, and hence
without loss of generality (see Paragraph 2.2 and Exercise 5.9.(1)), we can
assume that its growth bound ω0 is negative. Therefore, its generator A is
invertible with A−1 ∈ L(X). On the domains D(An) of its powers An, we
now introduce new norms ‖ · ‖n.

5.1 Definition. For each n ∈ N and x ∈ D(An), we define the n-norm

‖x‖n := ‖Anx‖

and call
Xn := (D(An), ‖ · ‖n)

the Sobolev space of order n associated to
(
T (t)

)
t≥0. The operators T (t)

restricted to Xn will be denoted by

Tn(t) := T (t)|Xn
.

It turns out that the restrictions Tn(t) behave surprisingly well on Xn.

5.2 Proposition. With the above definitions, the following holds.

(i) Each Xn is a Banach space.

(ii) The operators Tn(t) form a strongly continuous semigroup
(
Tn(t)

)
t≥0

on Xn.

(iii) The generator An of
(
Tn(t)

)
t≥0 is given by the part of A in Xn, i.e.,

Anx = Ax for x ∈ D(An) with

D(An) : = {x ∈ Xn : Ax ∈ Xn} = D(An+1) = Xn+1.

Proof. The assertion follows by induction if we prove the case n = 1.
Assertion (i) follows, since A is a closed operator and ‖ · ‖1 is equivalent to
the graph norm, as can be seen from the estimate

‖x‖A =
∥∥A−1Ax

∥∥+ ‖Ax‖ ≤
(∥∥A−1

∥∥+ 1
)
· ‖x‖1 ≤

(∥∥A−1
∥∥+ 1

)
· ‖x‖A

for x ∈ X1. From Lemma 1.3.(ii), we know that T (t) maps X1 into X1.
Each T1(t) is bounded, since

‖T1(t)x‖1 = ‖T (t)Ax‖ ≤ ‖T (t)‖ · ‖x‖1 for x ∈ X1,

so
(
T1(t)

)
t≥0 is a semigroup on X1. The strong continuity follows from

‖T1(t)x− x‖1 = ‖T (t)Ax−Ax‖ → 0 for t ↓ 0 and x ∈ X1.

Finally, (iii) follows from the proposition in Paragraph 2.3 on subspace
semigroups. �
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We suggest visualizing the above spaces and semigroups by a diagram.
Before doing so, we point out that by definition, An is an isometry (with
inverse A−1

n ) from Xn+1 onto Xn. Moreover, we write X0 := X, T0(t) :=
T (t) and A0 := A.

X0
T0(t) -X0

A0

6

?

A−1
0

X1
T1(t) -X1 =

(
D(A0), ‖ · ‖1

)
A1

6

?

A−1
1

X2
T2(t) -X2 =

(
D(A1), ‖ · ‖2

)
=
(
D(A2

0), ‖ · ‖2

)
A2

6

?
A−1

2

...
...

Observe that each Xn+1 is densely embedded in Xn but also, via An,
isometrically isomorphic to Xn. In addition, the semigroup

(
Tn+1(t)

)
is

the restriction of
(
Tn(t)

)
t≥0, but also similar to

(
Tn(t)

)
t≥0. We state this

important property explicitly.

5.3 Corollary. All the strongly continuous semigroups
(
Tn(t)

)
t≥0 on the

spaces Xn are similar. More precisely, one has

Tn+1(t) = A−1
n Tn(t)An = Tn(t)|Xn+1

for all n ≥ 0.

This similarity implies that spectrum, spectral bound, growth bound,
etc. coincide for all the semigroups

(
Tn(t)

)
t≥0.

In our construction, we obtained the (n + 1)st Sobolev space from the
nth Sobolev space. However, since Xn+1 is a dense subspace of Xn (by
Theorem 1.4), it is possible to invert this procedure and obtain Xn from
Xn+1 as the completion for the norm

‖x‖n :=
∥∥A−1

n+1x
∥∥

n+1
.

This observation permits us to extend the above diagram to the negative
integers and to define extrapolation spaces or Sobolev spaces of negative
order.
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5.4 Definition. For each n ∈ N and x ∈ X−n+1, we define (recursively)
the norm

‖x‖−n :=
∥∥A−1

−n+1x
∥∥
−n+1

and call the completion

X−n :=
(
X−n+1, ‖ · ‖−n

)∼
the Sobolev space of order −n associated to

(
T0(t)

)
t≥0. Moreover, we denote

the continuous extensions of the operators T−n+1(t) to the extrapolated
space X−n by T−n(t).

Note that these extended operators T−n(t) have properties analogous to
the ones stated in Proposition 5.2; hence our previous results hold for all
n ∈ Z.

5.5 Theorem. With the above definitions, the following hold for all m ≥
n ∈ Z.

(i) Each Xn is a Banach space containing Xm as a dense subspace.

(ii) The operators Tn(t) form a strongly continuous semigroup
(
Tn(t)

)
t≥0

on Xn.

(iii) The generator An of
(
Tn(t)

)
t≥0 has domain D(An) = Xn+1 and is

the unique continuous extension of Am : Xm+1 → Xm to an isometry
from Xn+1 onto Xn.

Proof. It suffices to prove the assertions for m = 0 and n = −1 only. In
this case, (i) holds true by definition. From

‖T0(t)x‖−1 =
∥∥T0(t)A−1

0 x
∥∥

0
≤ ‖T0(t)‖ · ‖x‖−1 ,

we see that T0(t) extends continuously to X−1. The semigroup property
holds for

(
T0(t)

)
t≥0 on X0, hence for

(
T−1(t)

)
t≥0 on X−1. Similarly, the

strong continuity follows, since it holds on the dense subset X0 (even for
the stronger norm ‖ · ‖0).

To prove (iii), we observe first that A−1 extends A0, since T−1(t) extends
T0(t). The closedness of A−1 then implies X0 ⊆ D(A−1). Since X0 is dense
in X−1 and

(
T−1(t)

)
t≥0-invariant, it is a core for A−1 by Proposition 1.7.

Now, on X0 the graph norm ‖ · ‖A−1 is equivalent to ‖ · ‖; hence X0 is a
Banach space for ‖ · ‖A−1 , and therefore X0 = D(A−1).

The remaining assertions follow from the fact that A0 : D(A0) ⊂ X0 →
X−1, by definition of the norms, is an isometry. �

So, we have constructed a two-sided infinite sequence of Banach spaces
and strongly continuous semigroups thereon. Again we visualize this Sobolev
tower associated to the semigroup

(
T0(t)

)
t≥0 by a diagram. Note that

Corollary 5.3 now holds for all n ∈ Z. In addition, if we start this construc-
tion from any level, i.e., from the semigroup

(
Tk(t)

)
t≥0 on the space Xk

for some k ∈ Z, we will obtain the same scale of spaces and semigroups.
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5.6 Diagram.

...
...

A−2
6

?
A−1
−2

X−1
T−1(t) -X−1 =

(
X0, ‖ · ‖−1

)∼
A−1

6

?

A−1
−1

X0
T0(t) - X0

A0

6

?

A−1
0

X1
T1(t) - X1 =

(
D(A0), ‖ · ‖1

)
A1

6

?
A−1

1

...
...

We point out again that each space Xn is the completion (unique up to
isomorphism) of any of its subspaces Xm whenever m ≥ n ∈ Z.

For multiplication semigroups it is easy to identify all Sobolev spaces
with concrete function spaces.

5.7 Example. We take X0 := C0(Ω) and q : Ω → C continuous assum-
ing, for simplicity, that sups∈Ω Re q(s) < 0. As in Section I.4.a, we define
Mqf := q · f and the corresponding multiplication semigroup by

Tq(t)f := etq · f

for t ≥ 0, f ∈ X. The Sobolev spaces Xn are then given by

(5.1) Xn =
{
q−n · f : f ∈ X

}
=
{
g ∈ C(Ω) : qn · g ∈ X0

}
for all n ∈ Z.

Note that the analogous statement holds if we start from

X0 := Lp(Ω, µ) for 1 ≤ p <∞,

a measurable function q : Ω → C satisfying ess sups∈Ω Re q(s) < 0, and
the corresponding multiplication semigroup

(
Tq(t)

)
t≥0 (cf. Section I.4.b).

In particular, (5.1) becomes

(5.2) Xn = Lp
(
Ω, |q|np · µ

)
for all n ∈ Z.
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Our abstract Sobolev spaces look quite familiar if we consider the trans-
lation semigroups and their generators from Paragraph 2.10.

5.8 Examples. (i) First, we look at the (left) translation group
(
Tl(t)

)
t∈R

on X := L2(R) as discussed in Paragraph 2.10. If by F we denote the
Fourier transform, then (2π)−1/2 F maps L2(R) isometrically onto L2(R)
(see Theorem VI.5.6 and the following remark) and transforms

(
Tl(t)

)
t∈R

into the multiplication group
(
T̂ (t)

)
t∈R given by

T̂ (t)f(ξ) = eitξ · f(ξ) for f ∈ L2(R), ξ ∈ R.

(Note that this is a concrete version of the Spectral Theorem I.4.9.) The
generator of

(
T̂ (t)

)
t∈R is the multiplication operator given by the function

q̂ : ξ 7→ iξ; hence the associated Sobolev spaces have been determined in
Example 5.7 as

X̂n =
{
ξ 7→ (1− iξ)−n · f(ξ) : f ∈ L2(R)

}
for all n ∈ Z. If we now apply the inverse Fourier transform (and its exten-
sion to the space of distributions), we obtain the Sobolev spaces associated
to the translation group as

Xn =
{
(1−D)−nf : f ∈ L2(R)

}
,

where D denotes the distributional derivative. Hence, Xn coincides with
the usual Sobolev space W2,n(R) for all n ∈ Z.
(ii) In the case of the translation group

(
Tl(t)

)
t∈R on X := C0(R), we

can avoid the use of the Fourier transform and work in the space of test
functions D(R) and its dual D(R)′ (see [Rud73, Chap. 6]) to obtain an
analogous characterization of Xn. For n ≥ 1, the spaces Xn are easy to
identify as

Xn =
{
f ∈ C0(R) :

f is n-times differentiable and
f (k) ∈ C0(R) for k = 1, . . . , n

}
.

To find the Sobolev spaces of negative order, we only consider the case
n = −1 and recall that X−1 is the set of (equivalence classes of) Cauchy
sequences in X for the norm ‖f‖−1 := ‖R(1, A)f‖ for f ∈ X and A the
generator of

(
Tl(t)

)
t∈R. Then each such ‖·‖−1-Cauchy sequence (fn)n∈N

defines a distribution F ∈ D(R)′ by

〈F,ϕ〉 :=
〈

lim
n→∞

R(1, A)fn, ϕ+ ϕ′
〉

for ϕ ∈ D(R). This shows that X−1 is continuously embedded in the space(
D
′(R), σ(D ′,D)

)
. Since A−1 is the continuous extension of the classical

derivative defined on X1, it coincides with the distributional derivative D,
and hence

X−1 =
{
F ∈ D

′ : F = f −Df for some f ∈ C0(R)
}
.
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5.9 Exercises. (1) Let (A, D(A)) be a densely defined operator on X such
that ρ(A) 6= ∅. Prove the following.

(i) For each fixed n ∈ N, all the norms

‖x‖n,λ :=
∥∥(λ−A)nx

∥∥, x ∈ D(An),

are equivalent for λ ∈ ρ(A).

(ii) For each fixed n ∈ N, all the norms

‖x‖−n,λ :=
∥∥R(λ−A)nx

∥∥, x ∈ X,

are equivalent for λ ∈ ρ(A).

(iii) Now take λ = 0 ∈ ρ(A) and define the Sobolev spaces Xn, n ∈ Z, as in Defi-
nition 5.1 and Definition 5.4. Then the operator A can be restricted/extended
to an isometry from Xn+1 onto Xn for each n ∈ Z.

(2) Identify the abstract Sobolev spaces Xn in Example 5.7 assuming only that
sups∈R Re q(s) < ∞.

(3) Show that an operator (A, D(A)) on X with ρ(A) 6= ∅ is bounded if and only
if Xn = X for all n ∈ Z.

(4) Take an operator (A, D(A)) with ρ(A) 6= ∅ on the Banach space X. Show
that the dual of the extrapolated Sobolev space X−1 is canonically isomorphic
to the domain D(A′) with the graph norm of the adjoint A′ in X ′.

(5) Show that for two densely defined operators (A, D(A)) with ρ(A) 6= ∅ and
(B, D(B)) on the Banach space X the following assertions are equivalent.

(i) D(A′) ⊆ D(B′).

(ii) R(λ, A)B ∈ L(X) for one (hence, all) λ ∈ ρ(A).

(iii) B : D(B) ⊆ X → XA
−1 is bounded, i.e., B can be extended to a bounded

operator from X to XA
−1.

b. Favard and Abstract Hölder Spaces

Into a given Sobolev tower, constructed from a strongly continuous semigroup
(T (t))t≥0 with generator A, we will now insert a continuous scale of spaces,
called the Favard and abstract Hölder spaces, and describe the behavior of the
semigroup thereon. This is not only a theoretical exercise in Banach space con-
struction, but will lead to important applications, e.g., to perturbation problems
(see Corollary III.2.14, Corollary III.3.6) or to inhomogeneous Cauchy problems
(see Corollary VI.7.17).

For simplicity, we will first consider the case α ∈ (0, 1].

5.10 Definition. Let (T (t))t≥0 be a strongly continuous semigroup and assume
that ω0 < 0. For each α ∈ (0, 1], the space

Fα :=

{
x ∈ X : sup

t>0

∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ < ∞
}

with norm

‖x‖Fα := sup
t>0

∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥
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is called the Favard space of order α. For α ∈ (0, 1), the space

Xα :=

{
x ∈ X : lim

t↓0

∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ = 0

}
equipped with the norm ‖ · ‖Xα induced by ‖ · ‖Fα is called the abstract Hölder
space of order α.

Using the Sobolev tower from Section 5.a, we extend this definition to all α ∈ R.

5.11 Definition. Let (T (t))t≥0 be a strongly continuous semigroup, let α ∈ R,
and choose w > ω0. Write α = k + γ with k ∈ Z and γ ∈ (0, 1]. Then the Favard
space of order α associated to the semigroup (T (t))t≥0 is defined as the γth
Favard space associated to the rescaled semigroup (e−wtTk(t))t≥0. Analogously,
the abstract Hölder space of order α associated to (T (t))t≥0 is defined as the γth
abstract Hölder space associated to (e−wtTk(t))t≥0.

It is not difficult to show that this definition is independent of the choice of
w > ω0; see Exercise 5.23.(1). In a first step, we characterize the Favard and
abstract Hölder spaces in terms of the generator.

5.12 Proposition. Assume that (T (t))t≥0 is a strongly continuous semigroup
with growth bound ω0 < 0. If α ∈ (0, 1], then one has for the Favard space

Fα =

{
x ∈ X : sup

λ>0

‖λαAR(λ, A)x‖ < ∞
}

,

and the Favard norm ‖ · ‖Fα is equivalent to the norm

|||x|||Fα
:= sup

λ>0

‖λαAR(λ, A)x‖.

Moreover, if α ∈ (0, 1), then

Xα =
{

x ∈ X : lim
λ→∞

‖λαAR(λ, A)x‖ = 0
}

.

Proof. Let x ∈ Fα. Then supt>0 ‖1/tα(T (t)x− x)‖ =: J < ∞. Using the integral
representation of the resolvent, we obtain

λαAR(λ, A)x = λα+1R(λ, A)x− λαx = λα+1

∫ ∞

0

e−λs
(
T (s)x− x

)
ds

for λ > 0, and so

‖λαAR(λ, A)x‖ ≤ λα+1

∫ ∞

0

e−λsJsα ds = J

∫ ∞

0

e−rrα dr.

Therefore, supλ>0 ‖λαAR(λ, A)x‖ < ∞.
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Conversely, assume that supλ>0 ‖λαAR(λ, A)x‖ =: K < ∞. We write

x = λR(λ, A)x−AR(λ, A)x =: xλ − yλ.

Then

‖T (t)xλ − xλ‖ =

∥∥∥∥∫ t

0

T (s)Axλ ds

∥∥∥∥ ≤ M‖Axλ‖t

= M ‖λαAR(λ, A)x‖ tλ1−α ≤ MKtλ1−α

and
‖T (t)yλ − yλ‖ ≤ 2M‖yλ‖ = 2M ‖λαAR(λ, A)x‖λ−α

≤ 2MKλ−α.

This implies∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ ≤ ∥∥∥ 1

tα

(
T (t)xλ − xλ

)∥∥∥+

∥∥∥ 1

tα

(
T (t)yλ − yλ

)∥∥∥
≤ MK(tλ)1−α + 2MK(tλ)−α.

Taking λ = 1/t, we obtain ∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ ≤ 3MK;

hence supt>0 ‖1/tα(T (t)x− x)‖ < ∞.
The assertion concerning Xα is proved similarly. �

For analytic semigroups one can characterize these spaces as follows.

5.13 Proposition. Assume that (T (t))t≥0 is an analytic semigroup with growth
bound ω0 < 0. If α ∈ (0, 1], then one has for the Favard space

Fα =

{
x ∈ X : sup

t>0

∥∥t1−αAT (t)x
∥∥ < ∞

}
,

and the Favard norm ‖ · ‖Fα is equivalent to the norm

[]x[]Fα := sup
t>0

‖t1−αAT (t)x‖.

Moreover, if α ∈ (0, 1), then

Xα =

{
x ∈ X : lim

t↓0
‖t1−αAT (t)x‖ = 0

}
.

Proof. Let x ∈ Fα. Then

sup
t>0

∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ =: J < ∞.

Now we write

t1−αAT (t)x =
1

tα
T (t) ·

(
T (t)x− x

)
− 1

tα
AT (t)

∫ t

0

(
T (s)x− x

)
ds.

Using Theorem 4.6.(c) this implies

‖t1−αAT (t)x‖ ≤ MJ + ‖tAT (t)‖ J

α + 1
;

hence supt>0 ‖t1−αAT (t)x‖ < ∞.
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Conversely, suppose that supt>0 ‖t1−αAT (t)x‖ =: L < ∞. Then

∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ =

∥∥∥∥ 1

tα

∫ t

0

AT (s)x ds

∥∥∥∥ ≤ 1

tα

∫ t

0

‖AT (s)x‖ ds

≤ 1

tα

∫ t

0

Lsα−1 ds =
L

α

for every t > 0, and therefore x ∈ Fα.
The assertion for Xα follows in the same way. �

Returning to arbitrary semigroups we obtain natural inclusions between the
Favard and abstract Hölder spaces for different indices.

5.14 Proposition. For α > β we have Xα ⊂ Fα ↪→ Xβ ⊂ Fβ .

Proof. We write α = k + γ, β = l + δ with k, l ∈ Z, γ, δ ∈ (0, 1]. The assertion
follows directly from the definition if k = l. On the other hand, if k ≥ l + 1, then
Fα ↪→ Xk ↪→ Xl+1 ↪→ Xβ . �

We now study the behavior of the induced semigroups on these spaces.

5.15 Theorem. Let (T (t))t≥0 be a strongly continuous semigroup with growth
bound ω0 < 0. Then, for α ∈ (0, 1], the following statements hold.

(i) The Favard space Fα is a Banach space.

(ii) The restrictions (T (t)|Fα)t≥0 form a semigroup of bounded operators on
Fα for which Xα is its space of strong continuity ; more precisely,

Xα =

{
x ∈ Fα : ‖ · ‖Fα - lim

t↓0
T (t)x = x

}
= D(A)

‖·‖Fα .

(iii) The generator of the strongly continuous semigroup (T (t)|Xα)t≥0 is given
by the part A|Xα of A in Xα with domain D(A|Xα) = Xα+1.

(iv) For the spectra of the parts of A in Fα and in Xα one has

σ(A|Fα) = σ(A|Xα) = σ(A).

Proof. (i) Let (xn)n∈N be a Cauchy sequence in Fα. Since Fα is continuously
embedded in X, (xn)n∈N is a Cauchy sequence in X as well, and by the com-
pleteness of X the limit ‖ · ‖- limn→∞ xn =: x exists. For each s > 0 we obtain∥∥∥ 1

sα

(
T (s)x− x

)∥∥∥ = lim
m→∞

∥∥∥ 1

sα

(
T (s)xm − xm

)∥∥∥ ≤ lim
m→∞

‖xm‖Fα .

Therefore, x ∈ Fα and ‖x‖Fα ≤ limm→∞ ‖xm‖Fα . An analogous argument yields

that ‖x− xn‖Fα ≤ limm→∞ ‖xm − xn‖Fα . Hence we have limn→∞ ‖x− xn‖Fα ≤
limn,m→∞ ‖xm−xn‖Fα = 0, and so we obtain ‖·‖Fα - limn→∞ xn = x. This shows
that Fα is complete.
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(ii) We first prove the assertion for α ∈ (0, 1). Take x ∈ Xα, and let ε > 0

be given. Then we can find some δ > 0 such that
∥∥ 1

sα (T (s)− I)x
∥∥ ≤ ε/2M for

0 < s < δ. Furthermore, if t is sufficiently small, we also have ‖(T (t)− I)x‖ ≤
δαε/2M. Therefore,∥∥∥ 1

sα

(
T (s)− I

)(
T (t)− I

)
x

∥∥∥ ≤ 2M

∥∥∥ 1

sα

(
T (s)− I

)
x

∥∥∥
≤ 2M

ε

2M
= ε for 0 < s < δ,

whereas ∥∥∥ 1

sα

(
T (s)− I

)(
T (t)− I

)
x

∥∥∥ ≤ 2M
1

sα

∥∥(T (t)− I
)
x
∥∥

≤ 2M
1

δα

δαε

2M
= ε for s ≥ δ.

This implies∥∥(T (t)− I
)
x
∥∥

Fα
= sup

s>0

∥∥∥ 1

sα

(
T (s)− I

)(
T (t)− I

)
x

∥∥∥ ≤ ε

for t sufficiently small. Hence ‖ · ‖Fα - limt↓0 T (t)x = x.
Suppose now that ‖ · ‖Fα - limt↓0 T (t)x = x. This implies

‖ · ‖Fα - lim
r↓0

1

r

∫ r

0

T (s)x ds = x,

and therefore x ∈ D(A)
‖·‖Fα .

For x ∈ D(A)
‖·‖Fα and ε > 0 we can find some y ∈ D(A) such that ‖x−y‖Fα ≤

ε/2. It follows that∥∥∥ 1

tα

(
T (t)x− x

)∥∥∥ ≤ ∥∥∥ 1

tα

(
T (t)y − y

)∥∥∥+

∥∥∥ 1

tα

(
T (t)(x− y)− (x− y)

)∥∥∥
≤ Mt1−α‖Ay‖+ ‖x− y‖Fα ≤ ε

2
+

ε

2
= ε

for t sufficiently small, and hence x ∈ Xα. This proves the assertion for α ∈ (0, 1).
We now consider the case α = 1. To this end we observe that the norms ‖ · ‖1

and ‖ · ‖F1 are equivalent on D(A). If x ∈ X1, then ‖ · ‖1- limt↓0 T (t)x = x and

so ‖ · ‖F1 - limt↓0 T (t)x = x. If ‖ · ‖F1 - limt↓0 T (t)x = x, then x ∈ D(A)
‖·‖F1 as

above. But D(A) is a Banach space for ‖ · ‖1, hence also for ‖ · ‖F1 . Therefore,

x ∈ D(A)
‖·‖F1 implies x ∈ D(A) = X1.

(iii) By the proposition in Paragraph 2.3, the generator of the restricted semi-
group (T (t)|Xα)t≥0 is the part A|Xα of A in Xα with the domain D(A|Xα) =
{x ∈ D(A) : Ax ∈ Xα} = Xα+1.

(iv) This follows immediately from Proposition IV.2.17. �

In general, A|Fα is not a generator. However, the following corollary shows that
we are not far from semigroup generators.
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5.16 Corollary. For α ∈ (0, 1] consider the abstract Hölder spaces Xα and
the Favard spaces Fα associated to a strongly continuous semigroup (T (t))t≥0

satisfying ‖T (t)‖ ≤ Mewt for t ≥ 0. Then the part A|Fα of A in Fα satisfies

(i) {λ ∈ C : Re λ > w} ⊂ ρ(A|Fα), and

(ii) ‖R(λ, A|Fα)n‖ ≤ M
(Re λ−w)n for all n ∈ N and Re λ > w,

and hence, in the terminology of Definition 3.22, A|Fα is a Hille–Yosida operator.

Proof. The assertions follow from the corresponding statements for the resolvent
of the operator A. �

5.17 Diagram. The results of the previous theorem can now be illustrated by
completing Diagram 5.6.

...
...

6
?

X−1
T−1(t) - X−1

@
@

I
�

��

Fα−1
Tα−1(t) - Fα−1

A−1

6

6
?

?

A−1
−1

Xα−1
Tα−1(t) - Xα−1

�
�� @

@
I

X0
T0(t) - X0

@
@

I
�

��

Fα
Tα(t) - Fα

A0

6

6
?

?

A−1
0

Xα
Tα(t) - Xα

�
�� @

@
I

X1
T1(t) - X1

6
?

...
...

In the final part of this subsection we are concerned with the dual situation
and look at the Favard spaces F�

1, F�
0, and F�

−1 associated to the sun dual
semigroup (T (t)�)t≥0 of (T (t))t≥0. As it turns out, these Favard spaces can be
identified with well-known spaces. First, we need a preliminary lemma.3

5.18 Lemma. The spaces X�
−1 and X1

� are canonically isomorphic, and after
this identification, we have (T�

−1(t))t≥0 = (T1
�(t))t≥0.

3 Here it will be more convenient to use the notation T�(t) instead of T (t)�.
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Proof. The operator A1
′ maps X ′, which can be canonically identified with the

domain D(A1
′), isomorphically onto X1

′. Under this isomorphism, the semigroup
(T (t)′)t≥0 becomes (T1(t)

′)t≥0. In particular, the space of strong continuity of
(T (t)′)t≥0 is mapped onto the space of strong continuity of (T1(t)

′)t≥0. Hence,
A1

′ maps X� onto X1
�. Therefore, X�

−1 is canonically isomorphic to X1
�. �

5.19 Proposition. The Favard space for the sun dual semigroup is given by
F�

1 = D(A′).

Proof. For x′ ∈ D(A′), we have for every t > 0 and all x ∈ X〈
x,

1

t

(
T (t)′x′ − x′

)〉
=
〈

1

t

(
T (t)x− x

)
, x′
〉

=

〈
A

1

t

∫ t

0

T (s)x ds, x′
〉

=

〈
1

t

∫ t

0

T (s)x ds, A′x′
〉

.

Assuming ‖T (t)‖ ≤ M for all t ≥ 0, this implies supt>0 ‖1/t(T (t)′x′ − x′)‖ ≤
M‖A′x′‖, and therefore x′ ∈ F�

1.
Conversely, if x′ ∈ F�

1, then supt>0 ‖1/t(T (t)′x′ − x′)‖ < ∞. Hence, for every
x ∈ D(A) one has∣∣〈Ax, x′

〉∣∣ = lim
t↓0

∣∣∣〈1

t

(
T (t)x− x

)
, x′
〉∣∣∣ = lim

t↓0

∣∣∣〈x,
1

t

(
T (t)′x′ − x′

)〉∣∣∣
≤ ‖x‖ sup

t>0

∥∥∥1

t

(
T (t)′x′ − x′

)∥∥∥.
By the definition of the dual operator, this implies x′ ∈ D(A′) and therefore
F�

1 = D(A′). �

We now determine the extrapolated Favard spaces of the sun dual semigroup.

5.20 Corollary. The following assertions are true.

(i) F�
0 and X ′ are canonically isomorphic.

(ii) F�
−1 and X1

′ are canonically isomorphic.

Proof. The space F�
0 is the Favard space of order 1 associated to (T�

−1(t))t≥0
∼=

(T1
�(t))t≥0; cf. Lemma 5.18. However, by Proposition 5.19, F�

0
∼= D(A1

′) ∼= X ′,
which proves (i).

Observe next that the space F�
−1 is the Favard space of order 0 associated

to (T�
−1(t))t≥0

∼= (T1
�(t))t≥0. Hence, by part (i), we obtain that F�

−1
∼= X1

′,
which is just (ii). �

As a final consequence we obtain that in reflexive spaces the Favard and ab-
stract Hölder spaces of order 1 coincide.

5.21 Corollary. If X is reflexive, then F1 = D(A).

Proof. Since X is reflexive and A is densely defined, the dual operator A′ is
also densely defined. Hence X� = X ′ and T (t)� = T (t)′. Analogously, X�� =
X ′′ = X and T (t)�� = T (t)′′ = T (t). Proposition 5.19 implies that F1 = F ′′

1 =
D(A′′) = D(A). �
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As usual, we visualize the various duals and sun duals in the form of a diagram.

X−1
. . . . . . . . . . . . . . . . . . . . F�

−1 = (X1)
′ = D(A)′⋃

6

X�
−1

6

X0
. . . . . . . . . . . . . . . . . . . . F�

0 = X ′
0⋃

6

X�

6

X1
. . . . . . . . . . . . . . . . . . . . F�

1 = (X−1)
′ = D(A′)⋃

X�
1 = D(A�)

5.22 Examples. We continue the discussion of the examples in Paragraph 2.6.
(i) We first consider the left translation semigroup on L1(R) and its adjoint
semigroup given by the right translations on L∞(R). Since the sun dual semigroup
is the right translation semigroup on Cub(R), the Favard spaces for this semigroup
are given by

F1 = Lipu(R) and F0 = L∞(R).

(ii) We now start with the left translation semigroup on C0(R) and its dual
semigroup given by the right translation semigroup on Mb(R). Since the sun
dual semigroup is the right translation semigroup on L1(R), by Proposition 5.19,
the Favard spaces for this semigroup are given by

F1 = UBV(R) and F0 = Mb(R).

The details are left as Exercise 5.23.(4).

5.23 Exercises. (1) Prove that the definitions of the Favard and abstract
Hölder spaces given in 5.11 are independent of the choice of w.

(2) Show that x ∈ X belongs to F1 if and only if there exists a sequence
(xn)n∈N ⊂ D(A) such that limn→∞ xn = x and supn∈N ‖Axn‖ < ∞.

(3) Let (A, D(A)) be a Hille–Yosida operator on a Banach space X and consider

the semigroup (T0(t))t≥0 generated by the part of A in X0 := D(A) (cf. Corol-
lary 3.21 and Definition 3.22). Show that X can be canonically identified with a
closed subspace of the extrapolated Favard space F0 associated to (T0(t))t≥0.

(4) Work out the details of Example 5.22. (For the definitions of the function
spaces involved see Appendix A.)

(5) Let (T (t))t≥0 be the left translation semigroup on X := Cb(R+). Show that
the abstract Favard and Hölder spaces corresponding to (T (t))t≥0 coincide with
the classical Hölder spaces, i.e.,

Fα = Cα(R+) :=

{
f ∈ Cb(R+) :

the functions t 7→ 1/tα|f(t + s)− f(s)|
are uniformly bounded for s > 0

}
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and

Xα = hα(R+) :=

{
f ∈ Cb(R+) :

lim
t↓0

1/tα|f(s + t)− f(s)| = 0

uniformly for s > 0

}

for each α ∈ (0, 1).

(6) Let Ω be a locally compact space, q : Ω → C a continuous function satisfying
sups∈Ω Re q(s) < ∞, and let (Tq(t))t≥0 be the multiplication semigroup generated
by the multiplication operator Mq on X := C0(Ω) (see Definition I.4.3). Show
that for each α ∈ (0, 1) we have

Fα =
{
f ∈ C0(Ω) : |q|αf ∈ Cb(Ω)

}
and

Xα =
{
f ∈ C0(Ω) : |q|αf ∈ C0(Ω)

}
.

c. Fractional Powers

It is the aim of this subsection to introduce fractional powers of linear opera-
tors. We prove that they form a semigroup and that their domains fit nicely
into the Favard and abstract Hölder spaces. Finally, we derive the important mo-
ment inequality, which can be viewed as a continuous analogue of the Landau–
Kolmogorov inequality from Exercise 1.15.(6).

In the sequel, we assume A to be a closed operator such that (0,∞) ⊂ ρ(A)
and ‖R(λ, A)‖ ≤ M

1+λ
for all λ ∈ (0,∞) and some constant M .

5.24 Proposition. There exists an open sector Σ in C such that R+ ⊂ Σ ⊂ ρ(A)
and

‖R(λ, A)‖ ≤ 2M

1 + |λ|

for all λ ∈ Σ.

The proof is left as Exercise 5.36.(1).

5.25 Definition. For α > 0, the bounded linear operator A−α is defined by

A−α :=
1

2πi

∫
γ

λ−αR(λ, A) dλ,

where γ is a piecewise smooth path in Σ\R+ going from ∞e−iδ to ∞eiδ for some
δ > 0, cf. Figure 3.

In this definition the function λ 7→ λ−α is a branch of the fractional power
function on C \R+, i.e., λ−α = e−α log λ, where log denotes a branch of the loga-
rithm on C\R+ (cf. [Con73, Def. 2.18]). The estimate in Proposition 5.24 assures
that the integral exists. Moreover, by Cauchy’s integral theorem the expression
is independent of the particular choice of the path γ.



138 Chapter II. Semigroups, Generators, and Resolvents

Im λ

Re λ

Σ

γ

Figure 3

5.26 Proposition. For α ∈ N0 the above definition yields the inverse power A−α

of A.

Proof. Since the integrand has an isolated singularity at the origin, the residue
theorem applies, and the assertion follows. �

5.27 Theorem. Let α ∈ (0, n + 1). In the case α /∈ N we have the formula

A−α =
1

2πi

n!

(1− α) · · · (n− α)
(1− e−2πiα)

∫ ∞

0

sn−αR(s, A)n+1 ds.

In the case α ∈ N, the formula is true if both sides are extended continuously in
α.

Proof. First, we have to specify our path of integration. Let a and δ be positive
real numbers. Let γ be the path consisting of the half-lines going from ∞e−iδ to
−a and from −a to ∞eiδ. If a and δ are sufficiently small, then γ is contained in
Σ \ R+. Therefore, one has

A−α =
1

2πi

∫
γ

λ−αR(λ, A) dλ.

Integrating n times by parts gives

A−α =
1

2πi

n!

(1− α) · · · (n− α)

∫
γ

λn−αR(λ, A)n+1 dλ,

we hence

A−α =
1

2πi

n!

(1− α) · · · (n− α)

[∫ ∞

0

(seiδ − a)n−αR(seiδ − a, A)n+1 eiδ ds

−
∫ ∞

0

(se−iδ − a)n−αR(se−iδ − a, A)n+1 e−iδ ds

]
.

We now take successively the limits as a ↓ 0 and δ ↓ 0. With the dominating
function

s 7→
{

K
(
1 + sn−α

)
if s ≤ 1,

Ks−α−1 if s > 1

with K > 0 sufficiently large, Lebesgue’s dominated convergence theorem implies

A−α =
1

2πi

n!

(1− α) · · · (n− α)
(1− e−2πiα)

∫ ∞

0

sn−αR(s, A)n+1 ds.

This proves the assertion. �
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If n = 0, i.e., α ∈ (0, 1), we obtain the following representation for A−α.

5.28 Corollary. For α ∈ (0, 1), we have

A−α =
1

2πi
(1− e−2πiα)

∫ ∞

0

s−αR(s, A) ds.

Next, we study the properties of the operator family (A−α)α≥0.

5.29 Theorem. The operators (A−α)α≥0 form a semigroup. If A is densely
defined, this semigroup is strongly continuous.

Proof. The first step consists in verifying the semigroup law. To this end, we
choose curves γ and γ′ in Σ \ R+ such that γ lies to the left of γ′. Using the
resolvent identity, we obtain

A−αA−β =
1

(2πi)2

∫
γ

∫
γ′

λ−αµ−βR(λ, A)R(µ, A) dµ dλ

=
1

(2πi)2

∫
γ

∫
γ′

λ−αµ−β

[
R(λ, A)

µ− λ
+

R(µ, A)

λ− µ

]
dµ dλ

=
1

2πi

∫
γ

λ−α

[
1

2πi

∫
γ′

µ−β

µ− λ
dµ

]
R(λ, A) dλ

+
1

2πi

∫
γ′

µ−β

[
1

2πi

∫
γ

λ−α

λ− µ
dλ

]
R(µ, A) dµ.

By Cauchy’s integral theorem, one has

1

2πi

∫
γ′

µ−β

µ− λ
dµ = λ−β for λ ∈ γ,

1

2πi

∫
γ

λ−α

λ− µ
dλ = 0 for µ ∈ γ′,

and hence

A−αA−β =
1

2πi

∫
γ

λ−αλ−βR(λ, A) dλ = A−(α+β).

The uniform boundedness of the operators A−α for α ∈ (0, 1) follows from

‖A−α‖ =

∥∥∥ 1

2πi
(1− e−2πiα)

∫ ∞

0

s−αR(s, A) ds

∥∥∥
≤
∣∣∣ 1

2πi
(1− e−2πiα)

∫ ∞

0

s−α M

1 + s
ds

∣∣∣
= |M(−1)−α| = M.

Finally, we show that the semigroup (A−α)α≥0 is strongly continuous when D(A)
is dense in X. To this end it suffices to verify that limα↓0 A−αx = x for every
x ∈ D(A). For x ∈ D(A) and α ∈ (0, 1) we have

A−αx− (−I)−αx =
1

2πi
(1− e−2πiα)

∫ ∞

0

s−α[R(s, A)−R(s,−I)]x ds

=
1

2πi
(1− e−2πiα)

∫ ∞

0

s−αR(s,−I)R(s, A)(I + A)x ds.
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From this it follows that

lim
α↓0

A−αx− x = lim
α↓0

[A−αx− (−I)−αx] + [(−I)−αx− x] = 0.

This completes the proof. �

In order to define Aα for positive values of α we need the following result.

5.30 Proposition. The operator A−α is injective for every α > 0.

Proof. Choose β > 0 such that α + β =: n ∈ N. Then A−βA−α = A−n, and
hence AnA−βA−α = I. Therefore, A−α is injective. �

We are now prepared to define the fractional powers of A.

5.31 Definition. Let α > 0. Then the operator Aα defined as the inverse of A−α

with domain D(Aα) = rg(A−α) is called the α-power of A.

This terminology is justified by the following result.

5.32 Theorem. Let α, β ∈ R. Then the operators AαAβ and Aα+β agree on
D(Aγ) for γ := max{α, β, α + β}.

Proof. The assertion is a consequence of Theorem 5.29. For example, if α, β ≥ 0,
then

AαAβx = AαAβ
(
A−βA−αAα+β

)
x =

(
AαAβA−βA−α

)
Aα+βx = Aα+βx

for each x ∈ D(Aα+β). The other cases follow similarly. �

Our next aim is to relate the domains of the fractional powers to the Favard
and abstract Hölder spaces from Section 5.b.

5.33 Proposition. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 with growth bound ω0 < 0, and let α, β ∈ (0, 1) such that α > β. Then

Xα ↪→ D(Aβ) ↪→ Xβ .

Proof. Let x ∈ D(A). Then, by Corollary 5.28,

Aβx = AAβ−1x =
1

2πi
(1− e2πiβ)

∫ ∞

0

sβ−1AR(s, A)x ds

=
1

2πi
(1− e2πiβ)

∫ 1

0

sβ−1AR(s, A)x ds

+
1

2πi
(1− e2πiβ)

∫ ∞

1

sβ−α−1sαAR(s, A)x ds.

For each s > 0, one has ‖AR(s, A)x‖ ≤ (M +1)‖x‖ and ‖sαAR(s, A)x‖ ≤ |||x|||Fα

(see Proposition 5.12). From this it follows that

‖Aβx‖ ≤ K |||x|||Fα

for a suitable constant K > 0. The closedness of the fractional power Aβ then

implies Xα = D(A)
|||·|||Fα ↪→ D(Aβ).
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To verify the second embedding, we first show that ‖A−βλβAR(λ, A)‖ ≤ L for
every λ > 0 and a suitable constant L. By Corollary 5.28, we have

A−β =
1

2πi
(1− e−2πiβ)

∫ ∞

0

(λs)−βR(λs, A) d(λs).

This implies

A−βλβAR(λ, A) =
1

2πi
(1− e−2πiβ)

∫ 1

0

s−β AR(λs, A) λR(λ, A) ds

+
1

2πi
(1− e−2πiβ)

∫ ∞

1

s−β−1 λsR(λs, A) AR(λ, A) ds.

For each λ > 0, we have ‖AR(λ, A)‖ ≤ M + 1 and ‖λR(λ, A)‖ ≤ M . From this
it follows that

‖A−βλβAR(λ, A)‖ ≤ L

for all λ > 0 and a suitable constant L. Hence, we obtain

‖λβAR(λ, A)x‖ ≤ L ‖Aβx‖

for each x ∈ D(A) and λ > 0 as claimed. This yields

|||x|||Fβ
≤ L ‖Aβx‖,

and therefore D(Aβ) ↪→ D(A)
|||·|||Fβ = Xβ . �

Next, we use the above results to prove the moment inequality , cf. [Kre71, Thm. 5.2].
It allows us to estimate ‖Aβx‖ in terms of ‖Aαx‖ and ‖Aγx‖ if α < β < γ and
therefore can be considered as a generalization of the Landau–Kolmogorov in-
equality in Exercise 1.15.(6).

5.34 Theorem. Let α < β < γ. Then there exists a constant L = L(α, β, γ)
such that

‖Aβx‖ ≤ L ‖Aαx‖
γ−β
γ−α · ‖Aγx‖

β−α
γ−α

for every x ∈ D(Aγ).

Proof. We first consider a slightly different situation. Suppose that α0 > β0 > 0,
and let n be an integer satisfying α0 ∈ (n, n + 1]. Then β0 ∈ (0, n + 1), and from
the proof of Proposition 5.33 we know that∥∥sn−β0R(s, A)n+1x0

∥∥
≤ sα0−β0−1

∥∥A−n−1+α0sn+1−α0AR(s, A)
∥∥ · ‖AnR(s, A)n‖ ·

∥∥A−α0x0

∥∥
≤ Ksα0−β0−1

∥∥A−α0x0

∥∥
and ∥∥sn−β0R(s, A)n+1x0

∥∥ ≤ Ksn−β0s−n−1‖x0‖ = Ks−β0−1‖x0‖
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for a suitable constant K. Using these inequalities we obtain

‖A−β0x0‖ ≤ K′
∥∥∥∫ ∞

0

sn−β0R(s, A)n+1x0 ds

∥∥∥
= K′

∥∥∥∫ τ

0

sn−β0R(s, A)n+1x0 ds +

∫ ∞

τ

sn−β0R(s, A)n+1x0 ds

∥∥∥
≤ K′′

∫ τ

0

sα0−β0−1 ‖A−α0x0‖ ds + K′′
∫ ∞

τ

s−β0−1‖x0‖ ds

=
K′′

α0 − β0
τα0−β0‖A−α0x0‖+

K′′

β0
τ−β0‖x0‖

for all τ > 0. Taking τ := ‖A−α0x0‖
−1/α0 · ‖x0‖

1/α0 yields

‖A−β0x0‖ ≤ L ‖A−α0x0‖
β0
α0 · ‖x0‖

α0−β0
α0

for a suitable constant L.
We now turn to the proof of the theorem. If we apply the previous result to

α0 := γ − α, β0 := γ − β, and x0 := Aγx, we obtain

‖Aβx‖ ≤ L ‖Aαx‖
γ−β
γ−α · ‖Aγx‖

β−α
γ−α .

This proves the assertion. �

We close this subsection by looking at iterated abstract Hölder spaces, i.e.,
spaces of the form (Xα)β where α and β are positive real numbers.

5.35 Proposition. Let α, β ∈ (0, 1) satisfy α+β 6= 1. Then the iterated abstract
Hölder space (Xα)β coincides with the abstract Hölder space Xα+β .

Proof. We divide the proof into two cases and first assume that α + β < 1. Let
x ∈ (Xα)β . Using the identity

2
(
T (t)− I

)
=
(
T (2t)− I

)
−
(
T (t)− I

)
2,

we obtain

2

∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥ ≤ ∥∥∥ 1

tα+β

(
T (2t)− I

)
x

∥∥∥+

∥∥∥ 1

tα+β

(
T (t)− I

)
2x

∥∥∥
≤ 2α+β

∥∥∥ 1

(2t)α+β

(
T (2t)− I

)
x

∥∥∥+

∥∥∥ 1

tα

(
T (t)− I

)
· 1

tβ

(
T (t)− I

)
x

∥∥∥
≤ 2α+β

∥∥∥ 1

(2t)α+β

(
T (2t)− I

)
x

∥∥∥+

∥∥∥ 1

tβ

(
T (t)− I

)
x

∥∥∥
Xα

for all t > 0. For a given ε > 0 we choose δ > 0 such that

sup
0<t≤δ

∥∥∥ 1

tβ

(
T (t)− I

)
x

∥∥∥
Xα

≤ 2
(
1− 2α+β−1

)
ε for 0 < t ≤ δ.

Then we obtain

sup
2−n−1δ≤t≤2−nδ

∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥
≤ 2α+β−1 sup

2−nδ≤t≤2−n+1δ

∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥+
(
1− 2α+β−1

)
ε.
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By induction on n ∈ N, it follows that

sup
2−n−1δ≤t≤2−nδ

∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥ ≤ 2n(α+β−1) sup
δ/2≤t≤δ

∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥+ ε.

Taking successively the limit for n →∞ and then for ε ↓ 0, we obtain

lim
t↓0

∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥ = 0,

and so x ∈ Xα+β .
Conversely, let x ∈ Xα+β . Then we have∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥ ≤ ε

2M
for 0 < t ≤ δ.

Now let t ∈ (0, δ]. Then we have∥∥∥ 1

sα

1

tβ

(
T (s)− I

)(
T (t)− I

)
x

∥∥∥ ≤ (s

t

)β

‖T (t)− I‖ ·
∥∥∥ 1

sα+β

(
T (s)− I

)
x

∥∥∥
≤ ε for s ≤ t

and, similarly,∥∥∥ 1

sα

1

tβ

(
T (s)− I

)(
T (t)− I

)
x

∥∥∥ ≤ ( t

s

)α

‖T (s)− I‖ ·
∥∥∥ 1

tα+β

(
T (t)− I

)
x

∥∥∥
≤ ε for t ≤ s.

Therefore,∥∥∥ 1

tβ

(
T (t)− I

)
x

∥∥∥
Xα

= sup
s>0

∥∥∥ 1

sα

1

tβ

(
T (s)− I

)(
T (t)− I

)
x

∥∥∥ ≤ ε

for every 0 < t ≤ δ, and so x ∈ (Xα)β . This finishes the proof in the case
α + β < 1.

We now suppose that α + β > 1 and take x ∈ (Xα)β . It follows from Proposi-
tion 5.33 that x ∈ X1. By Proposition 5.12, we have

lim
λ→∞

sup
µ>0

∥∥µαλβA2R(µ, A)R(λ, A)x
∥∥ = 0

and, in particular,

lim
λ→∞

∥∥λα+βA2R(2λ, A)R(λ, A)x
∥∥ = 0.

From this it follows that

lim
λ→∞

∥∥λα+β−1A2R(2λ, A)x− λα+β−1A2R(λ, A)x
∥∥ = 0.

Now let ε > 0 be given. Then there is a real number K such that∥∥A2R(2λ, A)x−A2R(λ, A)x
∥∥ ≤ 2α+β−1 − 1

2α+β−1
· ε

λα+β−1



144 Chapter II. Semigroups, Generators, and Resolvents

for all λ ≥ K. This implies∥∥A2R(2λ, A)x
∥∥ ≥ ∥∥A2R(λ, A)x

∥∥− 2α+β−1 − 1

2α+β−1
· ε

λα+β−1

for all λ ≥ K. Iterating this argument, we obtain∥∥A2R(2nλ, A)x
∥∥ ≥ ∥∥A2R(λ, A)x

∥∥− 2n(α+β−1) − 1

2n(α+β−1)
· ε

λα+β−1

for all λ ≥ K and n ∈ N. From this we conclude that

0 ≥
∥∥A2R(λ, A)x

∥∥− ε

λα+β−1
,

that is,
ε ≥

∥∥λα+β−1A2R(λ, A)x
∥∥.

Therefore, we obtain

lim
λ→∞

∥∥λα+β−1A2R(λ, A)x
∥∥ = 0,

and hence x ∈ Xα+β .
Conversely, let x ∈ Xα+β and ε > 0. Then there is a real number K such that∥∥λα+β−1A2R(λ, A)x

∥∥ ≤ ε

M

for all λ ≥ K. Then we have∥∥µαλβA2R(µ, A)R(λ, A)x
∥∥ ≤ M

∥∥λα+β−1A2R(λ, A)x
∥∥ ≤ ε

for µ ≥ λ ≥ K and, similarly,∥∥µαλβA2R(µ, A)R(λ, A)x
∥∥ ≤ M

∥∥µα+β−1A2R(µ, A)x
∥∥ ≤ ε

for λ ≥ µ ≥ K. This implies

sup
µ≥K

∥∥µαλβA2R(µ, A)R(λ, A)x
∥∥ ≤ ε

for all λ ≥ K. If λ is large enough, we obtain

sup
µ>0

∥∥µαλβA2R(µ, A)R(λ, A)x
∥∥ ≤ ε.

Since ε was arbitrary, we conclude that x ∈ (Xα)β . �

5.36 Exercises. (1) Prove Proposition 5.24. (Hint: Use the power series rep-
resentation of the resolvent in Proposition IV.1.3.(i).)

(2) Let A be the generator of a strongly continuous semigroup (T (t))t≥0 with
growth bound ω0 < 0. Show that A−α = (−1)−α/Γ(α)

∫∞
0

rα−1T (r) dr for ev-

ery α ∈ (0, 1). (Hint: Use Corollary 5.28 and the integral representation of the
resolvent. Note that Γ(α)Γ(1− α) = π/sin πα for α ∈ (0, 1).)

(3) Work out the details of the proof of Theorem 5.32.

(4) Let A := d2/dx2 with domain D(A) := H2
0[0, 1] on X := L2[0, 1]. Show that

D(A
1/2) = H1

0[0, 1]. (Hint: Show that for f ∈ D(A) one has ‖A1/2f‖ = ‖f‖H1
0[0,1].

Then use the inclusion D(A) ⊂ D(A
1/2) ∩H1

0[0, 1] to obtain the assertion.)
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6. Well-Posedness for Evolution Equations

Only now we turn our attention to what could have been, in a certain
perspective, our starting point: We want to solve a differential equation.
More precisely, we look at abstract (i.e., Banach-space-valued) linear initial
value problems of the form{

u̇(t) = Au(t) for t ≥ 0,
u(0) = x,

where the independent variable t represents time, u(·) is a function with
values in a Banach space X, A : D(A) ⊂ X → X a linear operator, and
x ∈ X the initial value.

We start by introducing the necessary terminology.

6.1 Definition. (i) The initial value problem

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,
u(0) = x

is called the abstract Cauchy problem associated to
(
A,D(A)

)
and the

initial value x.

(ii) A function u : R+ → X is called a (classical) solution of (ACP) if u
is continuously differentiable with respect to X, u(t) ∈ D(A) for all t ≥ 0,
and (ACP) holds.

If the operator A is the generator of a strongly continuous semigroup,
it follows from Lemma 1.3.(ii) that the semigroup yields solutions of the
associated abstract Cauchy problem.

6.2 Proposition. Let
(
A,D(A)

)
be the generator of the strongly contin-

uous semigroup
(
T (t)

)
t≥0. Then, for every x ∈ D(A), the function

u : t 7→ u(t) := T (t)x

is the unique classical solution of (ACP).

The important point is that (classical) solutions exist if (and, by the
definition of D(A), only if) the initial value x belongs to D(A). However,
modifying slightly the concept of “solution” and requiring differentiability
only for t > 0, we obtain such solutions for each x ∈ X as soon as the
semigroup

(
T (t)

)
t≥0 is immediately differentiable. This already suggests

that different concepts of “solutions” might be useful. The most important
one renounces differentiability and substitutes the differential equation by
an integral equation.



146 Chapter II. Semigroups, Generators, and Resolvents

6.3 Definition. A continuous function u : R+ → X is called a mild solution
of (ACP) if

∫ t

0
u(s) ds ∈ D(A) for all t ≥ 0 and

u(t) = A

∫ t

0

u(s) ds+ x.

It follows from our previous (and elementary) results (use Lemma 1.3.
(iv)) that for A being the generator of a strongly continuous semigroup,
mild solutions exist for every initial value x ∈ X and are again given by
the semigroup.

6.4 Proposition. Let
(
A,D(A)

)
be the generator of the strongly contin-

uous semigroup
(
T (t)

)
t≥0. Then, for every x ∈ X, the orbit map

u : t 7→ u(t) := T (t)x

is the unique mild solution of the associated abstract Cauchy problem
(ACP).

Proof. We only have to show the uniqueness of the zero solution for the
initial value x = 0. To this end, assume u to be a mild solution of (ACP)
for x = 0 and take t > 0. Then, for each s ∈ (0, t), we obtain

d
ds

(
T (t− s)

∫ s

0

u(r) dr
)

= T (t− s)u(s)− T (t− s)A
∫ s

0

u(r) dr = 0.

Integration of this equality from 0 to t gives∫ t

0

u(r) dr = 0, hence u(t) = u(0) = 0

as claimed. �

The above two propositions are just reformulations of results on strongly
continuous semigroups. They might suggest that the converse holds. The
following example shows that this is not true.

6.5 Example. Let
(
B,D(B)

)
be a closed and unbounded operator on X.

On the product space X := X×X, consider the operator
(
A, D(A)

)
written

in matrix form as

A :=
(

0 B
0 0

)
with domain D(A) := X ×D(B).

Then t 7→ u(t) :=
(

x+tBy
y

)
is the unique solution of (ACP) associated to

A for every
(

x
y

)
∈ D(A). However, the operator A does not generate a

strongly continuous semigroup, since for every λ ∈ C, one has

(λ−A)D(A) =
{(

λx−By
λy

)
: x ∈ X, y ∈ D(B)

}
⊂ X ×D(B) 6= X,

and hence σ(A) = C.
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Fortunately, as soon as we have existence and uniqueness of solutions of
(ACP) for every x ∈ D(A), we are not very far from semigroup generators.

6.6 Proposition. For a closed operator A : D(A) ⊂ X → X, the following
properties are equivalent.

(a) There exists a unique solution of (ACP) for every x ∈ D(A).
(b) The part A1 := A|X1

of A in X1 :=
(
D(A), ‖·‖A

)
is the generator of

a strongly continuous semigroup on the Banach space X1.

Proof. Denote the solution of (ACP) for an initial value x by u(·, x). The
idea of the proof is to obtain an operator semigroup

(
T (t)

)
t≥0 from the

solutions by putting
T (t)x := u(t, x),

while, conversely, a given semigroup
(
T (t)

)
t≥0 should yield solutions of

(ACP) by
u(t, x) := T (t)x.

With these definitions, it remains to verify carefully all the required conti-
nuity and differentiability properties.

(a) ⇒ (b). Let u(·, x) ∈ C1(R+, X) be the unique solution of (ACP) for
x ∈ X1 and define as indicated above

T1(t)x := u(t, x) for t ≥ 0.

The uniqueness of the solutions implies that each T1(t) is a linear operator
defined on X1 satisfying

and
T1(0) = IX1

T1(t+ s) = T1(t)T1(s)

for t, s ≥ 0. Moreover, T1(·)x belongs to C1(R+, X) and satisfies

d
dtT1(t)x = AT1(t)x.

Therefore, t 7→ T1(t)x is continuous from R+ into the Banach space X1. It
remains to show that T1(t) ∈ L(X1) for each t > 0. To that purpose, define
a linear operator

by
Φ : X1 → C([0, t], X1)

Φ(x) := T1(·)x for x ∈ X1.

We now show that Φ is closed.
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Let xn → x in X1 and Φ(xn) → f in C([0, t], X1). From the differential
equation in (ACP), it follows that

T1(s)xn = xn +
∫ s

0

AT1(r)xn dr, n ∈ N,

and therefore
f(s) = x+

∫ s

0

Af(r) dr for s ∈ [0, t].

Define

f̃(s) :=
{
T1(s− t)f(t) for s > t,
f(s) for 0 ≤ s ≤ t.

It is easy to check that f̃(·) is a solution of (ACP) and therefore f̃(s) =
T1(s)x for all s ≥ 0, or, in other words, f = Φ(x). So, we have shown that
Φ is closed and hence bounded on the Banach space X1. This implies the
boundedness of T1(t) for each t > 0.

In the final step we have to identify the generator
(
B,D(B)

)
of the

semigroup
(
T1(t)

)
t≥0 with the operator

(
A1, D(A1)

)
. To start with, we

show that

(6.1) AT1(t)x = T1(t)Ax

for every x ∈ D(A1) = D(A2). In fact, if we define

f(t) := x+
∫ t

0

T1(s)Axds,

we obtain
d
dtf(t) = T1(t)Ax = Ax+

∫ t

0

AT1(s)Axds

= A

(
x+

∫ t

0

T1(s)Axds
)

= Af(t).

This implies f(t) = T1(t)x, since f(0) = x, and

AT1(t)x = Af(t) = d
dtf(t) = T1(t)Ax

as stated above.
Let x ∈ D(A2). Then limt↓0 1/t

(
T1(t)x− x

)
= Ax and, by (6.1),

lim
t↓0

A 1
t

(
T1(t)x− x

)
= lim

t↓0
1
t

(
T1(t)Ax−Ax

)
= A2x

in the norm of X. Both equalities imply

‖ · ‖A- lim
t↓0

1
t

(
T1(t)x− x

)
= Ax,

and hence A1 ⊂ B. Assume now x ∈ D(B), i.e., ‖·‖A - limt↓0 1/t
(
T1(t)x −

x
)

exists. Then the limit ‖·‖ - limt↓0A1/t
(
T1(t)x − x

)
exists in X, and we

conclude that ‖·‖ - limt↓0 1/t
(
T1(t)x−x

)
= Ax. Since A is closed, this implies

Ax ∈ D(A) and therefore x ∈ D(A2) = D(A1).
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(b) ⇒ (a). Let
(
T1(t)

)
t≥0 be the strongly continuous semigroup on X1

generated by A1. As indicated above, we set

u(t, x) := T1(t)x for x ∈ X1

and verify that u(·, x) solves (ACP) uniquely. It is immediate that u(·, x)
and Au(·, x) belong to C(R+, X). Moreover, one has

and

∫ t

0

u(s, x) ds =
∫ t

0

T1(s)x ds ∈ D(A1) = D(A2)

A

∫ t

0

u(s, x) ds = u(t, x)− u(0, x) = u(t, x)− x

(see Lemma 1.3.(iv)). This gives

u(t, x) = x+A

∫ t

0

u(s, x) ds = x+
∫ t

0

Au(s, x) ds

showing that u(·, x) ∈ C1(R+, X) and

d
dtu(t, x) = Au(t, x).

Having obtained a solution of (ACP), it remains to show its uniqueness.
Let u(·) be a solution of (ACP) with initial value x = 0 and define f(t) :=∫ t

0
u(s) ds. Then f(t) ∈ D(A) and Af(t) =

∫ t

0
Au(s) ds =

∫ t

0
d/dsu(s) ds =

u(t) ∈ D(A). We conclude that f(t) ∈ D(A2) for all t ≥ 0 and that

d
dtf(t) = u(t) = Af(t)

and
d
dtAf(t) = Au(t) = A

(
d
dtf(t)

)
= A2f(t).

This shows that f ∈ C1(R+, X1) and d/dtf(t) = A1f(t). Since f(0) = 0, it
follows that f ≡ 0 and therefore u ≡ 0. �

The statement above can be verified explicitly for Example 6.5, where
A becomes a bounded operator if restricted to X1 := X × D(B), hence
generates a semigroup on X1.

In the following theorem we show which properties of the solutions u(·, x)
or of the operator

(
A,D(A)

)
have to be added in order to characterize

semigroup generators.
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6.7 Theorem. Let A : D(A) ⊂ X → X be a closed operator. For the
associated abstract Cauchy problem

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,
u(0) = x,

we consider the following existence and uniqueness condition:

(EU)
For every x ∈ D(A), there exists

a unique solution u(·, x) of (ACP).

Then the following properties are equivalent.

(a) A generates a strongly continuous semigroup.

(b) A satisfies (EU) and ρ(A) 6= ∅.
(c) A satisfies (EU), and there exist a sequence λn ↑ ∞ such that the

ranges (λn −A)D(A) equal X for all n ∈ N.

(d) A satisfies (EU), has dense domain, and for every sequence (xn)n∈N ⊂
D(A) satisfying limn→∞ xn = 0, one has limn→∞ u(t, xn) = 0 uni-
formly in compact intervals [0, t0].

Proof. From the basic properties of semigroup generators and, in partic-
ular, Proposition 6.2, it follows that (a) implies (b), (c), and (d). So, for
the proof of the remaining implications, we assume that (EU) holds and
consider the operator A1 on X1 as defined in Proposition 6.6.

(b) ⇒ (a). If there exists λ ∈ ρ(A), we have

and
D(A) = {x ∈ X : (λ−A)−1x ∈ D(A1)}

Ax = (λ−A)A1(λ−A)−1x for all x ∈ D(A),

i.e.,
(
A,D(A)

)
and

(
A1, D(A1)

)
are similar (see Paragraph 2.1). Since(

A1, D(A1)
)

is a semigroup generator by Proposition 6.6, the same holds
for
(
A,D(A)

)
.

(c) ⇒ (b). By assumption, we can find λ > s(A1), the spectral bound of
A1, such that (λ−A)D(A) = X. Assume Ax = λx for some x ∈ D(A). Then
x even belongs to D(A2) = D(A1), and therefore x = 0, since λ ∈ ρ(A1).
This shows that λ−A is injective; hence λ ∈ ρ(A).

(d) ⇒ (a). The assumption implies the existence of bounded operators
T (t) ∈ L(X) satisfying

T (t)x := u(t, x)

for each x ∈ D(A). Moreover, we claim that sup0≤t≤1 ‖T (t)‖ < ∞. By
contradiction, assume that there exists a sequence (tn)n∈N ⊂ [0, 1] such
that ‖T (tn)‖ → ∞ as n → ∞. Then we can choose xn ∈ D(A) such that
limn→∞ xn = 0 and ‖T (tn)xn‖ ≥ 1. Since u(tn, xn) = T (tn)xn, this con-
tradicts the assumption in (d), and therefore ‖T (t)‖ is uniformly bounded
for t ∈ [0, 1]. Now, t 7→ T (t)x is continuous for each x in the dense domain
D(A), and we obtain continuity for each x ∈ X by Lemma I.5.2.
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Finally, the uniqueness of the solutions implies T (t + s) = T (t)T (s)x
for each x ∈ D(A) and all t, s ≥ 0. Thus

(
T (t)

)
t≥0 is a strongly contin-

uous semigroup on X. Its generator
(
B,D(B)

)
certainly satisfies A ⊂ B.

Moreover, the semigroup
(
T (t)

)
t≥0 leavesD(A) invariant, which, by Propo-

sition 1.7, is a core of B. Since A is closed, we obtain A = B. �

Observe that (b) and (c) imply that D(A) is dense, while this property
cannot be omitted in (d): Take the restriction Ã of a closed operator A to
the domain D(Ã) := {0}.

Intuitively, property (d) expresses what we expect for a “well-posed”
problem and its solutions:

existence + uniqueness + continuous dependence on the data.
Therefore we introduce a name for this property.

6.8 Definition. The abstract Cauchy problem

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,
u(0) = x

associated to a closed operator A : D(A) ⊂ X → X is called well-posed if
condition (d) in Theorem 6.7 holds.

With this terminology, we can rephrase Theorem 6.7.

6.9 Corollary. For a closed operator A : D(A) ⊂ X → X, the associated
abstract Cauchy problem (ACP) is well-posed if and only if A generates a
strongly continuous semigroup on X.

Once we agree on the well-posedness concept from Definition 6.8, strongly
continuous semigroups emerge as the perfect tool for the study of abstract
Cauchy problems (ACP). In addition, this explains why in this book we
• study semigroups systematically in Chapters I–V and only then
• solve Cauchy problems in Chapter VI.
However, we have to point out that our definition of “well-posedness”

is not the only possible one. In particular, in many situations arising from
physically perfectly “well-posed” problems one does not obtain a semigroup
on a given Banach space. We refer to [Are87a], [deL94] and [Neu88] for
weaker concepts of “well-posedness” and show here how to produce, for
the same operator by simply varying the underlying Banach space, a series
of different “well-posedness” properties.

6.10 Example. Consider the left translation group
(
T (t)

)
t∈R on L1(R)

with generator Af := f ′ and D(A) := W1,1(R). Decompose this space as

L1(R) = L1(R−)⊕ L1(R+),
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and take any translation-invariant Banach space Y continuously embedded
in L1(R−). Then the part A| of A in X := Y ⊕L1(R+) has domain D(A|) :=
{f ∈ W1,1(R) : f ′|R− ∈ Y }. The abstract Cauchy problem

u̇(t) = A|u(t) for t ≥ 0,

u(0) = f ∈ D(A|) ⊂ X

formally has the solution t 7→ u(t) := T (t)f with
(
T (t)

)
f(s) = f(s + t),

s ∈ R. This is a classical solution if and only if u(t) ∈ D(A|) for all t ≥ 0. As
concrete examples, we suggest to take Y := Wn,1(R−), or even Y := {0},
and leave the details as Exercise 6.11.(1).

After this mathematical discussion of “well-posed” Cauchy problems we add
some historical and philosophical comments anticipating some of the arguments
from Chapter VI and the Epilogue.

As emphasized before, we usually start from a strongly continuous semigroup
(T (t))t≥0 and then obtain, by Corollary 6.9, a well-posed Cauchy problem for
its generator A. By taking A to be a partial differential operator as in Para-
graph 2.13 or Section VI.5 we can thus solve initial value problems for partial
differential equations. However, the historical process followed the inverse order.
Partial differential equations were solved long before the notion of a semigroup
emerged. While obtaining these solutions, the great masters of the eighteenth
and nineteenth centuries struggled to find basic principles behind the formu-
las. It was J. Hadamard who, quoting earlier ideas of E. Picard [Pic95] and
V. Volterra [Vol13], first isolated certain principles governing the solutions of the
wave equation and more general time-dependent partial differential equations. In
his famous paper “Le principe de Huygens” [Had24] he states three principles
with Proposition A being the most fundamental (“a kind of truism”):

A. Pour déduire d’un phénomène connu à l’instant t0 l’effet produit à un instant
ultérieur t2, on peut commencer par calculer l’effet à un instant intermédiaire
t1, puis partir de celui-là pour en déduire l’effet en t2. (See [Had24, p. 613].)4

In his discussion of Proposition A he comes close to the definition of a (semi)
group.

La proposition A, elle . . . doit être considérée comme d’évidence immédiate.
Elle n’est pas distincte du principe même de notre déterminisme scientifique.
Ce principe exprime en effet que, connaissant l’état du monde à un instant
déterminé t0, on doit pouvoir en déduire l’état du monde à un instant ultérieur
quelconque t0 + h, où h est n’importe quel temps positif.

On peut donc aussi, connaissant l’état relatif à t0, en déduire celui qui est
relatif à l’instant t0 +h+k; mais ce même état dont nous venons de parler doit
aussi pouvoir (k étant positif) se calculer à l’aide de l’état à l’instant t0 + h,
lequel a été lui-même supposé calculable à partir de l’état en t0. Les deux modes
de calcul doivent conduire au même résultat (. . .).

A est donc une sorte de truisme (. . .).

4 In order to deduce from a phenomenon known at time t0 the effect produced at a
later time t2, one can start by computing the effect at an intermediate time t1 and then
go on from there to deduce the effect at t2.
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Il se rattache d’une manière tout à fait étroite à la notion de groupe. Il est
clair en effet que le calcul par lequel de l’état en t0, on passe à l’état en t0 + h,
constitue une transformation, laquelle dépend du paramètre h. La proposi-
tion A exprime que l’ensemble de toutes ces transformations, lorsque h prend
toutes les valeurs positives possibles (et l’on pourrait même y joindre les valeurs
négatives, tout au moins si l’on admettait qu’il y a réversibilité), constitue un
groupe; la transformation du paramètre h+k cöıncide avec le produit des deux
transformations de paramètres respectives h et k. (See [Had24, p. 622].) 5

His concluding remark (see [Had24, p. 640])

Alors . . . la majeure A est un de ces “principes directeurs de la connaissance”
suivant la terminologie des philosophes—en dehors desquels nous ne saurions
penser et raisonner 6

is another argument for our approach leading from the functional equation (FE)

and semigroups to well-posed Cauchy problems.

6.11 Exercises. (1) On X := W1,1(R−) ⊕ L1(R+), consider the operator
Af := f ′ with D(A) := {(f, g) ∈ W2,1(R−)⊕W1,1(R+) : f(0) = g(0)}.

(i) Which conditions of Generation Theorem 3.8 are fulfilled by the operator
(A, D(A))? (Hint: Use (2.3) in Section 2.b to represent R(λ, A).)

(ii) Show that the abstract Cauchy problem associated to (A, D(A)) has a clas-
sical solution only for initial values (f, g) ∈ D(A) such that g ∈ W2,1(R+).

(iii) Replace W2,1(R−) by other translation-invariant Banach function spaces
on R− and find the initial values for which classical solutions exist.

(2) Consider the extrapolated Sobolev space X−1 associated to a strongly con-
tinuous semigroup (T (t))t≥0 with generator (A, D(A)) on a Banach space X0 and
assume that Y is a Banach space satisfying X0 ↪→ Y ↪→ X−1.

(i) Define operators S(t) ∈ L(Y ) by S(t)y :=
∫ t

0
T−1(s)y ds for y ∈ Y and t ≥ 0

and show that (S(t))t≥0 is an exponentially bounded integrated semigroup
on Y (see [KH89] and [ANS92]) whose generator is the part of A−1 in Y .

(ii∗) Show that every exponentially bounded integrated semigroup can be ob-
tained in this way. (Hint: See [ANS92].)

(iii) Discuss the consequences for the associated abstract Cauchy problem.

5 The proposition A must be considered to be of immediate evidence. It is not distinct
from our principle of scientific determinism. In fact, this principle expresses that, knowing
the state of the world at a certain time t0, one must be able to deduce the state of the
world at an arbitrary later time t0 + h, where h is any positive time.
Therefore, it is possible, knowing the state relatively to t0, to deduce the state relatively
to t0 + h + k; however, this very state must be obtained from the state at time t0 + h,
which was supposed to be computable from the state at t0. The two ways of calculating
must lead to the same result (. . .).
Therefore, A is a kind of truism (. . .).
It is connected quite closely to the notion of a group. In fact, it is clear that the law by
which one passes from the state at t0 to the state at t0 + h constitutes a transformation
depending on the parameter h. The proposition A expresses that the set of all these
transformations, if h takes all possible positive values (and one could even take negative
values permitting reversibility), forms a group; the transformation of the parameter
h + k coincides with the product of the two transformations of the parameters h and k,
respectively.
6 The major proposition A is one of the “directing principles of our knowledge” outside

of which we cannot think nor reason
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Notes to Chapter II

Section 1. In order to develop a theory of one-parameter semigroups on infinite-
dimensional Banach spaces, it was crucial to find continuity assumptions allowing
the definition of a generator. Strong continuity seems to be most appropriate, even
if, e.g. on dual Banach spaces, one can consider weak∗-continuous semigroups
and define weak∗ generators (see [Nee92]). In Yosida’s classic [Yos65] semigroups
and generators are studied on locally convex vector spaces (see also [Kom64],
[Kōm68]).

The integral representation (1.13) of the resolvent of a generator is nothing
else than the (Banach-space-valued) Laplace transform of the semigroup. This
was already noted and extensively used by Hille–Phillips [HP57]. In fact, many
of the theorems on semigroups can be viewed as results on the Laplace trans-
form and their inverse. This became particularly clear when Arendt [Are87b] ex-
tended Widder’s theorem to Banach spaces and characterized Laplace transforms
of bounded vector-valued functions. Based on this result, authors like Arendt
[Are87b], Neubrander [Neu88], and deLaubenfels [deL94] studied strongly con-
tinuous semigroups as a special case of the theory of the vector-valued Laplace
transform. This alternative approach is the leitmotif in the monograph [ABHN99].

Section 2.a. Most of our standard constructions are common tools of modern
operator theory. The adjoint and sun dual semigroups have been studied and used
extensively by the Dutch school (see [CHA+87]), and a complete treatment can
be found in van Neerven’s lecture notes [Nee92]. As additional and less elementary
constructions, we mention tensor product semigroups ([Nag86, A-I, 3.7 and A-III, Cor. 6.8],
[RS78, Sec. XIII.9]) and ultrapower semigroups as a generalization of Exercise I.5.16.
(3) and Exercise 2.8.(3) (see [Nag86, A-I, 3.6]).

Section 2.b. In our text we emphasized multiplication and translation semi-
groups. However, diffusion semigroups generated by the (one- or n-dimensional)
Laplace operator or more general elliptic operators provide perhaps the most im-
portant classes of examples; see the references in Section VI.5. Already Yosida
[Yos49] realized that these semigroups describe Markov processes, and Dynkin
[Dyn65] and Feller [Fel71] studied this aspect in their classic monographs. More
recent presentations, using Dirichlet forms and L2-theory, are the books by Bou-
leau–Hirsch [BH91], Fukushima–Oshima–Takeda [FOT94], and by Ma–Röckner
[MR92]. Closer to our semigroup theory on Banach spaces are [Jac96], [Jac99],
and [Tai88], where pseudodifferential operators are shown to generate semigroups
describing Markov processes.

Section 3.a. Our proof of Generation Theorem 3.5 goes back to Yosida [Yos48].
Hille’s proof in [Hil48, Thm. 12.2.1] is based on the exponential formula (3.3).
For more historical information we refer to Chapter VII.

Section 3.b. Phillips [Phi59] introduced dissipative operators on Banach spaces,
while Theorem 3.15 is from [LP61]. The same idea applied in the context of or-
dered Banach spaces (or Banach lattices) leads to dispersive operators as genera-
tors of positive contraction semigroups (see [Phi62], [ACK82], or [Nag86, C-II]).
The extension of many results from generators to Hille–Yosida operators started
with [DPS85] and [DPS87].

Section 3.c. A complete characterization of the duality set J(f) in Example 3.26.
(i) can be found, e.g., in [Sin76].
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For more information on the delay differential operator in Paragraph 3.29 see
Section VI.6, while the second-order differential operators from Paragraph 3.30
will reappear in Section VI.4.

Section 4.a. For many reasons, analytic semigroups represent the most impor-
tant subclass of strongly continuous semigroups. They arise from parabolic partial
differential equations, and books like [Lun95] and [Tai95] are entirely devoted to
them. The results we present are standard with the exception of condition (b)
in Theorem 4.6, where strong continuity in a sector implies analyticity (see also
[Eng92, Lem. 8] and [Kan96]).

Section 4.b. Differentiable semigroups go back to Hille [Hil50] and Yosida
[Yos48], while their generators have been characterized in [Paz68]. Exercise 4.16 is
taken from [Paz83, Sec. 2.4] where also more results on differentiable semigroups
can be found.

Section 4.c. Eventually norm-continuous semigroups include the previous classes,
but are not yet characterized in a satisfactory way. While the necessary condition
in Theorem 4.18 was known to Hille and Phillips [HP57, Thm. 16.4.2], the result
in Paragraph 4.20 for Hilbert spaces is due to You [You92]. Our proof, however,
is taken from [EME94]. Very recently it was shown by Goersmeyer–Weis [GW99]
that for positive semigroups on Lp-spaces the conditions (a) and (b) in the the-
orem in Paragraph 4.20 are equivalent as well. See also [EME96] and [BM96] for
extensions to general Banach spaces.

Section 4.d. Compactness of the resolvent and/or the semigroup operators ap-
pears, e.g., for parabolic partial differential equations in bounded spatial domains
(see [RR93, §8.3]) or for delay equations (see, e.g., Section VI.6). The results given
in this subsection are standard, and the diagram in (4.26), indicating the impli-
cations between the various regularity properties, is taken from [Nag86, A.II].

Section 4.e. The examples in Paragraphs 4.32 and 4.33 should convince the
reader of the value of such simple objects as multiplication operators. Clearly,
the same examples can be produced, via the Spectral Theorem I.4.9, for normal
operators on Hilbert spaces.

Section 5.a. The definition of the extrapolation spaces in Definition 5.4 is due to
Nagel [Nag83]. A different definition was given by Da Prato–Grisvard in [DPG82]
and [DPG84]. They are equivalent for operators with dense domain (for details see
[Nee92]). Other references for extrapolation spaces are [Pal65], [Har86], [Ama87],
[Liu89], [NS93], [Ama95, Chap. V]. A survey with applications can be found in
[Sin96]. For further examples see [NNR96].

Section 5.b. The standard reference for Favard and abstract Hölder spaces, and
many more intermediate spaces, is the monograph by Butzer–Berens [BB67].
The Favard spaces Fα for 0 < α < 1 introduced in this section are the real
interpolation spaces (X, D(A))α,∞ according to [Tri78], while for α = 1 they are
the Favard class X1,1,∞ from [BB67]. Our abstract Hölder space Xα is Xα,1,∞ in
[BB67] and DA(α) in [DPG79]. In this paper it is shown that these spaces, called
there continuous interpolation spaces, are necessary to obtain optimal regularity
for the abstract parabolic equations as in Corollary VI.7.17. For the use of these
interpolation spaces in the study of evolution equations see [Lun95] and [Ama95].

Section 5.c. Fractional powers were introduced by Balakrishnan [Bal60]. They
have been systematically studied by many authors including Kato [Kat61]. An ex-
tensive treatment can be found in a series of papers by Komatsu (e.g., [Kom66]).
For recent developments see Jacob [Jac99], Schilling [Sch98], and Straub [Str94].
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Section 6. It was already known to Hille and Phillips [HP57] and Krěın [Kre71]
that the various well-posedness conditions for (ACP) in Theorem 6.7 characterize
semigroup generators (see Fattorini [Fat83, Chap. 2] or Neubrander [Neu84]).
However, that existence and uniqueness of the solutions already yield a semigroup
on D(A) was observed by Arendt [Nag86, A-II, Thm. 1.1]. The mild solution as
defined in Definition 6.3 is called integral solution by Da Prato–Sinestrari [DPS87]
when A is a Hille–Yosida operator.

For many other well-posedness concepts related to integrated semigroups, reg-
ularized semigroups, or other structures, we refer to [Are87a], [deL94], [FY99],
[Lum94], [LN99], [Lun95], [MA97], [Neu88], [Neu89], and [XL98, Chap. 1].



Chapter III

Perturbation and
Approximation of Semigroups

The verification of the conditions in the various generation theorems from
Chapter II is not an easy task and for many important operators cannot
be performed in a direct way. Therefore, one tries to build up the given
operator (and its semigroup) from simpler ones. Perturbation and approx-
imation are the standard methods for this approach and will be discussed
in the following sections.

1. Bounded Perturbations

In many concrete situations, the evolution equation (or the associated lin-
ear operator) is given as a (formal) sum of several terms having different
physical meaning and different mathematical properties. While the math-
ematical analysis may be easy for each single term, it is not at all clear
what happens after the formation of sums. In the context of generators of
semigroups we take this as our point of departure.

1.1 Problem. Let A : D(A) ⊆ X → X be the generator of a strongly con-
tinuous semigroup

(
T (t)

)
t≥0 and consider a second operator B : D(B) ⊆

X → X. Find conditions such that the sum A + B generates a strongly
continuous semigroup

(
S(t)

)
t≥0.

We say that the generator A is perturbed by the operator B or that B
is a perturbation of A. However, before answering the above problem, we

157
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have to realize that—at this stage—the sum A+B is defined as

only for
(A+B)x := Ax+Bx

x ∈ D(A+B) := D(A) ∩D(B),

a subspace that might be trivial in general. To emphasize this and other
difficulties caused by the addition of unbounded operators, we first discuss
some examples.

1.2 Examples. (i) Let
(
A,D(A)

)
be an unbounded generator of a

strongly continuous semigroup. If we take B := −A, then the sum A+B is
the zero operator, defined on the dense subspace D(A), hence not closed.

If we take B := −2A, then the sum is

A+B = −A with domain D(A+B) = D(A),

which is a generator only if A generates a strongly continuous group (see
Paragraph II.3.11).
(ii) Let A : D(A) ⊆ X → X be an unbounded generator of a strongly con-
tinuous semigroup and take an isomorphism S ∈ L(X) such that D(A) ∩
S
(
D(A)

)
= {0}. Then B := SAS−1 is a generator as well (see Para-

graph II.2.1), but A + B is defined only on D(A + B) = D(A) ∩D(B) =
D(A) ∩ S

(
D(A)

)
= {0}.

A concrete example for this situation is given on X := C0(R+) by

and
Af := f ′ with its canonical domain D(A) := C1

0(R+)

Sf := q · f
for some continuous, positive function q such that q and q−1 are bounded
and nowhere differentiable. Defining the operator B as

Bf := q · (q−1 · f)′ on D(B) :=
{
f ∈ X : q−1 · f ∈ D(A)

}
,

we obtain that the sum A+B is defined only on {0}.

The above examples show that the addition of unbounded operators is a
delicate operation and should be studied carefully. We start with a situation
in which we avoid the pitfall due to the differing domains of the operators
involved. More precisely, we assume one of the two operators to be bounded.

1.3 Bounded Perturbation Theorem. Let
(
A,D(A)

)
be the genera-

tor of a strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach space X

satisfying
‖T (t)‖ ≤Mewt for all t ≥ 0

and some w ∈ R,M ≥ 1. If B ∈ L(X), then

C := A+B with D(C) := D(A)

generates a strongly continuous semigroup
(
S(t)

)
t≥0 satisfying

‖S(t)‖ ≤Me(w+M‖B‖)t for all t ≥ 0.
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Proof. In the first and essential step, we assume w = 0 and M = 1. Then
λ ∈ ρ(A) for all λ > 0, and λ− C can be decomposed as

(1.1) λ− C = λ−A−B =
(
I −BR(λ,A)

)
(λ−A).

Since λ−A is bijective, we conclude that λ−C is bijective, i.e., λ ∈ ρ(C),
if and only if

I −BR(λ,A)

is invertible in L(X). If this is the case, we obtain

(1.2) R(λ,C) = R(λ,A)[I −BR(λ,A)]−1.

Now choose Reλ > ‖B‖. Then ‖BR(λ,A)‖ ≤ ‖B‖/Re λ < 1 by Generation
Theorem II.3.5.(c), and hence λ ∈ ρ(C) with

(1.3) R(λ,C) = R(λ,A)
∞∑

n=0

(BR(λ,A))n.

We now estimate

‖R(λ,C)‖ ≤ 1
Reλ

· 1
1− ‖B‖/Re λ

=
1

Reλ− ‖B‖

for all Reλ > ‖B‖ and obtain from Corollary II.3.6 that C generates a
strongly continuous semigroup

(
S(t)

)
t≥0 satisfying

‖S(t)‖ ≤ e‖B‖t for t ≥ 0.

For general w ∈ R and M ≥ 1, we first do a rescaling (see Paragraph II.2.2)
to obtain w = 0. As in Lemma II.3.10, we then introduce a new norm

|||x||| := sup
t≥0

‖T (t)x‖

on X. This norm satisfies

‖x‖ ≤ |||x||| ≤M ‖x‖,

makes
(
T (t)

)
t≥0 a contraction semigroup, and yields

|||Bx||| ≤M ‖B‖ · ‖x‖ ≤M ‖B‖ · |||x|||

for all x ∈ X. By part one of this proof, the sum C = A + B generates a
strongly continuous semigroup

(
S(t)

)
t≥0 satisfying the estimate

|||S(t)||| ≤ e|||B|||t ≤ eM‖B‖t.

Hence
‖S(t)x‖ ≤ |||S(t)x||| ≤ eM‖B‖t |||x||| ≤MeM‖B‖t ‖x‖

for all t ≥ 0, which is the assertion for w = 0. �

The identities (1.1) and (1.3) are not only the basis of this proof, but are
also the key to many more perturbation results. Here, we use them to make the
following observation using the terminology of Sobolev towers from Section II.5.a.
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For sufficiently large λ, the generator A of a strongly continuous semigroup,
and an operator B ∈ L(X), the operators(

I −BR(λ, A)
)

and
(
I −BR(λ, A)

)−1 =

∞∑
n=0

(
BR(λ, A)

)
n

are isomorphisms of the Banach space X. Therefore, for large λ, the 1-norms
with respect to λ−A and λ−A−B, i.e.,

and
‖x‖A

1 := ‖(λ−A)x‖

‖x‖A+B
1 := ‖(λ−A−B)x‖ =

∥∥(I −BR(λ, A)
)
(λ−A)x

∥∥
are equivalent on X1 := D(A) = D(A + B).

Similarly, the corresponding (−1)-norms

and
‖x‖A

−1 := ‖R(λ, A)x‖

‖x‖A+B
−1 := ‖R(λ, A + B)x‖

are equivalent on X (use the identity

(1.4) R(λ, A) = [I + R(λ, A + B)B]−1R(λ, A + B)

and (1.2)), and hence the Sobolev spaces XA
−1 for A and XA+B

−1 for A + B from
Definition II.5.4 coincide.

Since we know from Theorem 1.3 that A + B is a generator, we obtain the
following conclusion.

1.4 Corollary. Let (A, D(A)) be the generator of a strongly continuous semi-
group on a Banach space X0 and take B ∈ L(X0). Then the operator

A + B with domain D(A + B) := D(A)

is a generator, and the Sobolev spaces

XA
i and XA+B

i

corresponding to A and A + B, resp., coincide for i = −1, 0, 1.

We show in Exercise 1.17.(6) that this result is optimal in the sense that in gen-
eral, only these three “floors” of the corresponding Sobolev towers coincide. Here,
the above corollary immediately yields a first perturbation result for operators
that are not bounded on the given Banach space.

1.5 Corollary. Let (A, D(A)) be the generator of a strongly continuous semi-
group on the Banach space X0. If B is a bounded operator on XA

1 := (D(A), ‖·‖1),
then A+B with domain D(A+B) = D(A) generates a strongly continuous semi-
group on X0.

Proof. Consider the restriction A1 of A as a generator on XA
1 . Then A1 + B

generates a strongly continuous semigroup on XA
1 by Theorem 1.3. This per-

turbed semigroup can be extended to its extrapolation space (XA
1 )A1+B

−1 , which

by Corollary 1.4 coincides with the extrapolation space (XA
1 )A1

−1. However, this is
the original Banach space X0. The generator of the extended semigroup on X0

is the continuous extension of A1 + B, hence is A + B. �
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1.6 Example. Take Af := f ′ on X := C0(R) with domain C1
0(R). For some

h ∈ C1
0(R) define the operator B by

Bf := f ′(0) · h, f ∈ C1
0(R).

Then B is unbounded on X but bounded on D(A) = C1
0(R), and hence A + B is

a generator on X.

A more interesting application of this corollary will be made to operators aris-

ing from second-order Cauchy problems or from integro-differential equations;

see Corollary VI.3.4 and Proposition VI.7.21.

Returning to Theorem 1.3, we recall that we have the series representa-
tion (1.3) for the resolvent R(λ,A+ B) of the perturbed operator A+ B,
while for the new semigroup

(
S(t)

)
t≥0 we could prove only its existence. In

order to prepare for a representation formula for this new semigroup, we
show first that it satisfies an integral equation.

1.7 Corollary. Consider two strongly continuous semigroups
(
T (t)

)
t≥0

with generator A and
(
S(t)

)
t≥0 with generator C on the Banach space X

and assume that
C = A+B

for some bounded operator B ∈ L(X). Then

(IE) S(t)x = T (t)x+
∫ t

0

T (t− s)BS(s)x ds

holds for every t ≥ 0 and x ∈ X.

Proof. Take x ∈ D(A) and consider the functions

[0, t] 3 s 7→ ξx(s) := T (t− s)S(s)x ∈ X.
Since D(A) = D(C) is invariant under both semigroups, it follows that
ξx(·) is continuously differentiable (use Lemma B.16) with derivative

d
dsξx(s) = T (t− s)CS(s)x− T (t− s)AS(s)x = T (t− s)BS(s)x.

This implies

S(t)x− T (t)x = ξx(t)− ξx(0) =
∫ t

0

ξ′x(s) ds =
∫ t

0

T (t− s)BS(s)x ds.

Finally, the density of D(A) and the boundedness of the operators involved
yield that this integral equation holds for all x ∈ X. �

If we replace the above functions ξx by

ηx(s) := S(s)T (t− s)x

and use the same arguments, we obtain the analogous integral equation

(IE∗) S(t)x = T (t)x+
∫ t

0

S(s)BT (t− s)x ds

for x ∈ X and t ≥ 0.
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Both equations (IE) and (IE∗) will frequently be called the variation of
parameters formula for the perturbed semigroup (see also Section 3.a and
Section 3.c).

In order to solve the integral equation (IE) we rewrite it in operator form
and introduce the operator-valued function space

Xt0 := C
(
[0, t0],Ls(X)

)
of all continuous functions from [0, t0] into Ls(X), i.e., F ∈ Xt0 if and only
if F (t) ∈ L(X) and t 7→ F (t)x is continuous for each x ∈ X. This space
becomes a Banach space for the norm

‖F‖∞ := sup
s∈[0,t0]

‖F (s)‖, F ∈ Xt0

(see Proposition A.7). We now define a “Volterra-type” operator on it.

1.8 Definition. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup on X

and take B ∈ L(X). For any t0 > 0, we call the operator defined by

V F (t)x :=
∫ t

0

T (t− s)BF (s)x ds

for x ∈ X, F ∈ C
(
[0, t0],Ls(X)

)
and 0 ≤ t ≤ t0 the associated abstract

Volterra operator .

The following properties of V should be no surprise to anyone familiar
with Volterra operators in the scalar-valued situation. In fact, the proof
is just a repetition of the estimates there and will be omitted (see Exer-
cise 1.17.(2)).

1.9 Lemma. The abstract Volterra operator V associated to the strongly
continuous semigroup

(
T (t)

)
t≥0 and the bounded operator B ∈ L(X) is a

bounded operator in C
(
[0, t0],Ls(X)

)
and satisfies

(1.5) ‖V n‖ ≤
(
M ‖B‖ t0

)
n

n!

for all n ∈ N and with M := sups∈[0,t0] ‖T (s)‖. In particular, for its spectral
radius we have

(1.6) r(V ) = 0.

From this last assertion it follows that the resolvent of V at λ = 1 exists
and is given by the Neumann series, i.e.,

R(1, V ) = (I − V )−1 =
∞∑

n=0

V n.
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We now turn back to our integral equation (IE), which becomes, in terms
of our Volterra operator, the equation

T (·) = (I − V )S(·)

for the functions T (·), S(·) ∈ C
(
[0, t0],Ls(X)

)
. Therefore,

(1.7) S(·) = R(1, V )T (·) =
∞∑

n=0

V nT (·),

where the series converges in the Banach space C
(
[0, t0],Ls(X)

)
. Rewriting

(1.7) for each t ≥ 0, we obtain the following representation for the semi-
group

(
S(t)

)
t≥0. This Dyson–Phillips series was found by F.J. Dyson in his

work [Dys49] on quantum electrodynamics and then by R.S. Phillips in his
first systematic treatment [Phi53] of perturbation theory for semigroups.

1.10 Theorem. The strongly continuous semigroup
(
S(t)

)
t≥0 generated

by C := A+B, where A is the generator of
(
T (t)

)
t≥0 and B ∈ L(X), can

be obtained as

(1.8) S(t) =
∞∑

n=0

Sn(t),

where S0(t) := T (t) and

(1.9) Sn+1(t) := V Sn(t) =
∫ t

0

T (t− s)BSn(s) ds.

Here, the series (1.8) converges in the operator norm on L(X) and, since
we may choose t0 in Lemma 1.9 arbitrarily large, uniformly on compact
intervals of R+. In contrast, the operators Sn+1(t) in (1.9) are defined by
an integral defined in the strong operator topology.

The Dyson–Phillips series and the integral equation (IE) from Corol-
lary 1.7 will be very useful when we want to compare qualitative properties
of the two semigroups. Here is a first example of such a comparison.

1.11 Corollary. Let
(
T (t)

)
t≥0 and

(
S(t)

)
t≥0 be two strongly continuous

semigroups, where the generator of
(
S(t)

)
t≥0 is a bounded perturbation of

the generator of
(
T (t)

)
t≥0. Then

(1.10) ‖T (t)− S(t)‖ ≤ tM

for t ∈ [0, 1] and some constant M .
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Proof. From the integral equation (IE), we obtain

‖T (t)x− S(t)x‖ ≤
∫ t

0

‖T (t− s)BS(s)x‖ ds

≤ t sup
r∈[0,1]

‖T (r)‖ sup
s∈[0,1]

‖S(s)‖ · ‖B‖ · ‖x‖

for all x ∈ X and t ∈ [0, 1]. �

Later, in Section 3.b, we will see that an estimate like (1.10) for the dif-
ference of two semigroups implies a close relation between their generators.

In the final part of this section we discuss some regularity properties
from Section II.4 that are preserved under bounded perturbation. As a
first sample we state the following simple result.

1.12 Proposition. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with

generator A on the Banach space X and take B ∈ L(X).
(i) If

(
T (t)

)
t≥0 is analytic, then so is the semigroup

(
S(t)

)
t≥0 generated

by A+B.

(ii) If A has compact resolvent, then so has A+B.

Proof. (i) This assertion follows from Theorem II.4.6.(b) and the Bounded
Perturbation Theorem 1.3.

(ii) As seen in (1.2), the resolvent R(λ,A+B) for large λ is a product of
the compact operator R(λ,A) and the bounded operator [I−BR(λ,A)]−1,
hence is compact. �

In order to obtain deeper results on regularity properties of perturbed strongly
continuous semigroups, we look again at the Volterra operator from Definition 1.8
and rewrite it as a “convolution operator.”

For a Banach space X we consider the vector space

X := C
(
R+, Ls(X)

)
and define the convolution of two functions F, G ∈ X by

(1.11) (F ∗G)(t)x :=

∫ t

0

F (t− s)G(s)x ds

for x ∈ X and t ≥ 0. By Exercise 1.17.(1) it follows that ∗ : X × X → X is
associative. In the following lemma we show that certain regularity properties
are preserved under convolution in X.

1.13 Lemma. For F, G ∈ X the following assertions are true.

(i) If F is norm continuous (resp. compact1) on (0,∞), then F ∗G and G ∗ F
are norm continuous (resp. compact) on (0,∞).

(ii) If F is norm continuous (resp. compact) on (α,∞) and G is norm continuous
(resp. compact) on (β,∞), then F ∗G and G∗F are norm continuous (resp.
compact) on (α + β,∞).

1 This means that F (t) is a compact operator for t > 0.
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Proof. (i) Let t > 0, h > 0 and x ∈ X. Then we have

lim
h↓0

∥∥F ∗G (t + h)x− F ∗G (t)x
∥∥

= lim
h↓0

∥∥∥∫ t

0

(
F (t + h− s)− F (t− s)

)
G(s)x ds

+

∫ t+h

t

F (t + h− s)G(s)x ds

∥∥∥
≤ lim

h↓0

∫ t

0

‖F (t + h− s)− F (t− s)‖ sup
τ∈[0,t]

‖G(τ)‖ · ‖x‖ ds

+ lim
h↓0

∫ t+h

t

sup
τ∈[0,t]

‖F (τ)‖ sup
τ∈[0,t]

‖G(τ)‖ · ‖x‖ ds = 0

uniformly for ‖x‖ ≤ 1. Hence, the map t 7→ F ∗ G(t) is right continuous in the
uniform operator topology for t > 0. Similarly, we can show that it is also left
continuous. For the assertion concerning G ∗ F we use the identity

(1.12)

∫ t

0

G(t− s)F (s)x ds =

∫ t

0

G(s)F (t− s)x ds.

This proves the norm continuity.
The assertions on compactness follow immediately from Theorem C.7 combined

with the fact that the compact operators form an ideal in L(X).
(ii) Let t > α + β, 0 < h < min{t− α− β, α} and x ∈ X. Then we have∥∥F ∗G (t + h)x− F ∗G (t)x

∥∥ ≤ ∥∥∥∥∫ t

0

(
F (t + h− s)− F (t− s)

)
G(s)x ds

∥∥∥∥
+

∫ t+h

t

sup
τ∈[0,t]

‖F (τ)‖ sup
τ∈[0,t]

‖G(τ)‖ · ‖x‖ ds

=: I1 + I2.

It is obvious that I2 tends to 0 uniformly for ‖x‖ ≤ 1 as h ↓ 0. Hence, we only
have to estimate I1 and obtain

I1 ≤
∫ t−α

0

‖F (t + h− s)− F (t− s)‖ · sup
τ∈[0,t]

‖G(τ)‖ · ‖x‖ ds

+

∥∥∥∥∫ t

t−α

(
F (t + h− s)− F (t− s)

)
G(s)x ds

∥∥∥∥ =: I3 + I4.

We have that I3 tends to 0 uniformly for ‖x‖ ≤ 1 as h ↓ 0, since t+h−s > t−s > α
for s ∈ (0, t− α). Hence, it remains to estimate I4, which is

I4 =

∥∥∥∥∫ t−h

t−α−h

F (t− s) G(s + h)x ds−
∫ t

t−α

F (t− s) G(s)x ds

∥∥∥∥
≤
∫ t−α

t−α−h

‖F (t− s) G(s + h)x‖ ds +

∫ t−h

t−α

∥∥F (t− s)
(
G(s + h)−G(s)

)
x
∥∥ ds

+

∫ t

t−h

‖F (t− s) G(s)x‖ ds =: I5 + I6 + I7.

It is obvious that I5 and I7 tend to 0 uniformly for ‖x‖ ≤ 1 as h ↓ 0. The same
holds for I6, since t−α > β. Hence, F ∗G is norm right continuous on (α+β,∞).
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In the same way we can show that F ∗G is norm left continuous.
To prove the assertion on G ∗ F , we again use the identity (1.12). This proves

the statements concerning norm continuity.
It remains only to prove the assertions concerning compactness. To this end,

we take t > α + β and note that, if 0 < s < t − α, then t − s > α, and that if
t− α < s < t, then s > β. We can now split the convolution integral and obtain

F ∗G(t)x =

∫ t

0

F (t− s)G(s)x ds

=

∫ t−α

0

F (t− s)G(s)x ds +

∫ t

t−α

F (t− s)G(s)x ds.

If we now apply Theorem C.7 twice, we see that our claim is true. �

Now let T = (T (t))t≥0 be a strongly continuous semigroup with generator
(A, D(A)) and take a bounded operator B such that A + B generates the semi-
group S = (S(t))t≥0.

In order to apply the above lemma to our problem, it suffices to realize that
T, S ∈ X. The Volterra operator V from Definition 1.8 can be extended to X and
is just the convolution operator

V F = T ∗BF = TB ∗ F

for F ∈ X. In particular, one has from (IE) that

S = T + T ∗BS = T + TB ∗ S.

As a first consequence, we obtain the following result.

1.14 Proposition. If T = (T (t))t≥0 is eventually norm continuous (resp. even-
tually compact) with generator A and if B is compact, then the semigroup
S = (S(t))t≥0 generated by A + B is eventually norm continuous (resp. even-
tually compact).

Proof. Since B is compact, TB is norm continuous on (0,∞). Since S = T +
TB ∗ S, the assertion follows from Lemma 1.13.(i). �

This proposition does not hold without assuming B to be compact.

1.15 Example. Take (T (t))t≥0 to be the nilpotent right translation semigroup
on X := L1[0, 2], which is eventually norm continuous and eventually compact.
Its generator (A, D(A)) is given by

Af = −f ′ for f ∈ D(A) =
{
g ∈ W1,1[0, 2] : g(0) = 0

}
(see Paragraph II.2.11). Define the bounded operator B ∈ L(X) by

(Bf)(s) :=
{

f(s + 1) for 0 ≤ s ≤ 1,
0 for 1 < s ≤ 2

and for n ∈ N the functions fn ∈ D(A) by

fn(s) :=
{

se−2πins for 0 ≤ s ≤ 1,
e−2πins for 1 < s ≤ 2.

It follows that
(A + B)fn = 2πinfn,

and hence 2πin ∈ Pσ(A + B) for each n ∈ N and σ(A + B) ∩ iR is unbounded.
Therefore, Theorem II.4.18 implies that the semigroup (S(t))t≥0 generated by
A + B is not eventually norm continuous.



Section 1. Bounded Perturbations 167

However, if the “eventual” properties in Proposition 1.14 are replaced by
the corresponding “immediate” ones, the compactness assumption on B can be
dropped. This will be shown in the first part of our next result. In its second part
we will relax the compactness property on B and make instead an assumption
on the Volterra operator V .

1.16 Theorem. For the semigroups T = (T (t))t≥0 and S = (S(t))t≥0 with
generators A and A + B with B ∈ L(X) the following assertions are true.

(i) If T is immediately norm continuous (resp. immediately compact), then the
same holds for the perturbed semigroup S.

(ii) If T is norm continuous (resp. compact) on (α,∞) and if there exists k ∈ N
such that V kT is norm continuous (resp. compact) on (0,∞), then S is
norm continuous (resp. compact) on (kα,∞).

Proof. (i) follows from Lemma 1.13.(i), since S = T + T ∗BS.
(ii) By the Dyson–Phillips series (1.7) we have

S =

∞∑
n=0

V n
T =

k∑
n=0

V n
T +

∞∑
n=1

V n(V k
T),

where the series converges uniformly on compact intervals of R+. The terms in
the first sum of the right-hand side are T, T ∗ BT, T ∗ B(T ∗ BT), . . ., which are
norm continuous (resp. compact) at least on (kα,∞) by Lemma 1.13.(ii). The
series

∞∑
n=1

V n(V k
T) = T ∗B(V k

T) + T ∗B
(
T ∗B(V k

T)
)

+ · · ·

converges uniformly on compact intervals, and each term is norm continuous
(resp. compact) on (0,∞) by Lemma 1.13.(i). This implies the assertion. �

1.17 Exercises. (1) Show that the convolution F ∗G of two strongly contin-
uous functions F, G : R+ → X is again strongly continuous. Moreover, “∗” is
associative, i.e., (F ∗G) ∗H = F ∗ (G ∗H) for all F, G, H ∈ X := C(R+, Ls(X)).
(Hint: Use Lemma B.15.)

(2) Prove Lemma 1.9. (Hint: By Exercise (1), V is a linear operator on the space
C([0, t0], Ls(X)). Use induction on n ∈ N to verify (1.5). Equation (1.6) then

follows from the Hadamard formula r(V ) = limn→∞ ‖V n‖1/n for the spectral
radius.)

(3) Let (T (t))t≥0 be a strongly continuous semigroup with generator (A, D(A))
on the Banach space X and (S(t))t≥0 the semigroup with generator A + B for
B ∈ L(X).

(i) Show that instead of the integral equations (IE) and (IE∗) we can write

and

S(t)x = T (t)x +

∫ t

0

T (s)BS(t− s)x ds

S(t)x = T (t)x +

∫ t

0

S(t− s)BT (s)x ds

for x ∈ X, t ≥ 0.
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(ii) Define a Volterra operator V ∗ based on the integral equation (IE∗) and
show that

S(t) =

∞∑
n=0

S∗n(t),

where S∗0 (t) := T (t) and

S∗n+1(t)x := V ∗S∗n(t)x =

∫ t

0

S∗n(s)BT (t− s)x ds

for x ∈ X, t ≥ 0.

(4) Show that the variation of parameters formulas (IE) and (IE∗) also hold for
perturbations B ∈ L(X1) and x ∈ D(A).

(5) Take the Banach space X := C0(R) and a function q ∈ Cb(R), and define

T (t)f(s) := e

∫ s

s−t
q(τ) dτ

· f(s− t)

for s ∈ R, t ≥ 0, and f ∈ X.

(i) Show that (T (t))t≥0 is a strongly continuous semigroup on X.

(ii) Compute its generator.

(iii) What happens if the function q is taken in L∞(R)?

(iv) Can one allow the function q to be unbounded such that (T (t))t≥0 still
becomes a strongly continuous semigroup on X?

(v) Assume that

u(t, s) := e

∫ t

s
q(τ) dτ

is uniformly bounded for s, t ∈ R. Show that the semigroup (T (t))t≥0 is
similar to the left translation semigroup on X. (Hint: Use the multiplication
operator Mu(·,0) as a similarity transformation.)

(6) Let (A, D(A)) be an unbounded generator on the Banach space X. On the
product space X := X ×X define

A :=
(

A 0

0 I

)
with domain D(A) := D(A)×X

and the bounded operator B :=
(

0 I

0 0

)
.

(i) Show that XA+B
2 = D((A + B)2) =

{(
x
y

)
∈ D(A)×X : Ax + y ∈ D(A)

}
,

hence is different from XA
2 = D(A2)×X.

(ii) Prove a similar statement for the extrapolation spaces of order 2. (Hint:

Consider A :=
(

A 0

0 I

)
with domain D(A) := D(A)×X and B :=

(
0 0

I 0

)
.)

This confirms the statement following Corollary 1.4.

(7) Let (T (t))t≥0 and (S(t))t≥0 be strongly continuous semigroups with genera-
tors A and A + B, respectively, where B ∈ L(X).

(i) Show that for λ sufficiently large

S(t) = lim
h↓0

1

h

∫ t+h

t

S(s) ds = lim
h↓0

1

h
R(λ, A + B)

(
S(t)− e−λhS(t + h)

)
in the strong operator topology. (Hint: Use (1.6) in Lemma II.1.3.)
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(ii) Show that R(λ, A + B)S(t) for λ large is given by[
∞∑

n=0

(
R(λ, A)B

)n

](
R(λ, A)T (t) +

∫ t

0

T (t− s)R(λ, A)BS(s) ds

)
.

(Hint: Use the identity (λ−A−B) = (λ−A)(I −R(λ, A)B) and (IE).)

(iii) If (T (t))t≥0 is eventually compact, (S(t))t≥0 is eventually norm continuous,
and R(λ, A)B is compact for large λ, then (S(t))t≥0 is eventually compact.
(Hint: Apply (i) and (ii) for the norm topology and use Theorem C.7.)

2. Perturbations of Contractive and Analytic Semigroups

Addition of two unbounded operators is a very delicate operation and can
destroy many of the good properties the single operators may have. This
is, in part, due to the fact that the “naive” domain

D(A+B) := D(A) ∩D(B)

for the sum A + B of the operators
(
A,D(A)

)
and

(
B,D(B)

)
can be

too small (see Example 1.2.(ii)). In order to avoid this, we assume in this
section that the perturbing operator B behaves well with respect to the
unperturbed operator A. More precisely, we assume the following property.

2.1 Definition. Let A : D(A) ⊂ X → X be a linear operator on the
Banach space X. An operator B : D(B) ⊂ X → X is called (relatively)
A-bounded if D(A) ⊆ D(B) and if there exist constants a, b ∈ R+ such that

(2.1) ‖Bx‖ ≤ a ‖Ax‖+ b ‖x‖

for all x ∈ D(A). The A-bound of B is

a0 := inf{a ≥ 0 : there exists b ∈ R+ such that (2.1) holds}.

Before applying this notion to the perturbation problem for generators
we discuss a concrete example.

2.2 Example. For an interval I ⊆ R we consider on X := Lp(I), 1 ≤ p ≤
∞, the operators

A := d2

dx2 , D(A) := W 2,p(I),

B := d
dx , D(B) := W 1,p(I).

Proposition. The operator B is A-bounded with A-bound a0 = 0.



170 Chapter III. Perturbation and Approximation of Semigroups

Proof. We choose an arbitrary bounded interval J := (α, β) ⊂ I, and set
ε := β − α,

J1 := (α, α+ ε/3), J2 := (α+ ε/3, β − ε/3), J3 := (β − ε/3, β).

Then, for all f ∈ D(A) and s ∈ J1, t ∈ J3 there exists, by the mean value
theorem, a point x0 = x0(s, t) ∈ J such that

f ′(x0) =
f(t)− f(s)

t− s
.

Using this and t− s ≥ ε/3, we obtain

(2.2) |f ′(x)| =
∣∣∣∣f ′(x0) +

∫ x

x0

f ′′(y) dy
∣∣∣∣ ≤ 3

ε

(
|f(s)|+ |f(t)|

)
+
∫

J

|f ′′(y)| dy

for all x ∈ J , s ∈ J1, and t ∈ J3. If we denote by ‖ · ‖p,J the p-norm in
Lp(J) and integrate inequality (2.2) on both sides with respect to s ∈ J1

and t ∈ J3, we obtain

ε2

9
|f ′(x)| ≤

∫
J1

|f(s)| ds+
∫

J3

|f(t)| dt+
ε2

9

∫
J

|f ′′(y)| dy

≤ ‖f‖1,J +
ε2

9
‖f ′′‖1,J

≤ ε
1/q‖f‖p,J +

ε2+
1/q

9
‖f ′′‖p,J ,

where we used Hölder’s inequality for 1/p + 1/q = 1. From this estimate, it
then follows that

ε2

9
‖f ′‖p,J ≤ ε

1/pε
1/q‖f‖p,J + ε

1/p
ε2+

1/q

9
‖f ′′‖p,J

= ε ‖f‖p,J +
ε3

9
‖f ′′‖p,J ,

that is
‖f ′‖p,J ≤

9
ε
‖f‖p,J + ε‖f ′′‖p,J .

By splitting the interval I in finitely or countable many (depending on
whether I is bounded or not) disjoint subintervals In, n ∈ N ⊆ N, of
length ε, we obtain by Minkowski’s inequality

‖Bf‖p =
(∑

n∈N

‖f ′‖p
p,In

)1/p

≤ 9
ε

(∑
n∈N

‖f‖p
p,In

)1/p

+ ε
(∑

n∈N

‖f ′′‖p
p,In

)1/p

=
9
ε
‖f‖p + ε‖Af‖p.

Since we can choose ε > 0 arbitrarily small, the proof of our claim is
complete. �
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Note that from (2.2) we immediately obtain an analogous result for the
second and first derivative on X := C0(I). More precisely, if I ⊆ R is an
arbitrary interval and

A := d2

dx2 , D(A) :=
{
f ∈ C2

0(I) : f ′, f ′′ ∈ C0(I)
}
,

B := d
dx , D(B) :=

{
f ∈ C1

0(I) : f ′ ∈ C0(I)
}
,

then B is A-bounded with A-bound a0 = 0.
We now return to the abstract situation and observe that for an A-

bounded operator B the sum A + B is defined on D(A + B) := D(A).
However, many desirable properties may get lost.

2.3 Examples. Take A : D(A) ⊂ X → X to be the generator of a strongly
continuous semigroup such that σ(A) = C− := {z ∈ C : Re z ≤ 0} (e.g.,
take the generator of the translation semigroup on C0(R+), see Exam-
ple IV.2.6.(i)).
(i) If we take B := αA for α ∈ C, then A + B is not a generator for
α ∈ C \ (−1,∞), and is not even closed for α = −1.

(ii) Consider the new operator A :=
(

A 0
0 A

)
with D(A) := D(A) × D(A)

on the product space X := X ×X. If we take

B1 :=
(

0 εA
0 0

)
with D(B1) := X ×D(A),

then A + B1 is not a generator for every 0 6= ε ∈ C (use Exercise II.4.12.
(7)). For

B2 :=
(

0 −A
A −2A

)
with D(B2) := D(A)×D(A),

the sum A + B2 is not closed, and its closure is not a generator.

We now proceed with a series of lemmas showing which assumptions on
the unperturbed operator A and the A-bounded perturbation B are needed
such that the sum A+B

• is closed,
• has nonempty resolvent set, and, finally,
• becomes the generator of a strongly continuous semigroup.

2.4 Lemma. If
(
A,D(A)

)
is closed and

(
B,D(B)

)
is A-bounded with

A-bound a0 < 1, then (
A+B,D(A)

)
is a closed operator.
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Proof. Since an operator is closed if and only if its domain is a Banach
space for the graph norm, it suffices to show that the graph norm ‖·‖A+B

of A+B is equivalent to the graph norm ‖·‖A of A. By assumption, there
exist constants 0 ≤ a < 1 and 0 < b such that

‖Bx‖ ≤ a ‖Ax‖+ b ‖x‖

for all x ∈ D(A). Therefore, one has

‖Ax‖ = ‖(A+B)x−Bx‖ ≤ ‖(A+B)x‖+ a ‖Ax‖+ b ‖x‖

and, consequently,

−b ‖x‖+(1−a) ‖Ax‖ ≤ ‖(A+B)x‖ ≤ ‖Ax‖+‖Bx‖ ≤ (1+a) ‖Ax‖+b ‖x‖.

This yields the estimate

b ‖x‖+ (1− a) ‖Ax‖ ≤ ‖(A+B)x‖+ 2b ‖x‖ ≤ (1 + a) ‖Ax‖+ 3b ‖x‖,

proving the equivalence of the two graph norms. �

2.5 Lemma. Let
(
A,D(A)

)
be closed with ρ(A) 6= ∅ and assume

(
B,D(B)

)
to be A-bounded with constants 0 ≤ a, b in estimate (2.1). If λ0 ∈ ρ(A)
and

(2.3) c := a ‖AR(λ0, A)‖+ b ‖R(λ0, A)‖ < 1,

then A+B is closed, and one has λ0 ∈ ρ(A+B) with

(2.4). ‖R(λ0, A+B)‖ ≤ (1− c)−1 ‖R(λ0, A)‖.

Proof. As in the proof of Theorem 1.3, we decompose λ0 −A−B as the
product

λ0 −A−B = [I −BR(λ0, A)](λ0 −A)

and observe that λ0−A is a bijection fromD(A) ontoX, while BR(λ0, A) is
bounded on X (use Exercise 2.18.(1.i)). If we can show that ‖BR(λ0, A)‖ <
1, we obtain that [I−BR(λ0, A)], hence λ0−A−B, is invertible with inverse

(2.5) R(λ0, A+B) = R(λ0, A)
∞∑

n=0

(
BR(λ0, A)

)
n

satisfying

‖R(λ0, A+B)‖ ≤ ‖R(λ0, A)‖ (1− ‖BR(λ0, A)‖)−1.

To that purpose, take x ∈ X and use (2.1) to obtain

‖BR(λ0, A)x‖ ≤ a ‖AR(λ0, A)x‖+ b ‖R(λ0, A)x‖
≤
(
a ‖AR(λ0, A)‖+ b ‖R(λ0, A)‖

)
· ‖x‖,

whence ‖BR(λ0, A)‖ ≤ c < 1 by assumption (2.3). �
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In the last preparatory lemma, we consider operators satisfying a Hille–
Yosida type estimate for the resolvent (but not for all its powers as required
in Generation Theorem II.3.8). It is shown that this class of operators
remains invariant under A-bounded perturbations with small A-bound.

2.6 Lemma. Let
(
A,D(A)

)
be an operator whose resolvent exists for all

0 6= λ ∈ Σδ := {z ∈ C : | arg z| ≤ δ}
and satisfies

‖R(λ,A)‖ ≤ M

|λ|
for some constants δ ≥ 0 and M ≥ 1. Moreover, assume

(
B,D(B)

)
to be

A-bounded with A-bound

a0 <
1

M + 1
.

Then there exist constants r ≥ 0 and M̃ ≥ 1 such that

Σδ ∩ {z ∈ C : |z| > r} ⊂ ρ(A+B) and ‖R(λ,A+B)‖ ≤ M̃

|λ|
for all λ ∈ Σδ ∩ {z ∈ C : |z| > r}.

Proof. Choose constants 0 ≤ a < 1/M+1 and 0 ≤ b satisfying the estimate
(2.1). From this we obtain

c : = a ‖AR(λ,A)‖+ b ‖R(λ,A)‖
= a ‖λR(λ,A)− I‖+ b ‖R(λ,A)‖

≤ a(M + 1) +
bM

|λ|
< 1,

whenever |λ| > r := bM
1−a(M+1) . The assertion now follows from Lemma 2.5.

�

If we now assume the constants to be M = M̃ = 1, we obtain a pertur-
bation theorem for generators of contraction semigroups. The surprising
fact is that the relative bound a0, which in Lemma 2.6 and for M = 1
should be smaller than 1

2 , must only satisfy a0 < 1. The dissipativity (see
Definition II.3.13) of the operators involved makes this possible.

2.7 Theorem. Let
(
A,D(A)

)
be the generator of a contraction semigroup

and assume
(
B,D(B)

)
to be dissipative and A-bounded with A-bound

a0 < 1. Then
(
A+B,D(A)

)
generates a contraction semigroup.

Proof. We first assume that a0 < 1/2. From the criterion in Proposi-
tion II.3.23, it follows that the sum of a generator of a contraction semi-
group and a dissipative operator is again dissipative. Therefore, A + B is
a densely defined, dissipative operator, and by Theorem II.3.15 it suffices
to find λ0 > 0 such that λ0 ∈ ρ(A + B). This, however, follows from
Lemma 2.6 by choosing δ = 0, i.e., Σδ = [0,∞).
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In order to extend this to the case 0 ≤ a0 < 1, we define for 0 ≤ α ≤ 1
the operators

Cα := A+ αB, D(Cα) := D(A).

Then, for x ∈ D(A), one has

‖Bx‖ ≤ a ‖Ax‖+ b ‖x‖ ≤ a(‖Cαx‖+ α ‖Bx‖) + b ‖x‖
≤ a ‖Cαx‖+ a ‖Bx‖+ b ‖x‖;

and hence

‖Bx‖ ≤ a

1− a
‖Cαx‖+

b

1− a
‖x‖ for all 0 ≤ α ≤ 1.

Next, we choose k ∈ N such that

c :=
a

k(1− a)
<

1
2
.

Then the estimate

∥∥ 1
kBx

∥∥ ≤ c ‖Cαx‖+
b

k(1− a)
‖x‖

shows that for each 0 ≤ α ≤ 1 the operator 1/kB is Cα-bounded with
Cα-bound less than 1/2. As observed above, this implies that

Cα + 1
kB = A+ (α+ 1

k )B

generates a contraction semigroup whenever Cα = A+ αB does. However,
A generates a contraction semigroup, hence A+ 1/kB does. Repeating this
argument k times shows that (A+ (k−1)/kB) + 1/kB = A+ B generates a
contraction semigroup as claimed. �

In the limit case, i.e., if one has a = 1 in the estimate (2.1), the result remains
essentially true, provided that the adjoint of B is densely defined.

2.8 Corollary. Let (A, D(A)) be the generator of a contraction semigroup on X
and assume that (B, D(B)) is dissipative, A-bounded, and satisfies

(2.6) ‖Bx‖ ≤ ‖Ax‖+ b‖x‖

for all x ∈ D(A) and some constant b ≥ 0. If the adjoint B′ is densely defined on
X ′, then the closure of (A + B, D(A)) generates a contraction semigroup on X.

Proof. The sum A + B remains dissipative and densely defined. Hence, by the
Lumer–Phillips Theorem II.3.15, it suffices to show that rg(I − A− B) is dense
in X.
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Choose y′ ∈ X ′ satisfying 〈z, y′〉 = 0 for all z ∈ rg(I −A−B) and then y ∈ X
such that 〈y, y′〉 = ‖y′‖. The perturbed operators A + εB with domain D(A) are
generators of contraction semigroups for each 0 ≤ ε < 1 by Theorem 2.7. From
Generation Theorem II.3.5 we obtain 1 ∈ ρ(A + εB), and hence there exists a
unique xε ∈ D(A) such that ‖xε‖ ≤ ‖y‖ and

xε − (A + εB)xε = y.

From the estimate

‖Bxε‖ ≤ ‖Axε‖+ b‖xε‖
≤ ‖(A + εB)xε‖+ ε‖Bxε‖+ b‖xε‖
≤ ‖xε − y‖+ ε‖Bxε‖+ b‖xε‖

we deduce

(2.7) (1− ε)‖Bxε‖ ≤ ‖xε − y‖+ b‖xε‖ ≤ (2 + b)‖y‖

for all 0 ≤ ε < 1.
We now use the density of D(B′). In fact, for z′ ∈ D(B′) it follows that

|
〈
(1− ε)Bxε, z

′〉 | ≤ (1− ε)‖xε‖ · ‖B′z′‖

≤ (1− ε)‖y‖ · ‖B′z′‖,

and hence
lim
ε↑1

〈
(1− ε)Bxε, z

′〉 = 0.

Our assumption and the norm boundedness of the elements (1−ε)Bxε (see (2.7))
then implies

lim
ε↑1

〈
(1− ε)Bxε, y

′〉 = 0,

and therefore

‖y′‖ =
〈
y, y′

〉
=
〈
xε − (A + εB)xε, y

′〉
=
〈
(1− ε)Bxε, y

′〉+
〈
(I −A−B)xε, y

′〉
→ 0 as ε ↑ 1.

From the Hahn–Banach theorem we then conclude that rg(I − A − B) is dense
in X. �

If X is reflexive, the adjoint of every closable, densely defined operator is again
densely defined on the dual space (see Proposition B.10). Since densely defined,
dissipative operators are always closable (see Proposition II.3.14.(iv)), we arrive
at the following result.

2.9 Corollary. Let (A, D(A)) be the generator of a contraction semigroup on a
reflexive Banach space X. If (B, D(B)) is dissipative, A-bounded, and satisfies
the estimate (2.6), then the closure of (A + B, D(A)) generates a contraction
semigroup on X.
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In order to obtain the previous perturbation results, we used Lemma 2.6
and could estimate only the resolvent of the perturbed operator A + B
and not all its powers. Due to the Lumer–Phillips Theorem II.3.15, this
was sufficient if A was the generator of a contraction semigroup and B
was dissipative. There is, however, another case where an estimate on the
resolvent alone forces an operator to generate a semigroup. Such a result
has been proved in Theorem II.4.6 for analytic semigroups and now easily
leads to another perturbation theorem.

2.10 Theorem. Let the operator
(
A,D(A)

)
generate an analytic semi-

group
(
T (z)

)
z∈Σδ∪{0} on a Banach space X. Then there exists a constant

α > 0 such that
(
A+B,D(A)

)
generates an analytic semigroup for every

A-bounded operator B having A-bound a0 < α.

Proof. We first assume that
(
T (z)

)
z∈Σδ∪{0} is bounded, which means, by

Theorem II.4.6, that A is sectorial. Hence, there exist constants δ′ ∈ (0, π/2]
and C ≥ 1 such that for every

0 6= λ ∈ Σπ/2+δ′ :=
{
z ∈ C : | arg z| ≤ π

2
+ δ′

}
we have

λ ∈ ρ(A) and ‖R(λ,A)‖ ≤ C

|λ|
.

If we define α := 1/C+1, we can apply Lemma 2.6 and obtain constants
r ≥ 0 and M ≥ 1 such that

Σ := Σπ/2+δ′ ∩ {z ∈ C : |z| > r} ⊆ ρ(A+B)

and
‖R(λ,A+B)‖ ≤ M

|λ|
for all λ ∈ Σ.

By Exercise II.4.12.(6), this implies that A+B generates an analytic semi-
group, proving the assertion in the bounded case.

In order to treat the general case, we take w ∈ R and conclude from

‖Bx‖ ≤ a ‖Ax‖+ b ‖x‖ ≤ a ‖(A− w)x‖+ (aw + b) ‖x‖

for all x ∈ D(A) that B is also A − w bounded with the same bound a0.
Since the semigroup generated by A − w is analytic and bounded in Σδ

for w sufficiently large, the first part of the proof implies that A+B − w;
hence A+B generates an analytic semigroup. �

Before proceeding and in particular before presenting examples, we want
to look back at the results obtained so far. They can be distinguished
according to the following modification of Problem 1.1.
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2.11 Problem. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup on a Banach space X and let
(
B,D(B)

)
be an A-bounded per-

turbation. For which constants c ∈ C is it true that
(
A + cB,D(A)

)
is a

generator?

The above results provide the following answers.

(i) If both operators A and B are dissipative, then A+cB is a generator
whenever 0 ≤ c < 1 (Theorem 2.7).

(ii) If A generates an analytic semigroup, then there exists c0 > 0 such
that A+ cB is a generator whenever |c| < c0 (Theorem 2.10).

(iii) If B is bounded on X, then A + cB is a generator for all c ∈ C (
Theorem 1.3).

Clearly, this last situation is most desirable and can also be achieved if
in Theorem 2.10 the A-bound a0 of B satisfies a0 = 0.

2.12 Examples. (i) In Example II.4.8 we showed that the second deriva-
tive

A := d2

dx2 , D(A) :=
{
f ∈ H2[0, 1] : f(0) = f(1) = 0

}
generates an analytic semigroup on H := L2[0, 1]. Since by Example 2.2
the first derivative d/dx with maximal domain H1[0, 1] is A-bounded with
A-bound a0 = 0, we conclude by Theorem 2.10 and Exercise 2.18.(1) that
for all B ∈ L

(
H1[0, 1],L2[0, 1]

)
the operator

C := A+B, D(C) := D(A)

generates an analytic semigroup on H.

(ii) As in Paragraph II.2.13, we consider the diffusion semigroup on L1(Rn)
given by

(
T (t)f

)
(s) := (4πt)

−n/2

∫
Rn

e
−|s−r|2/4tf(r) dr =:

∫
Rn

Kt(s− r)f(r) dr.

It is generated by the closure of the Laplacian ∆ defined on the Schwartz
space S (Rn). In Example II.4.10 we have seen that

(
T (t)

)
t≥0 is a bounded

analytic semigroup. As a perturbation we take the multiplication operator

(Mqf)(s) := q(s)f(s) for f ∈ D(Mq) :=
{
g ∈ L1(Rn) : qg ∈ L1(Rn)

}
induced by a function q ∈ Lp(Rn) for p > max{1, n/2}.
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We now show that B := Mq is ∆-bounded with ∆-bound zero. To this
end, we estimate for f ∈ L1(Rn) and λ > 0

‖BR(λ,∆)f‖L1(Rn) =
∥∥∥∥B ∫ ∞

0

e−λtT (t)f dt
∥∥∥∥

L1(Rn)

≤
∫

Rn

|q(s)|
∫ ∞

0

e−λt

∫
Rn

Kt(s− r)|f(r)| dr dt ds

=
∫

Rn

|f(r)|
∫ ∞

0

e−λt

∫
Rn

Kt(s− r)|q(s)| ds dt dr

≤ ‖f‖L1(Rn) sup
r∈Rn

∫ ∞

0

e−λt

∫
Rn

Kt(s− r)|q(s)| ds dt

≤ ‖f‖L1(Rn) · ‖q‖Lp(Rn)

∫ ∞

0

e−λt

(∫
Rn

Kt(s)p′ds

)1/p′

dt

with 1/p+ 1/p′ = 1, where we used Fubini’s theorem and Hölder’s inequality.
It is now easy to verify that ‖Kt‖Lp′ (Rn) = ct

−n/2p for a constant c > 0.
Hence, we conclude that D(∆) ⊂ D(B) and

‖Bf‖L1(Rn) ≤ c‖q‖Lp(Rn)

∫ ∞

0

e−λtt
−n/2p dt ‖(λ−∆)f‖L1(Rn)

=: aλ‖(λ−∆)f‖L1(Rn) ≤ λaλ‖f‖L1(Rn) + aλ‖∆f‖L1(Rn)

for all f ∈ D(∆). Since aλ := c‖q‖Lp(Rn)

∫∞
0

e−λtt
−n/2p dt converges to zero

as λ → ∞, this proves our claim. Thus, by Theorem 2.10, the operator(
∆ + Mq, D(∆)

)
generates an analytic semigroup for every q ∈ Lp(Rn)

with p > max{1, n/2}.

We now introduce two classes of operators always having A-bound zero
with respect to a given operator A.

First, we will use the notions from Section II.5.b and assume that the domain
of the perturbing operator contains a Favard space Fα.

2.13 Lemma. Let A be the generator of a strongly continuous semigroup. More-
over, let B : D(B) ⊆ X → X be closed and assume that Fα ⊆ D(B) for some
0 < α < 1. Then B is A-bounded with A-bound zero.

Proof. We proceed in two steps, where, without loss of generality, we assume
that A generates a semigroup (T (t))t≥0 having negative growth bound ω0.

First, we show that B : Fα → X is bounded, i.e., that there exists K > 0 such
that

(2.8) ‖Bx‖ ≤ K‖x‖Fα for all x ∈ Fα.

To this end, we observe that by Theorem II.5.15.(i), Fα is a Banach space that
by Proposition II.5.14 is continuously embedded in X. Hence, B : Fα → X is
closed and therefore bounded by the closed graph theorem.
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In the second step, we show that for every ε > 0 there exists bε > 0 such that

(2.9) ‖x‖Fα ≤ ε ‖Ax‖+ bε ‖x‖ for all x ∈ D(A).

In fact, for ε > 0 there exists δ > 0 such that∥∥∥∥ 1

tα

∫ t

0

T (s) ds

∥∥∥∥ ≤ ε for all t ∈ (0, δ].

Then, for bε := supt≥δ

∥∥T (t)−I
tα

∥∥, we obtain

sup
t>0

∥∥∥∥T (t)x− x

tα

∥∥∥∥ ≤ sup
δ≥t>0

∥∥∥∥ 1

tα

∫ t

0

T (s)Ax ds

∥∥∥∥+ sup
t≥δ

∥∥∥∥T (t)x− x

tα

∥∥∥∥
≤ ε · ‖Ax‖+ bε · ‖x‖

for all x ∈ D(A). By the definition of the Favard norm ‖ · ‖Fα , this proves (2.9).
Since D(A) ⊆ Fα, the assertion then follows by combining the estimates (2.8)
and (2.9). �

We point out that by Proposition II.5.33 the domain condition on B in the
previous lemma is satisfied if the abstract Hölder space Xα or the domain D(Aα)
of the fractional power Aα of A is contained in D(B) for some α ∈ (0, 1).

As an immediate consequence of Theorem 2.10 and Lemma 2.13 we obtain the
following perturbation result.

2.14 Corollary. If A generates an analytic semigroup and B : D(B) ⊂ X → X
is closed and satisfies Fα ⊆ D(B) for some 0 < α < 1, then (A + B, D(A))
generates an analytic semigroup.

While in the above situation we made an assumption on the domain of
the perturbing operator B, we now require a property concerning its range.

2.15 Definition. Let
(
A,D(A)

)
be a closed operator on a Banach space

X. An operator
(
B,D(B)

)
is called (relatively) A-compact if D(A) ⊆ D(B)

and B : X1 → X is compact, where X1 denotes the domain D(A) equipped
with the graph norm ‖ · ‖A.

If ρ(A) is nonempty, one can show that an A-bounded operator B is A-
compact if and only if BR(λ,A) ∈ L(X) is compact for some/all λ ∈ ρ(A),
see Exercise 2.18.(1). Since compact operators are “small” in some sense,
one might hope that an A-compact operator is A-bounded with bound
0. This is, however, not true in general (see [Hes70]), and we need some
additional conditions to ensure it.

2.16 Lemma. Let
(
A,D(A)

)
be a closed operator on a Banach space X

and assume
(
B,D(B)

)
to be A-compact. If

(i) A is a generator and X is reflexive, or if

(ii)
(
B,D(B)

)
is closable in X,

then B is A-bounded with A-bound a0 = 0.
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Proof. (i) For 0 < µ sufficiently large and x ∈ D(A), we write

Bx = BR(µ,A)(µ−A)x
= µBR(µ,A)x−BR(µ,A)AR(λ,A)(λ−A)x
= µBR(µ,A)x−BR(µ,A)AλR(λ,A)x+BR(µ,A)AR(λ,A)Ax

for all λ > µ. Since the operators appearing in the first two terms are
bounded, it suffices to show that for each ε > 0 there exist λ > µ such that

ε > ‖BR(µ,A)AR(λ,A)‖ =
∥∥BR(µ,A)

(
λR(λ,A)− I

)∥∥
=
∥∥(λR(λ,A′)− I

)(
BR(µ,A)

)′∥∥.
If X is reflexive, then the adjoint operator A′ is again a generator (see Para-
graph I.5.14). Therefore, by Lemma II.3.4, λR(λ,A′) converges strongly to
I as λ→∞. Moreover, BR(µ,A) and therefore its adjoint

(
BR(µ,A)

)′ are
compact operators. Combining these two properties and applying Proposi-
tion A.3 yields

lim
λ→∞

∥∥(λR(λ,A′)− I
)(
BR(µ,A)

)′∥∥ = 0.

(ii) Assume the assertion to be false. Then there exists ε > 0 and a
sequence (xn)n∈N ⊂ D(A) such that

(2.10) ‖Bxn‖ > ε‖Axn‖+ n‖xn‖ for all n ∈ N.

For yn := xn/‖xn‖A this means

(2.11) ‖Byn‖ > ε‖Ayn‖+ n‖yn‖.

Since ‖yn‖A = 1 for all n ∈ N and since B is A-compact, there exists a sub-
sequence (zn)n∈N of (yn)n∈N such that (Bzn)n∈N converges in X. Moreover,
‖zn‖ < ‖Bzn‖/n and (Bzn)n∈N is bounded in X; hence limn→∞ ‖zn‖ = 0.
Using the assumption that B is closable, this implies limn→∞ ‖Bzn‖ = 0
and therefore limn→∞ ‖Azn‖ = 0 by (2.11). This, however, yields a contra-
diction, since

1 = ‖zn‖A = ‖zn‖+ ‖Azn‖ for all n ∈ N.
�

We again combine this lemma with our previous perturbation results.

2.17 Corollary. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup on a Banach space X and assume the operator
(
B,D(B)

)
to be

A-compact. If X is reflexive or if B is closable, then the following assertions
are true.

(i) If A and B are dissipative, then
(
A+cB,D(A)

)
generates a contrac-

tion semigroup on X for all c ∈ R+.

(ii) If the semigroup generated by A is analytic, then
(
A + cB,D(A)

)
generates an analytic semigroup on X for all c ∈ C.
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One can show that Corollary 2.17.(ii) holds without the extra assump-
tions that B is closable or that X is reflexive (see [DS88]).

2.18 Exercises. (1) Let A be an operator on a Banach space X having
nonempty resolvent set ρ(A). Show that for a linear operator B : D(A) → X
the following assertions are true.

(i) B is A-bounded if and only if B ∈ L(X1, X) if and only if BR(λ, A) ∈ L(X)
for some/all λ ∈ ρ(A).

(ii) B is A-compact if and only if BR(λ, A) is compact for some/all λ ∈ ρ(A).

(2) Let (A, D(A)) be the generator of a strongly continuous semigroup (T (t))t≥0

on a Banach space X and let (B, D(B)) be a closed operator on X. If there exists

(i) a (T (t))t≥0-invariant dense subspace D ⊂ D(A)∩D(B) such that the map
t 7→ BT (t)x is continuous for all x ∈ D and

(ii) constants t0 > 0 and q ≥ 0 such that∫ t0

0

‖BT (t)x‖ dt ≤ q‖x‖ for all x ∈ D,

then B is A-bounded with A-bound less than or equal to q. (Hint: Use the formula

(2.12) BR(λ, A)x =

∞∑
n=0

e−λnt0

∫ t0

0

e−λrBT (r)T (nt0)x dr, x ∈ D,

in order to show that BR(λ, A) is bounded on D. Then it follows from Propo-
sition B.2.(i) and Theorem B.6 that D(A) ⊆ D(B). Finally, take in (2.12) the
limit as λ → ∞ to estimate the A-bound of B. Compare this with part (iv) of
the proof of Theorem 3.14 on p. 197.)

(3) Assume (A, D(A)) to generate an analytic semigroup of angle δ ∈ (0, π].
Show that in the situation of Theorem 2.10 the semigroup generated by A + B
is analytic of angle at least δ.

(4) Take the operators Af := f ′′ and Bf := f ′ with maximal domains in X :=
C0(R). Show that A+αB−β generates a contraction semigroup for α ∈ R, β ≥ 0.
Can one replace the constants α and β by certain functions?

(5) Let (A, D(A)) be the generator of a contraction semigroup on the Banach
space X.

(i) If (B, D(B)) is dissipative, then (A+B, D(A)∩D(B)) is again dissipative.

(ii) If B is dissipative and bounded, then (A+B, D(A)) generates a contraction
semigroup.

(6) Take X := c0 and define A(xn) := (inxn) with domain D(A) consisting of
all finite sequences.

(i) Show that the closure A of A generates a group of isometries on X.

(ii) Construct a different semigroup generator (B, D(B)) on X such that A and
B coincide on D(A).

(7) Let B be an operator on a Banach space X such that there exists a sequence
(λn)n∈N ⊂ ρ(B) satisfying limn→∞ ‖R(λn, B)‖ = 0. Show that B is A := B2-
bounded with A-bound a0 = 0. (Hint: Compute B2R(λ, B) using the formula
BR(λ, B) = λR(λ, B)− I.)
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3. More Perturbations

The perturbation results in Sections 1 and 2 are based on an explicit series
representation for the resolvent of A+B (see (2.5)) and some version of the
Hille–Yosida theorem. However, this series does not allow one to estimate
all powers of the resolvent of A + B as needed in the general form of the
Hille–Yosida theorem. Therefore, this approach is limited to cases where
an estimate of the resolvent and not of all its powers was sufficient, i.e., to
perturbations of contractive and analytic semigroups.

In Sections 3.a and 3.c below we will therefore use a different approach
based on the variation of parameters formulas (IE) and (IE∗), respectively,
from Section 1. While both work equally well for bounded perturbations,
they allow different generalizations to the unbounded case. In fact, an ex-
tension of (IE) gives rise to “Desch–Schappacher” perturbations in Sec-
tion 3.a. On the other hand, in Section 3.c we will use a generalization of
(IE∗) to study “Miyadera–Voigt” perturbations.

Section 3.b uses the results of Section 3.a in order to determine the re-
lation between the generators of semigroups being “close” to each other at
t = 0. Finally, in Section 3.d we compare additive and so-called “multi-
plicative” perturbations of generators.

The results in this section are more advanced than the preceding ones
and may therefore be skipped at a first reading.

a. The Perturbation Theorem of Desch–Schappacher

As already mentioned above, we now will use a “direct” approach to the per-
turbation problem based on a generalization of the variation of parameters for-
mula (IE) from Corollary 1.7.

We start by considering a strongly continuous semigroup (T (t))t≥0 on a Banach
space X and the corresponding extrapolated semigroup (T−1(t))t≥0 on X−1, cf.
Section II.5.a. Then, we recall from Proposition A.7 that for each t0 > 0 the
space

Xt0 := C
(
[0, t0], Ls(X)

)
of all strongly continuous, L(X)-valued functions equipped with the norm

‖F‖∞ := sup
r∈[0,t0]

‖F (r)‖

is a Banach space. On this space we define for a given operator B ∈ L(X, X−1)
the abstract Volterra operator VB (cf. Definition 1.8) by

F 7→ VBF with (VBF ) (t) :=

∫ t

0

T−1(t− r)BF (r) dr ∈ L(X, X−1)

for 0 ≤ t ≤ t0 and F ∈ Xt0 , where the integral converges in X−1 in the strong
sense. We now assume that for each F ∈ Xt0

(1) the range rg((VBF )(t)) is contained in X for all t ∈ [0, t0],

(2) the map [0, t0] 3 t 7→ (VBF )(t) is strongly continuous on X.
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Then, by assumption (1) and Corollary B.7, the operator (VBF )(t) : X → X is
bounded; hence by (2) the map VB : Xt0 → Xt0 is well-defined, and we assume
that

(3) VB defines a bounded operator on Xt0 satisfying ‖VB‖ < 1.

Using this notation, we introduce the class of Desch–Schappacher perturbations
(of the generator A of a strongly continuous semigroup (T (t))t≥0) consisting of
those operators B satisfying assumptions (1)–(3), i.e., we define

SDS
t0 :=

{
B ∈ L(X, X−1) : VB ∈ L(Xt0) and ‖VB‖ < 1

}
.

Later, see Corollaries 3.3, 3.4, and 3.6, we will give several sufficient conditions for
an operator B to belong to SDS

t0 . Combined with the following general theorem,
this will open the door for a treatment of so-called “boundary perturbations”
(see, e.g., Example 3.5, Theorem VI.6.1, and [Gre87].)

3.1 Theorem. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X. If B ∈ SDS

t0 for some t0 > 0, then the oper-
ator

(A−1+B)|X with domain D
(
(A−1+B)|X

)
:=
{
x ∈ X : A−1x+Bx ∈ X

}
generates a strongly continuous semigroup on X.

Proof. For brevity, we write in the sequel V := VB . Since by assumption the op-
erator V satisfies ‖V ‖ < 1, it follows that I−V ∈ L(Xt0) is invertible. Therefore,
we can define the operator-valued function

S(·) := (I − V )−1T (·),

i.e., S(·) is the unique solution in Xt0 of the equation

(3.1) S(t) = T (t) +

∫ t

0

T−1(t− r)BS(r) dr, t ∈ [0, t0].

In analogy to the terminology from Section 1, we call this identity the variation
of parameters formula. We now proceed in several steps by verifying the following
assertions.

(i) The operators S(t) satisfy the identity

S(s + t) = S(s)S(t) for all 0 ≤ s, t ≤ s + t ≤ t0.

(ii) If t ≥ 0, take some n ∈ N satisfying t/n ≤ t0. Then the operator

(3.2) S(t) := S( t/n)n

is well-defined, and (S(t))t≥0 is a strongly continuous semigroup on X.

(iii) The semigroup (S(t))t≥0 satisfies (3.1) for all t ≥ 0.

(iv) The resolvent set ρ((A−1 + B)|X) is nonempty.

(v) The generator C of (S(t))t≥0 is given by C = (A−1 + B)|X .
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In order to show (i), we first claim that

(3.3) [V nT ] (s + t) =

n∑
k=0

[
V n−kT

]
(s) ·

[
V kT

]
(t)

for all n ∈ N0 and s, t ∈ [0, t0] satisfying s + t ≤ t0. Since V 0 = I, we see that
equation (3.3) is trivially satisfied for n = 0. If it is true for some n ∈ N, we
obtain

n+1∑
k=0

[
V n+1−kT

]
(s) ·

[
V kT

]
(t)

=

n∑
k=0

∫ s

0

T−1(s− r)B
[
V n−kT

]
(r) dr ·

[
V kT

]
(t)

+ T (s)

∫ t

0

T−1(t− r)B [V nT ] (r) dr

=

∫ s

0

T−1(s− r)B

n∑
k=0

[
V n−kT

]
(r) ·

[
V kT

]
(t) dr

+

∫ t

0

T−1(s + t− r)B [V nT ] (r) dr

=

∫ s

0

T−1(s− r)B [V nT ] (r + t) dr +

∫ t

0

T−1(s + t− r)B [V nT ] (r) dr

=

∫ s+t

t

T−1(s + t− r)B [V nT ] (r) dr +

∫ t

0

T−1(s + t− r)B [V nT ] (r) dr

=
[
V n+1T

]
(s + t),

which, by induction, proves (3.3).
We now observe that for all t ∈ [0, t0] the point evaluation δt : Xt0 → L(X) is

a contraction. Moreover, we have ‖V ‖ < 1, and therefore the inverse of I − V is
given by the Neumann series. Hence, we obtain

(3.4) S(t) = δt

( ∞∑
n=0

V nT

)
=

∞∑
n=0

[V nT ] (t), t ∈ [0, t0].

From the estimate

‖ [V nT ] (t)‖ = ‖δtV
nT‖ ≤ ‖V ‖n · ‖T‖

we see that the second series in (3.4) converges absolutely in norm. Therefore,
we conclude, by using the Cauchy product and formula (3.3), that

S(s)S(t) =

∞∑
n=0

[V nT ] (s) ·
∞∑

n=0

[V nT ] (t)

=

∞∑
n=0

n∑
k=0

[
V n−kT

]
(s)
[
V kT

]
(t)

=

∞∑
n=0

[V nT ] (s + t) = S(s + t),

which proves (i).
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(ii) By equation (3.1), we have S(0) = T (0) = I. In order to show that S(t) is
well-defined, we take t ≥ 0 and m, n ∈ N such that t/n, t/m ≤ t0. Then (i) implies

S( t/n)n =
(
[S(1/mt/n)]m

)
n = · · · =

(
[S(1/nt/m)]n

)
m = S( t/m)m.

Hence, the definition of S(t) in (3.2) is independent of the special choice of n ∈ N,
which shows the first claim. Next, we verify the semigroup property and choose
for s, t ≥ 0 an integer n ∈ N such that s+t/n ≤ t0. Then, again by (i), we obtain

S(s + t) = S(s+t/n)n =
(
S(s/n)S( t/n)

)
n

= S(s/n)nS( t/n)n = S(s)S(t).

Finally, since S(·) belongs to the space Xt0 , it is clear that the operator family
(S(t))t≥0 is strongly continuous, and (ii) is proved.

We proceed by verifying (iii). For t = nt0 + τ , n ∈ N, and τ ∈ [0, t0), we have∫ t

0

T−1(t− r)BS(r) dr =

n−1∑
k=0

∫ (k+1)t0

kt0

T−1(t− r)BS(r) dr

+

∫ t

nt0

T−1(t− r)BS(r) dr

=

n−1∑
k=0

T
(
t− (k + 1)t0

) ∫ t0

0

T−1(t0 − r)BS(r) dr · S(kt0)

+

∫ τ

0

T−1(τ − r)BS(r) dr · S(nt0).

From (3.1), it then follows that∫ t

0

T−1(t− r)BS(r) dr =

n−1∑
k=0

T
(
t− (k + 1)t0

)(
S(t0)− T (t0)

)
S(kt0)

+
(
S(τ)− T (τ)

)
S(nt0)

= S(t)− T (t).

This proves (iii).
(iv) We first claim that R(λ, A−1)B is bounded and satisfies ‖R(λ, A−1)B‖ < 1

for λ sufficiently large. To this end we choose constants M ≥ 1 and w ≥ 0 such
that ‖T (t)‖ ≤ Mewt. Then for λ > w the resolvent of A−1 is given by the integral
representation, and we obtain

R(λ, A−1)B =

∫ ∞

0

e−λrT−1(r)B dr

=

∞∑
n=0

e−λnt0T−1(nt0) ·
∫ t0

0

e−λrT−1(r)B dr

=

∞∑
n=0

e−λnt0T (nt0) ·
[
V Fλ](t0),
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where Fλ ∈ Xt0 is defined by Fλ(r) := e−λ(t0−r)I. Next, we estimate

(3.5)

‖R(λ, A−1)B‖ ≤
( ∞∑

n=0

e−λnt0‖T (nt0)‖
)
· ‖V ‖ · ‖Fλ‖∞

≤ ‖V ‖+ M

∞∑
n=1

e(w−λ)nt0 = ‖V ‖+
Me(w−λ)t0

1− e(w−λ)t0
.

Since by assumption ‖V ‖ < 1, this implies that

(3.6) r
(
R(λ, A−1)B

)
≤ ‖R(λ, A−1)B‖ < 1

for λ sufficiently large. Now, if λ ∈ ρ(A) = ρ(A−1), we have

(3.7) λ− (A−1 + B)|X = (λ−A)
(
I −R(λ, A−1)B

)
,

and hence λ−(A−1+B)|X is invertible whenever λ ∈ ρ(A) and 1 ∈ ρ(R(λ, A−1)B).
This proves (iv).

(v) We finish the proof by verifying that the generator C of (S(t))t≥0 is given
by (A−1 +B)|X . To this end, we apply the Laplace transform to the Variation of
Parameters Formula (3.1) and obtain, using the Convolution Theorem C.17,

(3.8) R(λ, C) = R(λ, A) + R(λ, A−1)BR(λ, C)

for all λ > max{ω0(A), ω0(C)}. This yields

(3.9)
(
I −R(λ, A−1)B

)
R(λ, C) = R(λ, A)

and therefore
I = (λ−A)

(
I −R(λ, A−1)B

)
R(λ, C)

=
(
λ− (A−1 + B)|X

)
R(λ, C).

Hence, R(λ, C) is a right inverse of λ − (A−1 + B)|X , which shows that C ⊆
(A−1 + B)|X . However, by (iv), we know that λ − (A−1 + B)|X and λ − C are
both invertible for λ sufficiently large, and we obtain (v) (use Exercise IV.1.21.
(5)). �

From the above proof we immediately deduce the following representation for-
mulas for the semigroup (S(t))t≥0 generated by the perturbed operator.

3.2 Corollary. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 and let B ∈ SDS

t0 for some t0 > 0. Then the semigroup (S(t))t≥0

generated by (A−1 + B)|X is given by

(i) the variation of parameters formula

(3.10) S(t) = T (t) +

∫ t

0

T−1(t− r)BS(r) dr, t ≥ 0,

(ii) and by the Dyson–Phillips series

(3.11) S(t) =

∞∑
n=0

Sn(t), t ≥ 0,

where S0(t) := T (t) and

(3.12) Sn(t) :=

∫ t

0

T−1(t− r)BSn−1(r) dr.

Here, the series (3.11) converges in L(X) uniformly on compact intervals
of R+ (cf. Exercise 3.8.(3)), while the integral in (3.12) is defined in the
strong operator topology in X−1.
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The Perturbation Theorem 3.1 is rather abstract, and one might be uncertain
how to verify the property B ∈ SDS

t0 in concrete examples. We therefore present
some variations of Theorem 3.1 imposing simpler conditions on the operator B
implying B ∈ SDS

t0 and hence that (A−1 + B)|X is a generator on X.

3.3 Corollary. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X and let B ∈ L(X, X−1). Moreover, assume that
there exists t0 > 0 and q ∈ [0, 1) such that

(i)

∫ t0

0

T−1(t0 − r)Bf(r) dr ∈ X and

(ii)

∥∥∥∥∫ t0

0

T−1(t0 − r)Bf(r) dr

∥∥∥∥ ≤ q ‖f‖∞

for all continuous functions f ∈ C([0, t0], X). Then B ∈ SDS
t0 , and therefore

(A−1 + B)|X generates a strongly continuous semigroup (S(t))t≥0 on X.

Proof. We start by showing that V := VB defines a linear operator on Xt0 . To
this end, we define for f ∈ C([0, t0], X) and t ∈ [0, t0] the function ft : [0, t0] → X
by

ft(r) :=
{

f(0) if 0 ≤ r ≤ t0 − t,
f(r + t− t0) if t0 − t ≤ r ≤ t0.

Then ft ∈ C([0, t0], X), and one easily verifies that

(3.13)

∫ t

0

T−1(t−r)Bf(r) dr =

∫ t0

0

T−1(t0−r)Bft(r) dr−
∫ t0

t

T−1(r)Bf(0) dr.

Since by Lemma II.1.3∫ t0

t

T−1(r)Bf(0) dr = T (t)

∫ t0−t

0

T−1(r)Bf(0) dr ∈ D(A−1) = X,

this shows that ∫ t

0

T−1(t− r)Bf(r) dr ∈ X for all t ∈ [0, t0].

Therefore, the function g : [0, t0] → X given by

g(t) :=

∫ t

0

T−1(t− r)Bf(r) dr

is well-defined. We now claim that g is continuous. Indeed, applying Lemma II.1.3
to (3.13) and using the fact that the graph norm ‖ · ‖A−1 on D(A−1) = X is
equivalent to ‖ · ‖, we obtain

‖g(t)− g(s)‖ ≤
∥∥∥∫ t0

0

T−1(t0 − r)B
(
ft(r)− fs(r)

)
dr

∥∥∥
+

∥∥∥∫ t

s

T−1(r)Bf(0) dr

∥∥∥
≤ q ‖ft − fs‖∞ + K ·

(∥∥∥∫ t

s

T−1(r)Bf(0) dr

∥∥∥
−1

+
∥∥(T−1(t)− T−1(s)

)
Bf(0)

∥∥−1

)
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for all s, t ∈ [0, t0] and a suitable constant K > 0. Since (T−1(t))t≥0 is strongly
continuous and f is uniformly continuous on the compact interval [0, t0], this
implies

lim
s→t

‖g(t)− g(s)‖ = 0,

i.e., g is continuous. Now, by choosing f := F (·)x for F ∈ Xt0 and x ∈ X,
we conclude that the conditions (1) and (2) at the beginning of Section 3.a are
satisfied, i.e., V defines a linear operator on Xt0 .

Next, we show that ‖V ‖ ≤ q. To this end, we write f ∈ C([0, t0], X) as f =

f̃δ + hδ, where

hδ(r) :=
{

(1− r/δ) f(0) if r ∈ [0, δ),
0 if r ∈ [δ, t0]

for some δ ∈ (0, t0). Then f̃δ, hδ are continuous and f̃δ(0) = 0. Hence, using
again the fact that on X the graph norm ‖ · ‖A−1 is equivalent to ‖ · ‖, we obtain
from (ii) and (3.13) for δ < t < t0 the estimate∥∥∥∥∫ t

0

T−1(t−r)Bf(r) dr

∥∥∥∥
≤
∥∥∥∥∫ t

0

T−1(t− r)Bf̃δ(r) dr

∥∥∥∥+

∥∥∥∥∫ t

0

T−1(t− r)Bhδ(r) dr

∥∥∥∥
≤ q
∥∥f̃δ

∥∥
∞

+ K
(∥∥∥∥∫ t

0

T−1(t− r)Bhδ(r) dr

∥∥∥∥
−1

+

∥∥∥∥A−1

∫ t

0

T−1(t− r)Bhδ(r) dr

∥∥∥∥
−1

)
≤ q
∥∥f̃δ

∥∥
∞

+ K

∥∥∥∥∫ δ

0

T−1(t− r) (1− r/δ) Bf(0) dr

∥∥∥∥
−1

+ K

∥∥∥∥T−1(t)Bf(0)− 1

δ

∫ δ

0

T−1(t− r)Bf(0) dr

∥∥∥∥
−1

.

By taking the limit as δ ↓ 0, we then conclude that∥∥∥∥∫ t

0

T−1(t− r)Bf(r) dr

∥∥∥∥ ≤ q ‖f‖∞

for all f ∈ C([0, t0], X) and all t ∈ [0, t0]. Clearly, this implies ‖V ‖ ≤ q < 1, i.e.,
B ∈ SDS

t0 , and the assertion follows from Theorem 3.1. �

If condition (i) in Corollary 3.3 is satisfied not only for continuous functions but
also for Lp-functions, then the estimate in 3.3.(ii) is superfluous. More precisely,
we can prove the following result.

3.4 Corollary. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X and let B ∈ L(X, X−1). Moreover, assume that
there exist t0 > 0 and p ∈ [1,∞) such that∫ t0

0

T−1(t0 − r)Bf(r) dr ∈ X

for all functions f ∈ Lp([0, t0], X). Then (A−1 + B)|X generates a strongly con-
tinuous semigroup on X.
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Proof. We first define, for t ∈ [0, t0] and f ∈ Lp([0, t], X), the function f̃ t :
[0, t0] → X by

f̃ t(r) :=
{

0 if 0 ≤ r ≤ t0 − t,
f(r + t− t0) if t0 − t < r ≤ t0.

Then f̃ t ∈ Lp([0, t0], X), and one has

(3.14)

∫ t

0

T−1(t− r)Bf(r) dr =

∫ t0

0

T−1(t0 − r)Bf̃ t(r) dr ∈ X.

Hence, the operator Qt ∈ L (Lp([0, t], X), X−1) defined by

Qtf :=

∫ t

0

T−1(t− r)Bf(r) dr, f ∈ Lp
(
[0, t], X

)
,

satisfies rg(Qt) ⊆ X for all t ∈ [0, t0]. Since X is continuously embedded in X−1,
the closed graph theorem then implies that Qt is bounded from Lp([0, t], X) to
X (cf. Corollary B.7). Hence, there exists a constant M ≥ 0 such that

‖Qt0g‖X ≤ M ‖g‖p for all g ∈ Lp
(
[0, t0], X

)
,

where ‖g‖p :=
(∫ t0

0
‖g(r)‖p dr

)1/p

. Combining this estimate with (3.14), we ob-

tain

(3.15)

∥∥∥∥∫ t

0

T−1(t− r)Bf(r) dr

∥∥∥∥p

X

=
∥∥Qt0 f̃ t

∥∥p

X
≤ Mp

∥∥f̃ t

∥∥p

p

= Mp

∫ t

0

‖f(r)‖p dr ≤ t Mp · ‖f‖p
∞

for all f ∈ C([0, t], X). Hence, by choosing t < 1/Mp, we see from (3.14) and (3.15)
that the assumptions of Corollary 3.3 are satisfied for t0 = t, and the assertion
follows. �

3.5 Example. To give a typical application of the previous corollary, we take
the Banach space X := Lp[a, b], 1 ≤ p < ∞, and the first derivative

Ch := h′ with domain D(C) :=
{
h ∈ W1,p[a, b] : h(b) = Φ(h)

}
,

where Φ ∈ Lp[a, b]′ is a bounded linear functional. See also Section VI.6, where
similar operators are treated on spaces of vector-valued continuous functions.

We claim that C is the generator of a strongly continuous semigroup on X. In
order to verify this assertion, we consider C as a perturbation of the generator

Ah := h′ with domain D(A) :=
{
h ∈ W1,p[a, b] : h(b) = 0

}
of the nilpotent translation semigroup (T (t))t≥0 given by(

T (t)h
)
(s) :=

{
h(s + t) for s + t ≤ b,
0 for s + t > b,
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cf. Paragraph I.4.17. We then define the operator

B := −A−1(1 ⊗ Φ) ∈ L(X, X−1),

that is, Bh := −Φ(h) ·A−1 1 for h ∈ X. Then our operator C coincides with the
part of A−1 + B in X, i.e.,

C = (A−1 + B)|X .

By Corollary 3.4, C is a generator if we can show that∫ b−a

0

T−1(b− a− r)A−1(1 ⊗ Φ)f(r) dr ∈ X,

or, equivalently, ∫ b−a

0

T (b− a− r)(1 ⊗ Φ)f(r) dr ∈ D(A)

for all f ∈ Lp([0, b− a], X). In fact, for such f we have∫ b−a

0

T (b− a− r)(1 ⊗ Φ)f(r) dr =

∫ b−a

0

Φ
(
f(r)

)
· T (b− a− r)1 (·) dr

=

∫ b−a

·−a

Φ
(
f(r)

)
dr =: g(·).

Since Φ ◦ f ∈ Lp[0, b− a], this implies g ∈ W1,p[a, b] and g(b) = 0, i.e., g ∈ D(A).
Hence, the operator C is a generator on X.

If the perturbing operator B ∈ L(X, X−1) satisfies the assumptions of Corol-
lary 3.3, then it even follows that BP ∈ SDS

t0 for all P ∈ L(X) with ‖P‖ ≤ 1. If B

also satisfies the assumptions of Corollary 3.4, then BP ∈ SDS
t0 for all P ∈ L(X).

Since rg(BP ) ⊆ rg(B), this indicates that an appropriate condition on rg(B)
might already force the perturbation B to belong to SDS

t0 . Such a condition can
be obtained by using the “extrapolated” Favard space F0 (see Section II.5.b).

3.6 Corollary. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X and let B ∈ L(X, X−1) satisfy rg(B) ⊆ F0.
Then (A−1 + B)|X generates a strongly continuous semigroup on X.

Proof. By Corollary 3.4, it suffices to show that

(3.16)

∫ 1

0

T−1(1− r)Bf(r) dr ∈ X

for all f ∈ L1([0, 1], X). Hence, we take such a function f and choose a sequence
(fn)n∈N ⊂ C1([0, 1], X) converging to f in L1([0, 1], X). For the continuously
differentiable functions Bfn : [0, 1] → X−1, it follows from Corollary VI.7.6 that∫ 1

0

T−1(1− r)Bfn(r) dr ∈ D(A−1) = X for all n ∈ N.
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Moreover, for h > 0, we obtain

(3.17)

T−1(h)− I

h

∫ 1

0

T−1(1− r)Bfn(r) dr

=

∫ 1

0

T−1(1− r)
T−1(h)Bfn(r)−Bfn(r)

h
dr.

Observe now that by the closed graph theorem, the operator B is bounded be-
tween X and F0, i.e., there exists a constant K ≥ 0 such that ‖Bx‖F0 ≤ K ‖x‖X .
Hence, taking in (3.17) the limit as h ↓ 0, we obtain

(3.18)

∥∥∥∥A−1

∫ 1

0

T−1(1− r)Bfn(r) dr

∥∥∥∥
−1

≤ M lim
h↓0

∫ 1

0

1
h
‖(T−1(h)− I)Bfn(r)‖−1 dr

≤ M

∫ 1

0

‖Bfn(r)‖F0 dr

≤ MK

∫ 1

0

‖fn(r)‖ dr = MK ‖fn‖1

for M := supr∈[0,1] ‖T−1(r)‖. By replacing fn in (3.18) by fn − fm, we see that

the sequence
(
A−1

∫ 1

0
T−1(1− r)Bfn(r) dr

)
n∈N

is a Cauchy sequence in X−1.

Since A−1 is closed, this implies that

lim
n→∞

∫ 1

0

T−1(1− r)Bfn(r) dr =

∫ 1

0

T−1(1− r)Bf(r) dr ∈ D(A−1) = X,

therefore proving (3.16). �

In Section 3.b we will see that generators of the form C = (A−1 + B)|X with
rg(B) ⊆ F0 are exactly those yielding semigroups that are “close” to the unper-
turbed semigroup for small t.

3.7 Remark. Since the above perturbation results are all based on Theorem 3.1,
both representation formulas from Corollary 3.2 hold for the semigroup generated
by (A−1 + B)|X . See also Exercise 3.8.(3).

3.8 Exercises. (1) Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 and assume that B ∈ L(X). Show that B ∈ SDS

t0 if t0 > 0 is sufficiently
small.

(2) If A generates an analytic semigroup and B ∈ SDS
t0 , then the semigroup

generated by (A−1 + B)|X is analytic as well. (Hint: Use (3.6) and (3.7) in order
to verify the resolvent estimate (4.10) in Theorem II.4.6 for (A−1 + B)|X .)

(3) Show that the Dyson–Phillips series (3.11) converges in L(X) uniformly on
compact t-intervals to the semigroup generated by (A−1 + B)|X . (Hint: Since
the assertion is true for the t-interval [0, t0], it suffices to show that uniform
convergence on the interval [0, t1] implies uniform convergence on [0, 2t1]. To
this end, prove first (by induction as in the proof of (3.3), Theorem 3.1) that
Sn(2t) =

∑n

k=0
Sn−k(t)·Sk(t). Then use this fact to compute the Cauchy product

for S(t)S(t) = S(2t).)
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(4) Let A be the generator of a strongly continuous semigroup on a Banach space
X. In the proof of Corollary 3.6, we showed that∫ 1

0

T−1(1− r)Bf(r) dr ∈ X for all f ∈ L1
(
[0, 1], X

)
if rg(B) ⊆ F0. Show that also the converse statement holds, i.e., if the integral∫ 1

0
T−1(1 − r)Bf(r) dr ∈ X for all f ∈ L1([0, 1], X), then rg(B) ⊆ F0. (Hint:

Consider (3.15) in the proof of Corollary 3.4 for p = 1 and f(r) ≡ x, x ∈ X.)

(5) Let (B, D(B)) be the generator of a strongly continuous semigroup (S(t))t≥0

on a Banach space X and consider the nilpotent left translation semigroup
(T (t))t≥0 on Lp([−1, 0], X) for some 1 ≤ p < ∞.

(i) Show that the generator of (T (t))t≥0 is

A0f := f ′ with D(A0) :=
{
f ∈ W1,p

(
[−1, 0], X

)
: f(0) = 0

}
.

(ii) Consider the product space X := X × Lp([−1, 0], X) and show that the
operator (A0, D(A0)) defined by

A0 :=
(

B 0

0 A0

)
with D(A0) := D(B)×D(A0)

generates the strongly continuous semigroup (T0(t))t≥0 with

T0(t) :=
(

S(t) 0

0 T (t)

)
, t ≥ 0.

(iii) Determine the extrapolated operator A−1 and define

B := −A−1 ·
(

0 0

(1 ⊗Id) 0

)
∈ L(X, X−1).

Show that the part of A−1 + B in X is the operator

A :=
(

B 0

0 A

)
,

with

D(A) :=
{(

x
f

)
∈ D(B)×W1,p([−1, 0], X) : f(0) = x

}
,

where Af := f ′ for f ∈ W1,p([−1, 0], X).

(iv) Use Corollary 3.4 to show that (A, D(A)) is a generator on X.

(v) Compute the corresponding Dyson–Phillips series.

b. Comparison of Semigroups

As a byproduct of the results of the previous section, we are able to solve the
following problem, which appeared first in [Rob77]; see also [BR79, 3.1.5].

Which semigroups (T (t))t≥0 and (S(t))t≥0 satisfy an estimate

(3.19) ‖S(t)− T (t)‖ ≤ t M

for some constant M ≥ 0 and all t ∈ [0, 1]?

In Corollary 1.11 we already saw that (3.19) is true if the generators of (T (t))t≥0

and (S(t))t≥0 differ only by a bounded perturbation. The general case is charac-
terized by slightly “more unbounded” perturbations.
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3.9 Theorem. Let (T (t))t≥0 be a strongly continuous semigroup with genera-
tor (A, D(A)) on a Banach space X. Then for a linear operator (C, D(C)) the
following assertions are equivalent.

(a) (C, D(C)) generates a strongly continuous semigroup (S(t))t≥0 on X such
that

‖S(t)− T (t)‖ ≤ t M for all t ≥ 0

and some constant M ≥ 0.

(b) There exists a linear operator B ∈ L(X, XA
−1) such that rg(B) ⊆ F A

0 and

C = (A−1 + B)|X .

(c) The domain D(C) is dense in X, and there exist constants w ≥ s(A) and
K ≥ 0 such that (w,∞) ⊂ ρ(C) and

λ2‖R(λ, C)−R(λ, A)‖ ≤ K

for all λ > w.

Proof. We will show that (a) ⇒ (c) ⇒ (b) ⇒ (a). Here we suppose A to be
invertible; otherwise we take some µ ∈ ρ(A) and replace A and C by A− µ and
C − µ, respectively.

(a) ⇒ (c). If w̃ > max{0, ω0(A), ω0(C)}, then by increasing the constant M if
necessary, we can assume that

‖S(t)− T (t)‖ ≤ t Mew̃t for all t ≥ 0.

Then, from Theorem II.1.10.(i), we obtain

‖R(λ, C)−R(λ, A)‖ =

∥∥∥∥∫ ∞

0

e−λt
(
S(t)− T (t)

)
dt

∥∥∥∥
≤ M

∫ ∞

0

te−(λ−w̃)t dt =
M

(λ− w̃)2
≤ K

λ2

for all λ > w := w̃ + 1 and K := M supλ>w̃+1

[
λ2/(λ−w̃)2

]
.

(c) ⇒ (b). We first observe that

‖λR(λ, C)x− x‖ ≤ K
λ
‖x‖+ ‖λR(λ, A)x− x‖

for all x ∈ X and λ > w. Hence, by Lemma II.3.4, we conclude that

(3.20) lim
λ→∞

λR(λ, C)x = x for all x ∈ X.

Next, for w < n ∈ N, we define the operators

Qn := n2A−1
(
R(n, C)−R(n, A)

)
∈ L(X).

Then, for all x ∈ D(C), we obtain, using (3.20) and the resolvent equation,

lim
n→∞

Qnx = A−1 · lim
n→∞

n
(
nR(n, C)− I

)
x− lim

n→∞
n
(
nR(n, A)− I)A−1x

= A−1 · lim
n→∞

nR(n, C)Cx− lim
n→∞

nR(n, A)x = A−1Cx− x.
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Since by assumption ‖Qn‖ ≤ K ·‖A−1‖ and since D(C) is dense in X, this implies
that

lim
n→∞

Qnx =: Qx

exists for all x ∈ X and defines an operator Q ∈ L(X), which is the unique
bounded extension of A−1C − I. From

(Qnx)n∈N ⊂ D(A), lim
n→∞

Qnx = Qx and lim
n→∞

‖AQnx‖ ≤ K ‖x‖

we conclude, by Exercise II.5.23.(2), that the range rg(Q) is contained in F1.
Hence, by Theorem II.5.15.(ii), the range of B := A−1Q ∈ L(X, X−1) satisfies
rg B ⊆ F0, and it follows from Corollary 3.6 that the operator

C̃ := (A−1 + B)|X

is a generator on X. Next, we easily verify that D(C) ⊆ D(C̃) and Cx = C̃x for

all x ∈ D(C). Since λ−C and λ− C̃ both are invertible for λ large, this implies

C = C̃ (use Exercise IV.1.21), which proves (b).
(b) ⇒ (a). By Corollary 3.6, we know that C := (A−1 + B)|X generates a

strongly continuous semigroup (S(t))t≥0 on X. Now choose M ≥ 1 such that
‖T (t)‖ ≤ M and ‖S(t)‖ ≤ M for all t ∈ [0, 1]. Since by the closed graph theorem
A−1
−1B is bounded from X into F1, we can choose K ≥ 0 such that ‖A−1

−1Bx‖F1 ≤
K‖x‖ for all x ∈ X. From Corollary 3.2.(i), we then obtain

‖S(t)x− T (t)x‖ =

∥∥∥∥A−1

∫ t

0

T (t− r)A−1
−1BS(r)x dr

∥∥∥∥
≤ M lim

h↓0

∫ t

0

1
h

∥∥(T (h)− I
)

A−1
−1BS(r)x

∥∥ dr

≤ M

∫ t

0

∥∥A−1
−1BS(r)x

∥∥
F1

dr ≤ t KM2 · ‖x‖

for all x ∈ X and t ∈ [0, 1], which proves (a). �

If in Theorem 3.9 we make an extra assumption on the space X, we can
strengthen condition (b) considerably.

3.10 Corollary. In the situation of Theorem 3.9 assume X to be reflexive. Then
each of the conditions 3.9.(a) and 3.9.(c) implies that C = A + B for some
bounded operator B ∈ L(X).

Proof. By Corollary II.5.21 we know that F1 = D(A), hence F0 = X, and the
assertion follows from Corollary B.7 combined with the previous result. �

3.11 Example. In Example 3.5 we showed that for each p ≥ 1 and each Φ ∈
Lp[a, b]′ the operator

Cf := f ′ with domain D(C) :=
{
f ∈ W1,p[a, b] : f(b) = Φ(f)

}
generates a strongly continuous semigroup (SΦ(t))t≥0 on the Banach space X :=
Lp[a, b]. We now denote by (T (t))t≥0 the nilpotent (left) translation semigroup on
X, i.e., T (t) = S0(t), and assume that Φ 6= 0. Then we obtain from Exercise 3.8.
(4), Theorem 3.9, and Corollary 3.10 that

‖SΦ(t)− T (t)‖ ≤ t M for all t ∈ [0, 1]

and a suitable constant M ≥ 0 if and only if p = 1. See also Exercise 3.13.(2).
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By imposing an additional condition on the domains of the operators A and
C, we also arrive at the conclusion of Corollary 3.10.

3.12 Corollary. In the situation of Theorem 3.9, assume D(A) ∩ D(C) to be
dense in X. Then each of the conditions 3.9.(a) and 3.9.(c) implies that C = A+B
for some bounded operator B ∈ L(X).

Proof. First, we assume 3.9.(a) to be true and define operators

Bn := n
(
S(1/n)− T (1/n)

)
∈ L(X) for n ∈ N.

Then, for x ∈ D(A) ∩D(C), we obtain

lim
n→∞

Bnx = lim
n→∞

n
(
S(1/n)− I

)
x− lim

n→∞
n
(
T (1/n)− I

)
x

= Cx−Ax.

Since by assumption ‖Bn‖ ≤ M and D(A) ∩ D(C) is dense in X, we conclude
that

lim
n→∞

Bnx =: Bx

exists for all x ∈ X and defines an operator B ∈ L(X) ⊆ L(X, X−1) that is the
unique bounded extension of C−A. On the other hand, we know by Theorem 3.9

that there exists B̃ ∈ L(X, X−1) such that C = (A−1 + B̃)|X . Now, B and B̃

coincide on the dense subspace D(A) ∩D(C) ⊆ X; hence B = B̃, which implies
C = A + B.

Since we already know that 3.9.(a) is equivalent to 3.9.(c), the proof is complete.
�

3.13 Exercises. (1) Show that the conditions (a)–(c) in Theorem 3.9 are
equivalent to

(d) D(A′) = D(C′) and A′ − C′ is bounded from XA′
1 to X ′.

(2) With the notation from Example 3.11 show that ‖SΦ(t)− T (t)‖ ≤ t
1/pM for

suitable M ≥ 0 and t ∈ [0, 1]. (Hint: Inspect the proof in Example 3.5 and then
use (3.15) in the proof of Corollary 3.4 to show the assertion.)

c. The Perturbation Theorem of Miyadera–Voigt
In this section we will give another perturbation result that is based on a gener-
alization of the variation of parameters formula (IE∗) and, in some sense, is dual
to the Desch–Schappacher results from Section 3.a. Our starting point is again
the Banach space

Xt0 := C
(
[0, t0], Ls(X)

)
of all strongly continuous L(X)-valued functions on [0, t0] equipped with the
norm ‖F‖∞ := supr∈[0,t0] ‖F (r)‖, cf. Proposition A.7. On the Banach space X

we consider a strongly continuous semigroup (T (t))t≥0 with generator A and take
now a perturbing operator B ∈ L(X1, X). Under these hypotheses, we define an
abstract Volterra operator V ∗

B by

F 7→ V ∗
B F with (V ∗

B F ) (t) :=

∫ t

0

F (r)BT (t− r) dr ∈ L(X1, X)

for 0 ≤ t ≤ t0 and F ∈ Xt0 , where the integral is understood in the strong sense
in X.
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We now assume that

(1) for all t ∈ [0, t0] and F ∈ Xt0 the map (V ∗
B F )(t) : D(A) ⊂ X → X can be

extended to a bounded operator (V ∗
B F )(t) : X → X,

(2) for all F ∈ Xt0 the map [0, t0] 3 t 7→ (V ∗
B F )(t) is strongly continuous on

X, and

(3) V ∗
B gives a bounded operator on Xt0 satisfying

∥∥V ∗
B

∥∥ < 1.

Using this notation, we introduce the class of Miyadera–Voigt perturbations
consisting of all operators B ∈ L(X1, X) satisfying the conditions (1)–(3), i.e.,
we define

SMV
t0 :=

{
B ∈ L(X1, X) : V ∗

B ∈ L(Xt0) and
∥∥V ∗

B

∥∥ < 1
}
.

In Corollary 3.16 below we will give a more concrete condition implying an oper-
ator to be in SMV

t0 . First, however, we state the main perturbation result, which
is analogous to Theorem 3.1.

3.14 Theorem. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X. If B ∈ SMV

t0 for some t0 > 0, then the operator

A + B with domain D(A + B) := D(A)

generates a strongly continuous semigroup on X.

Proof. We closely follow the proof of Theorem 3.1 and therefore abbreviate
similar calculations.

First, we write V := V ∗
B and observe that by assumption ‖V ‖ < 1. Therefore,

I − V ∈ L(Xt0) is invertible, and we can define

(3.21) S(·) := (I − V )−1T (·).

Then S(·) is the unique solution in Xt0 of the variation of parameters formula

(3.22) S(t)x = T (t)x +

∫ t

0

S(r)BT (t− r)x dr,

valid for all x ∈ D(A) and t ∈ [0, t0]. We now proceed in several steps in order to
verify the following assertions.

(i) The operators S(t) satisfy the semigroup property

S(s + t) = S(s)S(t) for all 0 ≤ s, t ≤ s + t ≤ t0.

(ii) If t ≥ 0, take some n ∈ N satisfying t/n ≤ t0. Then the operator

S(t) := S( t/n)n

is well-defined, and (S(t))t≥0 is a strongly continuous semigroup on X.

(iii) The semigroup (S(t))t≥0 satisfies the Variation of Parameters Formula
(3.22) for all t ≥ 0 and x ∈ D(A).

(iv) The resolvent set ρ(A + B) is nonempty.

(v) The generator C of (S(t))t≥0 is given by C = A + B.
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In order to show (i), we first claim that

(3.23) [V nT ] (s + t) =

n∑
k=0

[
V kT

]
(s) ·

[
V n−kT

]
(t)

for all n ∈ N0 and s, t ∈ [0, t0] satisfying s+ t ≤ t0. Since V 0 = I, equation (3.23)
is trivially satisfied for n = 0. Now assume that (3.23) holds for some n ∈ N.
Then, for all x ∈ D(A), we obtain

n+1∑
k=0

[
V kT

]
(s) ·

[
V n+1−kT

]
(t) x

=

∫ t

0

n∑
k=0

[
V kT

]
(s) ·

[
V n−kT

]
(r)BT (t− r)x dr

+

∫ s

0

[V nT ] (r)BT (s + t− r)x dr

=

∫ s+t

s

[V nT ] (r)BT (s + t− r)x dr +

∫ s

0

[V nT ] (r)BT (s + t− r)x dr

=
[
V n+1T

]
(s + t)x.

Since D(A) is dense in X, an induction argument gives (3.23). The semigroup
property then follows as in the proof of (i) in Theorem 3.1 (cf. p. 184).

Next, assertion (ii) follows as in the proof of Theorem 3.1 (see p. 185) and we
obtain that (S(t))t≥0 is a strongly continuous semigroup on X.

(iii) Let x ∈ D(A) and t = nt0 + τ for τ ∈ [0, t0), n ∈ N. Then we have∫ t

0

S(r)BT (t− r)x dr =

n−1∑
k=0

S(kt0)

∫ t0

0

S(r)BT (t0 − r)T
(
t− (k + 1)t0

)
x dr

+ S(nt0)

∫ τ

0

S(r)BT (τ − r)x dr

=

n−1∑
k=0

S(kt0)
(
S(t0)− T (t0)

)
T
(
t− (k + 1)t0

)
x

+ S(nt0)
(
S(τ)− T (τ)

)
x

= S(t)x− T (t)x,

which proves (iii).
(iv) We first claim that ‖BR(λ, A)‖ < 1 for λ sufficiently large. To this end,

we choose constants M ≥ 1 and w ≥ 0 such that ‖T (t)‖ ≤ Mewt for all t ≥ 0.
Then, for λ > w, the resolvent of A is given by the integral representation, and
we obtain

BR(λ, A)x =

∞∑
n=0

e−λnt0

∫ t0

0

e−λrBT (r)T (nt0)x dr

=

∞∑
n=0

e−λnt0
[
V Fλ

]
(t0) T (nt0)x
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for all x ∈ D(A), where Fλ ∈ Xt0 is defined by Fλ(r) := e−λ(t0−r)I. Hence, we
can estimate as in (3.5) and obtain

‖BR(λ, A)x‖ ≤ ‖V ‖+
Me(w−λ)t0

1− e(w−λ)t0

for all x ∈ D(A) satisfying ‖x‖ ≤ 1. Since D(A) is dense and ‖V ‖ < 1, this
implies that ‖BR(λ, A)‖ < 1 for λ sufficiently large. Using this and the equation

(3.24) λ−A−B =
(
I −BR(λ, A)

)
(λ−A),

we see that λ − (A + B) is invertible whenever λ ∈ ρ(A) and 1 ∈ ρ(BR(λ, A)).
This proves (iv).

(v) Finally, we will determine the generator C of (S(t))t≥0. To this end, we
apply the Laplace transform to the Variation of Parameters Formula (3.22) and
obtain, using the Convolution Theorem C.17 and the density of D(A) in X, that

R(λ, C) = R(λ, A) + R(λ, C)BR(λ, A)

for all λ > max{ω0(A), ω0(C)}. This implies

R(λ, C)
(
I −BR(λ, A)

)
= R(λ, A),

and hence
R(λ, C)

(
λ−A−B) = ID(A).

From this we deduce that R(λ, C) is a left inverse of λ− (A + B) and therefore

(3.25) λ− (A + B) ⊆ λ− C.

Since we verified in step (iv) that λ− (A + B) is bijective for λ sufficiently large,
(3.25) implies C = A + B, which proves (v). �

Before giving a simpler condition on an operator B ∈ L(X1, X) to be con-
tained in SMV

t0 , we state two representation formulas for the semigroup (S(t))t≥0

generated by A + B.

3.15 Corollary. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 and let B ∈ SMV

t0 for some t0 > 0. Then the semigroup (S(t))t≥0

generated by A + B is determined by

(i) the variation of parameters formula

S(t)x = T (t)x +

∫ t

0

S(r)BT (t− r)x dr for each t ≥ 0, x ∈ D(A),

(ii) and by the abstract Dyson–Phillips series

S(t) =

∞∑
n=0

(V nT )(t)

for t ∈ [0, t0], where V := V ∗
B is defined as above.
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Proof. Assertion (i) has already been verified in the proof of Theorem 3.14, while
(ii) follows from (3.21) and the Neumann series representation of (I − V )−1. �

Based on Theorem 3.14, we now give a more concrete criterion for B ∈ L(X1, X)
implying A + B to be a generator on X.

3.16 Corollary. Let A be the generator of a strongly continuous semigroup
(T (t))t≥0 on a Banach space X and let B ∈ L(X1, X) satisfy

(3.26)

∫ t0

0

‖BT (r)x‖ dr ≤ q ‖x‖ for all x ∈ D(A)

for some 0 ≤ q < 1. Then B ∈ SMV
t0 , and therefore the sum A + B with domain

D(A + B) := D(A), generates a strongly continuous semigroup (S(t))t≥0 on X.
Moreover, (S(t))t≥0 satisfies

S(t)x = T (t)x +

∫ t

0

T (t− s)BS(s)x ds and(3.27) ∫ t0

0

‖BS(t)x‖ dt ≤ q

1− q
‖x‖ for x ∈ D(A) and t ≥ 0,(3.28)

where q and t0 are given by (3.26). If, in addition, (B, X1) is closable in X
and (B, D(B)) denotes its closure, then we have T (t)x, S(t)x ∈ D(B) for almost
all t ≥ 0 and all x ∈ X. Finally, the functions BT (·)x and BS(·)x are locally
integrable, and Corollary 3.15.(i) and the integral equation (3.27) hold for all
x ∈ X and t ≥ 0.

Proof. We first show that A + B is the generator of a strongly continuous
semigroup on X. To do so, by Theorem 3.14, it suffices to verify the following
assertions.

(i) For all F ∈ Xt0 and t ∈ [0, t0], the map (V ∗
B F ) (t) : D(A) ⊂ X → X given

by

x 7→
∫ t

0

F (r)BT (t− r)x dr

can be extended to a bounded operator (V ∗
B F ) (t) on X.

(ii) The operator V defined by

V F := (V ∗
B F ) (·)

maps Xt0 into Xt0 , i.e., the function t 7→ (V ∗
B F ) (t) is strongly continuous

for all F ∈ Xt0 .

(iii) The operator V is bounded and satisfies ‖V ‖ ≤ q < 1.

In fact, from (3.26) we obtain∥∥∥∥∫ t

0

F (r)BT (t− r)x dr

∥∥∥∥ ≤ ∫ t0

0

‖BT (r)x‖ dr · ‖F‖∞ ≤ q · ‖F‖∞ · ‖x‖

for all x ∈ D(A). Since D(A) is dense in X, this shows (i) with

(3.29)
∥∥(V ∗

B F )(t)
∥∥ ≤ q ‖F‖∞

for all t ∈ [0, t0].
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In order to verify (ii) it therefore suffices, by Lemma I.5.2, to show that

[0, t0] 3 t 7→ (V ∗
B F )(t)x ∈ X

is continuous for all x ∈ D(A). To this end, we define, for F ∈ Xt0 and t ∈ [0, t0],
the function Ft : [0, t0] → L(X) by

Ft(r) :=
{

F (0) if 0 ≤ r ≤ t0 − t,
F (r + t− t0) if t0 − t ≤ r ≤ t0.

Then Ft ∈ Xt0 , and one readily verifies that∫ t

0

F (r)BT (t− r)x dr =

∫ t0

0

Ft(r)BT (t0 − r)x dr −
∫ t0

t

F (0)BT (r)x dr.

Hence, for s, t ∈ [0, t0] and x ∈ D(A), we obtain

(V ∗
B F )(t)x−(V ∗

B F )(s)x =

∫ t0

0

(
Ft(r)−Fs(r)

)
BT (t0−r)x dr+

∫ t

s

F (0)BT (r)x dr.

Note that the set C :=
{
BT (t0 − r)x : r ∈ [0, t0]

}
is compact in X; hence by

Lemma I.5.2 for every ε > 0 there exists δ > 0 such that∥∥(Ft(r)− Fs(r)
)
y
∥∥ < ε

for all y ∈ C, r ∈ [0, t0], and s, t ∈ [0, t0] satisfying |t−s| < δ. Using this estimate,
we finally conclude that

‖(V ∗
B F )(t)x− (V ∗

B F )(s)x‖ ≤ ε · t0 + |t−s| · ‖F (0)BR(λ, A)‖ ·‖T (·)‖∞ · ‖(λ−A)x‖

for some fixed λ ∈ ρ(A). This implies that lims→t ‖(V ∗
B F )(t)x− (V ∗

B F )(s)x‖ = 0
for all x ∈ D(A), proving (ii). Since (iii) follows immediately from (3.29), this
proves that A + B is the generator of a strongly continuous semigroup, which we
denote by (S(t))t≥0.

Since this semigroup satisfies

d

ds
T (t− s)S(s)x = −T (t− s)AS(s)x + T (t− s)(A + B)S(s)x = T (t− s)BS(s)x

for all x ∈ D(A) and t ≥ s ≥ 0, integration from 0 to t gives (3.27).
For x ∈ D(A) and λ > ω0(A), we derive from (3.26) and (3.27) that∫ t0

0

‖BλR(λ, A)S(t)x‖ dt

≤
∫ t0

0

‖BλR(λ, A)T (t)x‖ dt +

∫ t0

0

∫ t0

s

‖BT (t− s)λR(λ, A)BS(s)x‖ dt ds

≤
∫ t0

0

‖BλR(λ, A)T (t)x‖ dt + q

∫ t0

0

‖λR(λ, A)BS(s)x‖ ds.

Using Lemma II.3.4 and letting λ →∞, we then obtain∫ t0

0

‖BS(t)x‖ dt ≤
∫ t0

0

‖BT (t)x‖ dt + q

∫ t0

0

‖BS(s)x‖ ds.

Another application of (3.26) establishes (3.28).
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Assume now (B, X1) to be closable and denote its closure by (B, D(B)). Fix
x ∈ X, t ≥ 0 and choose xn ∈ D(A) tending to x in X. Note that Corollary 3.15.
(i) holds with x replaced by xn. Due to the Miyadera estimate (3.26) the se-
quence (BT (·)xn)n∈N converges in L1([0, t], X). Since B is closed, this implies
that T (s)x ∈ D(B) for almost all s ∈ [0, t], BT (·)x ∈ L1([0, t], X), and Corol-
lary 3.15.(i) holds for all x ∈ X. The other assertions follow in a similar way from
(3.27) and (3.28). �

Note that if B ∈ L(X1, X) satisfies the assumption in Corollary 3.16, then
PB ∈ SMV

t0 for all P ∈ L(X) satisfying ‖P‖ ≤ 1. For an extension of Corol-
lary 3.16 see Exercise 3.17.(2).

3.17 Exercises. (1) If A generates an analytic semigroup and B ∈ SMV
t0 , then

the semigroup generated by A + B is analytic as well. (Hint: Use (3.24) in order
to verify the resolvent estimate in Theorem II.4.6.(d) for A + B.

(2) Show that the conclusion of Corollary 3.16 remains true if the perturbation
(B, D(B)) satisfies only the assumptions of Exercise 2.18.(2) for some q < 1.

d. Additive Versus Multiplicative Perturbations

In the previous subsections we encountered two types of additive perturbations
of a generator A on a Banach space X. In fact, the perturbed operator C was
given as C = A + B for an A-bounded operator B or as C = (A−1 + B)|X for an
operator B on X assuming values in the extrapolation space X−1.

In this subsection we will introduce perturbations of a different type. For a
given generator A and a bounded operator Q ∈ L(X), the new operator C is
given either as a left multiplicative perturbation

(3.30) C := QA, D(C) := D(A)

or as a right multiplicative perturbation

(3.31) C := AQ, D(C) := {x ∈ X : Qx ∈ D(A)}.

The following result shows that an additive perturbation can always be written
as a multiplicative perturbation and vice versa.

3.18 Proposition. Let A be an invertible operator on a Banach space X and
take C : D(C) ⊆ X → X. Then the following assertions are true.

(i) C = A + B with D(C) = D(A) for some B ∈ L(X1, X) if and only if
C = (I + K)A with D(C) = D(A) for some K ∈ L(X). Here B and K are
related by B = KA and K = BA−1, respectively.

(ii) C = (A−1 + B)|X with D(C) = {x ∈ X : A−1x + Bx ∈ X} for some
B ∈ L(X, X−1) if and only if C = A(I + K) with D(C) = {x ∈ X :
(I + K)x ∈ D(A)} for some K ∈ L(X). Here B and K are related by
B = A−1K and K = A−1

−1B, respectively.

The simple proof is left to the reader; cf. Exercise 3.23.(1).
Our next aim is to clarify the relation between left and right multiplicative

perturbations. To this end, we first consider a rather special case.
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3.19 Lemma. Let A be the generator of a strongly continuous semigroup on
a Banach space X. If K ∈ L(X) such that KA admits a bounded extension

KA ∈ L(X), then also the operator

A(I −K) with domain D
(
A(I −K)

)
:=
{
x ∈ X : (I −K)x ∈ D(A)

}
is a generator on X.

Proof. Let µ ∈ ρ(A). Then it follows from the resolvent equation that we can
write

(3.32) A(I −K)− µ = (A− µ)
(
I + AR(µ, A)K

)
.

From spectral theory (see, e.g., [GGK90, Sec. III.2,(3)]) we know that

−1 ∈ ρ
(
AR(µ, A)K

)
if and only if − 1 ∈ ρ

(
KAR(µ, A)

)
.

Since, by the Hille–Yosida Generation Theorem II.3.8

‖KAR(µ, A)‖ ≤
∥∥KA

∥∥ · ‖R(µ, A)‖ → 0 as µ →∞,

this shows that I + AR(µ, A)K is invertible for µ sufficiently large. Hence, we
obtain from (3.32) that A(I −K) is similar to the operator(

I + AR(µ, A)K
)
(A− µ) + µ =: A + B

for µ large and B := AR(µ, A)K(A− µ) ∈ L(X). The assertion now follows from
Paragraph II.2.1 and the Bounded Perturbation Theorem 1.3. �

The following theorem relates, in combination with Proposition 3.18, additive
and multiplicative perturbations.

3.20 Theorem. Let (A, D(A)) be an operator with ρ(A) 6= ∅ on a Banach space
X and let Q ∈ L(X).

(i) If (QA, D(A)) is a generator on X, then

AQ with domain D(AQ) :=
{
x ∈ X : Qx ∈ D(A)

}
is a generator on X.

(ii) If (AQ, D(AQ)) is a generator on X, then

(QA)1 := QA|XA
1

with domain D
(
(QA)1

)
:=
{
x ∈ D(A) : QAx ∈ D(A)

}
is a generator on XA

1 := (D(A), ‖ · ‖A). If, in addition, the resolvent set
ρ(QA) 6= ∅, then (QA, D(A)) is a generator on X.

Proof. For the rest of the proof we fix some λ ∈ ρ(A).
(i) By the Bounded Perturbation Theorem 1.3, the operator (Q(A−λ), D(A)) is

a generator on X; hence (use Proposition II.5.2) (Q(A−λ))1 := Q(A−λ)|XQ(A−λ)
1

is a generator on X
Q(A−λ)
1 := (D(A), ‖ · ‖Q(A−λ)). Since Q is bounded, one easily

verifies that on D(A) the norm ‖ · ‖A is finer than ‖ · ‖Q(A−λ); hence these
norms are equivalent by the open mapping theorem. Therefore, the operator

λ−A ∈ L(X
Q(A−λ)
1 , X) is an isomorphism, and from Paragraph II.2.1 we conclude

that
(λ−A)

(
Q(A− λ)

)
1R(λ, A) = (A− λ)Q = AQ− λQ

is a generator on X. The assertion now follows from the Bounded Perturbation
Theorem 1.3.
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(ii) We first note that the operator (QA)1 := QA|XA
1

on XA
1 := (D(A), ‖ · ‖A)

is similar to
C := (λ−A)(QA)1R(λ, A)

on X, where

D(C) : =
{
x ∈ X : R(λ, A)x ∈ D

(
(QA)1

)}
=
{
x ∈ X :

(
I −R(λ, A)

)
x ∈ D(AQ)

}
.

An easy computation now shows that

Cx = AQ
(
I − λR(λ, A)

)
+ B

for B := λQAR(λ, A) ∈ L(X). Therefore, by Paragraph II.2.1 and the bounded
perturbation theorem, we conclude that (QA)1 is a generator on XA

1 if AQ(I −
λR(λ, A)) is a generator on X. Since λR(λ, A) AQ has a bounded extension to
X, the latter is true by Lemma 3.19, and the first part of assertion (ii) is proved.

In case ρ(QA) 6= ∅, we obtain as above that the norms ‖ · ‖A and ‖ · ‖QA are
equivalent on D(A). This implies that R(µ, QA) ∈ L(XA

1 , X) is an isomorphism
for every µ ∈ ρ(QA); hence (QA)1 on XA

1 and

(µ−QA)(QA)1R(µ, QA) = QA on X

are similar. The assertion then follows from Paragraph II.2.1. �

This result shows that additive and multiplicative perturbations are basically
“equivalent.” However, one might be surprised why the additional assumption
“ρ(QA) 6= ∅” appears in part (ii).

A trivial counterexample shows that without this assumption, the additional
assertion in Theorem 3.20.(ii) is not true anymore. Indeed, if Q = A−1 for some
unbounded, invertible operator A, then AQ = I is a generator on X, while
QA = ID(A) is not closed on X, hence does not generate a strongly continuous
semigroup. The following example shows that even if QA is closed on X, the
assumption ρ(QA) 6= ∅ cannot be omitted in order to conclude that QA is a
generator on X.

3.21 Example. For an unbounded operator Ã on a Banach space X with
nonempty resolvent set consider

A :=
(

I 0
0 Ã

)
, D(A) := X ×D(Ã), and Q :=

(
0 I
0 0

)
defined on the product space X ×X. Then Q is bounded, and we obtain

QA =

(
0 Ã
0 0

)
, D(QA) = D(A), and AQ =

(
0 I
0 0

)
∈ L(X ×X);

hence AQ is a generator on X ×X, while QA is not (compare Example II.6.5).
However, the part (QA)1 of QA in (D(A), ‖ · ‖A) is bounded, hence generates a
strongly continuous semigroup.

We now combine our previous results with the perturbation theorems from
Sections 3.a and 3.c.
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3.22 Corollary. Let A be the generator of a strongly continuous semigroup on
a Banach space X. If A is invertible, then the following assertions are true.

(i) If B ∈ SDS
t0 , then the operator C := A + A−1

−1BA = (I + A−1
−1B)A with

domain D(C) := D(A) generates a strongly continuous semigroup on X.

(ii) If B ∈ SMV
t0 , then the operator C :=

(
A−1 + A−1BA−1

)
|X = A(I +BA−1)

with domain D(C) :=
{
x ∈ X :

(
A−1 + A−1BA−1

)
x ∈ X

}
generates a

strongly continuous semigroup on X.

Proof. (i) By Theorems 3.1 and 3.20.(ii), it suffices to show that (I + A−1
−1B)A

has nonempty resolvent set. To this end, we first write for λ ∈ ρ(A)

λ− (I + A−1
−1B)A =

(
I −A−1

−1B AR(λ, A)
)
(λ−A).

This shows that λ− (I + A−1
−1B)A is invertible, provided that λ ∈ ρ(A) and

(3.33) 1 ∈ ρ
(
A−1
−1B AR(λ, A)

)
.

Since by [GGK90, Sec. III.2,(3)] condition (3.33) is equivalent to

1 ∈ ρ
(
AR(λ, A) A−1

−1B
)

= ρ
(
R(λ, A−1)B

)
,

the assertion follows from step (iv) in the proof of Theorem 3.1 (cf. p. 185).

Assertion (ii) follows from Theorem 3.14 and Theorem 3.20.(i). �

3.23 Exercises. (1) Give a proof of Proposition 3.18.

(2) Let the assumptions of Theorem 3.20 be satisfied.

(i) If in 3.20.(i) the semigroup generated by QA is denoted by (U(t))t≥0, then
the semigroup (V (t))t≥0 generated by AQ is given by

V (t)x = x + A

∫ t

0

U(s)Qx ds for all x ∈ X and t ≥ 0.

(Hint: By Theorem C.16 it suffices to show that the Laplace transform of
(V (t))t≥0 coincides with the resolvent of AQ.)

(ii) Find analogous formulas in the situation of Theorem 3.20.(ii) for the semi-
groups generated by (QA)1 and QA, respectively.

(iii) Let A be a generator on a Banach space X. If the range of B ∈ L(X1, X)
is contained in the Favard space F1, then (A + B, D(A)) is a generator on
X. (Hint: Use Corollary 3.22.(i) and Corollary 3.6.)
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4. Trotter–Kato Approximation Theorems

Approximation, besides perturbation, is the other main method used to
study a complicated operator and the semigroup it generates. We already
encountered an example for such an approximation procedure in our proof
of the Generation Theorem II.3.5. For an operator

(
A,D(A)

)
on X satisfy-

ing the Hille–Yosida conditions, we defined the (bounded) Yosida approxi-
mants2

An := nAR(n,A), n ∈ N

(see Chapter II, (3.7)) generating the (uniformly continuous) semigroups(
etAn

)
t≥0. Using the fact that An → A pointwise on D(A) as n→∞ (see

Lemma II.3.4.(ii)), we could show that the semigroups converge as well,
i.e.,

etAn → T (t) as n→∞.

In this section we study this situation systematically and consider the
three objects semigroup, generator , and resolvent , visualized by the triangle(

T (t)
)
t≥0

�
�

�
� @

@
@
@(

A,D(A)
) (

R(λ,A)
)
λ∈ρ(A)

from Chapter II. We then try to show that the convergence at one “vertex”
implies convergence in the two other “vertices.” That the truth is not as
simple is shown by the following example.

4.1 Example. On the Banach space X := c0, we take the multiplication
operator

A(xk) := (ikxk)

with domain
D(A) :=

{
(xk) ∈ c0 : (ikxk) ∈ c0

}
.

As we know from Example I.4.7.(iii), it generates the strongly continuous
semigroup

(
T (t)

)
t≥0 given by

T (t)(xk) = (eiktxk), t ≥ 0.

Perturbing A by the bounded operators

Pn(xk) := (0, . . . , nxn, 0, . . .),

2 In this context, this notation should not cause any confusion with the operators An

induced on the abstract Sobolev spaces from Section II.5.
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we obtain new operators
An := A+ Pn.

Each An is the generator of a strongly continuous semigroup
(
Tn(t)

)
t≥0

(use Theorem 1.3), and for each x = (xk) ∈ D(A), we have

‖Anx−Ax‖ = ‖Pnx‖ = n|xn| → 0.

However, the semigroups
(
Tn(t)

)
t≥0 do not converge. In fact, one has

Tn(t)x = (eitx1, e2itx2, . . . , e(in+n)txn, e(n+1)itxn+1, . . .)

and therefore
‖Tn(t)‖ ≥ ent for n ∈ N and t ≥ 0.

By the uniform boundedness principle, this implies that there exists x ∈ X
such that

(
Tn(t)x

)
n∈N does not converge.

The example shows that the convergence of the generators (pointwise
on the domain of the limit operator) does not imply convergence of the
corresponding semigroups. Another unpleasant phenomenon may happen
for a converging sequence of resolvent operators.

4.2 Example. Take An := −n · I on any Banach space X 6= {0}. Then the
resolvent operators

R(λ,An) =
1

λ+ n
· I

and their limit
R(λ) := lim

n→∞
R(λ,An)

exist for all Reλ > 0. However, the limit R(λ) is equal to zero, hence cannot
be the resolvent of an operator on X.

For our purposes we must exclude such a phenomenon. In order to do
so, we need a new concept.

a. A Technical Tool: Pseudoresolvents

In this subsection we consider bounded operators on a Banach space X
that depend on a complex parameter and satisfy the resolvent equation
(see Chapter IV, (1.2)). Here is the formal definition.

4.3 Definition. Let Λ ⊂ C and consider operators J(λ) ∈ L(X) for each
λ ∈ Λ. The family {J(λ) : λ ∈ Λ} is called a pseudoresolvent if

(4.1) J(λ)− J(µ) = (µ− λ)J(λ)J(µ)

holds for all λ, µ ∈ Λ.
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The limit operators R(λ) from Example 4.2 form a (trivial) pseudore-
solvent for Reλ > 0. However, they are not injective, and therefore they
cannot be the resolvent operators R(λ,A) of an operator A. It is our goal,
and crucial for the proofs in Section 4.b, to find conditions implying that
a pseudoresolvent is indeed a resolvent. Before doing so, we discuss the
typical situation in which we will encounter pseudoresolvents.

4.4 Proposition. For each n ∈ N, let An be the generator of a contraction
semigroup on X and assume that for some λ0 > 0,

lim
n→∞

R(λ0, An)x

exists for all x ∈ X. Then, the limit

R(λ)x := lim
n→∞

R(λ,An)x, x ∈ X,

exists for all Reλ > 0 and defines a pseudoresolvent
{
R(λ) : Reλ > 0

}
.

Proof. Consider the set

Ω :=
{
λ ∈ C : Reλ > 0, lim

n→∞
R(λ,An)x exists for all x ∈ X

}
,

which is nonempty by assumption. As in Proposition IV.1.3, one shows
that for given µ ∈ Ω one has

R(λ,An) =
∞∑

k=0

(µ− λ)kR(µ,An)k+1

as long as |µ − λ| < Reµ (use (3.6) from Chapter II). The convergence is
with respect to the operator norm and uniform in {λ ∈ C : |µ−λ| ≤ αReµ}
for each 0 < α < 1. Since the series

∑∞
k=0 α

k+1 majorizes all the series∑∞
k=0 |µ − λ|k

∥∥R(µ,An)k+1
∥∥, we can conclude that R(λ,An)x converges

as n→∞ for all λ satisfying |µ−λ| ≤ αReµ. Therefore, the set Ω is open.
On the other hand, take an accumulation point λ of Ω with Reλ > 0.

For 0 < α < 1, we can find µ ∈ Ω such that |µ − λ| ≤ αReµ; hence, by
the above considerations, λ must belong to Ω, i.e., Ω is relatively closed in
S := {λ ∈ C : Reλ > 0}. The only set satisfying both properties is S itself;
hence we obtain the existence of the operators R(λ) for Reλ > 0.

Evidently, the resolvent equation (4.1) remains valid for the limit oper-
ators. �

In the subsequent lemma, we state the basic properties of pseudoresol-
vents.
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4.5 Lemma. Let {J(λ) : λ ∈ Λ} be a pseudoresolvent on X. Then the
following properties hold for all λ, µ ∈ Λ.

(i) J(λ)J(µ) = J(µ)J(λ).
(ii) ker J(λ) = ker J(µ).
(iii) rg J(λ) = rg J(µ).

Proof. The commutativity (i) follows from the resolvent equation (4.1).
If we rewrite it in the form

J(λ) = J(µ)
[
I + (µ− λ)J(λ)

]
=
[
I + (µ− λ)J(λ)

]
J(µ),

we see that rg J(λ) ⊆ rg J(µ) and ker J(µ) ⊆ ker J(λ). By symmetry, the
assertions (ii) and (iii) follow. �

If we now require that ker J(λ) = {0} and rg J(λ) is dense, then the
pseudoresolvent {J(λ) : λ ∈ Λ} becomes the resolvent of a closed, densely
defined operator.

4.6 Proposition. For a pseudoresolvent {J(λ) : λ ∈ Λ} onX, the following
assertions are equivalent.

(a) There exists a densely defined closed operator
(
A,D(A)

)
such that

Λ ⊂ ρ(A) and J(λ) = R(λ,A) for all λ ∈ Λ.

(b) ker J(λ) = {0}, and rg J(λ) is dense in X for some/all λ ∈ Λ.

Proof. We have only to show that (b) implies (a). Since J(λ) is injective,
we can define

A := λ0 − J(λ0)−1

for some λ0 ∈ Λ. This yields a closed operator with dense domain D(A) :=
rg J(λ0). From the definition of A, it follows that

(λ0 −A)J(λ0) = J(λ0)(λ0 −A) = I;

hence J(λ0) = R(λ0, A). For arbitrary λ ∈ Λ, we have

(λ−A)J(λ) =
[
(λ− λ0) + (λ0 −A)

]
J(λ)

=
[
(λ− λ0) + (λ0 −A)

]
J(λ0)

[
I − (λ− λ0)J(λ)

]
= I + (λ− λ0)

[
J(λ0)− J(λ)− (λ− λ0)J(λ)J(λ0)

]
= I,

and similarly, J(λ)(λ − A) = I. This shows that J(λ) = R(λ,A) for all
λ ∈ Λ and, in particular, that A does not depend on the choice of λ0. �

We conclude these considerations with some useful sufficient conditions
that make a pseudoresolvent a resolvent.
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4.7 Corollary. Let {J(λ) : λ ∈ Λ} be a pseudoresolvent on X and assume
that Λ contains an unbounded sequence (λn)n∈N. If

(4.2) lim
n→∞

λnJ(λn)x = x for all x ∈ X,

then {J(λ) : λ ∈ Λ} is the resolvent of a densely defined operator. In
particular, (4.2) holds if rg J(λ) is dense and

(4.3) ‖λnJ(λn)‖ ≤M

for some constant M and all n ∈ N.

Proof. If (4.2) holds, we have X =
⋃

n∈N rg J(λn) = rg J(λ), and hence
J(λ) has dense range for each λ ∈ Λ. If x ∈ ker J(λ), we obtain x =
limλnJ(λn)x = 0; hence ker J(λ) = {0}. The first assertion now follows
from Proposition 4.6.(b).

From the estimate ‖J(λn)‖ ≤ M
|λn| , n ∈ N, and the resolvent equation,

we obtain
lim

n→∞
‖(λnJ(λn)− I)J(µ)‖ = 0

for fixed µ ∈ Λ. Therefore, it follows that

lim
n→∞

λnJ(λn)x = x

for x ∈ rg J(µ). Since this is a dense subspace of X, the norm boundedness
in (4.3) allows us to conclude that (4.2) holds. �

b. The Approximation Theorems

We now turn our attention to the approximation problem stated above,
i.e., we study the relation between convergence of semigroups, generators,
and resolvents. The adequate type of convergence for strongly continuous
semigroups (and unbounded operators) will be pointwise convergence.

If we assume that the limit operator is known to be a generator, we
obtain our first main result. However, we need a uniform bound on the
semigroups involved.

4.8 First Trotter–Kato Approximation Theorem. (Trotter 1958,
Kato 1959). Let

(
T (t)

)
t≥0 and

(
Tn(t)

)
t≥0, n ∈ N, be strongly continuous

semigroups on X with generators A and An, respectively, and assume that
they satisfy the estimate

‖T (t)‖, ‖Tn(t)‖ ≤Mewt for all t ≥ 0, n ∈ N,

and some constants M ≥ 1, w ∈ R. Take D to be a core for A and consider
the following assertions.
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(a) D ⊂ D(An) for all n ∈ N and Anx→ Ax for all x ∈ D.

(b) For each x ∈ D, there exists xn ∈ D(An) such that

xn → x and Anxn → Ax.

(c) R(λ,An)x→ R(λ,A)x for all x ∈ X and some/all λ > w.

(d) Tn(t)x→ T (t)x for all x ∈ X, uniformly for t in compact intervals.

Then the implications

(a) =⇒ (b) ⇐⇒ (c) ⇐⇒ (d)

hold, while (b) does not imply (a).

Proof. Before starting, we perform a rescaling and assume without loss
of generality that

‖T (t)‖, ‖Tn(t)‖ ≤M for all t ≥ 0, n ∈ N.

Since the implication (a) ⇒ (b) is trivial, we start by showing (b) ⇒ (c).
Let λ > 0. Since ‖R(λ,An)‖ ≤ M/λ for all n ∈ N, it suffices to show that

lim
n→∞

R(λ,An)y = R(λ,A)y

for y in the dense subspace (λ−A)D. Take x ∈ D and define y := (λ−A)x.
By assumption, there exists xn ∈ D(An) such that

xn → x and Anxn → Ax;

hence
yn := (λ−An)xn → y.

Therefore, the estimate

‖R(λ,An)y −R(λ,A)y‖ ≤ ‖R(λ,An)y −R(λ,An)yn‖
+ ‖R(λ,An)yn −R(λ,A)y‖

≤ ‖R(λ,An)‖ · ‖y − yn‖+ ‖xn − x‖

implies the assertion.
The implication (c) ⇒ (b) follows if we take x := R(λ,A)y, and xn :=

R(λ,An)y for fixed λ > 0 and then observe that

Anxn = AnR(λ,An)y = λR(λ,An)y − y

converges to
λR(λ,A)y − y = Ax.

(d) ⇒ (c). The integral representation of the resolvent yields, for each λ > 0
and x ∈ X, that

‖R(λ,A)x−R(λ,An)x‖ ≤
∫ ∞

0

e−λt ‖T (t)x− Tn(t)x‖ dt.

The desired convergence is now a consequence of Lebesgue’s dominated
convergence theorem.
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The proof of the final implication (c) ⇒ (d) is not quite so direct. We use
an idea of [Kis67], reproduced in [Gol85, Sec. I.7.5], and reduce the conver-
gence problem to a stationary problem to which we can apply Generation
Theorem II.3.8.

Observe first that by Proposition 4.4, limn→∞R(λ,An)x exists for all
Reλ > 0. Consider now the Banach space X := c(X) of all convergent
sequences in X endowed with the norm

‖X‖ := sup
n∈N

‖xn‖ for X = (xn)n∈N ∈ X.

On this space and for each λ > 0, define operators R(λ) by

R(λ)X :=
(
R(λ,An)xn

)
n∈N.

Since for (xn) ∈ X with xn → x ∈ X we have

‖R(λ,An)xn −R(λ,A)x‖ ≤ ‖R(λ,An)‖ · ‖xn − x‖
+ ‖R(λ,An)x−R(λ,A)x‖,

assumption (c) implies R(λ)X ∈ X, i.e., R(λ) is well-defined. In addition, it
satisfies

(4.4)
∥∥R(λ)k

∥∥ ≤ M

λk
for all k ∈ N,

and the following more or less evident properties hold.
(i)
{
R(λ) : λ > 0

}
is a pseudoresolvent.

(ii) rg R(λ) is dense in X. This follows, since the eventually constant
sequences form a dense subspace in X and since for each n ∈ N, the
range rgR(λ,An) = D(An) is dense in X.

(iii) R(λ) is injective. Indeed, if R(λ)X = 0, we must have R(λ,An)xn = 0
for all n ∈ N; hence X = 0.

By Proposition 4.6, there exists a densely defined, closed operator A

such that R(λ) = R(λ,A) for all λ > 0. In addition, this operator satisfies
the resolvent estimate (4.4) and therefore, by the Hille–Yosida Generation
Theorem II.3.8, it generates a strongly continuous semigroup

(
T(t)

)
t≥0 on

X. For this semigroup we necessarily have
(iv) T(t)X =

(
Tn(t)xn

)
n∈N for all X = (xn)n∈N ∈ X.

This follows, since the canonical projections Pn onto the nth coordinate
commute with all the resolvent and semigroup operators; hence

PnT(t) = Tn(t) for each n ∈ N.

In particular, by taking X = (x, x, . . .), we obtain(
Tn(t)x

)
n∈N ∈ X,

and the following definition makes sense.
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For every x ∈ X and t ≥ 0 we define

(4.5) S(t)x := lim
n→∞

Tn(t)x.

We leave it to the reader to verify that
(
S(t)

)
t≥0 is a strongly continuous

semigroup on X. We denote its generator by
(
B,D(B)

)
and use the im-

plication (d) ⇒ (c) to obtain that R(λ,An) converges strongly to R(λ,B),
and hence R(λ,B) = R(λ,A) and

(
B,D(B)

)
=
(
A,D(A)

)
. This shows

that the semigroups
(
S(t)

)
t≥0 and

(
T (t)

)
t≥0 coincide.

Finally, we show that the convergence in (4.5) is uniform for t ∈ [0, t0].
Take ε > 0, x ∈ X, and y := limn→∞ Tn(t)x for some t ∈ [0, t0]. Then
there exists nt ∈ N such that ‖Tn(t)x− y‖ ≤ ε for all n ≥ nt and, by the
strong continuity of

(
T(t)

)
t≥0, an open neighborhood Ut of t such that

‖T(s)X − T(t)X‖ ≤ ε for X = (x, x, . . .)

and all s ∈ Ut. This implies

‖Tn(s)x− y‖ ≤ ‖Tn(s)x− Tn(t)x‖+ ‖Tn(t)x− y‖ ≤ 2ε

for all n ≥ nt and s ∈ Ut. Since [0, t0] is compact, we obtain the desired
uniform convergence.

That (b) does not imply (a) in general can be seen from Counterexam-
ple 5.10 below. �

For the above result we had to assume that the limit operator A is
already known to be a generator. This is a major defect, since in the appli-
cations, one wants to approximate the operator A by (simple) operators An

and then conclude that A becomes a generator. Moreover, the semigroup
generated by A should be obtained as the limit of the known semigroups
generated by the operatorsAn. In fact, we encountered this problem already
in the proof (of the nontrivial implication) of Generation Theorem II.3.5.
Therefore, the following result can be viewed as a generalization of the
Hille–Yosida theorem.

4.9 Second Trotter–Kato Approximation Theorem. (Trotter 1958,
Kato 1959). Let

(
Tn(t)

)
t≥0, n ∈ N, be strongly continuous semigroups on

X with generators
(
An, D(An)

)
satisfying the stability condition

(4.6) ‖Tn(t)‖ ≤Mewt

for constants M ≥ 1, w ∈ R and all t ≥ 0, n ∈ N. For some λ0 > w consider
the following assertions.

(a) There exists a densely defined operator
(
A,D(A)

)
such that Anx→

Ax for all x in a core D of A and such that the range rg(λ0 − A) is
dense in X.
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(b) The operators R(λ0, An), n ∈ N, converge strongly to an operator
R ∈ L(X) with dense range rgR.

(c) The semigroups
(
Tn(t)

)
t≥0, n ∈ N, converge strongly (and uniformly

for t ∈ [0, t0]) to a strongly continuous semigroup
(
T (t)

)
t≥0 with

generator B such that R = R(λ0, B).
Then the implications (a) ⇒ (b) ⇐⇒ (c) hold. In particular, if (a) holds,
then B = A.

Proof. Without loss of generality, and after the usual rescaling, it suffices
to consider uniformly bounded semigroups only.

(a) ⇒ (b). As in the above proof, it suffices to show convergence of the
sequence

(
R(λ0, An)y

)
n∈N for y := (λ0 − A)x, x ∈ D, only. This follows,

since

R(λ0, An)y = R(λ0, An)[(λ0 −An)x− (λ0 −An)x+ (λ0 −A)x]
= x+R(λ0, An)(Anx−Ax) → x = Ry

as n→∞. Moreover, rgR contains D, hence is dense in X.
Since the implication (c) ⇒ (b) holds by the above theorem, it remains

to prove that (b) ⇒ (c). By Proposition 4.4, we obtain a pseudoresolvent{
R(λ) : λ > 0

}
by defining

R(λ)x := lim
n→∞

R(λ,An)x, x ∈ X.

This pseudoresolvent satisfies, for all λ > 0,

‖λR(λ)‖ ≤M,

and, since R(λ)k = limn→∞R(λ,An)k,∥∥λkR(λ)k
∥∥ ≤M for all k ∈ N.

Moreover, it has dense range rgR(λ) = rgR. Therefore, Corollary 4.7
yields the existence of a densely defined operator

(
B,D(B)

)
such that

R(λ) = R(λ,B) for λ > 0. Moreover, this operator satisfies the Hille–
Yosida estimate ∥∥λkR(λ,B)k

∥∥ ≤M for all k ∈ N,

hence generates a bounded strongly continuous semigroup
(
T (t)

)
t≥0. We

can now apply the implication (c) ⇒ (d) from the First Trotter–Kato
Approximation Theorem 4.8 in order to conclude that the semigroups(
Tn(t)

)
n≥0 converge—in the desired way—to the semigroup

(
T (t)

)
t≥0.
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In the final step, we show that (a) implies A = B. Since R(λ0, B) = R,
we have

R(λ0, B)(λ0 −A)x = x

for all x ∈ D. However, D is a core for A, and therefore

R(λ0, B)(λ0 −A)x = x

for all x ∈ D(A). From this it follows that λ0 is not an approximate eigen-
value of A. Moreover, rg(λ0 − A) is dense in X by assumption; hence λ0

does not belong to the residual spectrum of A. Therefore, λ0 ∈ ρ(A), and
we obtain R(λ0, A) = R(λ0, B), i.e., A = B as claimed. �

The importance of the above theorems cannot be overestimated. In fact,
they yield the theoretical background for many approximation schemes
in abstract operator theory and applied numerical analysis. However, we
restrict ourselves to rather abstract examples and applications.

c. Examples

The Hille–Yosida Generation Theorem II.3.8 was the main tool in our proof
of the Trotter–Kato approximation theorems. Conversely, this theorem was
proved using an approximation argument. It is enlightening to start our
series of examples by reformulating this part of the proof.

4.10 Yosida Approximants. Let
(
A,D(A)

)
be an operator on X satisfy-

ing the conditions (in the contractive case, for simplicity) from Generation
Theorem II.3.5.(b). For each n ∈ N, define the Yosida approximant

An := nAR(n,A) ∈ L(X).

By Lemma II.3.4, the sequence (An)n∈N converges pointwise on D(A) to A.
Since λ−A is already supposed to be surjective, we can apply the Second
Trotter–Kato Approximation Theorem 4.9 to conclude the existence of the
limit semigroup

(
T (t)

)
t≥0 with

T (t)x := lim
n→∞

etAnx, x ∈ X,

and generator
(
A,D(A)

)
.

Clearly, in a logical sense, these arguments do not re-prove the Hille–
Yosida generation theorem, which we already used for the proof of the
Trotter–Kato approximation theorem. However, it might be helpful for the
beginner to observe that the above approximating sequence enjoys a special
feature: The operators An, n ∈ N, mutually commute. This property allows
a simple and direct proof (as observed by Goldstein [Gol85]) of the essential
step in Approximation Theorem 4.8.
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Lemma. Let
(
T (t)

)
t≥0 and

(
Tn(t)

)
t≥0, n ∈ N, be strongly continuous

semigroups on X with generator
(
A,D(A)

)
and bounded generators An,

respectively. In addition, suppose that
(
T (t)

)
t≥0 and

(
Tn(t)

)
t≥0 satisfy the

stability condition (4.6) and that

AnT (t) = T (t)An

for all n ∈ N and t > 0. If
Anx→ Ax

for all x in a core D of A, then

Tn(t)x→ T (t)x
for all x ∈ X uniformly for t ∈ [0, t0].

Proof. For x ∈ D and n ∈ N, we have

Tn(t)x− T (t)x = −
∫ t

0

d
ds [Tn(t− s)T (s)x] ds

=
∫ t

0

Tn(t− s)(An −A)T (s)x ds

=
∫ t

0

Tn(t− s)T (s)(Anx−Ax) ds,

hence
‖Tn(t)x− T (t)x‖ ≤ tM2ewt ‖Anx−Ax‖.

�

We encounter this situation in our next example, by which we re-prove
a classical theorem.

4.11 Weierstrass Approximation Theorem. Take the function space
X := C0(R) (or Cub(R)) and the (left) translation group

(
T (t)

)
t∈R with

T (t)f(s) := f(s+ t) for s, t ∈ R
and generator

Af := f ′, D(A) := {f ∈ X : f ′ ∈ X}
(see Paragraph II.2.10). The bounded operators

An :=
T (1/n)− I

1/n
, n ∈ N,

• commute with all operators T (t),
• generate contraction semigroups, since

(4.7)
∥∥etAn

∥∥ =
∥∥∥ent(T (1/n)−I)

∥∥∥ ≤ e−ntent‖T (1/n)‖ = 1,

and
• satisfy, by definition of the derivative,

Anf → Af

for each f ∈ D(A).
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Therefore, the (First) Trotter–Kato Approximation Theorem 4.8 (or the
lemma in 4.10) can be applied and yields

(4.8) f(s+ t) = lim
n→∞

∞∑
k=0

tk

k!
(Ak

nf)(s)

for all f ∈ X and uniformly for s ∈ R, t ∈ [0, 1]. If we now take s = 0,
choose an appropriate sequence (mn)n∈N of natural numbers, and observe
that

∑mn

k=0
tk
/k!(Ak

nf)(0) is a polynomial, we obtain the Weierstrass ap-
proximation theorem as a consequence.

Proposition. For every f ∈ X there exists a sequence (mn)n∈N ⊂ N such
that

(4.9) f(t) = lim
n→∞

mn∑
k=0

tk

k!
(Ak

nf)(0)

uniformly for t ∈ [0, 1].

It is very instructive to observe how convergence breaks down if we re-
verse the order of the limit and of the series summation in (4.9). See the
illuminating remarks in [Gol85, Sec. I.8.3].

4.12 A First Approximation Formula. The idea employed in Para-
graph 4.11 is very simple and can be formulated in a general context. Let(
T (t)

)
t≥0 be a strongly continuous contraction semigroup on X with gen-

erator
(
A,D(A)

)
. Then the bounded operators

An :=
T (1/n)− I

1/n
, n ∈ N,

approximate A on D(A) and generate contraction semigroups
(
etAn

)
t≥0

(see (4.7)). Therefore, we obtain the following approximation formula.

Proposition. With the above definitions, one has

(4.10) T (t)x = lim
n→∞

e−ntentT (1/n)x

for all x ∈ X and uniformly in t ∈ [0, t0].

This formula might seem useless, since it assumes that the operators
T (t) are already known, at least for small t > 0. However, it is the first
step towards more interesting approximation formulas to be developed in
the next section. Before doing so, we apply our Trotter–Kato approxima-
tion theorems to a generalization of the multiplication semigroups from
Section I.4.a and Paragraph II.2.9.
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4.13 Operator-Valued Multiplication Semigroups. For a given Banach
space X, we consider the X-valued function space

X := C0(R, X)

of all continuous functions from R into X vanishing at infinity and endow this
space with the sup-norm. We assume that for each s ∈ R, there are generators
(A(s), D(A(s))) of a strongly continuous semigroup (Ts(t))t≥0 that all satisfy the
common estimate

‖Ts(t)‖ ≤ M · ewt for t ≥ 0 and s ∈ R.

The map s 7→ A(s) should be continuous in the following sense:
For each s0 ∈ R, each sequence sn → s0, and each x0 ∈ D(A(s0)), there exist

xn ∈ D(A(sn)) such that xn → x0 and A(sn)xn → A(s0)x0.
In the case that there is a common core D ⊂

⋂
s∈R D(A(s)), this is implied by

lim
s→s0

A(s)x = A(s0)x for all s0 ∈ R, x ∈ D.

In the case that A(s) ∈ L(X) for all s ∈ R and ‖A(s)‖ remains bounded on
bounded intervals, this means that the function

R 3 s 7→ A(s) ∈ L(X)

is continuous for the strong operator topology on L(X).
The operator-valued function s 7→ Ts(t), for fixed t ≥ 0, can now be considered

as a single operator on the function space X acting by pointwise multiplication.
This yields an (operator-valued) multiplication semigroup.

Proposition. If s 7→ A(s) is continuous in the above sense, then

M(t)f(s) := Ts(t)f(s) for s ∈ R, t ≥ 0 and f ∈ X

defines a strongly continuous semigroup (M(t))t≥0 on X satisfying

(4.11) ‖M(t)‖ ≤ Mewt for t ≥ 0.

Proof. We start by showing that the map

(4.12) R× R+ 3 (s, t) 7→ Ts(t)f(s) ∈ X

is continuous for every f ∈ X. To that purpose we estimate

‖Ts0(t0)f(s0)− Ts(t)f(s)‖ ≤ ‖Ts0(t0)f(s0)− Ts0(t)f(s0)‖
+ ‖Ts0(t)f(s0)− Ts(t)f(s0)‖
+ ‖Ts(t)f(s0)− Ts(t)f(s)‖

and observe that

• limt→t0 ‖(Ts0(t0)− Ts0(t))f(s0)‖ = 0, since the semigroup (Ts0(t))t≥0 is
strongly continuous,

• lims→s0 ‖(Ts0(t)− Ts(t))f(s0)‖ = 0, since, due to the continuity assumption
on s 7→ A(s), we can apply Approximation Theorem 4.8,

• lims→s0 ‖Ts(t)(f(s0)− f(s))‖ = 0, since f is continuous and ‖Ts(t)‖ ≤ M ·
ewt.

From these considerations, it is now clear that

s 7→
(
M(t)f

)
(s) = Ts(t)f(s)

is a function in X and that (M(t))t≥0 is a semigroup on X satisfying the estimate
(4.11). Its strong continuity needs to be checked only for functions with compact
support. But this follows from the uniform continuity of the map in (4.12) on
compact sets of the form [−n, n]× [0, 1]. �
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As one might expect from the scalar case in Paragraph II.2.9, the generator of
the semigroup (M(t))t≥0 is the multiplication operator induced by the operators
A(s).

Corollary. The generator (A, D(A)) of the above semigroup (M(t))t≥0 is the
(operator-valued) multiplication operator(

Af
)
(s) := A(s)f(s), s ∈ R,

with (maximal) domain

D(A) :=
{
f ∈ X : f(s) ∈ D

(
A(s)

)
for s ∈ R and A(·)f(·) ∈ X

}
.

Proof. Let (B, D(B)) be the generator of (M(t))t≥0. For f ∈ D(A), we have∥∥∥∥Ts(t)f(s)− f(s)

t
−A(s)f(s)

∥∥∥∥ =

∥∥∥∥1

t

∫ t

0

(
Ts(r)A(s)f(s)−A(s)f(s)

)
dr

∥∥∥∥
≤ sup

0≤r≤t

‖Ts(r)A(s)f(s)−A(s)f(s)‖.

Since the map (s, t) 7→ Ts(t)A(s)f(s) is continuous, it follows that

lim
t↓0

sup
s∈R

∥∥∥∥Ts(t)f(s)− f(s)

t
−A(s)f(s)

∥∥∥∥ = 0,

and hence A ⊂ B. From the definition it follows that the operator µ − A, for
µ > w, has a bounded inverse(

R(µ, A)f
)
(s) = R

(
µ, A(s)

)
f(s)

for f ∈ X, s ∈ R. On the other hand, µ−B is invertible, since B is the generator
of a semigroup satisfying (4.11). This implies µ−A = µ−B; hence A = B. �

We will use this semigroup in Example 5.9.

4.14 Exercises. (1) Discuss the continuity properties of the map s 7→ A(s)
stated at the beginning of Paragraph 4.13. Find an example satisfying the first,
but not the second, property.

(2) Consider the operator Af := f ′′ with maximal domain on X := C0(R). For
each n ∈ N, we define bounded difference operators

Anf(s) := n2
[
f(s + 1/n)− 2f(s) + f(s− 1/n)

]
, s ∈ R, f ∈ X.

Prove the following statements.

(i) (A, D(A)) is a closed, densely defined operator.

(ii)
∥∥etAn

∥∥ ≤ 1 for each n ∈ N, and Anf → Af for f ∈ D(A).

(iii) For each g ∈ X, there exists a unique f ∈ D(A) such that f − f ′′ = g.
(Hint: Use the formal identity 2(I − (d/ds)

2)−1 = (I − d/ds)
−1(I + d/ds)

−1

and the resolvent formula for d/ds from Paragraph IV.1.2. Check that this
yields the correct solution.)

(iv) (A, D(A)) generates the strongly continuous semigroup (T (t))t≥0 given by

T (t)f(s) = lim
n→∞

e−2n2t

∞∑
k=0

(n2t)k

k!

k∑
l=0

(
k
l

)
f
(
s + (k−2l)/n

)
for s ∈ R, f ∈ X.
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5. Approximation Formulas

As announced in the previous section, it is now our aim to obtain more
or less explicit formulas for the semigroup operators T (t). These formulas
are based on some knowledge of the generator (and its resolvent) and the
Trotter–Kato approximation theorem.

a. Chernoff Product Formula

Our first approach is via the Chernoff product formula, from which many
approximation formulas can be derived. For its proof the following estimate
will be essential.

5.1 Lemma. Let S ∈ L(X) satisfy ‖Sm‖ ≤ M for some M ≥ 1 and all
m ∈ N. Then we have

(5.1)
∥∥∥en(S−I)x− Snx

∥∥∥ ≤ √
nM ‖Sx− x‖

for every n ∈ N and x ∈ X.

Proof. Let n ∈ N be fixed and observe that

en(S−I) − Sn = e−n
(
enS − enSn

)
= e−n

∞∑
k=0

nk

k!
(
Sk − Sn

)
.

For k > n, we write

Sk − Sn =
k−1∑
j=n

(
Sj+1 − Sj

)
=

k−1∑
j=n

Sj(S − I),

and similarly for k < n. Therefore, and since ‖Sm‖ ≤M , we obtain∥∥Skx− Snx
∥∥ ≤ |n− k| ·M ‖Sx− x‖

for all k ∈ N, x ∈ X. This allows the estimate∥∥∥en(S−I)x− Snx
∥∥∥ ≤ e−nM ‖Sx− x‖ ·

∞∑
k=0

(
nk

k!

)1/2(nk

k!

)1/2

|n− k|

≤ e−nM ‖Sx− x‖ ·

( ∞∑
k=0

nk

k!

)1/2( ∞∑
k=0

nk

k!
(n− k)2

)1/2

= e−nM ‖Sx− x‖ · (en)
1/2 (nen)

1/2

=
√
nM ‖Sx− x‖,

where we used the Cauchy–Schwarz inequality and the identity
∞∑

k=0

nk

k!
(n− k)2 = nen.

�
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This lemma, combined with Approximation Theorem 4.9, yields the main
result of this section.

5.2 Theorem. (Chernoff Product Formula). Consider a function

V : R+ → L(X)

satisfying V (0) = I and
∥∥[V (t)

]
m
∥∥ ≤ M for all t ≥ 0, m ∈ N, and some

M ≥ 1. Assume that

Ax := lim
h↓0

V (h)x− x

h

exists for all x ∈ D ⊂ X, where D and (λ0 − A)D are dense subspaces in
X for some λ0 > 0. Then the closure A of A generates a bounded strongly
continuous semigroup

(
T (t)

)
t≥0, which is given by

(5.2) T (t)x = lim
n→∞

[V ( t/n)]n x

for all x ∈ X and uniformly for t ∈ [0, t0].

Proof. For s > 0, define

As :=
V (s)− I

s
∈ L(X),

and observe that Asx → Ax for all x ∈ D as s ↓ 0. The semigroups
(etAs)t≥0 all satisfy

∥∥etAs
∥∥ ≤ e

−t/s

∥∥∥e tV (s)/s

∥∥∥ ≤ e
−t/s

∞∑
m=0

tm
∥∥[V (s)

]
m
∥∥

smm!
≤M for every t ≥ 0.

This shows that the assumptions of the Second Trotter–Kato Approxima-
tion Theorem 4.9 are fulfilled (with the discrete parameter n ∈ N replaced
by the continuous parameter s > 0). Hence, the closure A of A generates a
strongly continuous semigroup

(
T (t)

)
t≥0 satisfying∥∥T (t)x− etAsx

∥∥→ 0 for all x ∈ X as s ↓ 0

uniformly for t ∈ [0, t0], and therefore

(5.3)
∥∥∥T (t)x− etA t/nx

∥∥∥→ 0 for all x ∈ X as n→∞

uniformly for t ∈ [0, t0].
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On the other hand, we have by Lemma 5.1 that

(5.4)

∥∥∥etA t/nx− [V ( t/n)]n x
∥∥∥ =

∥∥∥en(V ( t/n)−I)x− [V ( t/n)]n x
∥∥∥

≤
√
nM ‖V ( t/n)x− x‖

=
tM√
n

∥∥A t/n
x
∥∥→ 0

for all x ∈ D as n→∞, uniformly on (0, t0]. Since
∥∥etA t/n − [V ( t/n)]n

∥∥ ≤
2M , the combination of (5.3), (5.4), and Proposition A.3 yields (5.2). �

As before, we pass to the unbounded case by a rescaling procedure.

5.3 Corollary. Consider a function

V : R+ → L(X)

satisfying V (0) = I and∥∥[V (t)]k
∥∥ ≤Mekwt for all t ≥ 0, k ∈ N

and some constants M ≥ 1, w ∈ R. Assume that

Ax := lim
t↓0

V (t)x− x

t

exists for all x ∈ D ⊂ X, where D and (λ0−A)D are dense subspaces in X
for some λ0 > w. Then the closure A of A generates a strongly continuous
semigroup

(
T (t)

)
t≥0 given by

(5.5) T (t)x = lim
n→∞

[V ( t/n)]nx

for all x ∈ X and uniformly for t ∈ [0, t0]. Moreover,
(
T (t)

)
t≥0 satisfies the

estimate
‖T (t)‖ ≤Mewt for all t ≥ 0.

Proof. From the function V (·) we pass to

Ṽ (t) := e−wtV (t),

which then satisfies∥∥∥Ṽ (t)k
∥∥∥ ≤M for all k ∈ N and t ≥ 0

and whose derivative in zero is the operator A − w. The assertions then
follow from Theorem 5.2. �

Next, we substitute the “time steps” of size “ t/n” in the definition of the
approximating operators V ( t/n) by an arbitrary null sequence (tn)n∈N.
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5.4 Corollary. Let V : R+ → L(X) satisfy the assumptions in Corol-
lary 5.3. If for fixed t > 0 we take a positive null sequence (tn)n∈N and a
strictly increasing sequence of integers kn such that

kntn → t,

then

(5.6) T (t)x = lim
n→∞

[V (tn)]knx

for all x ∈ X.

Proof. Using the function

ξ(s) :=
{
s · (tnkn)/t for s ∈ ( t/kn+1, t/kn],
0 for s = 0 or s > t/k1,

we introduce a new operator-valued function W : R+ → L(X) by

W (t) := V
(
ξ(t)

)
, t ≥ 0.

This function still satisfies W (0) = I and
∥∥W (t)k

∥∥ ≤ Mekwt for all t ≥ 0,
k ∈ N. For x ∈ D, we show that

lim
t↓0

W (t)x− x

t
= Ax.

Let (tn)n∈N be an arbitrary null sequence and for each tm choose nm ∈ N
such that tm ∈ ( t/knm+1, t/knm

]. Then

W (tm)x− x

tm
=
V
(
ξ(tm)

)
x− x

ξ(tm)
· ξ(tm)
tm

=
V
(
ξ(tm)

)
x− x

ξ(tm)
· tnm

knm
· tm

t · tm
,

hence

lim
m→∞

W (tm)x− x

tm
= Ax · lim

m→∞

tnmknm

t
= Ax.

By Corollary 5.3, we conclude that A generates the semigroup
(
T (t)

)
t≥0

given by
T (t)x = lim

n→∞
[W ( t/n)]nx

uniformly for t ∈ [0, t0]. In particular, we obtain for the subsequence
( t/kn)n∈N that

T (t)x = lim
n→∞

[W ( t/kn)]kn x

= lim
n→∞

[
V
(
ξ( t/kn)

)]kn
x

= lim
n→∞

[
V (tn)

]kn
x for all x ∈ X.

�
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The following application of the Chernoff Product Formula Theorem 5.2
(or of Corollary 5.3) finally gives us an explicit formula, called the Post–
Widder Inversion Formula, for the semigroup in terms of the resolvent
of its generator. This adds a missing arrow to the “triangle” from Dia-
gram II.1.14, and, at the same time, corresponds to Hille’s original proof
of Generation Theorem II.3.5.

5.5 Corollary. For every strongly continuous semigroup
(
T (t)

)
t≥0 on X

with generator
(
A,D(A)

)
, one has

(5.7) T (t)x = lim
n→∞

[n/tR(n/t, A)]n x = lim
n→∞

[I − t/nA]−n
x, x ∈ X,

uniformly for t in compact intervals.

Proof. Assume that ‖T (t)‖ ≤ Mewt for constants M ≥ 1, w > 0 and
define

V (t) :=

{
I for t = 0,
1/tR(1/t, A) for t ∈ (0, δ),
0 for t ≥ δ,

for some δ ∈ (0, 1/w). In this way we obtain a function V : R+ → L(X)
satisfying∥∥V (t)k

∥∥ ≤ 1/tk

∥∥R(1/t, A)k
∥∥ ≤ M

tk(1/t − w)k
=

M

(1− wt)k
≤Mek(w+1)t

for all t ∈ (0, δ), provided that we choose δ > 0 sufficiently small. Moreover,
by Lemma II.3.4, we have

lim
t↓0

V (t)x− x

t
= lim

t↓0
1/tR(1/t, A)Ax = Ax if x ∈ D(A).

Therefore, the Chernoff product formula as stated in Corollary 5.3 applies,
and (5.5) becomes the above formula. �

For the sake of completeness, we add this new relation to the diagram
relating the semigroup, its generator, and its resolvent operators.

5.6 Diagram. (
T (t)

)
t≥0

�
�

�
�

�
�

�
�

��

	

Ax=lim
t↓0

T (t)x−x
t

@
@

@
@

@
@

@
@

@@

I@
@

@
@

@
@

@
@

@@R

R(λ,A)=

∞∫
0

e−λtT (t) dt

T (t)= lim
n→∞

[n/tR(n/t,A)]n

(
A,D(A)

) R(λ,A)=(λ−A)−1
-�

A=λ−R(λ,A)−1

(
R(λ,A)

)
λ∈ρ(A)
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We now apply the Trotter–Kato approximation theorems and, in particular,
the Chernoff product formula from Theorem 5.2 to more concrete situations.
First, we relate it to a classical approximation process via Bernstein polynomials
for continuous functions on [0, 1].

5.7 Bernstein Approximation of a Diffusion Semigroup. We recall that for
each function f ∈ C[0, 1] the corresponding nth Bernstein polynomial is defined
by

(5.8) Bnf(s) :=

n∑
k=0

(
n

k

)
sk(1− s)n−kf(k/n), s ∈ [0, 1].

In this way, we obtain the sequence of Bernstein operators

Bn : f 7→ Bnf,

which are positive contractions on the Banach space C[0, 1] and converge strongly
to the identity operator.

Lemma 1. For every f ∈ C[0, 1], we have

(5.9) lim
n→∞

Bnf = f.

This lemma, which also re-proves the Weierstrass Approximation Theorem 4.11,
is one of the fundamental results of classical approximation theory and can be
proved in many different ways. A very elegant proof uses Korovkin’s theorem,
which assures that

lim
n→∞

Bnf = f for all f ∈ C[0, 1],

if this convergence holds for the three functions

1 (s) := 1, id(s) := s, and id2(s) := s2 for s ∈ [0, 1].

This, however, is straightforward, since for s ∈ [0, 1] and n ∈ N,

(5.10)

Bn 1 (s) = 1,

Bnid(s) = s,

Bnid2(s) = s2 +
s(1− s)

n
.

We refer to [AC94, Thm. 4.2.7] for details or to [Lor53, Thm. 1.1.1] for a direct
proof.

For our purpose, it is more important to prove a formula due to E. Voronovskaja
[Vor32] that relates the Bernstein operators to a certain differential operator.

Lemma 2. For every f ∈ C2[0, 1], we have

(5.11) lim
n→∞

Bnf(s)− f(s)
1/n

=
1

2
s(1− s)f ′′(s) uniformly for s ∈ [0, 1].

Proof. Since f is twice continuously differentiable, we can write

f(t)− f(s) = (t− s)f ′(s) + (t− s)2
(

1
2
f ′′(s) + η(s, t)

)
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for s, t ∈ [0, 1] and a bounded function η : [0, 1]2 → C satisfying

lim
t→s

η(s, t) = 0

uniformly for s ∈ [0, 1]. We use this identity for t = k/n and obtain

Bnf(s)− f(s) =

n∑
k=0

(
n

k

)
sk(1− s)n−k

(
f
(

k

n

)
− f(s)

)
= f ′(s)(Bnid(s)− s) +

1

2
f ′′(s)

n∑
k=0

(
n

k

)
sk(1− s)n−k

(
k

n
− s
)2

+

n∑
k=0

(
n

k

)
sk(1− s)n−kη

(
s,

k

n

)(
k

n
− s
)2

(5.12) =
1

2
f ′′(s)

(
Bnid2(s)− 2sBnid(s) + s2Bn 1 (s)

)
+

n∑
k=0

(
n

k

)
sk(1− s)n−kη

(
s,

k

n

)(
k

n
− s
)2

=
s(1− s)

2n
f ′′(s) +

n∑
k=0

(
n

k

)
sk(1− s)n−kη

(
s,

k

n

)(
k

n
− s
)2

.

Take M > 0 such that |η(s, t)| ≤ M for every s, t ∈ [0, 1], and for ε > 0, choose
δ > 0 such that |η(s, t)| < ε whenever |s− t| < δ.

Moreover, we observe that with a simple calculation based on the formulas in
(5.10), we can evaluate Bnid3 and Bnid4 and obtain

n∑
k=0

(
n

k

)
sk(1− s)n−k

(
k

n
− s
)4

=
3s2(1− s)2

n2
+

s(1− s)(1− 6s(1− s))

n3
≤ C

n2

for a suitable constant C > 0 and hence∣∣∣∣∣
n∑

k=0

(
n

k

)
sk(1− s)n−kη

(
s,

k

n

)(
k

n
− s
)2

∣∣∣∣∣
≤

∣∣∣∣∣
n∑

k=0

|k/n−s|<δ

(
n

k

)
sk(1− s)n−kη

(
s,

k

n

)(
k

n
− s
)2

∣∣∣∣∣
+

∣∣∣∣∣
n∑

k=0

|k/n−s|≥δ

(
n

k

)
sk(1− s)n−kη

(
s,

k

n

)(
k

n
− s
)2

∣∣∣∣∣
< ε

s(1− s)

2n
+

M

δ2

n∑
k=0

|k/n−s|≥δ

(
n

k

)
sk(1− s)n−k

(
k

n
− s
)4

≤ ε

8n
+

M

δ2
· C

n2
.
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By (5.12), we obtain∣∣∣∣n(Bnf(s)− f(s)
)
− s(1− s)

2
f ′′(s)

∣∣∣∣ ≤ ε

8
+

M

δ2
· C

n

and therefore

lim
n→+∞

∣∣∣∣n(Bnf(s)− f(s)
)
− s(1− s)

2
f ′′(s)

∣∣∣∣ ≤ ε

8
.

Since ε > 0 is arbitrary, the proof is complete. �

The differential operator appearing in (5.11) is already familiar to us. In fact,
in Paragraph II.3.30.(iii) we have seen that the operator

Af(s) :=
1

2
s(1− s)f ′′(s), s ∈ [0, 1],

with domain

D(A) :=
{
f ∈ C[0, 1] : f ∈ C2(0, 1) and lim

s→0,1
s(1− s)f ′′(s) = 0

}
generates a strongly continuous contraction semigroup (T (t))t≥0 on C[0, 1]. The
space C2[0, 1] is a core for (A, D(A)); hence the limit in (5.11) coincides on a core
with a generator. This allows us to apply Theorem 5.2.

Proposition. The semigroup (T (t))t≥0 generated by the differential operator

Af(s) :=
1

2
s(1− s)f ′′(s), s ∈ [0, 1],

D(A) :=
{
f ∈ C[0, 1] : f ∈ C2(0, 1) and lim

s→0,1
s(1− s)f ′′(s) = 0

}
can be obtained as

T (t)f = lim
n→∞

Bkn
n f for all f ∈ C[0, 1].

Here, the sequence of natural numbers kn depends on t > 0 and has to satisfy

lim
n→∞

kn

n
= t.

Proof. We use (the second part of) Corollary 5.3 and define

V (t) := Bn for
1

n
≤ t <

1

n− 1
, n ≥ 2.

Then the function V (·) consists of contractions and, due to Lemma 2, satisfies
all the other assumptions of Corollary 5.3. Now take

tn :=
1

n
and kn ∈ N such that kntn → t.

Then (5.6) becomes the above assertion, since V (tn) = Bn. �
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Our next application of the Chernoff product formula from Theorem 5.2
is to perturbation theory and yields another important formula, called the
Trotter product formula, for the perturbed semigroup. In contrast to the
situation studied in Sections 1, 2, and 3, we obtain a result that is symmetric
in the operators A and B.

5.8 Corollary. Let
(
T (t)

)
t≥0 and

(
S(t)

)
t≥0 be strongly continuous semi-

groups on X satisfying the stability condition

(5.13) ‖[T ( t/n)S( t/n)]n‖ ≤Mewt for all t ≥ 0, n ∈ N,

and for constants M ≥ 1, w ∈ R. Consider the “sum” A + B on D :=
D(A) ∩D(B) of the generators

(
A,D(A)

)
of
(
T (t)

)
t≥0 and

(
B,D(B)

)
of(

S(t)
)
t≥0, and assume that D and (λ0−A−B)D are dense in X for some

λ0 > w. Then C := A+B generates a strongly continuous semigroup(
U(t)

)
t≥0 given by the Trotter product formula

(5.14) U(t)x = lim
n→∞

[T ( t/n)S( t/n)]n x, x ∈ X,

with uniform convergence for t in compact intervals.

Proof. In order to apply the Chernoff product formula from Corollary 5.3,
it suffices to define

V (t) := T (t)S(t), t ≥ 0,

and observe that

lim
t↓0

T (t)S(t)y − y

t
= lim

t↓0
T (t)

S(t)y − y

t
+ lim

t↓0

T (t)y − y

t

= By +Ay

for all y ∈ D. �

The following application of the Trotter product formula is to nonautonomous
Cauchy problems. A systematic treatment of these problems via semigroups will
be given in Section VI.9.

5.9 Example. For bounded operators A(t), t ∈ R, on a Banach space X we
consider the nonautonomous abstract Cauchy problem

(nACP)

{
u̇(t) = A(t)u(t), t ≥ s,

u(s) = x ∈ X,

cf. Section VI.9. If we assume that t 7→ A(t) is strongly continuous, it is well
known that there is a unique family of bounded operators U(t, s), t, s ∈ R, t ≥ s,
on X such that

U(s, s) = I, U(t, s) = U(t, r)U(r, s),{
(τ, σ) ∈ R2 : τ ≥ σ

}
3 (t, s) 7→ U(t, s) ∈ L(X) is differentiable, and

d
dt

U(t, s) = A(t)U(t, s), d
ds

U(t, s) = −U(t, s)A(s),

see [Fat83, Thm. 7.1.1 and Expl. 7.1.6] (see also [DK74, § III.1]). In particular,
the map t 7→ U(t, s)x belongs to C1([s,∞), X) and is the unique solution of
(nACP).
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We now want to use the Trotter product formula to approximate the operator
U(t, s), i.e., the solutions of (nACP). As approximating operators we choose the
product

n∏
k=1

e
t/nA(s+kt/n) = e

t/nA(s+t) · e
t/nA(s+t−t/n) · · · e

t/nA(s+ t/n),

which correspond to the problem (nACP) on the interval [s, s + t] with A(t)
replaced by the piecewise constant operators A(s + kt/n).

Proposition. Let A(·) ∈ C(R, Ls(X)). Then

lim
n→∞

n∏
k=1

e
t/nA(s+kt/n)x = U(s + t, s)x

for all x ∈ X and uniformly for s and t in compact intervals of R and R+,
respectively.

Proof. Let a < b and notice that

(5.15)

∥∥∥∥∥
n∏

k=1

e
t/nA(s+kt/n)

∥∥∥∥∥ ≤
n∏

k=1

e
tc/n ≤ e(b−a)c =: M

for c := supa≤s≤b ‖A(s)‖ < ∞ and a ≤ s ≤ s + t ≤ b. On the space X :=
C0((a, b], X) we define the bounded multiplication operator

(Af)(s) := A(s)f(s) for a < s ≤ b and f ∈ X,

which generates the multiplication semigroup (M(t))t≥0 on X given by

(M(t)f)(s) = etA(s)f(s);

see Paragraph 4.13. Moreover, the left translation semigroup (S(t))t≥0 on X de-
fined by (

S(t)f
)
(s) =

{
f(s− t) if a < s− t ≤ s ≤ b,
0 if s− t ≤ a < s ≤ b,

is generated by the operator

Bf := −f ′ for f ∈ D(B) :=
{
f ∈ X ∩ C1

(
(a, b], X

)
: Bf ∈ X

}
;

see Exercise I.4.19.(5). Since A is bounded, we have(
λ− (A + B)

)
D(B) = X for all λ > ‖A‖,

and (A + B, D(B)) generates a semigroup (T (t))t≥0 on X (use Theorem 1.3).
Moreover, for f ∈ X and a < s ≤ s + t ≤ b, we compute[(

M( t/n)S( t/n)
)

nf
]
(s + t) = e

t/nA(s+t)
[(

M( t/n)S( t/n)
)

n−1f
]
(s + t− t/n)

= · · ·(5.16)

= e
t/nA(s+t)e

t/nA(s+t− t/n) · · · e
t/nA(s+ t/n)f(s).

Hence, ‖(M( t/n)S( t/n))n‖ ≤ M by (5.15). The Trotter product formula from
Corollary 5.8 now yields

lim
n→∞

(
M( t/n)S( t/n)

)
nf = T (t)f

uniformly for 0 ≤ t ≤ b− a.
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For given x ∈ X and c ∈ (a, b) now take f ∈ D(B) such that f(s) = x for
c ≤ s ≤ b. Then (5.16) implies

lim
n→∞

∥∥∥e t/nA(s+t) · · · e
t/nA(s+ t/n)x−

(
T (t)f

)
(s + t)

∥∥∥
≤ lim

n→∞

∥∥(M( t/n)S( t/n)
)

nf − T (t)f
∥∥ = 0

uniformly for c ≤ s ≤ s + t ≤ b. It remains to show that(
T (t)f

)
(s + t) = U(s + t, s)x

for c ≤ s < b. In fact, let

v(s + t) :=
(
T (t)f

)
(s + t) for 0 ≤ t ≤ b− s.

Since T (t)f ∈ D(B) = D(A + B), we have v(s) = x and

d
dt

v(s + t) =
(
(A + B)T (t)f

)
(s + t)−

(
BT (t)f

)
(s + t)

= A(s + t)v(s + t).

Hence, v solves (nACP) on [s, b], and thus v(s + t) = U(s + t, s)x. �

We now show, by essentially the same example, first that the density of D(A)∩
D(B) is not necessary for the convergence (to a strongly continuous semigroup)
of the Trotter Product Formula (5.14) and second that the converse of the im-
plication (a) ⇒ (b) in the First Trotter–Kato Approximation Theorem 4.8 does
not hold.

5.10 Counterexample. On X := L2(R) we take the right translation semigroup
(T (t))t≥0 with generator A (see Section I.4.c and Paragraph II.2.10) and the
multiplication semigroup (S(t))t≥0 generated by B = Miq for q : R → R a
measurable and locally integrable function. For f ∈ X and as in (5.16), we can
compute the products

[T ( t/n)S( t/n)]n f(s) = exp

(
i

n∑
k=1

q (s− kt/n) t/n

)
· f(s− t) for t ≥ 0, s ∈ R.

They converge in L2-norm to U(t)f with

U(t)f(s) := e
i
∫ s

s−t
q(τ) dτ

· f(s− t).

These operators U(t) form a strongly continuous semigroup (of isometries) on X.
Observe that no assumption on D(A) ∩D(B) was made.

In fact, this intersection can be {0}. Take Q = {αk : k ∈ N} and define

q(s) :=

∞∑
k=1

1

k!
|s− αk|

−1/2 for s ∈ R.

Then q ∈ L1
loc(R). However, q /∈ L2[a, b] for any a < b. Therefore, no continuous

function belongs to D(B); hence D(A) ∩D(B) = 0. However, at least formally,
the generator C of (U(t))t≥0 is the “sum” A + B.
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In fact, one can show that the domain of C is

D(C) =
{
f ∈ L2(R) : f is absolutely continuous and − f ′ + qf ∈ L2(R)

}
and

Cf = −f ′ + qf for f ∈ D(C).

Using the same q, we now define semigroups on X by

Un(t)f(s) := e
i/n

∫ s

s− t(n+1)/n
q(τ) dτ

· f (s− t(n+1)/n)

for every n ∈ N. Then limn→∞ Un(t)f = T (t)f for every f ∈ X, and the semi-
groups (Un(t))t≥0 and the right translation semigroup (T (t))t≥0 satisfy the equiv-
alent conditions (b), (c), and (d) in the First Trotter–Kato Approximation The-
orem 4.8. However, the intersections of the respective domains are trivial; hence
condition (a) does not hold.

5.11 Exercises. (1) Let (T (t))t≥0 be a strongly continuous semigroup with
generator A on a Banach space X. If B ∈ L(X), then the semigroup (U(t))t≥0

generated by A + B is given by the Trotter product formula

U(t)x = lim
n→∞

[
T ( t/n)e

tB/n
]

nx

for all t ≥ 0 and x ∈ X. (Hint: By renorming X as in Chapter II, (3.18) (or by
Lemma II.3.10) one may assume that (T (t))t≥0 is a contraction semigroup. To

verify the stability condition (5.13) observe that ‖etB‖ ≤ et‖B‖.)

(2) Let A(·) ∈ C(R, Ls(X)) and assume that∥∥∥∥∥
n∏

k=1

e
t/nA(s+kt/n)

∥∥∥∥∥ ≤ Mewt

for some constants M ≥ 0, w ∈ R, and all n ∈ N, s ∈ R, and t ≥ 0. Moreover,
let (U(t, s))t≥s be the evolution family as given in Example 5.9. Show that the
following assertions are true.

(i) ‖U(t, s)‖ ≤ Mew(t−s) for t ≥ s.

(ii) (T (t)f)(s) := U(s, s − t)f(s − t) for s ∈ R, t ≥ 0 and f ∈ X := C0(R, X)
defines a strongly continuous semigroup on X, cf. Lemma VI.9.10.

(iii∗) The generator G of (T (t))t≥0 is given by

Gf = −f ′ + A(·)f, f ∈ D(G) =
{
f ∈ X ∩ C1(R, X) : −f ′ + A(·)f ∈ X

}
,

compare Lemma VI.9.28. (Hint: Consider first functions having compact
support.)
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b. Inversion Formulas

Using the Trotter–Kato approximation theorems, we obtained in the pre-
vious section formulas for the semigroup operators

(
T (t)

)
t≥0 based on the

resolvent operators R(λ,A). A typical example is the Post–Widder inver-
sion formula

(5.17) T (t) = lim
n→∞

[n/tR(n/t, A)]n

from Corollary 5.5. It has, however, the drawback that we need to compute
not only the resolvent R(λ,A) but also its powers R(λ,A)n for large λ. Re-
calling the opposite arrow from Diagram 5.6, which expresses the resolvent
by the semigroup operators as

(5.18) R(λ,A) =
∫ ∞

0

e−λtT (t) dt, Reλ > ω0,

we are led to a different approach. In fact, (5.18) states that the resolvent
R(λ,A) is the Laplace transform of the semigroup

(
T (t)

)
t≥0. Therefore,

we try to obtain T (t) as the inverse Laplace transform of the resolvent
R(λ,A).

In order to carry out such an inversion, we need some preparation. We
start by defining a functional calculus, which will also be useful later; see
Section IV.3.c.

5.12 Proposition. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semi-

group on a Banach space X. Then the map

T : L1(R+) → L(X), [T f ]x :=
∫ ∞

0

f(s)T (s)x ds,

defines a bounded operator.

The simple proof is left to the reader.
This functional calculus yields the formula

(5.19) S(t)x :=
∫ t

0

T (s)x ds =
[
T 1 [0,t]

]
x, x ∈ X,

where 1 [0,t] ∈ L1(R+) denotes the characteristic function of the interval
[0, t]. Moreover, (5.18) can be restated as

(5.20) R(λ,A) = [T ε−λ(·)]

for the exponential functions ε−λ(s) := e−λs. The idea is now to approx-
imate 1 [0,t] in terms of these exponential functions ε−λ(·). This will yield
an inversion formula for the “integrated semigroup”

(
S(t)

)
t≥0.
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The approximation of 1 [0,t] given in the following lemma is our key tool.

5.13 Lemma. For all ε > 0, t ≥ 0, and n ∈ N consider

Hn,t(·) :=
1

2πi

∫ ε+in

ε−in

eλt

λ
ε−λ(·) dλ.

Then Hn,t(·) ∈ L1(R+), and limn→∞Hn,t(·) = 1 [0,t] in L1(R+) holds uni-
formly for t in bounded intervals.

Proof. We start by decomposing

‖Hn,t(·)− 1 [0,t]‖1

=
∫ t

0

∣∣∣∣ 1
2πi

∫ ε+in

ε−in

eλ(t−s)

λ
dλ− 1

∣∣∣∣ ds+
∫ ∞

t

∣∣∣∣ 1
2πi

∫ ε+in

ε−in

eλ(t−s)

λ
dλ

∣∣∣∣ ds
=
∫ t

0

∣∣∣∣ 1
2πi

∫ ε+in

ε−in

euλ

λ
dλ− 1

∣∣∣∣ du+
∫ ∞

0

∣∣∣∣ 1
2πi

∫ ε+in

ε−in

e−uλ

λ
dλ

∣∣∣∣ du
:= J1(n, t) + J2(n).

In order to estimate J1(n, t), we observe that by the residue theorem

(5.21)
1

2πi

∫ ε+in

ε−in

euλ

λ
dλ− 1 = − 1

2πi

∫
γn

euλ

λ
dλ for n > ε

and γn : [π/2, 3π/2] → C, γn(r) := ε + neir. Using the estimate cos r ≥
1− 2r/π, valid for all r ∈ [0, π/2], we obtain

(5.22)

∣∣∣∣ 1
2πi

∫
γn

euλ

λ
dλ

∣∣∣∣ ≤ 1
2π

∫ 3π/2

π/2

n

n− ε
eu(ε+n cos r) dr

≤ 1
π

n

n− ε

∫ π/2

0

eu[ε−n(1− 2
π r)] dr

=
euε

2
n

n− ε

[
1− e−nu

nu

]
for n > ε and u > 0. Since

0 ≤ 1− e−x

x
≤ 1 for all x > 0 and lim

x→∞

1− e−x

x
= 0,

the dominated convergence theorem implies that

lim
n→∞

J1(n, t) = 0

uniformly for t in bounded intervals of R+.
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As our next step, we estimate J2(n). To this end, we first note that by
Cauchy’s integral theorem, we have∫ ε+in

ε−in

e−uλ

λ
dλ =

∫
τn

e−uλ

λ
dλ,

where τn : [−π/2, π/2] → C, τn(r) := ε + neir. Proceeding as above, we
obtain ∣∣∣∣ 1

2πi

∫
τn

e−uλ

λ
dλ

∣∣∣∣ ≤ 1
2π

∫ π/2

−π/2

e−u(ε+n cos r) dr

≤ 1
π

∫ π/2

0

e−u[ε+n(1− 2
π r)] dr

=
e−uε

2

[
1− e−nu

nu

]
=: gn(u).

Since the function x 7→ 1−e−x

x is positive and decreasing on (0,∞), we have

0 ≤ gn ≤ g1 ∈ L1(R+)

for all n ∈ N. Moreover, limn→∞ gn(u) = 0 for all u > 0; hence by the
dominated convergence theorem, we obtain

lim
n→∞

J2(n) = 0,

and the proof is complete. �

Putting together Proposition 5.12 and Lemma 5.13, we arrive at our first
inversion formula.

5.14 Theorem. (Complex Inversion Formula). Let
(
T (t)

)
t≥0 be a bounded

strongly continuous semigroup on a Banach space X. Then

(5.23)
∫ t

0

T (s)x ds = lim
n→∞

1
2πi

∫ ε+in

ε−in

eλt

λ
R(λ,A)x dλ

for every ε > 0 and all x ∈ X, the convergence being uniform for t in
bounded intervals.

Proof. If Reλ = ε > 0, then ε−λ ∈ L1(R+) and T ε−λ(·) = R(λ,A).
Hence, from Proposition 5.12 and Lemma 5.13, we obtain∫ t

0

T (s)x ds =
[
T 1 [0,t]

]
x =

[
T lim

n→∞
Hn,t(·)

]
x

= lim
n→∞

[T Hn,t(·)]x = lim
n→∞

1
2πi

∫ ε+in

ε−in

eλt

λ
[T ε−λ(·)]x dλ

= lim
n→∞

1
2πi

∫ ε+in

ε−in

eλt

λ
R(λ,A)x dλ

for all x ∈ X. �
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If we take x ∈ D(A), we can derive the following formula for T (t)x.
Observe that we no longer require the semigroup to be bounded.

5.15 Corollary. Let T =
(
T (t)

)
t≥0 be a strongly continuous semigroup on

a Banach space X. Then

T (t)x = lim
n→∞

1
2πi

∫ w+in

w−in

eλtR(λ,A)x dλ for all x ∈ D(A) and w > ω0(T)

with uniform convergence for t in compact intervals of (0,∞).

Proof. By rescaling, we may assume that
(
T (t)

)
t≥0 is bounded and that

w > 0. Then, by the previous result and Lemma II.1.3.(iv), we have

T (t)x− x =
∫ t

0

T (s)Axds

= lim
n→∞

1
2πi

∫ w+in

w−in

eλt

λ
R(λ,A)Axdλ

= lim
n→∞

1
2πi

∫ w+in

w−in

[
eλtR(λ,A)x− eλt

λ
x

]
dλ

for x ∈ D(A). However, from (5.21) and (5.22) and for u = t we obtain

lim
n→∞

1
2πi

∫ w+in

w−in

eλt

λ
dλ = 1

uniformly for t in compact subsets of (0,∞). This completes the proof. �

Since in the previous inversion formula the integral does not converge
absolutely, it will be difficult to derive from it estimates on the semigroup
operators T (t). The following representation of T (t)x will converge abso-
lutely. It requires, however, more regularity on the data x. It was already
used in Paragraph II.4.20, and another application will be made in Theo-
rem V.1.11.

5.16 Corollary. Let A generate a strongly continuous semigroup T =(
T (t)

)
t≥0 on X. Then

T (t)x =
(k − 1)!
tk−1

1
2πi

lim
n→∞

∫ w+in

w−in

eλtR(λ,A)kx dλ

for all w > ω0(T), k ∈ N, t > 0, and x ∈ D(A2). Moreover, if k ≥ 2, then
the integral converges absolutely and uniformly for t > 0.
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Proof. For k = 1 this is just Corollary 5.15. Note that for x ∈ D(A) we
have

R(λ,A)x =
1
λ

(
R(λ,A)Ax+ x

)
.

In particular lims→±∞R(w + is,A)x = 0. Using this and integration by
parts, the formula follows easily by induction. Moreover, for x ∈ D(A2) we
have

R(λ,A)2x =
1
λ2

(
R(λ,A)2A2x+ 2R(λ,A)Ax+ x

)
,

and hence the integral converges absolutely and uniformly for t > 0. �

From the proof of Theorem 5.14 it is clear that every approximation of
the characteristic function 1 [0,t] in terms of exponential functions ε−λ will
yield an inversion formula for the Laplace transform. The following is a
particularly nice example.

5.17 Lemma. The sequence

Bn,t(·) := 1 − exp
(
−entε−n(·)

)
converges in L1(R+) to the characteristic function 1 [0,t] as n→∞ uniformly
for t in bounded intervals of R+.

Proof. As in the proof of Theorem 5.14, we start by decomposing

‖Bn,t(·)− 1 [0,t]‖1 =
∫ t

0

|Bn,t(s)− 1| ds+
∫ ∞

t

|Bn,t(s)| ds

=
∫ t

0

exp
(
−enu

)
du+

∫ ∞

0

(
1− exp(−e−nu)

)
du

= I1(n, t) + I2(n).

Since the functions u 7→ exp
(
−enu

)
for u ∈ [0, t] are bounded by 1 and

converge to zero for all u ∈ (0, t], I1(n, t) converges to zero by the dominated
convergence theorem uniformly for t in bounded intervals of R+.

In order to estimate I2(n, t), we observe that by the mean value theorem
for each r > 0 there exists δ ∈ (0, 1) such that

e−r − 1
r

= −e−δr;

hence 1 − e−r = re−δr ≤ r for all r > 0. Putting r = e−nu, we therefore
obtain ∫ ∞

0

(
1− exp(−e−nu)

)
du ≤

∫ ∞

0

e−nu =
1
n
,

and the assertion follows. �
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5.18 Theorem. (Phragmén Inversion Formula). Let
(
T (t)

)
t≥0 be a strongly

continuous semigroup on a Banach space X. Then∫ t

0

T (s)x ds = lim
n→∞

∞∑
k=1

(−1)k+1

k!
etknR(kn,A)x for all x ∈ X,

where the convergence is uniform for t in bounded intervals of R+.

Proof. Note that the identity

Bn,t(·) =
∞∑

k=1

(−1)k+1

k!
etknε−kn(·)

holds. Hence, the assertion follows from the previous lemma as in the proof
of Theorem 5.14 by replacing Hn,t(·) by Bn,t(·). �

As a remarkable consequence of this formula we note that the values
of the resolvent in m0 + N, i.e., R(m,A) for m ≥ m0, already determine
uniquely the associated semigroup

(
T (t)

)
t≥0.

5.19 Exercise. (i) Show that the sequence (Gn,t)n∈N ⊂ L1(R+) defined by

Gn,t(s) :=
sn+1

n!

∫ ∞

n/t

e−srrn dr

converges in L1(R+) to the characteristic function 1 [0,1] as n →∞.

(ii) Show that the sequence (Sn,t)n∈N ⊂ L1(R+) defined by

Sn,t(s) := e
−sn/t

n∑
k=0

1

k!

(sn

t

)k

converges in L1(R+) to the characteristic function 1 [0,1] as n →∞.

(iii) Re-prove the Post–Widder inversion formula in (5.17) using either (i) or (ii)
and the ideas in the proof of Theorems 5.14 or 5.18.

Notes to Chapter III
Many of the results of this chapter are already contained in the two classic mono-
graphs by Hille–Phillips [HP57] and Kato [Kat80] as well as in the other books
on semigroups (e.g. [Dav80], [Gol85], [Paz83]).

Section 1. Corollary 1.5 is due to Desch–Schappacher [DS84], and we return in
Section 3.a to their main perturbation result. Phillips [Phi53] started the inves-
tigation of permanence properties of semigroups under bounded perturbations.
He proved most of Proposition 1.12, while Pazy [Paz68] continued this research.
More recent contributions to this subject are [Ren95], [DHW97], and [NP98].



Notes 237

Section 2. The theory of unbounded perturbations is quite old and started in
Hilbert spaces. We refer to Kato [Kat80] and Reed–Simon [RS75, Sec. X.2] for
this aspect. Our Theorem 2.7 is due to Gustafson [Gus66], Corollary 2.8 and
Corollary 2.9 are in [Che72], while Theorem 2.10 already appears in [Hil42].

Section 3. Our simultaneous treatment of Desch–Schappacher and Miyadera–
Voigt perturbations via an abstract Volterra operator is new.

Section 3.a. The perturbation results in this subsection are slight generalizations
of results due to Desch and Schappacher; cf. [DS89] and Section 3.d. Concrete
applications of these results, in particular of Corollary 3.6, are made, e.g., in
[NR95] and [Rha98].

Section 3.b. The comparison result Theorem 3.9 (see also Exercise 3.13.(1)) has
been studied by Robinson [Rob77] (see also Bratteli–Robinson [BR79, 3.1.5]),
Desch–Schappacher [DS87] and Diekmann–Gyllenberg–Heijmans [DGH89].

Section 3.c. Perturbations satisfying the estimate (3.26) where introduced by
Miyadera in [Miy66]. In particular, he proved the first part of Corollary 3.16. The
extension of this result treated in Exercises 2.18.(2) and 3.17.(2) is due to Voigt;
see [Voi77], who used it extensively in the study of Schrödinger and transport
operators (e.g., [Voi85], [Voi88]).

Section 3.d. The research on multiplicative perturbations started with the work
of Dorroh [Dor66] and Gustafson [Gus68] on perturbations of contraction semi-
groups. For further references and recent developments we refer to [CDG+87],
[DGT93], [DH93], [DLS85], [Gre87], [Lum89a], [Lum89b], and [PS95].

Based on Exercise 3.23.(2.i) and (2.ii) one can show that Proposition 3.18
prevails without the assumption ρ(A) 6= ∅. However, in this case the proof is
more involved, see [DS89, Thm. 1].

Section 4. The Trotter–Kato theorems got their name from the papers [Tro58]
and [Kat59], but the contraction case has also been proved independently by
Neveu [Nev58]. The monograph [BB67] is devoted to the approximation of semi-
groups. The idea of using a sequence space to convert the approximation to a
stationary problem is due to Kisyński [Kis67] and has been propagated by Gold-
stein (see [Gol85, Secs. I.6&8]). From there we also took some of our examples in
Section 4.c.

Section 5.a. The product formula

e(A+B) = lim
n→∞

(
e

A/ne
B/n
)

n

for matrices A and B goes back to Lie. It was extended to unbounded operators
by Trotter [Tro59], and Chernoff [Che68] deduced it from his product formula.
Goldstein [Gol70] and others used it to define a generalized sum of two generators.
Surprisingly, Kühnemund–Wacker [KW99] constructed an example showing that
the “sum” semigroup is not necessarily given by the Trotter product formula.

The discrete approximation in Corollary 5.4 is particularly useful for numerical
applications (see [Paz83, Sec. 3.6]), while the Bernstein approximation in Para-
graph 5.7 is in the spirit of Altomare–Campiti, who in their monograph [AC94]
treat much more general approximation schemes.

Finally, the application of product formulas to nonautonomous Cauchy prob-
lems as in Example 5.9 is due to Nickel [Nic99]. Further applications can be
made to the central limit theorem or the Feynman–Kac formula (see [Gol76],
[Gol85, Sec. I.8] or [Cas85, App.]).

Section 5.b. This approach to inversion formulas is taken from [HN93]. For more
information on the Laplace transform and its inversion we refer to the monograph
[ABHN99].



Chapter IV

Spectral Theory for
Semigroups and Generators

Up to now, our main concern was to show that strongly continuous semi-
groups have generators and, conversely, that certain operators generate
strongly continuous semigroups. In the perspective of Section II.6 this
means that certain evolution equations have unique solutions, hence are
well-posed.

Having established this kind of well-posedness, that is, the existence of a
strongly continuous semigroup, we now turn our attention to the qualitative
behavior of these solutions, i.e., of these semigroups. Our main tool for this
investigation is provided by spectral theory .

This is already evident from the Hille–Yosida theorem (and its variants),
where generators were characterized by the location of their spectrum and
by norm estimates of the resolvent. Moreover, in the Liapunov Stability
Theorem I.3.14 we could, at least in the uniformly continuous case, char-
acterize stability of the semigroup by a spectral property.

In order to continue in this direction, we now develop a spectral theory
for semigroups and their generators. The importance of these techniques
will become evident in Chapter V, where we will apply it to the study of
the asymptotic behavior of strongly continuous semigroups.

We start with an introductory section, in which we explain the basic
spectral-theoretic notions and results for general closed operators. Since
many of these notions have already been used in the preceding chapters,
the reader may skip (most of) this section.

238
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1. Spectral Theory for Closed Operators

In this section our object of interest is a closed, linear operator

A : D(A) ⊂ X → X

on some Banach space X. Note that we do not assume a dense domain,
while the closedness is necessary for a reasonable spectral theory.

1.1 Definition. We call

ρ(A) :=
{
λ ∈ C : λ−A : D(A) → X is bijective

}
the resolvent set and its complement σ(A) := C \ ρ(A) the spectrum of A.
For λ ∈ ρ(A), the inverse

R(λ,A) := (λ−A)−1

is, by the closed graph theorem, a bounded operator on X and will be
called the resolvent (of A at the point λ).

It follows immediately from the definition that the identity

(1.1) AR(λ,A) = λR(λ,A)− I

holds for every λ ∈ ρ(A). The next identity is the reason for many of the
nice properties of the resolvent set ρ(A) and the resolvent map

ρ(A) 3 λ 7→ R(λ,A) ∈ L(X).

1.2 Resolvent Equation. For λ, µ ∈ ρ(A), one has

(1.2) R(λ,A)−R(µ,A) = (µ− λ)R(λ,A)R(µ,A).

Proof. The definition of the resolvent implies

and
[λR(λ,A)−AR(λ,A)]R(µ,A) = R(µ,A)

R(λ,A)[µR(µ,A)−AR(µ,A)] = R(λ,A).

If we subtract these equations and use the fact that R(λ,A) and R(µ,A)
commute, we obtain (1.2). �

The basic properties of the resolvent set and the resolvent map are now
collected in the following proposition.
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1.3 Proposition. For a closed operator A : D(A) ⊂ X → X, the following
properties hold.

(i) The resolvent set ρ(A) is open in C, and for µ ∈ ρ(A) one has

(1.3) R(λ,A) =
∞∑

n=0

(µ− λ)nR(µ,A)n+1

for all λ ∈ C satisfying |µ− λ| < 1/‖R(µ,A)‖.

(ii) The resolvent map λ 7→ R(λ,A) is locally analytic with

(1.4) dn

dλnR(λ,A) = (−1)nn!R(λ,A)n+1 for all n ∈ N.

(iii) Let λn ∈ ρ(A) with lim
n→∞

λn = λ0. Then λ0 ∈ σ(A) if and only if

lim
n→∞

‖R(λn, A)‖ = ∞.

Proof. (i) For λ ∈ C write

λ−A = µ−A+ λ− µ = [I − (µ− λ)R(µ,A)](µ−A).

This operator is bijective if [I − (µ− λ)R(µ,A)] is invertible, which is the
case for |µ− λ| < 1/‖R(µ,A)‖. The inverse is then obtained as

R(λ,A) = R(µ,A)[I − (µ− λ)R(µ,A)]−1 =
∞∑

n=0

(µ− λ)nR(µ,A)n+1.

Assertion (ii) follows immediately from the series representation (1.3) for
the resolvent.

To show (iii) we use (i), which implies ‖R(µ,A)‖ ≥ 1
dist(µ,σ(A)) for all

µ ∈ ρ(A). This already proves one implication. For the converse, assume
that λ0 ∈ ρ(A). Then the continuous resolvent map remains bounded
on the compact set {λn : n ≥ 0}. This contradicts the assumption that
limn→∞ ‖R(λn, A)‖ = ∞; hence λ0 ∈ σ(A). �

As an immediate consequence, we have that the spectrum σ(A) is a closed
subset of C. Nothing more can be said in general (see the examples below).
However, if A is bounded, it follows that

σ(A) ⊂ {λ ∈ C : |λ| ≤ ‖A‖},

since

R(λ,A) =
1
λ

(
1− A

λ

)−1

=
∞∑

n=0

An

λn+1

exists for all |λ| > ‖A‖. In addition, an application of Liouville’s theorem
to the resolvent map implies σ(A) 6= ∅ (see [TL80, Chap. V, Thm. 3.2]).
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1.4 Corollary. For a bounded operator A on a Banach space X, the spec-
trum σ(A) is always compact and nonempty; hence its spectral radius

r(A) := sup
{
|λ| : λ ∈ σ(A)

}
is finite and satisfies r(A) ≤ ‖A‖.

Before proceeding with a more detailed analysis of σ(A), we show by
some simple examples that σ(A) can be any closed subset of C.

1.5 Examples. (i) On X := C[0, 1] take the differential operators

Aif := f ′ for i = 1, 2

with domain
D(A1) := C1[0, 1] and

D(A2) :=
{
f ∈ C1[0, 1] : f(1) = 0

}
.

Then
σ(A1) = C,

since for each λ ∈ C one has (λ − A1)ελ = 0 for ελ := eλs, 0 ≤ s ≤ 1. On
the other hand,

σ(A2) = ∅,
since

Rλf(s) :=
∫ 1

s

eλ(s−t)f(t) dt, 0 ≤ s ≤ 1, f ∈ X,

yields the inverse of (λ−A2) for every λ ∈ C.
(ii) Take any nonempty, closed subset Ω ⊂ C. On the space X := C0(Ω)
consider the multiplication operator

Mf(λ) := λ · f(λ)

for λ ∈ Ω, f ∈ X. From Proposition I.4.2 we obtain that

σ(M) = Ω.

As a next step, we look at the fine structure of the spectrum. We start
with a particularly important subset of σ(A).

1.6 Definition. For a closed operator A : D(A) ⊆ X → X, we call

Pσ(A) := {λ ∈ C : λ−A is not injective}

the point spectrum of A. Moreover, each λ ∈ Pσ(A) is called an eigenvalue,
and each 0 6= x ∈ D(A) satisfying (λ − A)x = 0 is an eigenvector of A
(corresponding to λ).

In most cases, the eigenvalues are simpler to determine than arbitrary
spectral values. However, they do not, in general, exhaust the entire spec-
trum.
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1.7 Examples. (i) For the operator A1 in Example 1.5.(i), one has

σ(A1) = Pσ(A1) = C.

(ii) In contrast, for the multiplication operator M in Example 1.5.(ii) one
has

σ(M) = Ω, but Pσ(M) = {λ ∈ C : λ is isolated in Ω}.

As a variant of the point spectrum, we introduce the following larger subset
of σ(A).

1.8 Definition. For a closed operator A : D(A) ⊆ X → X, we call

Aσ(A) :=
{
λ ∈ C :

λ−A is not injective or
rg(λ−A) is not closed in X

}

the approximate point spectrum of A.

The inclusion Pσ(A) ⊂ Aσ(A) is evident from the definition, but the
reason for calling it “approximate point spectrum” is not. This is explained
by the next lemma.

1.9 Lemma. For a closed operator A : D(A) ⊂ X → X and a number
λ ∈ C one has λ ∈ Aσ(A), i.e., λ is an approximate eigenvalue, if and
only if there exists a sequence (xn)n∈N ⊂ D(A), called an approximate
eigenvector , such that ‖xn‖ = 1 and limn→∞ ‖Axn − λxn‖ = 0.

Proof. We only have to consider the case in which λ− A is injective. As
usual, we denote by X1 :=

(
D(A), ‖ · ‖A) the first Sobolev space for A, cf.

Exercise II.5.9.(1). Then the inverse (λ − A)−1 : rg(λ − A) → X1 exists
and, by the closed graph theorem, is unbounded if and only if rg(λ−A) is
not closed. On the other hand, if (λ − A)−1 : rg(λ − A) → X is bounded,
the closedness of A implies the closedness of rg(λ−A). Hence (λ−A)−1 :
X → X1 is unbounded if and only if (λ − A)−1 : X → X is unbounded,
and this property can be expressed by the condition above. �

The approximate point spectrum generalizes the point spectrum. How-
ever, as we show in the following corollary, it has the advantage that it is
never empty unless σ(A) = ∅ or σ(A) = C.

1.10 Proposition. For a closed operator A : D(A) ⊂ X → X, the topolog-
ical boundary ∂σ(A) of the spectrum σ(A) is contained in the approximate
point spectrum Aσ(A).
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Proof. For each λ0 ∈ ∂σ(A) ⊆ σ(A) we can find a sequence (λn)n∈N ⊂
ρ(A) such that λn → λ0. By Proposition 1.3.(iii), using the uniform bound-
edness principle and passing to a subsequence, we find x ∈ X such that
limn→∞ ‖R(λn, A)x‖ = ∞. Define yn ∈ D(A) by

yn :=
R(λn, A)x
‖R(λn, A)x‖

.

The identity
(λ0 −A)yn = (λ0 − λn)yn + (λn −A)yn

shows that (yn) is an approximate eigenvector corresponding to λ0. �

The remaining part of the spectrum is now taken care of by the following
definition.

1.11 Definition. For a closed operator A : D(A) ⊆ X → X, we call

Rσ(A) := {λ ∈ C : rg(λ−A) is not dense inX}

the residual spectrum of A.

All possibilities for λ−A not being bijective are now covered by Defini-
tions 1.8 and 1.11, and hence

σ(A) = Aσ(A) ∪Rσ(A).

However, there is no reason for the union to be disjoint. It is easy to find
examples by applying the following very useful dual characterization of
Rσ(A). Note that we now need a dense domain in order to define the
adjoint operator (see Definition B.8).

1.12 Proposition. For a closed, densely defined operator A, the residual
spectrum Rσ(A) coincides with the point spectrum Pσ(A′) of A′.

Proof. The closure of rg(λ − A) is different from X if and only if there
exists a linear form 0 6= x′ ∈ X ′ vanishing on rg(λ− A). By the definition
of A′, this means x′ ∈ D(A′) and (λ−A′)x′ = 0. �

In the next theorem we show that for each λ0 ∈ ρ(A) there is a canonical
relation, called the spectral mapping theorem, between the spectrum of the
unbounded operator A and the spectrum of the bounded operator R(λ0, A).
This will allow us to transfer results from the spectral theory of bounded
operators to the unbounded case.

1.13 Spectral Mapping Theorem for the Resolvent. Let A : D(A) ⊆
X → X be a closed operator with nonempty resolvent set ρ(A).

(i) σ
(
R(λ0, A)

)
\ {0} =

(
λ0 − σ(A)

)−1 :=
{

1
λ0−µ : µ ∈ σ(A)

}
for each

λ0 ∈ ρ(A).
(ii) Analogous statements hold for the point, approximate point, and

residual spectra of A and R(λ0, A).
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Proof. For 0 6= µ ∈ C and λ0 ∈ ρ(A) we have(
µ−R(λ0, A)

)
x = µ

[
(λ0 − 1

µ )−A
]
R(λ0, A)x for x ∈ X,

= µR(λ0, A)
[
(λ0 − 1

µ )−A
]
x for x ∈ D(A).

This identity shows that

and
ker
(
µ−R(λ0, A)

)
= ker

[
(λ0 − 1

µ )−A
]

rg
(
µ−R(λ0, A)

)
= rg

[
(λ0 − 1

µ )−A
]
.

Recalling Definitions 1.6, 1.8, and 1.11 for the various parts of the spectrum,
we see that µ ∈ Pσ

(
R(λ0, A)

)
if and only if (λ0−1/µ) ∈ Pσ(A) and similarly

for the approximate point spectrum and the residual spectrum. This proves
assertion (ii), and hence (i). �

This relation between σ(A) and σ
(
R(λ0, A)

)
determines the spectral

radius of R(λ0, A).

1.14 Corollary. For each λ0 ∈ ρ(A) one has

(1.5) dist(λ0, σ(A)) =
1

r
(
R(λ0, A)

) ≥ 1
‖R(λ0, A)‖

.

We now study so-called spectral decompositions, which are one of the
most important features of spectral theory. First, we recall briefly their con-
struction in the bounded case (see, e.g., [DS58, Sec. VII.3], [GGK90, I.2],
or [TL80, Sec. V.9]).

Let T ∈ L(X) be a bounded operator and assume that the spectrum
σ(T ) can be decomposed as

(1.6) σ(T ) = σc ∪ σu,

where σc, σu are closed and disjoint sets. From the functional calculus
(already used in Section I.3) one obtains the associated spectral projection

(1.7) P := Pc :=
1

2πi

∫
γ

R(λ, T ) dλ,

where γ is a Jordan path in the complement of σu and enclosing σc. This
projection commutes with T and yields the spectral decomposition

X = Xc ⊕Xu

with the T -invariant spaces Xc := rgP , Xu := kerP . The restrictions
Tc ∈ L(Xc) and Tu ∈ L(Xu) of T satisfy

(1.8) σ(Tc) = σc and σ(Tu) = σu,

a property that characterizes the above decomposition of X and T in a
unique way.
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For unbounded operators A and an arbitrary decomposition of the spec-
trum σ(A) into closed sets it is not always possible to find an associated
spectral decomposition (for counterexamples see Exercise 2.30 or [Nag86, A-III, Expl. 3.2]).
However, if one of these sets is compact, the spectral mapping theorem for
the resolvent allows us to deduce the result from the bounded case. To
prove this, we first need the following lemma. For later use in Section 2.b
it is stated more generally than is needed here.

1.15 Lemma. Let Y be a Banach space continuously embedded in X. If
λ ∈ ρ(A) such that R(λ,A)Y ⊂ Y , then λ ∈ ρ(A|) and R(λ,A|) = R(λ,A)|.

Proof. By the definition of D(A|) and since R(λ,A)Y ⊆ Y , we already
know that R(λ,A)| maps Y onto D(A|) and therefore is the algebraic in-
verse of λ−A|. To show that it is bounded in Y , it suffices to observe that
it is a closed, everywhere defined operator. �

1.16 Proposition. Let A : D(A) ⊂ X → X be a closed operator such
that its spectrum σ(A) can be decomposed into the disjoint union of two
closed subsets σc and σu, i.e.,

σ(A) = σc ∪ σu.

If σc is compact, then there exists a spectral decomposition X = Xc ⊕Xu

for A in the following sense.

(i) The restriction Ac := A|Xc
is bounded on the Banach space Xc.

(ii) XA
1 = Xc ⊕ (Xu)Au

1 , where Au := A|Xu
(and XA

1 denotes the first
Sobolev space with respect to A as introduced in Exercise II.5.9.(1)).

(iii) A = Ac ⊕Au.
(iv) σ(Ac) = σc and σ(Au) = σu.

Proof. When A is bounded, we have already indicated a proof based on
formula (1.7). Therefore, we may assume A to be unbounded and fix some
λ ∈ ρ(A). Then 0 ∈ σ(R(λ,A)). Hence, by Theorem 1.13, we obtain

(1.9)
σ
(
R(λ,A)

)
= (λ− σc)−1

⋃ (
(λ− σu)−1 ∪ {0}

)
=: τc ∪ τu,

where τc, τu are compact and disjoint subsets of C. Now let P be the
spectral projection for R(λ,A) associated to the decomposition (1.9) and
put Xc := rgP , Xu := kerP . Since R(λ,A) and P commute, we have
R(λ,A)Xc ⊆ Xc, and Lemma 1.15 implies

(1.10) λ ∈ ρ(Ac) and R(λ,Ac) = R(λ,A)|Xc
.

Moreover, we know that σ
(
R(λ,Ac)

)
= τc 63 0. Therefore, the operator

Ac = λ−R(λ,Ac)−1 is bounded on Xc, and we obtain (i).
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To verify (ii), observe that by similar arguments as above we obtain

(1.11) λ ∈ ρ(Au) and R(λ,Au) = R(λ,A)|Xu
.

Combining this with (1.10) yields

Xc +D(Au) = R(λ,Ac)Xc +R(λ,Au)Xu

⊆ D(A) = R(λ,A)(Xc +Xu)
⊆ R(λ,Ac)Xc +R(λ,Au)Xu

= Xc +D(Au),

i.e., XA
1 = Xc +D(Au). Since P ∈ L(X), the restriction P|XA

1
: XA

1 → XA
1

is closed and therefore bounded by the closed graph theorem. This proves
(ii), while assertion (iii) then follows from (i) and (ii).

Finally, (iv) is a consequence of the Spectral Mapping Theorem 1.13 and
(1.9), (1.10), (1.11). �

1.17 Isolated Singularities. We now sketch a particularly important case of the
above decomposition that occurs when σc = {µ} consists of a single point only.
This means that µ is isolated in σ(A) and therefore the holomorphic function
λ 7→ R(λ, A) can be expanded as a Laurent series

R(λ, A) =

∞∑
n=−∞

(λ− µ)nUn

for 0 < |λ− µ| < δ and some sufficiently small δ > 0. The coefficients Un of this
series are bounded operators given by the formulas

(1.12) Un =
1

2πi

∫
γ

R(λ, A)

(λ− µ)n+1
dλ, n ∈ Z,

where γ is, for example, the positively oriented boundary of the disc with radius
δ/2 centered at µ. The coefficient U−1 is exactly the spectral projection P cor-
responding to the decomposition σ(A) = {µ} ∪ (σ(A) \ {µ}) of the spectrum of
A (cf. (1.7)). It is called the residue of R(·, A) at µ. From (1.12) (or using the
multiplicativity of the functional calculus in [TL80, Thm. V.8.1]), one deduces
the identities

(1.13)
U−(n+1) = (A− µ)nP and

U−(n+1) · U−(m+1) = U−(n+m+1)

for n, m ≥ 0. If there exists k > 0 such that U−k 6= 0 while U−n = 0 for all n > k,
then the spectral value µ is called a pole of R(·, A) of order k. In view of (1.13),
this is true if and only if U−k 6= 0 and U−(k+1) = 0. Moreover, we can obtain
U−k as

U−k = lim
λ→µ

(λ− µ)kR(λ, A).

The dimension of the spectral subspace rg P is called the algebraic multiplicity
ma of µ, while mg := dimker(µ − A) is the geometric multiplicity . In the case
ma = 1, we call µ an algebraically simple (or first-order) pole.
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If k is the order of the pole, where we set k = ∞ if R(·, A) has an essential
singularity at µ, one can show the inequalities

(1.14) mg + k − 1 ≤ ma ≤ mg · k

if we put ∞ · 0 := ∞. This implies that

(i) ma < ∞ if and only if µ is a pole with mg < ∞, and

(ii) if µ is a pole of order k, then µ ∈ Pσ(A) and rg P = ker(µ−A)k.

For proofs of these facts we refer to [GGK90, Chap. II], [Kat80, III.5], [TL80, V.10],
or [Yos65, VIII.8].

We now prove the following relationship between isolated spectral values of A
and those of its resolvent.

1.18 Proposition. Let A be a closed linear operator having nonempty resolvent
set ρ(A) and take some λ0 ∈ ρ(A). Then µ ∈ C is an isolated point of σ(A) if and
only if (λ0 − µ)−1 is isolated in σ(R(λ0, A)). In this case, the residues and the
orders of the poles of R(·, A) at µ and of R(·, R(λ0, A)) at (λ0 − µ)−1 coincide.

Proof. The first claim follows easily from the Spectral Mapping Theorem 1.13
and the fact that the map z 7→ (λ0 − z)−1 is homeomorphic between C \ {λ0}
and C \ {0}.

In order to prove the assertion concerning the residues, we choose a positively
oriented circle γ ⊂ ρ(A) with center µ such that λ0 lies in the exterior of γ. Then
the residue P of R(·, A) at µ is given by

P =
1

2πi

∫
γ

R(λ, A) dλ

=
1

2πi

∫
γ

R((λ0 − λ)−1, R(λ0, A))

(λ0 − λ)2
dλ− 1

2πi

∫
γ

dλ

(λ0 − λ)

=
1

2πi

∫
γ

R((λ0 − λ)−1, R(λ0, A))

(λ0 − λ)2
dλ.

Here we used the identities

R(λ, A) =
R((λ0 − λ)−1, R(λ0, A))

(λ0 − λ)2
− 1

(λ0 − λ)
,

which follow from the resolvent equation (1.2) and Cauchy’s integral theorem.
The substitution z := (λ0 − λ)−1 then yields a path γ̃ around (λ0 − µ)−1, and
we obtain

P =
1

2πi

∫
γ̃

R
(
z, R(λ0, A)

)
dz,

which is the residue of R(·, R(λ0, A)) at (λ0 − µ)−1.
The final assertion concerning the orders of the poles follows from the identity

V−n =
(
(λ0 − µ)−1R(λ0, A)

)
n−1U−n, n = 1, 2, 3, . . . ,

where U−n and V−n stand for the −nth coefficients in the Laurent expansions of
R(·, A) at µ and R(·, R(λ0, A)) at (λ0 − µ)−1, respectively. This has been shown
above for n = 1 and follows for n > 1 by induction using the relations

U−(n+1) = (A− µ)U−n and V−(n+1) =
(
R(λ0, A)− (λ0 − µ)−1

)
V−n;

cf. formulas (1.13). �



248 Chapter IV. Spectral Theory for Semigroups and Generators

If A has compact resolvent, the above facts in combination with the Riesz–
Schauder theory for compact operators, cf. [Yos65, X.5], [TL80, Sec. V.7], or
[Lan93, Chap. XVII], yield the following result.

1.19 Corollary. If the operator A has compact resolvent, then every spectral
value in σ(A) is a pole of finite algebraic multiplicity. In particular, we have

σ(A) = Pσ(A).

1.20 The Essential Spectrum. As we already mentioned above, spectral de-
composition is a powerful method to split an operator on a Banach space into
two, hopefully simpler, parts acting on invariant subspaces. In this paragraph
we present the tools for a decomposition in which one of these subspaces will
be finite-dimensional. The results will be used frequently in the sequel, e.g., in
Proposition 2.10, Theorem V.3.1, Theorem VI.8.24, and Theorem VI.2.6. We
start with the following notion.

An operator S ∈ L(X) on a Banach space X is called a Fredholm operator if

dimker S < ∞ and dim X/rg S < ∞.

For T ∈ L(X), we then define its Fredholm domain ρF(T ) by

ρF(T ) :=
{
λ ∈ C : λ− T is a Fredholm operator

}
,

and call its complement

σess(T ) := C \ ρF(T )

the essential spectrum of the operator T . One can show, see for instance [GGK90, Chap. XI, Thm. 5.1],
that

(1.15) S is a Fredholm operator ⇐⇒
{

there exists T ∈ L(X) such that

I − TS and I − ST are compact.

Using this fact, an equivalent characterization of σess(T ) is obtained through the
Calkin algebra C(X) := L(X)/K(X), where K(X) stands for the two-sided closed
ideal in L(X) of all compact operators. In fact, C(X) equipped with the quotient
norm ∥∥T̂∥∥ := dist

(
T, K(X)

)
= inf

{
‖T −K‖ : K ∈ K(X)

}
for T̂ := T+K(X) ∈ C(X) is a Banach algebra with unit. Then, by the equivalence
in (1.15), we have

and
ρF(T ) = ρ(T̂ )

σess(T ) = σ(T̂ )

for all T ∈ L(X), where the spectrum of T̂ is defined in the Banach algebra C(X)
(see [CPY74, Chap. 1]). In particular, this implies that σess(T ) is closed and, if
X is infinite-dimensional, nonempty.
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In the sequel, we will also use the notation

and
‖T‖ess : = ‖T̂‖

ress(T ) : = r(T̂ ) = sup
{
|λ| : λ ∈ σess(T )

}
for the essential norm and the essential spectral radius, respectively, of the op-
erator T . Since ‖T‖ess = ‖T + K‖ess for every compact operator K on X, we
have

ress(T + K) = ress(T )

for all K ∈ K(X). Moreover, using the Hadamard formula for the spectral radius

of T̂ , cf. [TL80, Chap. V, Thm. 3.5] or [Yos65, XIII.2, Thm. 3], we obtain the
equality

ress(T ) = lim
n→∞

‖T n‖
1/n
ess .

For a detailed analysis of the essential spectrum of an operator, we refer to
[Kat80, Sec. IV.5.6], [GGK90, Chap. XVII], or [Gol66, Sec. IV.2]. Here, we only
recall that the poles of R(·, T ) with finite algebraic multiplicity belong to ρF(T ).
Conversely, an element of the unbounded connected component of ρF(T ) either
belongs to ρ(T ) or is a pole of finite algebraic multiplicity. Thus ress(T ) can be
characterized by

(1.16) ress(T ) = inf

{
r > 0 :

λ ∈ σ(T ), |λ| > r is a pole of

finite algebraic multiplicity

}
.

1.21 Exercises. (1) Let A be a complex n×n matrix. Show that for λ ∈ σ(A)

(i) the geometric multiplicity Mg is the number of Jordan blocks corresponding
to λ,

(ii) the algebraic multiplicity ma is the sum of the sizes of all Jordan blocks
corresponding to λ,

(iii) the pole order k of R(·, A) in λ is the size of the largest Jordan block
corresponding to λ.

(2) Verify the inequalities in (1.14). (Hint: Assume first k < ∞. Then use the

identity R(λ, A)x =
∑k−1

j=0

(A−µ0)jx

(λ−µ0)j+1 valid for all x ∈ ker(µ0 − A)k in order to

show that ker(µ0 −A)k−1 $ ker(µ0 −A)k = rg P .)

(3) Compute the spectrum σ(A) for the following operators on the Banach space
X := C[0, 1].

(i) Af := 1
s(1−s)

· f(s), D(A) := {f ∈ X : Af ∈ X}.

(ii) Bf(s) := is2 · f(s), D(B) := X.

(iii) Cf(s) := f ′(s), D(C) := {C1[0, 1] : f(0) = 0}.
(iv) Df(s) := f ′(s), D(D) := {f ∈ C1[0, 1] : f ′(1) = 0}.
(v) Ef(s) := f ′(s), D(E) := {f ∈ C1[0, 1] : f(0) = f(1)}.
(vi) Ff(s) := f ′(s), D(F ) := {f ∈ C1[0, 1] : f ′(0) = f ′(1)}.
(vii) Gf(s) := f ′′(s), D(G) := C2[0, 1].

(viii) Hf(s) := f ′′(s), D(H) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}.
(ix) If(s) := f ′′(s), D(I) := {f ∈ C2[0, 1] : f ′(0) = f ′′(1) = 0}.
(x) Jf(s) := f ′′(s), D(J) := {f ∈ C2[0, 1] : f ′′(0) = 0}.

Which of these operators are generators on X? (Hint: For (vi) and (ix) see
Section VI.4.b.)
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(4) Consider X := C0(R, C2) and

Af(s) := f ′(s) + Mf(s), s ∈ R,

where M :=
(

0 1

1 0

)
and D(A) := C1

0(R, C2). Show that σ(A) decomposes into

−1+ iR and 1+ iR and that there exists a corresponding spectral decomposition.
(Hint: Transform M into a diagonal matrix.)

(5) Let A be an operator on a Banach space X and let B be a restriction of A.
If B is surjective and A is injective, then A = B. This is the case if B ⊂ A and
ρ(A) ∩ ρ(B) 6= ∅.

2. Spectrum of Semigroups and Generators

The Hille–Yosida theorem already ensures that the spectrum of the genera-
tor of a strongly continuous semigroup always lies in a proper left half-plane
and thus satisfies a property not shared by arbitrary closed operators. In
this section we are going to study the spectrum of generators and its rela-
tion to the spectrum of the semigroup operators more closely. In addition,
we introduce some basic techniques used in the spectral theory of semi-
groups. In Section 2.c these techniques lead to a detailed description of
periodic groups.

a. Basic Theory

For (unbounded) semigroup generators, the role played by the spectral
radius in the case of bounded operators is taken over by the following
quantity.

2.1 Definition. Let A : D(A) ⊂ X → X be a closed operator. Then

s(A) := sup
{
Reλ : λ ∈ σ(A)

}
is called the spectral bound of A.

Note that s(A) can be any real number including −∞ (if σ(A) = ∅) and
+∞. For the generator A of a strongly continuous semigroup T =

(
T (t)

)
t≥0,

however, the spectral bound s(A) is always dominated by the growth bound

ω0 := ω0(T) := inf
{
w ∈ R :

there exists Mw ≥ 1 such that
‖T (t)‖ ≤Mwewt for all t ≥ 0

}
of the semigroup1 (see Definition I.5.6 and Corollary II.1.13).

1 Occasionally, we will write “ω0(A)” instead of “ω0(T),” since by Theorem II.1.4 the
semigroup T is uniquely determined by its generator A.
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2.2 Proposition. For the spectral bound s(A) of a generator A and for
the growth bound ω0 of the generated semigroup

(
T (t)

)
t≥0, one has

(2.1)
−∞ ≤ s(A) ≤ ω0 = inf

t>0

1
t

log ‖T (t)‖ = lim
t→∞

1
t

log ‖T (t)‖

=
1
t0

log r
(
T (t0)

)
<∞

for each t0 > 0. In particular, the spectral radius of the semigroup operator
T (t) is given by

(2.2) r
(
T (t)

)
= eω0 t for all t ≥ 0.

For the proof we need the following elementary fact.

2.3 Lemma. Let ξ : R+ → R be bounded on compact intervals and
subadditive, i.e., ξ(s+ t) ≤ ξ(s) + ξ(t) for all s, t ≥ 0. Then

inf
t>0

ξ(t)
t

= lim
t→∞

ξ(t)
t

exists.

Proof. Fix t0 > 0 and write t = kt0 + s with k ∈ N, s ∈ [0, t0). The
subadditivity implies

ξ(t)
t

≤ 1
kt0

(
ξ(kt0) + ξ(s)

)
≤ ξ(t0)

t0
+
ξ(s)
kt0

.

Since k →∞ if t→∞, we obtain

lim
t→∞

ξ(t)
t

≤ ξ(t0)
t0

for each t0 > 0 and therefore

lim
t→∞

ξ(t)
t

≤ inf
t>0

ξ(t)
t

≤ lim
t→∞

ξ(t)
t
,

which proves the assertion. �

Proof of Proposition 2.2. Since the function

t 7→ ξ(t) := log ‖T (t)‖

satisfies the assumptions of Lemma 2.3, we can define

v := inf
t>0

1
t

log ‖T (t)‖ = lim
t→∞

1
t

log ‖T (t)‖.
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From this identity, it follows that

evt ≤ ‖T (t)‖

for all t ≥ 0; hence v ≤ ω0 by the definition of ω0. Now choose w > v. Then
there exists t0 > 0 such that

1
t

log ‖T (t)‖ ≤ w

for all t ≥ t0; hence ‖T (t)‖ ≤ ewt for t ≥ t0. On [0, t0], the norm of T (t)
remains bounded, so we find M ≥ 1 such that

‖T (t)‖ ≤Mewt

for all t ≥ 0, i.e., ω0 ≤ w. Since we have already proved that v ≤ ω0, this
implies ω0 = v.

To prove the identity ω0 = 1/t0 log r
(
T (t0)

)
, we use the Hadamard for-

mula for the spectral radius, i.e.,

r
(
T (t)

)
= lim

n→∞
‖T (nt)‖1/n = lim

n→∞
et·1/nt log ‖T (nt)‖

= e
t· lim

n→∞
(1/nt log ‖T (nt)‖)

= et ω0 .

The remaining inequalities have already been proved in Corollary II.1.13.
�

We now state two simple consequences of this proposition.

2.4 Corollary. For a uniformly continuous semigroup
(
T (t)

)
t≥0 and its

(bounded) generator A one has

(2.3) s(A) = ω0 .

Proof. From the spectral mapping theorem for uniformly continuous semi-
groups (see Lemma I.3.13), it follows that

r
(
T (t)

)
= es(A)·t;

hence s(A) = ω0 by Proposition 2.2. �

2.5 Corollary. For the generator A of a strongly continuous semigroup(
T (t)

)
t≥0 with growth bound ω0 = −∞ (e.g., for a nilpotent semigroup)

one has

r
(
T (t)

)
= 0 for all t > 0 and σ(A) = ∅.
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The inequalities in (2.1) establish an interesting relation between spec-
tral properties of the generator A, expressed by the spectral bound s(A),
and the qualitative behavior of the semigroup

(
T (t)

)
t≥0, expressed by the

growth bound ω0. In particular, if spectral and growth bound coincide, we
obtain Liapunov stability theorems like Theorem I.2.10 and Theorem I.3.14.
For general strongly continuous semigroups, however, the situation is more
complex, as will be shown by the following examples and counterexamples.

2.6 Examples. We first discuss (left) translation semigroups on various
function spaces (see Section I.4.c and Paragraph II.2.10) and show that the
spectra heavily depend on the choice of the Banach space. Before starting
the discussion, it is useful to observe that the exponential functions

ελ(s) := eλs, s ∈ R,

satisfy
d
dsελ = λελ for each λ ∈ C.

Since the generator A of a translation semigroup is the first derivative
with appropriate domain (see Paragraph II.2.10), it follows that λ is an
eigenvalue of A if and only if ελ belongs to the domain D(A).
(i) Consider the (left) translation semigroup

(
T (t)

)
t≥0 on the space X :=

C0(R+). Its generator is

with domain
Af = f ′

D(A) =
{
f ∈ C0(R+) ∩ C1(R+) : f ′ ∈ C0(R+)

}
.

Therefore, we have ελ ∈ D(A) if and only if λ ∈ C satisfies Reλ < 0. This
shows that

Pσ(A) = {λ ∈ C : Reλ < 0}.

We have that s(A) ≤ ω0 ≤ 0, since
(
T (t)

)
t≥0 is a contraction semigroup.

This implies, since the spectrum is closed, that

σ(A) = {λ ∈ C : Reλ ≤ 0}.

The same eigenfunctions ελ yield eigenvalues eλt for the operators T (t),
and we obtain that

and
Pσ
(
T (t)

)
= {z ∈ C : |z| < 1}

σ
(
T (t)

)
= {z ∈ C : |z| ≤ 1} for t > 0.

(ii) Next, we consider the (left) translation group
(
T (t)

)
t∈R on X :=

C0(R). Then Pσ(A) = ∅, since no ελ belongs to D(A). However, for each
α ∈ R, the functions

fn(s) := eiαs · e−s2/n, n ∈ N,
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form an approximate eigenvector of A for the approximate eigenvalue iα.
This shows that

Aσ(A) = σ(A) = iR,

and analogously
σ
(
T (t)

)
= {z ∈ C : |z| = 1}.

(iii) Since ω0 = −∞ for the nilpotent right translation semigroup
(
T (t)

)
t≥0

on X := C0(0, 1], see Example II.3.19, it follows from Corollary 2.5 that

σ
(
T (t)

)
= {0} and σ(A) = ∅.

In addition, for each λ ∈ C, the resolvent is given by

(2.4)
(
R(λ,A)f

)
(s) =

∫ s

0

e−λ(s−τ)f(τ) dτ, s ∈ (0, 1], f ∈ X.

(iv) For the periodic translation group on, e.g., X = C2π(R) (see Para-
graph I.4.15), the functions ελ belong to D(A) if and only if λ ∈ iZ. Since A
has compact resolvent (use Example II.4.26), we obtain from Corollary 1.19

σ(A) = Pσ(A) = iZ.

The spectra of the operators T (t) are always contained in Γ := {z ∈ C :
|z| = 1} and contain the eigenvalues eikt for k ∈ Z. Since σ

(
T (t)

)
is closed,

it follows from Theorem 3.16 below, that

σ
(
T (t)

)
=
{

Γ if t/2π /∈ Q,
Γq if t/2π = p/q ∈ Q with p and q coprime,

where Γq := {z ∈ C : zq = 1}.

In each of these examples there is a close relationship between the spec-
trum σ(A) and the spectra σ

(
T (t)

)
. As we show next this is not always the

case.

2.7 Counterexample. Consider the Banach space

X := C0(R+) ∩ L1(R+, esds)

of all continuous functions on R+ that vanish at infinity and are integrable
for es ds endowed with the norm

‖f‖ := ‖f‖∞ + ‖f‖1 = sup
s≥0

|f(s)|+
∫ ∞

0

|f(s)|es ds.
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The (left) translations define a strongly continuous semigroup
(
T (t)

)
t≥0 on

X whose generator is

Af = f ′,

D(A) =
{
f ∈ X : f ∈ C1(R+), f ′ ∈ X

}
(use Proposition II.2.3). As a first observation, we note that ‖T (t)‖ = 1 for
all t ≥ 0. Thus, we have ω0 = 0, and hence s(A) ≤ 0. On the other hand,
ελ ∈ D(A) only if Reλ < −1. Hence, we obtain for the point spectrum

Pσ(A) = {λ ∈ C : Reλ < −1}

and for the spectral bound s(A) ≥ −1.
We now show that λ ∈ ρ(A) if Reλ > −1. In fact, for every f ∈ X we

have that

‖·‖1 - lim
t→∞

∫ t

0

e−λsT (s)f ds

exists, since ‖T (s)f‖1 ≤ e−s ‖f‖1 for all s ≥ 0. Moreover, the limit

‖·‖∞ - lim
t→∞

∫ t

0

e−λsT (s)f ds

exists, since
∫∞
0

es|f(s)| ds <∞. Consequently, the improper integral

(2.5)
∫ ∞

0

e−λsT (s)f ds

exists in X for every f ∈ X and yields the inverse of λ − A (see Theo-
rem II.1.10.(i)). We conclude that

σ(A) = {λ ∈ C : Reλ ≤ −1}, whence s(A) = −1,

while ω0 = 0 and r
(
T (t)

)
= 1 by (2.2). In particular, for t > 0, T (t) has

spectral values that are not the exponential of a spectral value of A.

The above phenomenon makes the spectral theory of semigroups interest-
ing and nontrivial. Before analyzing carefully what we will call the “spectral
mapping theorem” for semigroups in Section 3, we first discuss another in-
formative example.

2.8 Delay Differential Operators. We return to the delay differential
operator from Paragraph II.3.29 defined as

Af := f ′ on D(A) :=
{
f ∈ C1[−1, 0] : f ′(0) = Lf

}
on the Banach space X := C[−1, 0] for some linear form L ∈ X ′ and
try to compute its point spectrum Pσ(A). As for the above translation
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semigroups, we see that a function f ∈ C[−1, 0] is an eigenfunction of A
only if it is (up to a scalar factor) of the form f = ελ, where

ελ(s) := eλs, s ∈ [−1, 0],

for some λ ∈ C. However, such a function ελ belongs to D(A) if and only
if it satisfies the boundary condition

which becomes
ε′λ(0) = Lελ,

λ = Lελ.

Therefore, if we define ξ(λ) := λ − Lελ, we obtain the point spectrum
Pσ(A) as

Pσ(A) =
{
λ ∈ C : ξ(λ) = 0

}
.

Since ξ(·) is an analytic function on C, its zeros are isolated, and therefore
Pσ(A) is a discrete subset of C.

In order to identify the entire spectrum σ(A), we observe that X1 :=(
D(A), ‖·‖A

)
is a closed subspace of C1[−1, 0] and that the canonical in-

jection
i : C1[−1, 0] → C[−1, 0]

is compact by the Arzelà–Ascoli theorem. Therefore, it follows from Propo-
sition II.4.25 that R(λ,A) is a compact operator, and by Corollary 1.19 we
obtain

σ(A) = Pσ(A).

Proposition. The spectrum of the above delay differential operator con-
sists of isolated eigenvalues only. More precisely, we call

λ 7→ ξ(λ) := λ− Lελ

the corresponding characteristic function and obtain

σ(A) =
{
λ ∈ C : ξ(λ) = 0

}
.

In other words, the spectrum of A consists of the zeros of the character-
istic equation

ξ(λ) = 0.

For concrete L ∈ C[−1, 0]′, it is still difficult to determine all complex
zeros of the analytic function ξ(·). However, for applications to stability
theory as in Section V.1, it suffices to know the spectral bound s(A). To
determine it, we now assume that the linear form L is decomposed as

L = L0 + aδ0,

where L0 is a positive linear form on C[−1, 0] having no atomic part in
0. This means that limn→∞ L0(fn) = 0 whenever (fn)n∈N is a bounded
sequence in X satisfying limn→∞ fn(s) = 0 for all −1 ≤ s < 0. As usual, δ0
denotes the point evaluation at 0, and we take a ∈ R. In this case, we can
determine s(A) by discussing the characteristic equation as an equation on
R only.
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Corollary. Consider the above delay differential operator
(
A,D(A)

)
on

X := C[−1, 0] and assume that the linear form L ∈ X ′ is of the form

L = L0 + aδ0

for positive L0 ∈ X ′ having no atomic part in 0 and some a ∈ R. Then the
spectral bound s(A) is given by

s(A) = sup{λ ∈ R : λ = L0ελ + a},

and one has the equivalence

s(A) < 0 ⇐⇒ ‖L0‖+ a < 0.

Proof. The characteristic function λ 7→ ξ(λ) := λ− L0ελ − a, considered
as a function on R, is continuous and strictly increasing from −∞ to +∞.
This holds, since we assumed L0 to be positive having no atomic part in 0,
hence satisfying

L0ελ ↓ 0 as λ→∞.

Therefore, ξ has a unique real zero λ0 satisfying

λ0 < 0 ⇐⇒ 0 < ξ(0).

To show that λ0 = s(A), we take λ = µ + iν ∈ σ(A). Using the above
characteristic equation, this can be restated as

µ+ iν = L0(εµεiν) + a.

By taking the real parts in this identity and using the positivity of L0, we
obtain

µ = Re(L0(εµεiν) + a) ≤ |L0(εµεiν)|+ a ≤ L0(εµ) + a,

which, by the above properties of ξ on R, implies µ ≤ λ0. Therefore, we
conclude that

µ = Reλ ≤ λ0 = s(A)

for all λ ∈ σ(A). �

It is recommended that the reader restate the above results for

or

L1f := af(0) + bf(−1)

L2f := af(0) +
∫ 0

−1

k(s)f(s) ds

with a ∈ R, 0 ≤ b, and 0 ≤ k ∈ L∞[−1, 0].

After these examples, we return to the general theory and study the essential
spectrum from Paragraph 1.20 for a strongly continuous semigroup (T (t))t≥0. In
particular, we apply Lemma 2.3 to the function

t 7→ ξ(t) := log ‖T (t)‖ess = log ‖T̂ (t)‖C(X)

to justify the following definition and the subsequent proposition.
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2.9 Definition. The essential growth bound of the semigroup T = (T (t))t≥0 with
generator A is given by

ωess := ωess(T) := ωess(A) := inf
t>0

1

t
log ‖T (t)‖ess .

The analogue of Proposition 2.2 then reads as follows.

2.10 Proposition. With the above notions, one has

−∞ ≤ ωess = lim
t→∞

1

t
log ‖T (t)‖ess =

1

t0
log ress

(
T (t0)

)
≤ ω0 < ∞

for each t0 > 0.

As stated above, one always has ωess ≤ ω0, and equality holds if and only if
ress(T (t)) = r(T (t)) for some/all t > 0. In the case that ωess < ω0, it follows from
(1.16) and (ii) in Paragraph 1.17 that there is an eigenvalue λ of T (t) satisfying

|λ| = r(T (t)) = et ω0 , and hence by Theorem 3.7 below there exists λ̃ ∈ Pσ(A)

such that Re λ̃ = ω0. Thus ωess < ω0 implies s(A) = ω0, i.e., we have proved the
first part of the following result.

2.11 Corollary. Let (T (t))t≥0 be a strongly continuous semigroup on the Banach
space X with generator A. Then

(2.6) ω0 = max{ωess, s(A)}.

Moreover, for every w > ωess the set σc := σ(A) ∩ {λ ∈ C : Re λ ≥ w} is finite
and the corresponding spectral projection has finite rank.

Proof. Assume that σc is infinite. Then, by the Spectral Inclusion Theorem 3.6
below, there exists t > 0 such that the set etσc ⊆ etσ(A) ⊆ σ(T (t)) has an accu-
mulation point s0. Since |s0| ≥ etw > et ωess = ress(T (t)), this contradicts (1.16),
and therefore σc is finite. The fact that the corresponding spectral projection is
of finite rank follows from the second part of Theorem 3.6 below. �

Finally, we consider compact perturbations of generators and show that they
do not change the essential growth bound.

2.12 Proposition. Let (T (t))t≥0 be a strongly continuous semigroup on a Ba-
nach space X and take a compact operator K ∈ K(X). If (S(t))t≥0 denotes the
semigroup generated by A + K, then T (t) − S(t) is compact for all t ≥ 0. In
particular,

ωess(A) = ωess(A + K).

Proof. By Corollary III.1.7, the semigroups (T (t))t≥0 and (S(t))t≥0 are related
by the variation of parameters formula

S(t) = T (t) +

∫ t

0

T (t− s)KS(s) ds, t ≥ 0.

Since
∫ t

0
T (t− s)KS(s) ds is compact by Theorem C.7, the assertion follows. �
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2.13 Exercises. (1) Use the rescaling procedure and Counterexample 2.7 to
show that for arbitrary real numbers α < β, there exists a strongly continuous
semigroup (T (t))t≥0 with generator A such that

s(A) = α and ω0 = β.

(2) Let (T (t))t∈R be a strongly continuous group on X with generator A. Then
there exist constants m, M ≥ 1, v, w ∈ R such that

1

m
e−vt‖x‖ ≤ ‖T (t)x‖ ≤ Mewt‖x‖ for all t ≥ 0, x ∈ X.

Show that
−v ≤ − s(−A) ≤ s(A) ≤ w.

(3∗) Find a strongly continuous group (T (t))t∈R with generator A such that
σ(A) = ∅. Then construct an example of an analytic semigroup whose generator
also has empty spectrum. What is the growth bound in each case? (Hint: Use
Corollary II.4.9. See also [Hua94].)

(4) Let (T (t))t≥0 be the semigroup from Counterexample 2.7. Find an approxi-
mate eigenvector (fn)n∈N corresponding to the approximative eigenvalue λ = 1
of T (t) for t > 0.

(5) Modify Counterexample 2.7 to obtain s(A) = −∞, ω0 = 0. (Hint: Consider

X := C0(R+) ∩ L1(R+, ex2
dx).)

(6∗) Consider the translations on

X :=

{
f ∈ C(R) : lim

s→∞
f(s) = lim

s→−∞
e3sf(s) = 0 and

∫ ∞

−∞
e2s|f(s)| ds < ∞

}
endowed with the norm

‖f‖ := sup
s≥0

|f(s)|+ sup
s≤0

e3s|f(s)|+
∫ ∞

−∞
e2s|f(s)| ds.

Show that this yields a strongly continuous group on X with growth bound
ω0 = 0, but spectral bound s(A) < −1. (Hint: See [Wol81].)

b. Spectrum of Induced Semigroups

In this subsection we return to the standard constructions from Sections I.5.b
and II.2.a and discuss in the first part of this subsection how the spectrum
of the generator of a subspace, quotient, and dual semigroup is related to
the original generator. Again, this is rather technical but quite useful for
later applications.

We start with a strongly continuous semigroup (T (t))t≥0 on the Banach space
X with generator (A, D(A)). If Y is a closed, (T (t))t≥0-invariant subspace of X,
there are canonically induced semigroups (T (t)|)t≥0 and (T (t)/)t≥0 with gener-
ators (A|, D(A|)) and (A/, D(A/)) on the subspace Y and the quotient space
X/Y (see Paragraphs I.5.12 and I.5.13, Paragraphs II.2.3 and II.2.4). The follow-
ing example shows that the spectra of the operators A, A|, and A/ may differ
drastically.
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2.14 Example. Consider X := L1(R), the closed subspace

Y :=
{
f ∈ X : f(s) = 0 for s ≥ 1

} ∼= L1(−∞, 1],

and the quotient space X/ := X/Y
∼= L1[1,∞). On these spaces the left trans-

lations induce strongly continuous semigroups with generators A, A|, and A/,
respectively. For their spectra, one has

σ(A) = iR

(in analogy to Example 2.6.(ii)), while

σ(A|) = σ(A/) = {λ ∈ C : Re λ ≤ 0}

(compare Example 2.6.(i)). If we take

Z :=
{
f ∈ Y : f(s) = 0 for 0 ≤ s ≤ 1

}
,

we obtain Y/Z
∼= L1[0, 1], and the induced semigroup becomes the nilpotent

translation semigroup. By Corollary 2.5, its generator A|/ has spectrum

σ(A|/) = ∅.

After this example, we show which relations do hold in general between the
spectrum σ(A), the subspace spectrum σ(A|), and the quotient spectrum σ(A/).

2.15 Proposition. With the above notation, the inclusions

ρ+(A) ⊂
(1)

ρ(A|) ∩ ρ(A/) ⊂
(2)

ρ(A) ⊂
(3)

[ρ(A|) ∩ ρ(A/)] ∪ [σ(A|) ∩ σ(A/)]

hold, where ρ+(A) denotes the connected component of ρ(A) that is unbounded
to the right.

Proof. We start with the observation that for λ ∈ ρ(A) the operator λ − A| is
always injective, and λ − A/ is always surjective. Moreover, λ − A| is surjective
if and only if R(λ, A)Y ⊆ Y if and only if λ−A/ is injective.

This observation immediately implies inclusion (3). To prove inclusion (1), we
conclude from the integral representation of the resolvent that R(λ, A)Y ⊂ Y for
all λ > ω0. Due to the power series expansion of R(·, A), this inclusion also holds
for all λ ∈ ρ+(A), and we obtain (1).

Finally, for the inclusion (2), we take λ ∈ ρ(A|) ∩ ρ(A/). Then (λ − A) must
be injective, since (λ− A)x = 0 implies (λ− A/)x̂ = 0; hence x̂ = 0, i.e., x ∈ Y
and therefore x = 0. Moreover, (λ − A) must be surjective. In fact, for z ∈ X,
there exists x̂ ∈ X/ such that (λ − A/)x̂ = ẑ = z + Y . This means that we find
u ∈ Y such that (λ − A)x − z = u = (λ − A)v for some v ∈ D(A|). This shows
that (λ−A)(x− v) = z. �

A particularly useful application of the above inclusions can be made to spectral
points in the closure of ρ+(A).
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2.16 Corollary. Keep the above assumptions and take µ ∈ ρ+(A). Then the
following equivalences hold.

(i) µ ∈ σ(A) if and only if µ ∈ σ(A|) ∪ σ(A/).

(ii) µ is a pole of R(·, A) if and only if µ is a pole of each R(·, A|) and R(·, A/).
In that case, the estimates

max(k|, k/) ≤ k ≤ k| + k/

hold for the respective orders of the poles.

Proof. Since (i) is clear from the inclusions (1) and (2) in Proposition 2.15, it
suffices to show (ii). To that purpose, we may, by the previous assertion, assume
that for some δ > 0 the punctured disc {λ ∈ C : 0 < |λ − µ| < δ} is contained
in ρ(A) ∩ ρ(A|) ∩ ρ(A/). Let Un, n ∈ N, denote the coefficients of the Laurent
expansion of R(·, A) at µ. Then the invariance of Y for each R(λ, A), λ ∈ ρ+(A),
implies the same for each Un. Therefore, we obtain (with obvious notation)

and

R(λ, A) =
∑

n≥−k

Un(λ− µ)n

R(λ, A)| =
∑

n≥−k|

Un|(λ− µ)n, R(λ, A)/ =
∑

n≥−k/

Un/
(λ− µ)n,

which shows that max(k|, k/) ≤ k. If R(·, A)| has a pole in µ of order k|, then
U−(k|+1)| = 0, i.e., U−(k|+1)Y = {0}. Similarly, one obtains U−(k/+1)X ⊂ Y

whenever R(·, A)/ has a pole in µ of order k/. Therefore, U−(k|+1) ·U−(k/+1) = 0,

and the identity
U−(k|+1) · U−(k/+1) = U−(k|+k/+1)

(see (1.12)) implies that the order of the pole is dominated by k| + k/. �

These results show which parts of σ(A) can be recovered from σ(A|) and σ(A/).
In many situations, however, the invariant subspace Y is not closed but only

continuously embedded in X. If Y contains the Sobolev space X1 := (D(A), ‖·‖A)
(as defined in Exercise II.5.9.(1)), we obtain coincidence of the spectra σ(A) and
σ(A|), where (A|, D(A|)) is the part of (A, D(A)) in Y (see Proposition II.2.3).
More precisely, the following holds.

2.17 Proposition. Let A be an operator with nonempty resolvent set ρ(A) and
domain D(A) = X1. If Y is a Banach space such that X1 ↪→ Y ↪→ X, then one
has

σ(A|) = σ(A),

where A| is the part of A in Y .

Proof. Since R(λ, A)Y ⊆ R(λ, A)X = X1 ⊆ Y for each λ ∈ ρ(A), the inclusion
ρ(A) ⊆ ρ(A|) follows from Lemma 1.15. For the proof of the converse inclusion,
we first observe that for Y1 := (D(A|), ‖ · ‖A|) we have Y1 ↪→ X1 ↪→ Y . Moreover,
we easily verify that the part A1 of A in X1 coincides with the part of A| in X1.
Again by Lemma 1.15 this implies ρ(A|) ⊆ ρ(A1). Since ρ(A) 6= ∅, the operators
A and A1 are similar, and therefore ρ(A1) = ρ(A), i.e., ρ(A|) = ρ(A). �
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Another standard construction is obtained in passing from the semigroup
(T (t))t≥0 and its generator (A, D(A)) to the adjoint semigroup (T (t)′)t≥0 and
the adjoint operator (A′, D(A′)) on the dual Banach space X ′. This semigroup
is not strongly continuous in general (see Paragraph II.2.5), but its restriction to

X� := D(A′) is the strongly continuous semigroup (T (t)�)t≥0 whose generator
is given by the part (A�, D(A�)) of A′ in X� (see Paragraph II.2.6). This yields
continuous embeddings (

D(A′), ‖ · ‖A′
)

↪→ X� ↪→ X ′,

and by the same arguments as above, one obtains the coincidence of the spectra
of A′ and A� = A′

|.

2.18 Proposition. For the generator A on X, its adjoint A′ on X ′, and its part
A� on X�, the following hold.

(i) σ(A) = σ(A′) = σ(A�).

(ii) Rσ(A) = Pσ(A′) = Pσ(A�).

(iii) s(A) = s(A′) = s(A�).

(iv) ω0(A) = ω0(A
�).

Moreover, for the associated semigroups (T (t))t≥0, (T (t)′)t≥0, and (T (t)�)t≥0,
the following is true.

(v) σ(T (t)) = σ(T (t)′) = σ(T (t)�).

(vi) Rσ(T (t)) = Pσ(T (t)′) = Pσ(T (t)�).

Proof. Assertion (i) follows by the above considerations, since σ(A) = σ(A′) (see
Corollary B.12). Assertion (ii) holds by Proposition 1.12 and since an eigenvector
of A′ always belongs to D(A�). Assertion (iii) is a consequence of (i), and (iv)
follows from the estimate (2.2) in Chapter II.

Finally, the assertions (v) and (vi) follow by essentially the same arguments as
those for (i) and (ii). The details are left as Exercise 2.22.(4). �

Partly to familiarize the reader with certain semigroup constructions,
partly for later use (see the proof of Theorem V.2.21), we now show how to
construct an isometric limit semigroup starting from a contraction semi-
group. As a first step, we show that semigroups of isometries have special
spectral properties.

2.19 Lemma. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup of isome-

tries on a Banach space X and denote its generator by
(
A,D(A)

)
. Then

one has

(2.7) ‖(λ−A)x‖ ≥ |Reλ| · ‖x‖ for all x ∈ D(A), λ ∈ C,

and one of the following two cases holds.

(i) σ(A) = {λ ∈ C : Reλ ≤ 0}.
(ii) σ(A) ⊂ iR, and the above semigroup extends to a strongly continuous

group of isometries on X.
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Proof. For Reλ 6= 0 and x ∈ D(A), the identity (1.11) in Chapter II
implies

e−Re λt ‖x‖ = e−Re λt ‖T (t)x‖

≤ ‖x‖+
∫ t

0

e−Re λs ‖T (s)(A− λ)x‖ ds

= ‖x‖+
(∫ t

0

e−Re λs ds
)
‖(A− λ)x‖

= ‖x‖+
e−Re λt − 1
−Reλ

‖(A− λ)x‖.

This proves (2.7). Using (2.7) and Lemma 1.9, we see that

Aσ(A) ∩ {λ ∈ C : Reλ < 0} = ∅,
and hence by Proposition 1.10 the open half-plane {λ ∈ C : Reλ < 0}
contains no boundary point of σ(A). Since σ(A) is contained in the closed
half-plane {λ ∈ C : Reλ ≤ 0}, one has either case (i) or σ(A) ⊂ iR. In this
second case, it follows from (2.7) that also the resolvent of −A satisfies the
Hille–Yosida estimate

‖R(λ,−A)‖ = ‖R(−λ,A)‖ ≤ 1
| − λ|

=
1
λ

for all λ > 0.

By Corollary II.3.7 we conclude that A generates a strongly continuous
group of isometries. �

We now start from a strongly continuous contraction semigroup
(
T (t)

)
t≥0

with generator
(
A,D(A)

)
on some Banach space X. Then for each x ∈ X

the map t 7→ ‖T (t)x‖ is decreasing, and we can define a seminorm on X by

p(x) := lim
t→∞

‖T (t)x‖ = inf
t≥0

‖T (t)x‖.

If we consider its null space Y := p−1{0}, we obtain a norm

|||x+ Y ||| := p(x)

on the quotient space X/Y . Its completion will be denoted by

Z :=
(

X/Y , |||·|||
)∼
.

Next, we take the operators T (t) ∈ L(X) and observe that they leave
Y invariant, hence induce quotient operators on X/Y . It follows from the
above definitions that these quotient operators are isometries for |||·|||, hence
their continuous extensions are isometries on Z and will be denoted by
S(t). Clearly, these operators form a semigroup

(
S(t)

)
t≥0 on Z. Its strong

continuity is then a consequence of

lim
s↓0

|||S(s)(x+ Y )− (x+ Y )||| = lim
s↓0

(
lim

t→∞
‖T (t+ s)x− T (t)x‖

)
≤ lim

s↓0
‖T (s)x− x‖ = 0

for all x+Y in the dense subspace X/Y . This new semigroup
(
S(t)

)
t≥0 will

now be called the isometric limit semigroup corresponding to
(
T (t)

)
t≥0.
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2.20 Proposition. For the generator
(
B,D(B)

)
of the isometric limit

semigroup
(
S(t)

)
t≥0 on Z corresponding to the strongly continuous con-

traction semigroup
(
T (t)

)
t≥0 with generator

(
A,D(A)

)
, one has

σ(B) ⊂ σ(A).

In addition, if σ(A)∩ iR 6= iR, then
(
S(t)

)
t≥0 can be extended to a strongly

continuous group of isometries on Z.

Proof. The first observation is that for every x ∈ D(A) one has x+ Y ∈
D(B) and B(x+ Y ) = Ax+ Y . Now take λ ∈ ρ(A) and define

R(λ)(x+ Y ) := R(λ,A)x+ Y, x ∈ X.

This operator is well-defined on X/Y , its norm is dominated by ‖R(λ,A)‖,
and hence it extends continuously to a bounded operator R(λ) on Z. The
identities

and
(λ−B)R(λ)(x+ Y ) = (x+ Y ) for all x ∈ X

R(λ)(λ−B)(x+ Y ) = (x+ Y ) for all x ∈ D(A)

follow directly from the definition of R(λ). Since

D :=
{
x+ Y : x ∈ D(A)

}
⊆ D(B) ⊂ X/Y

is a core for B (use Proposition II.1.7), it follows that R(λ) is the inverse
of λ−B; hence

λ ∈ ρ(B) and R(λ) = R(λ,B).

If σ(A)∩iR is a proper subset of iR, the isometric limit semigroup
(
S(t)

)
t≥0

and its generator
(
B,D(B)

)
satisfy (ii) in Lemma 2.19. Therefore,

(
S(t)

)
t≥0

extends to a group. �

The isometric limit semigroup will be used in Chapter V, when we discuss
the asymptotic behavior of semigroups (e.g., Theorem V.2.21). Here, we
show by an example that the extension to the completion Z of X/Y is
necessary in general. In particular, the norm |||·||| does not coincide with the
quotient norm on X/Y .

2.21 Example. Take the left translation semigroup
(
T (t)

)
t≥0 on X :=

L1(R,m(s) ds), where

m(s) :=
{

1 for s < 0,
es for s ≥ 0.

This is a contraction semigroup for which

p(f) := lim
t→∞

‖T (t)f‖ =
∫

R
|f(s)| ds > 0

for every 0 6= f ∈ X. Therefore, p−1(0) = {0}, the completion (X, p)∼ be-
comes Z := L1(R, ds), and the isometric limit semigroup is the translation
(semi) group on L1(R, ds).
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2.22 Exercises. (1) Reformulate the inclusions in Proposition 2.15 as

C \ ρ+(A) ⊃ σ(A|) ∪ σ(A/) ⊃ σ(A) ⊃ σ(A|) ∪ σ(A/) \
[
σ(A|) ∩ σ(A/)

]
.

(2) Take the multiplication semigroup on C0(Ω) induced by a continuous function
q : Ω → C satisfying Re q ≤ 0. Show that the isometric limit semigroup is
(isomorphic to) the multiplication group on C0(K), K := {s ∈ Ω : Re q(s) = 0},
induced by the restriction of q to K.

(3) We start from the left translation semigroup (T (t))t≥0 on X := Cub(R+) and
observe that C0(R+) is a closed, (T (t))t≥0-invariant subspace.

(i) Show that the quotient semigroup (T (t)/)t≥0 on X/ := Cub(R+)/C0(R+)

extends to a strongly continuous group of isometries on X/.

(ii) Determine the spectrum of the generator of this group.

(4) Prove parts (v) and (vi) of Proposition 2.18 (Hint: For the second equality
in (v) observe the diagram after Corollary II.5.21, and use Proposition 2.17. To
prove the second equality in (vi) use the fact that for every eigenvector x′ of
T (t)′ the element x� := R(µ, A′)x′ for some fixed µ ∈ ρ(A′) is an eigenvector of
T (t)�.)

(5) Use the notation and definition of the semigroups T = (T (t))t≥0 on X and

T̂ = (T̂ (t))t≥0 on X̂T from Exercises I.5.16.(3) and II.2.8.(3). Then the following
identities hold for the corresponding spectra.

(i) σ(A) = σ(Â).

(ii) Aσ(A) = Aσ(Â) = Pσ(Â).

Use the counterexamples to the spectral mapping theorem (e.g., Counterexam-

ple 2.7) to show that in general, σ(T̂ (t)) 6= σ(T (t)).

(6) Let

X :=
{

f : R+ → C : f is locally integrable, ‖f‖X :=

∫ ∞

0

|f(s)| e−s ds < ∞
}

and let Y := L1(R+) be endowed with its natural norm. On X and Y we define
for t ≥ 0 the left and right translations by

and

(
Tl(t)f

)
(s) = f(s + t)(

Tr(t)f
)
(s) =

{
f(s− t), s ≥ t,
0, 0 ≤ s < t,

respectively (cf. Paragraph I.4.16).

(i) Show that Tl(t) and Tr(t) define strongly continuous semigroups on X with
‖Tl(t)‖X = et and ‖Tr(t)‖X = e−t.

(ii) Denote by AZ
ν the generator of (Tν(t))t≥0, ν = l, r on Z = X, Y . Show that

σ(AY
l ) = σ(AY

r ) = {λ ∈ C : Re λ ≤ 0}, σ(AX
l ) = {λ ∈ C : Re λ ≤ 1}, and

σ(AX
r ) = {λ ∈ C : Re λ ≤ −1}. (Hint: In the case of the right translations

try to find eigenfunctions of the adjoint of Ar.)

(iii) Why does (ii) not contradict Lemma 1.15 and Proposition 2.17 although
Y ↪→ X?
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c. Spectrum of Periodic Semigroups

In this subsection we present a first example for the power of spectral
theory. In fact, we succeed in characterizing periodic semigroups by their
spectral properties. This is not only interesting in itself, but will be useful
for the investigation of arbitrary semigroups (see the proof of Theorem 3.7).

2.23 Definition. A strongly continuous semigroup T =
(
T (t)

)
t≥0 on a

Banach space X is called periodic if T (t0) = I for some t0 > 0. The period
τ of T is

τ := inf
{
t0 > 0 : T (t0) = I

}
.

Periodic semigroups are always groups with inverses T (t)−1 = T (nτ − t)
for 0 ≤ t ≤ nτ , τ the period of T. Moreover, they are bounded, and hence
their growth bound is zero, and one has σ(A) ⊂ iR as a consequence of the
generation theorem for groups in Paragraph II.3.11.

In the matrix situation, this implies (see Exercise I.2.12.(4)) that A and
T (t) are similar to the diagonal matrices given by diag(λ1, . . . , λn) and
diag(eλ1t, . . . , eλnt) with λi ∈ 2πi/τ Z for some τ > 0.

As a first step towards an analogous characterization in the infinite-
dimensional case, we observe the following.

2.24 Lemma. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0 on a Banach space X. Assume that

(i) Pσ(A) ⊂ 2πiαZ for some α > 0 and that

(ii) the corresponding eigenvectors span a dense subspace of X.

Then the semigroup
(
T (t)

)
t≥0 is periodic.

Proof. Take 0 6= x ∈ D(A) and n ∈ Z such that Ax = (2πiαn)x. Define
a function ξ(s) := e2πiαn(t−s)T (s)x for 0 ≤ s ≤ t. Then ξ(0) = e2πiαntx,
ξ(t) = T (t)x, while ξ′(s) ≡ 0. Therefore, the semigroup acts as T (t)x =
e2πiαntx on the eigenvectors from (ii). Since these eigenvectors span a dense
subspace, we obtain that

(
T (t)

)
t≥0 is periodic with period τ ≤ 1/α. �

The relation between eigenvalues 2πiαn of A and eigenvalues e2πiαnt of
T (t) found in this proof will be our main concern in the following section
(see Theorem 3.7). Here, we show that the above conditions are necessary
even for periodic semigroups and start with the following lemma.

2.25 Lemma. Let
(
T (t)

)
t≥0 be a periodic strongly continuous semigroup

with period τ > 0 and generator A on a Banach space X. Then

σ(A) ⊂ 2πi
τ

· Z and

R(µ,A) = (1− e−µτ )−1

∫ τ

0

e−µsT (s) ds(2.8)

for µ /∈ 2πi/τ · Z.



Section 2. Spectrum of Semigroups and Generators 267

Proof. It follows from the identities (1.10) and (1.11) in Lemma II.1.9
with t = τ that (µ − A) has a two-sided inverse if µ 6= 2πin/τ, n ∈ Z, and
that the inverse is given by the above expression. �

The above representation of R(µ,A) shows that the resolvent of the
generator of a τ -periodic semigroup is a meromorphic function having only
poles of maximal order one with residues

(2.9) Pn := lim
µ→µn

(µ− µn)R(µ,A) =
1
τ

∫ τ

0

e−µnsT (s) ds ∈ L(X)

in µn := 2πin/τ. Moreover, it follows from Paragraph 1.17 that each Pn

is the spectral projection belonging to µn that by (1.13) satisfies rgPn =
ker(µn − A). In particular, this implies that the spectrum of A consists of
eigenvalues only.

Another way of looking at Pn is to interpret it as the nth Fourier coef-
ficient of the τ -periodic function s 7→ T (s). A simple argument on Fourier
series then completes the proof of the following characterization.

2.26 Theorem. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0 on a Banach space X. Then the following assertions

are equivalent.

(a)
(
T (t)

)
t≥0 is periodic.

(b) σ(A) = Pσ(A) ⊂ 2πiαZ for some α > 0, and the corresponding
eigenvectors span a dense subspace of X.

Proof. The implication (b) ⇒ (a) is Lemma 2.24, and we have seen above
that the inclusion σ(A) = Pσ(A) ⊂ 2πiαZ in (b) follows from (a) by
Lemma 2.25. It remains to show that for a periodic semigroup one has

lin
⋃
n∈Z

PnX = X.

If not, there exists 0 6= x′ ∈ X ′ vanishing on each PnX, n ∈ Z. This
means that for each x ∈ X all Fourier coefficients 〈Pnx, x

′〉 of the function
ξx,x′ : s 7→ 〈T (s)x, x′〉 vanish. If we take x ∈ X such that 〈x, x′〉 6= 0, this
cannot be true, since ξx,x′ 6≡ 0. �

Condition (b) above not only characterizes periodicity, but it even allows
us to describe the action of

(
T (t)

)
t≥0. In fact, since

(2.10) APn = µnPn,

it follows by (1.11) in Lemma II.1.9 (or as in the proof of Lemma 2.24)
that

(2.11) T (t)Pn = eµntPn for t ≥ 0.
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Thus, the action of
(
T (t)

)
t≥0 is described on the dense subspace linn∈Z PnX.

Moreover,

PmPnx =
1
τ
·
∫ τ

0

e−µmsT (s)Pnx ds

=
1
τ
·
∫ τ

0

e(µn−µm)s dsPnx = 0 for n 6= m,

i.e., the subspaces PnX are in a certain sense “orthogonal,” and we could
hope for a representation

T (t)x =
+∞∑
−∞

eµntPnx for each x ∈ X.

As one can see from Exercise 2.30, this is not true in general, and only the
following weaker statement holds.

2.27 Theorem. Let
(
T (t)

)
t≥0 be a periodic semigroup with period τ > 0

on a Banach space X with generator A and take the associated spectral
projections

Pn :=
1
τ
·
∫ τ

0

e−µnsT (s) ds, µn :=
2πin
τ

, n ∈ Z.

For every x ∈ D(A), one has x =
∑+∞

−∞ Pnx, and therefore

T (t)x =
+∞∑
−∞

eµntPnx if x ∈ D(A),(2.12)

Ax =
+∞∑
−∞

µnPnx if x ∈ D(A2).(2.13)

Proof. We assume τ = 2π and show first that
∑+∞

−∞ Pnx is summable for
x ∈ D(A). For y := Ax we obtain Pny = PnAx = APnx = inPnx. Take H
to be a finite subset of Z \ {0} and x′ ∈ X ′. Then∣∣∣∑

n∈H

〈Pnx, x
′〉
∣∣∣ = ∣∣∣∑

n∈H

(in)−1 〈Pny, x
′〉
∣∣∣

≤
(∑

n∈H

n−2
)1/2

·
(∑

n∈H

| 〈Pny, x
′〉 |2
)1/2

.

From Bessel’s inequality applied to the function s 7→ 〈T (s)y, x′〉 belonging
to L2[0, 2π] we obtain for the second factor∑

n∈H

| 〈Pny, x
′〉 |2 ≤ 1

2π
·
∫ 2π

0

| 〈T (s)y, x′〉 |2 ds

≤ ‖x′‖2 · 1
2π

·
∫ 2π

0

‖T (s)y‖2 ds.
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With the constant c :=
(

1/2π ·
∫ 2π

0
‖T (s)y‖2 ds

)1/2 we obtain∥∥∥ ∑
n∈H

Pnx
∥∥∥ ≤ c

(∑
n∈H

n−2
)1/2

for every finite subset H of Z, i.e.,
∑+∞

−∞ Pnx is summable. Next, we set
z :=

∑+∞
−∞ Pnx and observe that for every x′ ∈ X ′, the Fourier coefficients

of the continuous, 2π-periodic functions

s 7→ 〈T (s)z, x′〉 and s 7→ 〈T (s)x, x′〉

coincide. Therefore, these functions are identical for s ≥ 0 and in particular
for s = 0. This implies 〈z, x′〉 = 〈x, x′〉, and by the Hahn–Banach theorem
we obtain z =

∑+∞
−∞ Pnx = x. By replacing x by T (t)x andAx, respectively,

the identities (2.11) and (2.10) then yield (2.12) and (2.13). �

For semigroups with a bounded generator A, we know that σ(A) is
bounded. Therefore, if the semigroup is also periodic, only a finite number
of spectral projections Pn are distinct from 0, and we arrive at the following
characterization.

2.28 Corollary. Let
(
T (t)

)
t≥0 be a semigroup with bounded generator on

some Banach space X. This semigroup has period τ/k for some k ∈ N if
and only if there exist finitely many pairwise orthogonal projections Pn,
−m ≤ n ≤ m, P−m 6= 0 or Pm 6= 0, such that

(i)
∑+m

n=−m Pn = I,

(ii) T (t) =
∑+m

n=−m e2πint/τPn,

(iii) A =
∑+m

n=−m (2πin/τ)Pn.

We close these considerations with a concrete, but typical, example.

2.29 Example. Let
(
T (t)

)
t≥0 be the rotation group on X := Lp(Γ) for 1 <

p <∞ (see Paragraph I.4.18 or Example 2.6.(iv)). It is periodic with period
2π, and the spectrum of its generator is σ(A) = iZ. The eigenfunctions
εn(z) := zn yield the projections

Pn =
1

2πi
· ε−(n+1) ⊗ εn, i.e.,

Pnf(z) =
1

2πi
·
(∫

Γ

f(w)w−(n+1) dw

)
· zn.

It is left as an exercise to compute the norms of Qm :=
∑+m

−m Pn in Lp(Γ)
for various p and then check the assertions of Theorem 2.27. By doing so,
one proves some classical convergence theorems for Fourier series (compare
also [LT79, Thm. 2.c.15]).
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2.30 Exercise. Consider the translation group on the space C2π(R) of all 2π-
periodic continuous functions on R and denote its generator by A. Prove the
following statements.

(i) σ(A) = Pσ(A) = iZ, and each spectral projection Pn, n ∈ Z, has norm one
and rank one.

(ii) For Qn :=
∑n

k=−n
Pk, one has limn→∞ ‖Qn‖ = ∞. (Hint: Use the repre-

sentation

(Qnf)(s) =
1

2π

∫ π

−π

sin(n + 1/2)(s− t)

sin(1/2(s− t))
f(t) dt

and estimate ‖Qngn‖ for gn(s) := s/|s| sin(n + 1/2)s, −π ≤ s ≤ π.)

(iii) There is no spectral projection Q corresponding to σ1 : {0, 1, 2, . . .}, i.e.,
satisfying QPn = Pn for n ≥ 0 and QPn = 0 for n < 0. (Hint: Define
isometries Vn by (Vnf)(s) := e−insf(s) and use the identity

Qn = V−nQVn − Vn+1QV−n−1

to estimate ‖Qn‖. See [Dav80, Sec. 8.1].)

3. Spectral Mapping Theorems

It is our ultimate goal to describe the semigroup
(
T (t)

)
t≥0 by the spectrum

σ(A) of its generator A. We achieved this in a very satisfactory way for pe-
riodic semigroups in Theorem 2.27. However, as we have already seen in
Counterexample 2.7, the general case is much more complex. As a first, but
essential, step, we now study in great detail the relation between the spec-
trum σ(A) of the generator A and the spectrum σ

(
T (t)

)
of the semigroup

operators T (t). The intuitive interpretation of T (t) as the exponential “etA”
of A and the spectral mapping theorem for bounded operators in the form
of Lemma I.3.13 lead us to the following principle.

3.1 Leitmotif. The spectra σ
(
T (t)

)
of the semigroup operators T (t) should

be obtained from the spectrum σ(A) of the generator A by a relation of
the form

(3.1) “σ
(
T (t)

)
= etσ(A) :=

{
etλ : λ ∈ σ(A)

}
.”

a. Examples and Counterexamples

If (3.1), or a similar relation, holds, we say that the semigroup
(
T (t)

)
t≥0

and its generator A satisfy a spectral mapping theorem. However, before
proving results in this direction, we explain in a series of examples and
counterexamples what might go wrong.

3.2 Examples. (i) Take a strongly continuous semigroup
(
T (t)

)
t≥0 that

cannot be extended to a group (e.g., the left translation semigroup on
C0(R+); see Paragraph I.4.16). Then 0 ∈ σ

(
T (t)

)
for all t > 0, while

evidently 0 is never contained in etσ(A).
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Therefore, we are led to modify (3.1) and will call a spectral mapping
theorem the relation

(SMT) σ
(
T (t)

)
\ {0} = etσ(A) for t ≥ 0.

(ii) The periodic rotation group from Example 2.29 satisfies σ(A) = iZ,
and each eikt, k ∈ Z, is an eigenvalue of T (t) by (2.11). If t/2π is irrational,
these eigenvalues form a dense subset of Γ. Since the spectrum is always
closed, we obtain σ

(
T (t)

)
= Γ for these t > 0. (See also Example 2.6.(iv).)

The phenomenon appearing in this example will be referred to as a weak
spectral mapping theorem, meaning that only

(WSMT) σ
(
T (t)

)
\ {0} = etσ(A) \ {0} for t ≥ 0

holds.
The above modifications of the spectral mapping theorem are simply

caused by properties of the complex exponential map z 7→ ez and will have
no serious consequences for our applications in Chapter V. Much more
problematic is the failure of (SMT) or (WSMT) due to the particular form
of the operator A and the semigroup

(
T (t)

)
t≥0.

Such a breakdown occurs for generators A for which the spectral bound
s(A) does not coincide with the growth bound ω0. In fact, if

s(A) < ω0,

then
etσ(A) ⊂

{
λ ∈ C : |λ| ≤ et s(A)

}
,

while r
(
T (t)

)
= et ω0 > et s(A) (use Proposition 2.2). Therefore, the gener-

ator and the semigroup in Counterexample 2.7 do not satisfy (WSMT).
While the semigroup in this example was the well-known translation

semigroup, the chosen Banach space seems to be artificial. Therefore, we
present more examples for a drastic failure of (WSMT) on more natural
spaces.

3.3 Counterexample (on Reflexive Banach Spaces). Take 1 < p <
q <∞ and the Banach space

X := Lp[1,∞) ∩ Lq[1,∞)

with norm ‖f‖ := ‖f‖p + ‖f‖q. On this space we define a strongly contin-
uous semigroup

(
T (t)

)
t≥0 by

T (t)f(s) := f(set)

for s ≥ 1, t ≥ 0, and f ∈ X. Its generator is given by

Af(s) = sf ′(s), s ≥ 1,

on the domain

D(A) =
{
f ∈ X : f is absolutely continuous

and s 7→ sf ′(s) belongs to X

}
.

(See Exercise I.5.9.(3).)



272 Chapter IV. Spectral Theory for Semigroups and Generators

Then the following holds.

Proposition. For the generator
(
A,D(A)

)
of the semigroup

(
T (t)

)
t≥0 on

the Banach space X, we have

s(A) = −1
p
< −1

q
= ω0 .

Proof. For each 1 < r < ∞, consider the strongly continuous semigroup(
Tr(t)

)
t≥0 on Lr[1,∞) defined by

Tr(t)f(s) := f(set),

and denote its generator by
(
Ar, D(Ar)

)
. Then we can estimate

‖Tr(t)f‖r =
(∫ ∞

1

|f(set)|r ds
)1/r

= e
−t/r

(∫ ∞

et

|f(s)|r ds
)1/r

≤ e
−t/r‖f‖r for f ∈ Lr[1,∞).

Since for each β > 1/r the function s 7→ fβ(s) := s−β belongs to D(Ar)
and satisfies

(Arfβ) (s) = sf ′β(s) = −βs−β ,

we obtain that −β ∈ Pσ(Ar); hence

(3.2) s(Ar) = ω0(Ar) = −1
r
.

We now determine the norm of T (t) on X. Observe first that

(3.3)
‖T (t)f‖ = ‖Tp(t)f‖p + ‖Tq(t)f‖q ≤ e

−t/p‖f‖p + e
−t/q‖f‖q

≤ e
−t/q‖f‖,

and hence the growth bound satisfies

ω0 ≤ −1
q
.

On the other hand, for ft := 1 [et,et+1] and arbitrary 1 < r <∞, we have

‖Tr(t)ft‖r = ‖1 [1,1+e−t]‖r = e
−t/r = e

−t/r‖ft‖r.

Therefore, it follows that

(3.4)
‖T (t)ft‖ = ‖Tp(t)ft‖p + ‖Tq(t)ft‖q = e

−t/p + e
−t/q

≥ e
−t/q = 1

2 e−t/q‖ft‖.
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The combination of (3.3) and (3.4) yields
1
2 e−t/q ≤ ‖T (t)‖ ≤ e−t/q;

hence

(3.5) ω0 = −1
q
.

Next, we observe that
(
T (t)

)
t≥0 is the restriction of

(
Tp(t)

)
t≥0 to X ↪→

Lp[1,∞). Therefore, it follows from the proposition in II.2.3 that its gen-
erator A is the part of Ap in X. Moreover, since

(
Tp(t)

)
t≥0 has negative

growth bound, we obtain(
R(0, Ap)f

)
(s) =

∫ ∞

0

f(set) dt =
∫ ∞

s

f(t)
dt

t

for f ∈ Lp[1,∞) and (almost) all s > 1. This yields the estimate∣∣(R(0, Ap)f
)
(s)
∣∣ ≤ (∫ ∞

s

1
tp′

dt

)1/p′

‖f‖p

=
( s1−p′

p′ − 1

)1/p′

‖f‖p = s
−1/p

‖f‖p

(p′ − 1)1/p′

with 1/p + 1/p′ = 1. Since s 7→ s
−1/p ∈ Lq[1,∞), this implies D(Ap) ⊂

Lq[1,∞) and ‖g‖q ≤ c‖Apg‖p for all g ∈ D(Ap) and a suitable constant
c > 0. Hence, D(Ap) ⊂ X and ‖g‖ = ‖g‖p + ‖g‖q ≤ ‖g‖p + c‖Apg‖p for all
g ∈ D(Ap). In conclusion we obtain

D(Ap) ↪→ X ↪→ Lp[1,∞).

By Proposition 2.17, this implies that σ(A) = σ(Ap) and, by (3.2), that

s(A) = −1
p
.

�

Even for semigroups on Hilbert spaces the spectral mapping theorem
may fail.

3.4 Counterexample (on Hilbert Spaces). We start by considering
the n-dimensional Hilbert space Xn := Cn (with the ‖ · ‖2-norm) and the
n× n matrix

An :=


0 1 0 0
...

. . . . . . 0
...

. . . 1
0 · · · · · · 0

 .

Since An is nilpotent, we obtain σ(An) = {0}. Moreover, the semigroups(
etAn

)
t≥0 generated by An satisfy∥∥etAn

∥∥ ≤ et

for t ≥ 0. We now collect some elementary facts about these matrices.
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Lemma. For the elements xn := n
−1/2(1, . . . , 1) ∈ Xn we have ‖xn‖ = 1

and

(i) ‖Anxn − xn‖ ≤ n
−1/2,

(ii)
∥∥etAnxn − etxn

∥∥ ≤ tetn
−1/2 for t ≥ 0 and n ∈ N.

Proof. Assertion (i) follows directly from the definition, while (ii) is ob-
tained from

etAnxn − etxn =
∫ t

0

et−sesAn(Anxn − xn) ds

(see (1.10) in Lemma II.1.9) and the estimate ‖etAn‖ ≤ et. �

Consider now the Hilbert space

X :=
⊕
n∈N

2
Xn

with inner product (
(xn) | (yn)

)
:=
∑
n∈N

(xn | yn)

(cf. (A.1) in Appendix A), on which we define A := ⊕n∈N(An + in) with
maximal domain D(A) in X. This operator generates the strongly contin-
uous semigroup

(
T (t)

)
t≥0 given by

T (t) :=
⊕
n∈N

(
eintetAn

)
and satisfying

‖T (t)‖ ≤ sup
n∈N

∥∥eintetAn
∥∥ ≤ et

for t ≥ 0. This implies that its growth bound satisfies

ω0 ≤ 1.

We now show that s(A) = 0. For λ ∈ C with Reλ > 0, we have

R(λ,An + in) = R(λ− in,An) =
n−1∑
k=0

Ak
n

(λ− in)k+1
.

Since ‖An‖ = 1, we conclude that

‖R(λ,An + in)‖ ≤
n−1∑
k=0

1
|λ− in|k+1

≤ 1
|λ− in| − 1

for n ∈ N sufficiently large. This implies supn∈N ‖R(λ,An + in)‖ <∞, and
therefore ⊕

n∈N

(
R(λ,An + in)

)
is a bounded operator on X, which evidently gives the inverse of (λ− A).
Hence, s(A) ≤ 0, while s(A) ≥ 0 follows from the fact that each in is an
eigenvalue of A.
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To prove ω0 ≥ 1, we show that r
(
T (t0)

)
≥ et0 for t0 = 2π. Take xn as in

the lemma, identify it with the element (0, . . . , xn, 0, . . .) ∈ X, and consider
the sequence (xn)n∈N in X. Then (xn)n∈N is an approximate eigenvector
of T (2π) with eigenvalue e2π. So we have proved the following.

Proposition. For the strongly continuous semigroup
(
T (t)

)
t≥0 with

T (t) :=
⊕
n∈N

(eintetAn)

and its generator

A :=
⊕
n∈N

(An + in)

on the Hilbert space X := ⊕2
n∈NXn, one has

s(A) = 0 < ω0 = 1.

3.5 Exercises. (1) Show that the semigroup in Counterexample 3.4 is in fact
a group whose generator has compact resolvent.

(2) Use the bijection between R+ and [1,∞) given by ϕ(s) := es to define a
translation semigroup on a function space on R+ that is similar to the semigroup
in Counterexample 3.3.

(3) On the space L2
2π of all 2π-periodic functions on R2 that are square integrable

on [0, 2π]2 consider the second-order partial differential equation

(3.6)


∂2u(t, x, y)

∂t2
=

∂2u(t, x, y)

∂x2
+

∂2u(t, x, y)

∂y2
+ eiy ∂u(t, x, y)

∂x
,

u(0, x, y) = u0(x, y),
∂u(0, x, y)

∂t
= u1(x, y)

for (x, y) ∈ [0, 2π]2 and t ≥ 0.

(i) Show that (3.6) is equivalent to the abstract Cauchy problem (ACP) for
the operator (A, D(A)) defined by

A(u, v) :=
(
v, d2

dx2 u + d2

dy2 u + ei· d
dx

u
)
, D(A) := H2

2π ×H1
2π

on X := H1
2π × L2

2π and for the initial value (u0, u1). (Hint: See Sec-
tion VI.3.c.)

(ii) Show that A generates a strongly continuous semigroup on X.

(iii∗) Show that s(A) = 0, while ω0 ≥ 1/2. (Hint: See [Ren94].)

b. Spectral Mapping Theorems for Semigroups

After having seen so many failures of our Leitmotif 3.1, it is now time to
present some positive results. Surprisingly, “most” of (SMT) still holds.
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3.6 Spectral Inclusion Theorem. For the generator
(
A,D(A)

)
of a

strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach space X, we have

the inclusions

(3.7) σ
(
T (t)

)
⊃ etσ(A) for t ≥ 0.

More precisely, for the point, approximate point, and residual spectra the
following inclusions hold for all t ≥ 0:

Pσ
(
T (t)

)
⊃ etPσ(A),(3.8)

Aσ
(
T (t)

)
⊃ etAσ(A),(3.9)

Rσ
(
T (t)

)
⊃ etRσ(A).(3.10)

Moreover, for λ0 ∈ C such that etλ0 is an isolated singularity of R
(
·, T (t)

)
,

it follows that λ is an isolated singularity of R(·, A) and, with obvious
notation,

mg

(
eλ0t, T (t)

)
≥ mg(λ0, A),(3.11)

ma

(
eλ0t, T (t)

)
≥ ma(λ0, A),(3.12)

k
(
eλ0t, T (t)

)
≥ k(λ0, A).(3.13)

Proof. Recalling the identities

(3.14)
eλtx− T (t)x = (λ−A)

∫ t

0

eλ(t−s)T (s)x ds for x ∈ X,

=
∫ t

0

eλ(t−s)T (s)(λ−A)x ds for x ∈ D(A)

from Lemma II.1.9, we see that
(
eλt − T (t)

)
is not bijective if (λ−A) fails

to be bijective. This proves (3.7).
We now prove (3.9) and, by the same arguments, (3.8). Take λ ∈ Aσ(A)

and a corresponding approximate eigenvector (xn)n∈N ⊂ D(A). Define a
new sequence (yn)n∈N by

yn := eλtxn − T (t)xn =
∫ t

0

eλ(t−s)T (s)(λ−A)xn ds.

These vectors satisfy for some constant c > 0 the estimate

‖yn‖ =
∫ t

0

∥∥∥eλ(t−s)T (s)(λ−A)xn

∥∥∥ ds ≤ c ‖(λ−A)xn‖ → 0 as n→∞.

Hence, eλt is an approximate eigenvalue of T (t), and (xn)n∈N serves as the
same approximate eigenvector for all t ≥ 0.



Section 3. Spectral Mapping Theorems 277

Next, take λ ∈ Rσ(A) and use (3.14) to obtain that

rg
(
eλt − T (t)

)
⊂ rg(λ−A)

is not dense in X. Hence (3.10) holds.
The inequality (3.11) for the geometric multiplicities mg follows imme-

diately from (3.14).
We now prove (3.12) for the algebraic multiplicities ma. To this end, we

introduce the operator I(λ, t) :=
∫ t

0
eλ(t−s)T (s) ds and observe that by

(3.14) we have

(3.15)
R(λ,A) = I(λ, t)R

(
eλt, T (t)

)
= R

(
eλt, T (t)

)
I(λ, t) for eλt ∈ ρ

(
T (t)

)
.

Next, we substitute µ = eλt and obtain for µ0 := eλ0t the identity

(µ− µ0)n =
(
eλt − eλ0t

)
n, n ∈ Z.

The term on the right-hand side can be written as hn(λ)(λ − λ0)n for an
analytic function hn. By writing hn at λ = λ0 as its power series, we obtain
in this way from the Laurent expansion of the function µ 7→ R

(
µ, T (t)

)
in

µ0 the Laurent series of λ 7→ R
(
eλt, T (t)

)
in λ0. Now we denote the spectral

projection of A in λ0 by P and the one of T (t) in µ0 = eλ0t by Q. Then, by
Paragraph 1.17, all coefficients in the principal part of the Laurent series
expansion of µ 7→ R

(
µ, T (t)

)
in µ0 are contained in QL(X). Since the map

λ 7→ I(λ, t) is analytic, the previous considerations and (3.15) show that
also all coefficients in the main part of the Laurent series expansion of
λ 7→ R(λ,A) in λ0 are elements of QL(X). In particular, P ∈ QL(X), and
therefore rgP ⊆ rgQ, which proves (3.12).

Finally, the inequality in (3.13) for the orders of the poles k follows from
(3.15). �

It follows from the above examples and counterexamples that not all
converse inclusions hold in general. In fact, we will see that it is only the
approximate point spectrum that is responsible for the failure of (SMT).
For the point spectrum and the residual spectrum, however, we are able to
prove a spectral mapping formula.

3.7 Spectral Mapping Theorem for Point and Residual Spec-
trum. For the generator

(
A,D(A)

)
of a strongly continuous semigroup(

T (t)
)
t≥0 on a Banach space X, we have the identities

Pσ
(
T (t)

)
\ {0} = etPσ(A),(3.16)

Rσ
(
T (t)

)
\ {0} = etRσ(A)(3.17)

for all t ≥ 0.
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Proof. Take t0 > 0 and 0 6= λ ∈ Pσ
(
T (t0)

)
.According to Paragraph I.5.11

and Paragraph II.2.2, we can pass from the semigroup
(
T (t)

)
t≥0 to the

rescaled semigroup
(
S(t)

)
t≥0 :=

(
e−t log λT (t0t)

)
t≥0 having the generator

B = t0A − log λ. Since for this rescaled semigroup 1 is an eigenvalue of
S(1), we can assume that t0 = 1 and λ = 1 from the beginning. Consider
now the

(
T (t)

)
t≥0-invariant, closed subspace

Y :=
{
y ∈ X : T (1)y = y

}
,

which is nontrivial by assumption. The semigroup
(
T (t)|

)
t≥0 restricted

to Y is periodic with period τ ∈ N−1. The characterization of periodic
semigroups in Theorem 2.26 implies the existence of at least one n ∈ Z
such that

µ := 2πin ∈ Pσ(A|).

Since Pσ(A|) ⊂ Pσ(A), we obtain that

1 ∈ ePσ(A).

This and (3.8) proves (3.16).
The identity for the residual spectrum follows from (3.16) if we consider

the sun dual semigroup
(
T (t)�

)
t≥0 and use that Rσ(A) = Pσ(A�) and

Rσ
(
T (t)

)
= Pσ

(
T (t)�

)
(see Proposition 2.18). �

Based on our understanding of periodic semigroups expressed in The-
orem 2.27, we can even relate the eigenvectors of A and T (t). In fact, if
λ = 1 is an eigenvalue of T (t0) with eigenvector y ∈ X, we put

yn := Pny =
1
t0

∫ t0

0

e
−2πins/t0T (s)y ds ∈ Y :=

{
x ∈ X : T (t0)x = x

}
(cf. the projections Pn defined in (2.9)). Then yn is an eigenvector of A|Y
and hence of A with eigenvalue 2πin/t0 as soon as yn 6= 0. The series ex-
pansion (2.12) implies that this must hold for at least one n ∈ Z. It then
follows from (1.11) in Lemma II.1.9 that this same yn is an eigenvector for
each T (t), t ≥ 0. We state this and more information on the eigenspaces of
A and T (t) in the following corollary.

3.8 Corollary. For the eigenspaces of the generator A and of the semigroup
operators T (t), respectively, the following identities hold for every µ ∈ C.

(i) ker(µ−A) =
⋂

s≥0 ker
(
eµs − T (s)

)
,

(ii) ker
(
eµt0 − T (t0)

)
= linn∈Z ker(µ+ 2πin/t0 −A) for each t0 > 0.

Proof. It remains to show assertion (ii). After assuming µ = 0, we observe
that

(
T (t)

)
t≥0 restricted to ker

(
1 − T (t0)

)
becomes periodic. Hence the

assertion has been proved in Theorem 2.26. �
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Since we have proved spectral mapping theorems for the point as well
as for the residual spectrum, it follows that in the Counterexamples 3.3
and 3.4 there must be approximate eigenvalues µ of T (t) that do not stem
from some λ ∈ σ(A) via the exponential map. In order to overcome this
failure and to obtain a spectral mapping theorem for the entire spectrum,
we could exclude the existence of such approximate eigenvalues and assume

σ
(
T (t)

)
= Pσ

(
T (t)

)
∪Rσ

(
T (t)

)
(e.g., if

(
T (t)

)
t≥0 is eventually compact). A more interesting and useful way

to save the validity of (SMT), however, is to look for additional properties
of the semigroup that guarantee even

(3.18) Aσ
(
T (t)

)
\ {0} = etAσ(A).

Eventual norm continuity seems to be the most general hypothesis doing
this job.

However, we first characterize those approximate eigenvalues that satisfy
the spectral mapping property.

3.9 Lemma. For an approximate eigenvalue λ 6= 0 of the operator T (t0)
the following statements are equivalent.

(a) There exists a sequence (xn)n∈N ⊂ X satisfying ‖xn‖ = 1 and
‖T (t0)xn − λxn‖ → 0 such that limt↓0 supn∈N ‖T (t)xn − xn‖ = 0.

(b) There exists µ ∈ Aσ(A) such that λ = eµt0 .

Proof. The implication (b) ⇒ (a) follows from identity (3.14).
To show the converse implication it suffices, as in the proof of Theo-

rem 3.7, to consider the case λ = 1 and t0 = 1 only. To this end we take
an approximate eigenvector (xn)n∈N as in (a). The uniform continuity of(
T (t)

)
t≥0 on the vectors xn implies that the maps [0, 1] 3 t 7→ T (t)xn,

n ∈ N, are equicontinuous. Choose now x′n ∈ X ′, ‖x′n‖ ≤ 1, satisfying
〈xn, x

′
n〉 ≥ 1/2 for all n ∈ N. Then the functions

[0, 1] 3 s 7→ ξn(s) := 〈T (s)xn, x
′
n〉

are uniformly bounded and equicontinuous. Hence, there exists, by the
Arzelà–Ascoli theorem, a convergent subsequence, still denoted by (ξn)n∈N,
such that limn→∞ ξn =: ξ ∈ C[0, 1]. From ξ(0) = limn→∞ ξn(0) ≥ 1/2 we
obtain that ξ 6= 0. Therefore, this function has a non-zero Fourier coeffi-
cient, i.e., there exists µm := 2πim, m ∈ Z, such that∫ 1

0

e−µmsξ(s) ds 6= 0.
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If we set

zn :=
∫ 1

0

e−µmsT (s)xn ds,

we have zn ∈ D(A) by Lemma II.1.3. In addition, the elements zn satisfy

(µm −A)zn =
(
1− e−µmT (1)

)
xn =

(
1− T (1)

)
xn → 0

and
lim

n→∞
‖zn‖ ≥ lim

n→∞
| 〈zn, x

′
n〉 |

≥ lim
n→∞

∣∣∣∣∫ 1

0

e−µms 〈T (s)xn, x
′
n〉 ds

∣∣∣∣
≥
∣∣∣∣∫ 1

0

e−µmsξ(s) ds
∣∣∣∣ > 0.

This shows that
(

zn/‖zn‖
)
n∈N is an approximate eigenvector of A corre-

sponding to the approximate eigenvalue µm = 2πim. �

For eventually norm-continuous semigroups we can always construct ap-
proximate eigenvectors satisfying condition (a) of the previous lemma.
Therefore, we obtain (SMT).

3.10 Spectral Mapping Theorem for Eventually Norm-Continuous
Semigroups. Let

(
T (t)

)
t≥0 be an eventually norm-continuous semigroup

with generator
(
A,D(A)

)
on the Banach space X. Then the spectral map-

ping theorem

(SMT) σ
(
T (t)

)
\ {0} = etσ(A), t ≥ 0,

holds.

Proof. Taking into account all our previous theorems such as 3.6 and 3.7
and using the rescaling technique, we have to show the following.

If 1 ∈ Aσ
(
T (1)

)
, then there exists m ∈ Z

such that µm := 2πim ∈ Aσ(A).
To prove this claim, we take an approximate eigenvector (xn)n∈N of T (1),

i.e., we assume ‖xn‖ = 1 and ‖T (1)xn − xn‖ → 0. Moreover, we assume
that t 7→ T (t) is norm continuous for t ≥ t0. Now choose t0 < k ∈ N and
observe that

‖T (k)xn − xn‖ =
∥∥T (k)xn − T (k − 1)xn + T (k − 1)xn − · · · − xn

∥∥→ 0

as n → ∞. The semigroup
(
T (t)

)
t≥0 is then uniformly continuous on(

T (k)xn

)
n∈N by assumption and on

(
T (k)xn − xn

)
n∈N, since this is a null

sequence (use Proposition A.3). Therefore,
(
T (t)

)
t≥0 is uniformly contin-

uous on (xn)n∈N =
(
T (k)xn

)
n∈N −

(
T (k)xn − xn

)
n∈N, and the assertion

follows from Lemma 3.9. �
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For later reference, it is useful to state the following simple consequence of
(SMT), sometimes called the spectral bound equal growth bound condition.

3.11 Corollary. For an eventually norm-continuous semigroup
(
T (t)

)
t≥0

with generator
(
A,D(A)

)
on a Banach space X, we have

(SBeGB) s(A) = ω0 .

Finally, we know from Diagram (4.26) in Chapter II that many important
regularity properties of semigroups imply eventual norm continuity. We
state the spectral mapping theorem for these semigroups.

3.12 Corollary. The spectral mapping theorem

(SMT) etσ(A) = σ
(
T (t)

)
\ {0}, t ≥ 0,

and the spectral bound equal growth bound condition

(SBeGB) s(A) = ω0

hold for the following classes of strongly continuous semigroups:

(i) eventually compact semigroups,

(ii) eventually differentiable semigroups,

(iii) analytic semigroups,

(iv) uniformly continuous semigroups.

It is the above condition (SBeGB) that will be used in Chapter V (e.g.,
in Theorem V.1.10) to characterize stability of semigroups. However, not
all of (SMT) is needed to derive (SBeGB). The weaker property (WSMT),
already encountered in Example 3.2.(ii), is sufficient. Therefore, the fol-
lowing simple result on multiplication operators (see Section I.4.a and
Paragraph II.2.9) is a useful addition to the above corollaries.

3.13 Proposition. Let Mq be the generator of a multiplication semigroup(
Tq(t)

)
t≥0 on X := C0(Ω) (or X := Lp(Ω, µ)) defined by an appropriate

function q : Ω → C. Then

(WSMT) σ
(
Tq(t)

)
= etσ(Mq) for t ≥ 0

holds.

Proof. In Proposition I.4.2.(iv), we stated that the spectrum of a multipli-
cation operator is the closed (essential) range of the corresponding function.
Therefore, we obtain

σ
(
Tq(t)

)
= etq(ess)(Ω) = etq(ess)(Ω) = etσ(Mq)

for all t ≥ 0. �
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A simple, but typical, example is given by the multiplication operator

Mq(xn)n∈Z := (inxn)n∈Z

for (xn)n∈Z ∈ `p(Z). Then σ(Mq) = iZ and σ
(
Tq(t)

)
= Γ whenever t/2π /∈

Q. Therefore, only (WSMT) but not (SMT) holds. See also Example 3.2.
(ii).

Most importantly, the above proposition can be applied to semigroups
of normal operators on Hilbert spaces. In fact, due to the Spectral Theo-
rem I.4.9, these semigroups are always isomorphic to multiplication semi-
groups on L2-spaces; hence (WSMT) holds.

3.14 Corollary. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup of nor-

mal operators on a Hilbert space and denote its generator by
(
A,D(A)

)
.

Then

(WSMT) σ
(
T (t)

)
= etσ(A) for t ≥ 0

holds.

3.15 Exercises. (1) Give an alternative proof of Corollary 3.8. (Hint: For (i)
use only identity (3.14); for (ii) consider µ = 0 and apply Theorem 2.26.)

(2) Assume that for some t0 > 0 the spectral radius r(T (t0)) is an eigenvalue
of T (t0) (or of its adjoint T (t0)

′). Show that in this case one has (SBeGB), i.e.,
s(A) = ω0.

(3) Let (T (t))t≥0 be a strongly continuous semigroup on some L1(Ω, µ) and as-
sume that 0 ≤ T (t)f for all 0 ≤ f ∈ L1(Ω, µ) and all t ≥ 0. Show that (SBeGB)
holds, that is, s(A) = ω0. (Hint: Use Lemma VI.1.9.)

(4∗) A strongly continuous semigroup (T (t))t≥0 with growth bound ω0 is called
asymptotically norm continuous if

lim
t→∞

(
lim
h↓0

e−ω0 t‖T (t + h)− T (t)‖
)

= 0.

(i) Show that the semigroup (T (t))t≥0 is asymptotically norm continuous if
T (t) = U0(t) + U1(t) for operator families (U0(t))t≥0 and (U1(t))t≥0 where
(U0(t))t≥0 is eventually norm continuous and limt→∞ e−ω0 t‖U1(t)‖ = 0.

(ii) Construct an example of such a decomposition using Theorem III.1.10.

(iii) For a semigroup (T (t))t≥0 that is norm continuous at infinity, the spectral
mapping theorems holds for the boundary spectrum, i.e.,

σ
(
T (t)

)
∩
{
λ ∈ C : |λ| = r

(
T (t)

)}
= et(σ(A)∩(s(A)+iR))

for t ≥ 0 and r(T (t)) > 0. See [MM96], [Bla99], and [NP99].

(5∗) Let A be the generator of a strongly continuous semigroup (T (t))t≥0. If eµt

is a pole of order k of the resolvent R(·, T (t)) with residue P and if Qk is the kth
coefficient of the Laurent series, then the following properties hold.
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(i) µ + 2πin/t is a pole of R(·, A) of order ≤ k for every n ∈ Z.

(ii) The residues Pn in µ + 2πin/t yield rg P = linn∈Z PnX.

(iii) The kth coefficient of the Laurent series of R(·, A) at µ + 2πin/t is

Qn = (teµt)1−k 1

t
Q

∫ t

0

e−(µ+2πin/t)sT (s) ds.

(Hint: See [Gre81, Prop. 1.10].)

(6) Let (T (t))t≥0 be a strongly continuous semigroup with generator A and as-
sume that λ = eµt0 is an approximate eigenvalue of T (t0) for some t0 > 0. Show
that the following assertions are equivalent.

(a) There exist xn ∈ X, ‖xn‖ = 1, such that limn→∞ ‖T (t0)xn−λxn‖ = 0 and
(T (t))t≥0 is uniformly continuous on {xn : n ∈ N}.

(b) There exists m ∈ Z such that µ + 2πim/t0 ∈ Aσ(A).

(c) There exist m ∈ N and xn ∈ X, ‖xn‖ = 1, such that

lim
n→∞

‖T (t0)xn − eµte
2πimt/t0xn‖ = 0

uniformly on compact t-intervals.

Restate assertion (c) by looking at the distance of the orbits ξn(·) := T (·)xn to
the function space{

f ∈ C
(
[0, t0], X

)
: f(t) = eµte

2πimt/t0z for some z ∈ X
}

.

(Hint: See Lemma 3.9 or [NP99].)

c. Weak Spectral Mapping Theorem for Bounded Groups

We conclude this section with an important theorem on the spectrum of strongly
continuous groups. Note that groups with unbounded generator have none of the
regularity properties needed in Corollary 3.12 in order to obtain (SMT). However,
if the group is bounded, the following is true.

3.16 Theorem. Let (T (t))t∈R be a bounded strongly continuous group on a
Banach space X with generator A. Then the weak spectral mapping theorem

(WSMT) σ
(
T (t)

)
= etσ(A) for t ∈ R

holds.

In the proof we follow ideas of S. Huang (see [Hua96] or [NH94]) and divide
it into several steps. First, we define a functional calculus for the group T =
(T (t))t∈R on the convolution algebra (L1(R), ∗) introduced in Appendix C.b.
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3.17 Lemma. (Functional calculus). Let T = (T (t))t∈R be a bounded strongly
continuous group with generator A on a Banach space X. For f ∈ L1(R), define

f̂(T)x :=

∫ ∞

−∞
f(t)T (t)x dt

for x ∈ X, where the integral is understood in the sense of Bochner. Then the
following assertions are true.

(i) f̂(T) ∈ L(X) and ‖f̂(T)‖ ≤ ‖f‖1 · supt∈R ‖T (t)‖ for all f ∈ L1(R).

(ii) f̂ ∗ g(T) = f̂(T) ĝ(T) for all f, g ∈ L1(R).

(iii) If f ∈ L1(R) and f̂ ∈ L1(R), then

f̂(T)x =
1

2π
lim
δ↓0

∫ ∞

−∞
f̂(s)

(
R(δ − is, A)−R(−δ − is, A)

)
x ds

for all x ∈ X.

(iv) If f ∈ K :=
{
f ∈ L1(R) : f̂ has compact support

}
and f̂ ≡ 0 in a neigh-

borhood of iσ(A), then f̂(T) = 0.

Proof. Assertion (i) is easily verified, while (ii) follows by calculations similar
to those proving Lemma C.12.(i).

To prove (iii) we note that ω0(A) = ω0(−A) = 0. Recall next that by the
inversion formula for the Fourier transform from Theorem C.9,

f(t) =
1

2π

∫ ∞

−∞
f̂(s) eist ds

for almost all t ∈ R. Then from Lebesgue’s dominated convergence theorem and
Fubini’s theorem we obtain

f̂(T)x = lim
δ↓0

∫ ∞

−∞
e−δ|t|f(t)T (t)x dt

=
1

2π
lim
δ↓0

∫ ∞

−∞
e−δ|t|

(∫ ∞

−∞
f̂(s) eistT (t)x ds

)
dt

=
1

2π
lim
δ↓0

∫ ∞

−∞
f̂(s)

(∫ ∞

−∞
e−δ|t|+istT (t)x dt

)
ds

=
1

2π
lim
δ↓0

∫ ∞

−∞
f̂(s)

(
R(δ − is, A)−R(−δ − is, A)

)
x ds

for all x ∈ X. This proves (iii).

To prove (iv), let V := R \ supp f̂ . Then V is a neighborhood of iσ(A) such

that f̂ ≡ 0 on V and R \ V = suppf̂ is compact. Moreover, by (iii) we have

f̂(T)x =
1

2π
lim
δ↓0

∫
R\V

f̂(s)
(
R(δ − is, A)−R(−δ − is, A)

)
x ds

for all x ∈ X. Since R \ V ⊂ iρ(A), we find that for all δ > 0 the functions

s 7→ f̂(s)
(
R(δ − is, A)−R(−δ − is, A)

)
x are continuous on R \ V and satisfy

lim
δ↓0

f̂(s)
(
R(δ − is, A)−R(−δ − is, A)

)
x = 0

for all s ∈ R\V . By Lebesgue’s dominated convergence theorem this implies that

f̂(T)x = 0 for each x ∈ X and thus f̂(T) = 0. �
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With the aid of this functional calculus we now introduce the “Arveson spec-
trum” of a bounded group.

3.18 Proposition. Let T = (T (t))t∈R be a bounded strongly continuous group

with generator A on a Banach space X. Then, for IT :=
{
f ∈ L1(R) : f̂(T) = 0

}
and the Arveson spectrum

Sp(T) :=
{
s ∈ R : f̂(s) = 0 for all f ∈ IT

}
,

we have
Sp(T) = iσ(A).

Moreover, A is bounded if and only if σ(A) is bounded.

Proof. We first note that σ(A) ⊆ iR, hence σ(A) = Aσ(A) by Proposition 1.10.
Using this fact and Lemma 1.9 we find for every λ ∈ σ(A) an approximate
eigenvector (xn)n∈N ⊂ D(A) of A. However, from the proof of Theorem 3.6 it
follows that for all t ∈ R, the sequence (xn)n∈N is also an approximate eigenvector
of T (t) for the approximate eigenvalue eλt. Hence, for all f ∈ L1(R) and s = iλ
we have (

f̂(s)− f̂(T)
)
xn =

∫ ∞

−∞
f(t)

(
eλt − T (t)

)
xn dt,

where by Lebesgue’s dominated convergence theorem the right-hand side of this

equality converges to zero as n →∞. This implies f̂(s) ∈ σ(f̂(T)) and therefore

|f̂(s)| ≤ ‖f̂(T)‖ = 0 for all s ∈ iσ(A) and f ∈ IT . This proves the inclusion
iσ(A) ⊆ Sp(T).

On the other hand, if s0 /∈ iσ(A), then by Lemma C.12.(ii) there exists a

function f0 ∈ K such that f̂0(s0) 6= 0 and f̂0 ≡ 0 in a neighborhood of iσ(A).

Applying Lemma 3.17.(iv) to f0 we obtain f̂0(T) = 0. It follows that f0 ∈ IT ,

while f̂0(s0) 6= 0. Therefore, s0 /∈ Sp(T) and thus Sp(T) = iσ(A).
To prove the “moreover” part, we assume σ(A) to be bounded. Let P be the

corresponding spectral projection; cf. Proposition 1.16. Then A|PX is a bounded
operator and σ(B) = ∅ for B := A|(I−P )X . Let S be the restriction of T to
(I − P )X. Then, since (I − P )X is (T (t))t∈R-invariant, S is also a bounded
strongly continuous group with generator B. Lemma 3.17.(iv) applies to S and

yields, since σ(B) is empty, that f̂(S) = 0 for all f ∈ K. However, by Lemma C.12.

(iii), K is norm dense in L1(R), and by Lemma 3.17.(i) the mapping f 7→ f̂(S) is

continuous; hence f̂(S) = 0 for all f ∈ L1(R). In particular, R(λ, B) = 0 for all
Re λ > 0. This implies that (I −P )X = {0}, and thus A = A|PX is bounded. �

Next, we repeat the previous constructions by replacing (L1(R), ∗) by the al-
gebra (`1(Z), ∗) and the bounded group T by a doubly power bounded linear
operator U .

3.19 Lemma. (Functional calculus). Let U ∈ L(X) be a doubly power bounded
operator , i.e., U is invertible and supn∈Z ‖Un‖ < ∞. For f := (an)n∈Z ∈ `1(Z),
define

f̂(U) :=
∑
n∈Z

anUn ∈ L(X).

Then the following assertions are true.
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(i) ‖f̂(U)‖ ≤ ‖f‖1 · supn∈Z ‖Un‖ for all f ∈ `1(Z).

(ii) f̂ ∗ g(U) = f̂(U) ĝ(U) for all f, g ∈ `1(Z).

(iii) For all f ∈ `1(Z) we have

f̂(U) =
1

2πi
lim
r↑1

∫
Γ

f̂(z−1)U
(
r−1z−1R(r−1z−1, U)− rz−1R(rz−1, U)

)
dz.

(iv) If f ∈ `1(Z) and f̂ ≡ 0 in a neighborhood of σ(U), then f̂(U) = 0.

Proof. Assertion (i) follows from simple calculations, while (ii) can be proved
as Lemma C.13.(i).

To prove (iii), we first verify, using the Neumann series and the resolvent equa-
tion, that ∑

n∈Z

znr|n|Un =
(
r−1z−1R(r−1z−1, U)− rz−1R(rz−1, U)

)
for all 0 < r < 1. Moreover, for f = (an)n∈Z ∈ `1(Z) we have

∑
n∈Z

anr|n−1|Un−1 =
1

2πi

∫
Γ

(∑
n∈Z

anz−n
)
·
(∑

n∈Z

znr|n|Un
)

dz

=
1

2πi

∫
Γ

f̂(z−1)
(
r−1z−1R(r−1z−1, U)− rz−1R(rz−1, U)

)
dz.

Since by Abel’s limit theorem limr↑1 U
∑

n∈Z anr|n−1|Un−1 = f̂(U), the desired
result follows.

Finally, to verify (iv) we choose some neighborhood V ⊆ Γ of σ(U) such that

f̂ ≡ 0 on V . Then, by (iii) we have for V ∗ := {z−1 : z ∈ V }

f̂(U) =
1

2πi
lim
r↑1

∫
Γ\V ∗

f̂(z−1)U
(
r−1z−1R(r−1z−1, U)− rz−1R(rz−1, U)

)
dz.

Since Γ \ V ⊂ ρ(U), we find that the functions z 7→ r−1z−1R(r−1z−1, U) −
rz−1R(rz−1, U) for all 1 > r > 0 are continuous on Γ \ V ∗ and satisfy

lim
r↑1

(
r−1z−1R(r−1z−1, U)− rz−1R(rz−1, U)

)
= 0

for all z ∈ Γ \ V ∗. Hence, Lebesgue’s dominated convergence theorem implies

that f̂(U) = 0. �

We now introduce the “Arveson spectrum” for a doubly power bounded oper-
ator U in a way analogous to the group case.
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3.20 Proposition. Let U ∈ L(X) be a doubly power bounded operator.

(i) For IU :=
{
f ∈ `1(Z) : f̂(U) = 0

}
and the Arveson spectrum

Sp(U) :=
{
z ∈ Γ : f̂(z) = 0 for all f ∈ IU

}
we have

Sp(U) = σ(U).

(ii) Assume (Xn)n≥1 to be a sequence of closed subspaces of X that are invari-

ant under U and U−1 such that
⋃∞

n=1
Xn = X. Then

∞⋃
n=1

σ(U|Xn) = σ(U).

Proof. (i) We first note that σ(U) ⊆ Γ, and therefore σ(U) = Aσ(U) by Propo-
sition 1.10. Hence, for all z ∈ σ(U) we can choose an approximate eigenvector
(xk)k∈N ⊂ X and obtain for arbitrary f = (an)n∈Z ∈ `1(Z)(

f̂(z)− f̂(U)
)
xk =

∑
n∈Z

an (zn − Un) xk → 0

as k → ∞. This shows that f̂(z) ∈ σ(f̂(U)) and therefore |f̂(z)| ≤ ‖f̂(U)‖ = 0
for all f ∈ IU . This proves the inclusion σ(U) ⊆ Sp(U).

On the other hand, for z0 ∈ Γ \ σ(U) by Lemma C.13.(ii) we can find an

f0 ∈ `1(Z) such that f̂0(z0) 6= 0 and f̂0 ≡ 0 in a neighborhood of σ(U). Applying

Lemma 3.19.(iv) to f0 we obtain f̂0(U) = 0. Since f̂0(z0) 6= 0, this implies that
z0 /∈ Sp(U) and hence Sp(U) = σ(U).

To prove (ii), we recall that

σ(U|Xn) = Aσ(U|Xn) ⊆ σ(U),

where the equality follows from Proposition 1.10 and Lemma 1.15. Therefore, the
inclusion

∞⋃
n=1

σ(U|Xn) ⊆ σ(U)

holds.
On the other hand, if z1 ∈ Γ \

⋃∞
n=1

σ(U|Xn), then again by Lemma C.13.(ii)

we can find an f1 ∈ `1(Z) such that f̂1(z1) 6= 0 and f̂1 ≡ 0 in a neighborhood of⋃∞
n=1

σ(U|Xn). By Lemma 3.19.(iv) this implies that f̂1(U|Xn) = 0 for all n ≥ 1.

Since
⋃∞

n=1
Xn is dense in X, it follows that f̂1(U) = 0; hence z1 /∈ Sp(U) = σ(U).

This completes the proof. �

After these preparations we are well prepared to prove the weak spectral map-
ping theorem.
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Proof of Theorem 3.16. We write T = (T (t))t∈R and define for each n ∈ N
the subspaces

Xn :=
{

x ∈ X : f̂(T)x = 0 for all f ∈ L1(R) satisfying f̂ ≡ 0 on [−n, n]
}

of X. We then claim that

(i) each Xn is T-invariant and closed,

(ii) each An := A|Xn is bounded,

(iii)
⋃∞

n=1
Xn = X.

Assertion (i) follows directly from the definition of Xn.
To show (ii), we fix n ∈ N and denote by Tn the restriction of T to Xn.

Moreover, we choose r ∈ R \ [−n, n]. Then, by Lemma C.12.(ii), there exists

f ∈ L1(R) such that f̂ ≡ 0 on [−n, n] and f̂(r) 6= 0. By definition of Xn, we find

that f̂(Tn)x = f̂(T)x = 0 for all x ∈ Xn, i.e., f̂(Tn) = 0. Hence, r is not contained
in the Arveson spectrum Sp(Tn), and therefore Sp(Tn) is contained in [−n, n].
Since by Corollary II.2.3 the generator of Tn is given by An, Proposition 3.18
implies

Sp(Tn) = iσ(An).

Hence, again from Proposition 3.18, it follows that An is bounded, proving (ii).
To prove (iii), we take some g ∈ K and choose n ∈ N such that supp ĝ ⊆ [−n, n].

Then, by Lemma C.12.(i), we have

f̂ ∗ g = f̂ · ĝ = 0

for all f ∈ L1(R) such that f̂ ≡ 0 on [−n, n]. The Inversion Theorem C.9 implies
f ∗ g = 0 almost everywhere. Combining this fact with Lemma 3.17.(ii), we see
that the subspace

X0 := lin
{
ĝ(T)x : g ∈ K, x ∈ X

}
is contained in

⋃∞
n=1

Xn. Therefore, (iii) follows if we can show that X0 = X.

To this end, let x′ ∈ X ′ vanish on X0. Then
〈
f̂(T)x, x′

〉
= 0 for all f ∈ K and

x ∈ X. Since K is norm dense in L1(R) by Lemma C.12.(iii) and since the map

f 7→ f̂(T) is continuous by Lemma 3.17.(i), we find that
〈
f̂(T)x, x′

〉
= 0 for all

f ∈ L1(R) and x ∈ X. In particular,
〈
R(λ, A)x, x′

〉
= 0 for Re λ > 0 and all

x ∈ X. Since R(λ, A)X = D(A) is dense in X, this implies x′ = 0, and thus (iii)
follows from the Hahn–Banach theorem.

We now fix t ∈ R and define U := T (t). Then U is a doubly power bounded
operator, and we have U|Xn = etAn for n ≥ 1. Moreover, since σ(An) ⊂ iR we
conclude from Proposition 1.10 that σ(An) = Aσ(An) ⊆ Aσ(A) = σ(A); hence

σ
(
U|Xn

)
=
{
etλ : λ ∈ σ(An)

}
⊆
{
etλ : λ ∈ σ(A)

}
.

This implies, by Proposition 3.20, that

σ
(
T (t)

)
= σ(U) =

∞⋃
n=1

σ(U|Xn) ⊆ {etλ : λ ∈ σ(A)}.

Since by Theorem 3.6 we already know that

σ
(
T (t)

)
⊇ {etλ : λ ∈ σ(A)},

the proof is complete. �



Section 4. Spectral Theory and Perturbation 289

Since the spectrum of a bounded operator is never empty, we obtain the fol-
lowing simple but interesting consequence of Theorem 3.16.

3.21 Corollary. The generator of a bounded strongly continuous group has
nonempty spectrum.

3.22 Exercises. (1∗) Let T := (T (t))t∈R be a strongly continuous group on a
Banach space X.

(i) Show that the weak spectral mapping theorem (WSMT) even holds if T is
polynomially bounded. (Hint: See [Nag86, A-III, Thm. 7.4].)

(ii) The assertion in (i) remains true if

‖T (t)‖ ≤ w(t) for all t ∈ R

and a non-quasi-analytic weight w, i.e., w satisfies 1 ≤ w(s+t) ≤ w(s)+w(t)
for s, t ∈ R and ∫ ∞

−∞

log w(t)

1 + t2
dt < ∞.

(Hint: See [Hua94] and [NH94].)

(2∗) Show that for a matrix-valued multiplication semigroup (M(t))t≥0 on the
space C0(R, X) (i.e., in the situation of Paragraph III.4.13 take X with dim X <
∞) the weak spectral mapping theorem (WSMT) holds. (Hint: See [Hol91].)

4. Spectral Theory and Perturbation

In this section, let T = (T (t))t≥0 be a strongly continuous semigroup with genera-
tor (A, D(A)) on a Banach space X and assume that the spectra σ(A) and σ(T (t))
and the corresponding resolvents are known. Then take an operator B ∈ L(X)
and the semigroup S = (S(t))t≥0 generated by A + B.

4.1 Problem. Determine the spectra σ(A + B) and σ(S(t)).

The first part of this problem is relatively easy, and at least a part of σ(A+B)
can be described by a condition involving only B and the resolvent of A.

4.2 Proposition. For λ ∈ ρ(A) we have

λ ∈ σ(A + B) ⇐⇒ 1 ∈ σ
(
BR(λ, A)

)
⇐⇒ 1 ∈ σ

(
R(λ, A)B

)
.

Proof. The assertion follows from the identity

λ−A−B =
(
I −BR(λ, A)

)
(λ−A)

and the equality σ(BR(λ, A))\{0} = σ(R(λ, A)B)\{0}; see [GGK90, III.2, (3)].
�

This result also solves the second part of Problem 4.1 if the spectral mapping
theorem

(SMT) σ
(
S(t)

)
\ {0} = etσ(A+B), t ≥ 0,

holds. By Theorem 3.10 this is true, e.g., in the situation of Theorem III.1.16.
Since these assumptions are quite strong, we discuss a new and simpler problem.
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4.3 Problem. Estimate the spectral radius r(S(t)) by the spectral radius r(T (t))

and by et s(A+B), where s(A + B) denotes the spectral bound of A + B.

Since r(S(t)) = et ω0(S) (see Proposition 2.2) the answer to this problem gives
stability conditions for the perturbed semigroup (S(t))t≥0 (cf. Proposition V.1.7).

We now recall from Corollary 2.11 that

ω0(S) = max
{
ωess(S), s(A + B)

}
and from Proposition 2.10 that

et ωess(S) = ress
(
S(t)

)
,

where ωess(S) is the essential growth bound of S and ress(S(t)) denotes the essen-
tial spectral radius of S(t). Hence, if we can estimate ress(S(t)) by the essential
spectral radius ress(T (t)) of the unperturbed semigroup, we obtain an answer to
Problem 4.3.

To that purpose, we use Exercise III.1.17.(3.ii) and obtain that the semigroup
(S(t))t≥0 is given by the Dyson–Phillips series

(4.1) S(t) =

∞∑
j=0

Sj(t), t ≥ 0,

where

(4.2)

S0(t) := T (t),

Sj+1(t) :=

∫ t

0

Sj(t− s)BT (s) ds for all t ≥ 0, j ∈ N0.

We now introduce the set

(4.3) K :=
{
C ∈ L(X) : ress(B − C) = ress(B) for all B ∈ L(X)

}
and recall that K contains all compact operators, or, more generally, all strictly
power compact or strictly singular operators (cf. [Voi80] and [Kat58, Thm. 2, p. 285]).
In particular, if X = L1(Ω, µ) or X = C0(Ω), then K contains all weakly compact
operators, see [DS58, Cor. VI.8.13].

With this notation we can state the main result.

4.4 Theorem. Assume that there exist n ∈ N0 and a sequence (tk)k∈N ⊂ R+

with limk→∞ tk = ∞ such that

(4.4) Rn+1(tk) :=

∞∑
j=n+1

Sj(tk) = S(tk)−
n∑

j=0

Sj(tk) ∈ K for all k ∈ N.

Then we have

(4.5) ress
(
S(t)

)
≤ ress

(
T (t)

)
for all t ≥ 0

and therefore ωess(S) ≤ ωess(T).

The proof is split into the following two lemmas. First, we show that the terms
in the Dyson–Phillips series (4.1) satisfy the same exponential estimate as T.
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4.5 Lemma. For every w > ω0(T) and j ∈ N0 there exists a constant Mj(w) > 0
such that

(4.6) ‖Sj(t)‖ ≤ Mj(w) · ewt for all t ≥ 0.

Proof. By the definition of the growth bound in I.5.6, for every w > ω0(T)
there exists M(w) ≥ 1 such that ‖T (t)‖ ≤ M(w) ewt. In particular, the assertion
is true for j = 0 with M0(w) := M(w). We now proceed by induction and assume
(4.6) to be true for some j ∈ N0. Then, from the definition of Sj+1(t) in (4.2) we
obtain for w > w̃ > ω0(T) that

‖Sj+1(t)‖ ≤
∫ t

0

Mj(w̃)ew̃(t−s) ‖B‖ M(w̃)ew̃s ds

= Mj(w̃)‖B‖M(w̃) · t ew̃t ≤ Mj+1(w) ewt

for Mj+1(w) := Mj(w̃) ‖B‖M(w̃) · sup
{
t e(w̃−w)t : t ≥ 0

}
. �

In the next and essential step we derive an estimate for the essential spectral
radius of the partial sums of the Dyson–Phillips series.

4.6 Lemma. For every w > ωess(T) and n ∈ N0 there exists a constant Ln > 0
such that

(4.7) ress

( n∑
j=0

Sj(t)
)
≤ Lnewt for all t ≥ 0.

Proof. Let σc := σ(A)∩{λ ∈ C : Re λ ≥ w} and denote by Pc the corresponding
spectral projection from (1.7). This yields the decomposition

(4.8) X = Xc ⊕Xu,

where Xc := PcX is finite-dimensional (use Corollary 2.11) and Xu = PuX for
Pu = I − Pc. Since T (t) commutes with Pc for all t ≥ 0, we can, according to
(4.8), represent it as a diagonal matrix

T (t) =
(

Tc(t) 0
0 Tu(t)

)
.

Denoting the generator of the semigroup Tu = (Tu(t))t≥0 by Au, we see from
Corollary 2.11 and Proposition 1.16 that

(4.9) ω0(Tu) = max {ωess(Tu), s(Au)} = max {ωess(T), s(Au)} < w.

We now define Bu := PuB|Xu and

B̃ :=
(

0 0
0 Bu

)
= PuBPu.

Moreover, we denote by S̃j(t) the terms in (4.2) with B replaced by B̃. Then

(4.10) S̃j(t) :=
(

0 0
0 Su,j(t)

)
for all j ∈ N, t ≥ 0,

where Su,j(t) denotes the terms in (4.2) with T (t) and B replaced by Tu(t) and
Bu, respectively. We proceed by verifying that

(i) S̃j(t)− Sj(t) is compact for all j ∈ N0 and t ≥ 0, and

(ii) ress

(∑n

j=0
S̃j(t)

)
≤ Lnewt for some suitable constant Ln > 0.

Since by definition the essential spectral radius remains unchanged under compact
perturbations, this will imply the desired assertion.
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In order to prove (i) we proceed by induction. Since S̃0(t) = S0(t), the assertion
is trivially satisfied for j = 0. Assume now (i) to be true for some j ∈ N0. Then,

we first observe that by (4.10) the operators S̃j(t) and Pu =
(

0 0

0 IXu

)
commute

for all j ∈ N0 and t ≥ 0. Using this fact, we obtain

S̃j+1(t)−Sj+1(t) =

∫ t

0

S̃j(t− s)B̃S0(s) ds−
∫ t

0

Sj(t− s)BS0(s) ds

=

∫ t

0

S̃j(t− s)(Pu − I)BPuS0(s) ds +

∫ t

0

S̃j(t− s)B(Pu − I)S0(s) ds

+

∫ t

0

(
S̃j(t− s)− Sj(t− s)

)
BS0(s) ds

= − Pc

∫ t

0

S̃j(t− s)BPuS0(s) ds−
∫ t

0

S̃j(t− s)BS0(s) ds Pc

+

∫ t

0

(
S̃j(t− s)− Sj(t− s)

)
BS0(s) ds.(4.11)

Since Pc is of finite rank and the integral in (4.11) is compact (use Theorem C.7),
this proves (i).

To verify (ii), we apply Lemma 4.5 to Tu = (Tu(t))t≥0 and Bu and obtain from
(4.9) constants Mu,j(w) = Mu,j > 0 such that

‖Su,j(t)‖ ≤ Mu,j ewt for all j ∈ N0, t ≥ 0.

Since
n∑

j=0

S̃j(t) =

(
Tc(t) 0

0
∑n

j=0
Su,j(t)

)
,

where Tc(t) is of finite rank, this implies

ress

( n∑
j=0

S̃j(t)
)

= ress

( n∑
j=0

Su,j(t)
)
≤
∥∥∥ n∑

j=0

Su,j(t)

∥∥∥ ≤ Lnewt

for Ln :=
∑n

j=0
Mu,j . This gives (ii), and the proof of the lemma is complete. �

We are now in the condition to prove the above theorem.

Proof of Theorem 4.4. Let w > ωess(T). Then by Lemma 4.6 there exists a
constant Ln > 0 such that

Lnewtk ≥ ress

( n∑
j=0

Sj(tk)
)

= ress

(
S(tk)−

(
S(tk)−

n∑
j=0

Sj(tk)
))

= ress
(
S(tk)

)
≥ 0 for all k ∈ N,

where we used in the second equality the assumption S(tk) −
∑n

j=0
Sj(tk) ∈ K

for all k ∈ N. Since by Proposition 2.10

ress
(
S(t)

)
= et ωess(S),

this implies that

Ln ≥ e(ωess(S)−w)tk ≥ 0 for all k ∈ N,

and hence limk→∞ tk = ∞ implies that ωess(S) ≤ w. Since this holds for all
ωess(T) < w, we obtain ωess(S) ≤ ωess(T) as claimed. �
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As explained above, Theorem 4.4 gives the following answer to Problem 4.3.

4.7 Corollary. Assume that there exist n ∈ N0 and a sequence (tk)k∈N ⊂ R+

with limk→∞ tk = ∞ such that

Rn+1(tk) :=

∞∑
j=n+1

Sj(tk) ∈ K for all k ∈ N.

Then one has
r
(
S(t)

)
≤ max

{
r
(
T (t)

)
, et r(A+B)

}
for all t ≥ 0.

For an application of these results we refer to Section VI.2.

4.8 Exercises. (1) Let T = (T (t))t≥0 be a strongly continuous semigroup with
generator A on a Banach space X, and take a perturbing operator B ∈ L(X).
Moreover, denote by S = (S(t))t≥0 the perturbed semigroup with generator A+B
and let Sj(t) be defined by (4.2).

(i) Show that the original semigroup (T (t))t≥0 is given by

T (t) =

∞∑
i=0

Ti(t), t ≥ 0,

where T0(t) := S(t) and

Ti+1(t) := −
∫ t

0

Ti(t− s)BS(s) ds, t ≥ 0.

(ii) Show that

Ti(t) = (−1)i

∞∑
j=i

(
j

i

)
Sj(t), t ≥ 0.

(2) Take again a strongly continuous semigroup T = (T (t))t≥0 with generator
A on a Banach space X and a perturbation B ∈ L(X). If for some n ∈ N the
Dyson–Phillips term Sn+1(t) in (4.2) is compact for all t ≥ 0, then we obtain

ωess(T) = ωess(S),

where S = (S(t))t≥0 denotes the semigroup generated by A + B. (Hint: Use
Exercise 1.)

Notes to Chapter IV

Section 1. There are many good references for the spectral theory of closed
operators. We mention Dunford–Schwartz [DS58], Taylor–Lay [TL80], and Kato
[Kat80]. For the essential spectrum, introduced in one way or another (cf. the foot-
note on p. 243 of [Kat80]), we refer to [Kat80, Sec. IV.5.6], [GGK90, Chap. XVII],
or [Gol66, IV.2].
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Section 2.a. Right from the beginning, spectral theory was an essential tool
for the investigation of semigroups (see [Phi51]). Our presentation is inspired by
Section A-III in [Nag86]. The failure of “s(A) = ω0” was already known to Hille
([Hil48, Sec. 21.12]), while the simple Counterexample 2.7 is due to [GVW81].
The phenomenon, discussed in Paragraph 2.8, that the spectrum (or a part of
it) is determined by some characteristic equation is typical for operators arising
from functional differential equations (see Section VI.1 and Section VI.6) and can
be studied in an abstract framework (see [Nag97]).

Section 2.b. The standard constructions are taken from [Nag86, A-III], while
the isometric limit semigroups first appeared explicitly in [Vũ92].

Section 2.c. The systematic study of periodic (semi) groups goes back (at least)
to [Bar77], and has been extended in numerous papers to almost periodic semi-
groups (see [Ves97] and the references therein).

Section 3.a. Counterexample 3.3 is due to Arendt (see [Are94, Sec. 3]), while
Zabczyk [Zab75] found Counterexample 3.4 and Renardy gave a counterexample
for partial differential operators; see Exercise 3.5.(3) and [Ren94]. A more detailed
analysis of the failure of (SMT) is done in [Wro89], while Trefethen looks in
[Tre97] at this phenomenon from the perspective of numerical analysis.

Section 3.b. Theorem 3.10 was already known to Hille–Phillips [HP57] with still
another proof in [Dav80]. In [NP99], Lemma 3.9 is used to introduce the critical
spectrum of a strongly continuous semigroup (T (t))t≥0 as the part of σ(T (t))
not obtained from σ(A). We also refer to the systematic treatment of spectral
mapping theorems in Chapter 2 of [Nee96].

Section 3.c. The notions Sp(T) and Sp(U) used in Proposition 3.18 and Proposi-
tion 3.20, respectively, are due to Evans; see [Arv74]. The equality Sp(T) = iσ(A)
in Proposition 3.18 was proved in [Eva76], while Sp(U) = σ(U) in Proposi-
tion 3.20 can be found in [Hua96]. Theorem 3.16 and the method of its proof can
be extended to polynomially bounded groups (see [DLZ82], [Nag86, A-III, Thm. 7.4],
[Mar86], [Hua96]) and even to groups satisfying non-quasi-analytic growth con-
ditions [NH94], but not to general strongly continuous groups (see [Hua94]).

Section 4. The best reference for the spectral theory of perturbed operators
is still Kato’s classic [Kat80]. Spectral analysis of perturbed semigroups started
with the paper [Vid70] by Vidav. Theorem 4.4 is due to Voigt [Voi80], [Voi94],
who also gave conditions for the equality of the essential growth bounds of the
original and the perturbed semigroup. For more recent results on the spectral
mapping theorem for perturbed semigroups we refer to [Thi98b] and [BNP99].



Chapter V

Asymptotics of Semigroups

We now come to one of the most interesting aspects of semigroup theory.
After having established generation, perturbation, and approximation the-
orems in the previous chapters, we will investigate the qualitative behavior
of a given semigroup. We already dealt with this problem when we classified
strongly continuous semigroups according to their regularity properties in
Section II.4, but we will now concentrate on their “asymptotic” behavior.
By this we mean the behavior of the semigroup

(
T (t)

)
t≥0 for large t > 0

or, more precisely, the existence (or nonexistence) of

lim
t→∞

T (t),

where the limit will be understood in various ways and for different topolo-
gies. If we recall that the function t 7→ T (t)x yields the (mild) solutions of
the corresponding abstract Cauchy problem

(ACP)

{
ẋ(t) = Ax(t), t ≥ 0,
x(0) = x

(see Section II.6), it is evident that such results will be of utmost impor-
tance.

295
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1. Stability and Hyperbolicity for Semigroups

Among the many interesting types of asymptotic behavior, we first study
stability of strongly continuous semigroups

(
T (t)

)
t≥0. By this we mean that

the operators T (t) should converge to zero as t → ∞. However, as is to
be expected in infinite-dimensional spaces, we have to distinguish different
concepts of convergence.

a. Stability Concepts

For a strongly continuous semigroup
(
T (t)

)
t≥0 with generator A : D(A) ⊆

X → X we make precise what we mean by

“ lim
t→∞

T (t) = 0.”

A first stability concept, called uniform exponential stability , has already
been introduced in Definition I.3.11. However, we now vary the topology
and the “speed” of the convergence by proposing the following concepts.

1.1 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 is called

(a) uniformly exponentially stable if there exists ε > 0 such that

(1.1) lim
t→∞

eεt ‖T (t)‖ = 0,

(b) uniformly stable if

(1.2) lim
t→∞

‖T (t)‖ = 0,

(c) strongly stable if

(1.3) lim
t→∞

‖T (t)x‖ = 0 for all x ∈ X,

(d) weakly stable if

(1.4) lim
t→∞

〈T (t)x, x′〉 = 0 for all x ∈ X and x′ ∈ X ′.

We start our discussion of these concepts by noting that the two “uni-
form” properties coincide and are even equivalent to a “pointwise” condi-
tion.

1.2 Proposition. For a strongly continuous semigroup
(
T (t)

)
t≥0, the fol-

lowing assertions are equivalent.

(a)
(
T (t)

)
t≥0 is uniformly exponentially stable.

(b)
(
T (t)

)
t≥0 is uniformly stable.

(c) There exists ε > 0 such that limt→∞ eεt ‖T (t)x‖ = 0 for all x ∈ X.
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Proof. Clearly, (a) implies (b) and (c). Since eω0 t = r
(
T (t)

)
≤ ‖T (t)‖

for all t ≥ 0 (see Proposition IV.2.2), (b) implies ω0 < 0, hence (a). If
(c) holds, then

(
eεtT (t)

)
t≥0 is strongly, hence uniformly, bounded, which

implies limt→∞ eε/2t‖T (t)‖ = 0. �

It is obvious from the definition that uniform (exponential) stability im-
plies strong stability, which again implies weak stability. The following ex-
amples show that none of the converse implications holds.

1.3 Examples. (i) The (left) translation semigroup
(
T (t)

)
t≥0 on X :=

Lp(R+), 1 ≤ p <∞, is strongly stable, but one has

‖T (t)‖ = 1

for all t ≥ 0; hence it is not uniformly stable.
(ii) The (left) translation group

(
T (t)

)
t∈R on X := Lp(R), 1 < p < ∞, is

a group of isometries, hence is not strongly stable. However, for functions
f ∈ X, g ∈ X ′ = Lq(R), 1/p + 1/q = 1, with compact support and large t,
one has that T (t)f and g have disjoint supports, whence

〈T (t)f, g〉 =
∫ ∞

−∞
f(s+ t)g(s) ds = 0.

For arbitrary f ∈ X, g ∈ X ′ and for each n ∈ N, we choose fn ∈ X and
gn ∈ X ′ with compact support such that ‖f − fn‖p ≤ 1/n and ‖g− gn‖q ≤
1/n. Then∣∣〈T (t)f, g

〉∣∣ ≤ ∣∣〈T (t)(f − fn), gn

〉∣∣+ ∣∣〈T (t)f, g − gn

〉∣∣+ ∣∣〈T (t)fn, gn

〉∣∣
≤ 1

n

(
‖g‖q + 1 + ‖f‖p

)
+
∣∣〈T (t)fn, gn

〉∣∣ .
Since the last term is 0 for large t, we conclude that

lim
t→∞

〈T (t)f, g〉 = 0

for all f ∈ X, g ∈ X ′, i.e.,
(
T (t)

)
t≥0 is weakly stable.

As a brief intermezzo, we show that the above definitions do not exhaust the
range of reasonable stability concepts. For example, it may happen that

“ ‖T (t)x‖ → 0 for x ∈ D(A), ”

i.e., for the (classical) solutions of (ACP) only, while the semigroup is not stable
in the sense of Definition 1.1.
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1.4 Example. Take the (left) translation semigroup (T (t))t≥0 with generator
(A, D(A)) on X := C0(R+) ∩ L1(R+, exdx) as in Counterexample IV.2.7. There,
we have shown that ‖T (t)‖ = 1 for all t ≥ 0 and that

R(λ, A)g =

∫ ∞

0

e−λsT (s)g ds = lim
t→∞

∫ t

0

e−λsT (s)g ds

exists for all g ∈ X and all λ > −1. Now take f ∈ D(A) and use identity (1.11)
in Lemma II.1.9 to obtain

T (t)f = eλt

(
f −

∫ t

0

e−λsT (s)(λ−A)f ds

)
.

These two identities imply that for each ε < 1 we have

lim
t→∞

eεt ‖T (t)f‖ = 0

for all f ∈ D(A).

If we now take the rescaled semigroup (S(t))t≥0 with S(t) := e
t/2T (t), we

obtain ‖S(t)‖ = e
t/2. This semigroup is unbounded, hence not weakly stable. On

the other hand, it satisfies the following stability property.

1.5 Definition. A strongly continuous semigroup (T (t))t≥0 with the generator
(A, D(A)) is called exponentially stable if there exists ε > 0 such that

(1.5) lim
t→∞

eεt ‖T (t)x‖ = 0

for all x ∈ D(A).

We refer to [Nee96] for more information on this and related concepts.

It is now our goal to characterize the above stability concepts, hopefully
by properties of the generator. In the following subsection we try this for
uniform exponential stability.

1.6 Exercises. (1) Discuss the above stability properties for multiplication
semigroups on Lp(R) and C0(R). See also Examples 2.19.(ii) and (iii) below.

(2) Let µ be a probability measure on R that is absolutely continuous with respect
to the Lebesgue measure. Use the Riemann–Lebesgue lemma (see Theorem C.8)
to show that the multiplication semigroup (T (t))t≥0 with(

T (t)f
)
(s) := eitsf(s), s ∈ R,

is weakly stable on Lp(R, µ) for 1 ≤ p < ∞.

(3) Show that the adjoint semigroup of a strongly stable semigroup is weak∗-
stable, that is, limt→∞ 〈x, T (t)′x′〉 = 0 for all x ∈ X, x′ ∈ X ′, but not strongly
stable in general.

(4) Show that an eventually compact semigroup that is weakly stable is neces-
sarily uniformly exponentially stable.
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b. Characterization of Uniform Exponential Stability

We start by recalling the definition of the growth bound

(1.6)

ω0 : = ω0(T) := ω0(A)

: = inf
{
w ∈ R : ∃Mw ≥ 1 such that ‖T (t)‖ ≤Mwewt ∀ t ≥ 0

}
= inf

{
w ∈ R : lim

t→∞
e−wt ‖T (t)‖ = 0

}
of a semigroup T =

(
T (t)

)
t≥0 with generator A (compare Definition I.5.6).

From this definition it is immediately clear that
(
T (t)

)
t≥0 is uniformly

exponentially stable if and only if

(1.7) ω0 < 0.

Moreover, the identity

(1.8) ω0 = inf
t>0

1
t

log ‖T (t)‖ = lim
t→∞

1
t

log ‖T (t)‖ =
1
t0

log r
(
T (t0)

)
for each t0 > 0, proved in Proposition IV.2.2, yields the following char-
acterizations of uniform exponential stability (cf. Proposition I.3.12 in the
case of uniformly continuous semigroups).

1.7 Proposition. For a strongly continuous semigroup
(
T (t)

)
t≥0, the fol-

lowing assertions are equivalent.

(a) ω0 < 0, i.e.,
(
T (t)

)
t≥0 is uniformly exponentially stable.

(b) limt→∞ ‖T (t)‖ = 0.
(c) ‖T (t0)‖ < 1 for some t0 > 0.
(d) r

(
T (t1)

)
< 1 for some t1 > 0.

A much less obvious characterization is obtained by looking at the orbit
maps ξx : t 7→ T (t)x. Then the exponential estimate

(1.9) ‖T (t)x‖ ≤Me−εt ‖x‖

for some constants M ≥ 1, ε > 0 and all x ∈ X (i.e., uniform exponential
stability) implies that each ξx(·) belongs to Lp(R+, X) for all 1 ≤ p < ∞,
that is, ∫ ∞

0

‖T (t)x‖p
dt <∞

for each x ∈ X. The following theorem states that also the converse impli-
cation holds.
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1.8 Theorem. (Datko 1970, Pazy 1972). A strongly continuous semi-
group

(
T (t)

)
t≥0 on a Banach space X is uniformly exponentially stable if

and only if for one/all p ∈ [1,∞) one has

(1.10)
∫ ∞

0

‖T (t)x‖p
dt <∞

for all x ∈ X.

Proof. If the semigroup is exponentially stable, then, as mentioned above,
(1.10) is satisfied. In order to show the converse implication, it suffices by
Proposition 1.7 to verify that

(1.11) lim
t→∞

‖T (t)‖ = 0.

To this end, we define for n ∈ N the operators Tn ∈ L
(
X,Lp(R+, X)

)
by

Tnx := 1 [0,n](·)T (·)x.
Then by assumption, the set {Tnx : n ∈ N} ⊂ Lp(R+, X) is bounded for
each x ∈ X. Hence, by the uniform boundedness principle, there exists
C > 0 such that∫ t

0

‖T (r)x‖p dr ≤ Cp‖x‖p for all x ∈ X, t ≥ 0.

On the other hand, by Proposition I.5.5 there exist M ≥ 1 and w > 0 such
that

‖T (t)‖ ≤Mewt for all t ≥ 0.

From the previous two inequalities, we obtain

1− e−pwt

pw
· ‖T (t)x‖p =

∫ t

0

e−pwr‖T (r)T (t− r)x‖p dr

≤
∫ t

0

Mp‖T (t− r)x‖p dr

≤MpCp‖x‖p for all x ∈ X, t ≥ 0.

Hence, there exists a constant L > 0 such that

‖T (t)‖ ≤ L for all t ≥ 0.

Using this, we conclude that

t ‖T (t)x‖p =
∫ t

0

‖T (t− r)T (r)x‖p dr

≤
∫ t

0

Lp‖T (r)x‖p dr

≤ LpCp‖x‖p for all x ∈ X, t ≥ 0,

and therefore
‖T (t)‖ ≤ LCt

−1/p for all t > 0.

This implies (1.11) and completes the proof. �



Section 1. Stability and Hyperbolicity for Semigroups 301

All these stability criteria, as nice as they are, have the major disadvan-
tage that they rely on the explicit knowledge of the semigroup

(
T (t)

)
t≥0

and its orbits t 7→ T (t)x. In most cases, however, only the generator (and its
resolvent) is given. Therefore, direct characterizations of uniform exponen-
tial stability of the semigroup in terms of its generator are more desirable.
Spectral theory provides the appropriate tool for this purpose, and the Li-
apunov theorem for matrix semigroups (Theorem I.2.10) and for uniformly
continuous semigroups (Theorem I.3.14) are the prototypes for the results
we are looking for. In particular, one hopes that the inequality

(1.12) s(A) < 0

for the spectral bound s(A) := sup{Reλ : λ ∈ σ(A)} of the generator A
(see Definition II.1.12) characterizes uniform exponential stability. Coun-
terexample IV.2.7 (see also Counterexamples IV.3.3 and 3.4) shows that
this fails drastically. The reason is the failure of the spectral mapping theo-
rem (SMT) as discussed in Section IV.3. On the other hand, if some (weak)
spectral mapping theorem holds for the semigroup

(
T (t)

)
t≥0 and its gen-

erator A, then the growth bound ω0 and the spectral bound s(A) coincide,
and hence the inequality (1.12) implies (1.7).

1.9 Lemma. If for the strongly continuous semigroup
(
T (t)

)
t≥0 and its

generator A the weak spectral mapping theorem

(WSMT) σ
(
T (t)

)
∪ {0} = etσ(A) ∪ {0} for t ≥ 0

holds, then growth bound ω0 and spectral bound s(A) coincide, i.e.,

(1.13) s(A) = ω0 .

Proof. It suffices to recall the identity (1.8) stating that

ω0 =
1
t

log r
(
T (t)

)
for each t > 0.

Since −∞ ≤ s(A) ≤ ω0 by Corollary II.1.13, we assume ω0 > −∞ and
obtain

ω0 =
1
t

log sup
{
|µ| : µ ∈ σ

(
T (t)

)}
=

1
t

log sup
{
|etλ| : λ ∈ σ(A)

}
=

1
t

log sup
{
et Re λ : λ ∈ σ(A)

}
= sup

{1
t

log et Re λ : λ ∈ σ(A)
}

= s(A).
�
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The coincidence of growth and spectral bounds clearly implies that uni-
form exponential stability is equivalent to the negativity of the spectral
bound. So in this case the inequality s(A) < 0 yields a characterization of
the long-term behavior of the semigroup

(
T (t)

)
t≥0 in terms of its gener-

ator A and its spectrum σ(A). This is one reason for our thorough study
of spectral mapping theorems in Section IV.3. The results obtained there,
in particular Theorem IV.3.10 and its corollaries, pay off and yield the
spectral bound equal growth bound condition (SBeGB) already stated in
Corollary IV.3.11. We restate this as an infinite-dimensional version of Li-
apunov’s stability theorem (cf. Theorem I.2.10 and Theorem I.3.14).

1.10 Theorem. An eventually norm-continuous semigroup
(
T (t)

)
t≥0 is

uniformly exponentially stable if and only if the spectral bound s(A) of its
generator A satisfies

s(A) < 0.

Looking back at the stability results obtained so far, i.e., Proposition 1.7,
Theorem 1.8, and Theorem 1.10, we observe that in each case we needed
information on the semigroup itself in order to conclude its stability. This
can be avoided by restricting our attention to semigroups on Hilbert spaces
only.

1.11 Theorem. (Gearhart 1978, Prüss 1984, Greiner 1985). A
strongly continuous semigroup T =

(
T (t)

)
t≥0 on a Hilbert space H is uni-

formly exponentially stable if and only if the half-plane {λ ∈ C : Reλ > 0}
is contained in the resolvent set ρ(A) of the generator A with the resolvent
satisfying

(1.14) M := sup
Re λ>0

‖R(λ,A)‖ <∞.

Proof. If ω0 < 0, then the estimate (1.14) follows from Theorem II.1.10.
For the converse implication, we first observe that by Corollary IV.1.14
we have iR ⊂ ρ(A); hence the estimate (1.14) extends by continuity to
Reλ ≥ 0. Next, we take w > |ω0 |+ 1 and consider the rescaled semigroup(
T−w(t)

)
t≥0 with T−w(t) := e−wtT (t). Then, by Theorem II.1.10.(i) and

for x ∈ H, s ∈ R, we have

R(w + is,A)x = R(is,A− w)x =
∫ ∞

0

e−istT−w(t)x dt.

Using the Fourier transform F : L2(R,H) → L2(R,H) from Appendix C.b,
we obtain

(1.15), R(w + is,A)x = F
(
T−w(·)x

)
(s),

where we extend T−w(·) to R by setting T−w(t) := 0 for t < 0. Since
(T−w(t))t≥0 is exponentially stable, we have T−w(·)x ∈ L2(R,H).
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It is at this point that we use the assumption that H is a Hilbert space
in order to conclude, from Plancherel’s Theorem C.14, that∫ +∞

−∞
‖R(w + is,A)x‖2

ds = 2π
∫ ∞

0

‖T−w(t)x‖2
dt ≤ L · ‖x‖2

for some constant L > 0 and all x ∈ H. By the resolvent equation we have

R(is,A) = R(w + is,A) + wR(is,A)R(w + is,A)

for all s ∈ R and hence

(1.16) ‖R(is,A)x‖ ≤ (1 +Mw) · ‖R(w + is,A)x‖
for all s ∈ R and x ∈ H. Combining these facts, we obtain

(1.17)

∫ +∞

−∞
‖R(is,A)x‖2

ds ≤ (1 +Mw)2 ·
∫ +∞

−∞
‖R(w + is,A)x‖2

ds

≤ (1 +Mw)2 · L2 · ‖x‖2

for all x ∈ H. Since ‖T‖ = ‖T ∗‖ for every T ∈ L(H), by symmetry the
same estimate is true for the resolvent of the generator A∗ of the adjoint
semigroup

(
T (t)∗

)
t≥0, i.e.,

(1.18)
∫ +∞

−∞
‖R(is,A∗)y‖2

ds ≤ (1 +Mw)2 · L2 · ‖y‖2

for all y ∈ H.
Next, we use the inversion formula in Corollary III.5.16 for k = 2 and

conclude that(
tT (t)x | y

)
=

1
2π

∫ ∞

−∞
e(w+is)t

(
R(w + is,A)2x | y

)
ds

=
1
2π

∫ ∞

−∞
eist
(
R(is,A)x |R(−is,A∗)y

)
ds

for all x ∈ D(A2) and y ∈ H. For the second equality we used Cauchy’s
integral theorem, which is applicable since R(λ,A) is uniformly bounded
for Reλ ≥ 0 and hence

‖R(λ,A)x‖ =
1
|λ|

‖R(λ,A)Ax+ x‖ ≤ 1
|λ|

(M‖Ax‖+ ‖x‖).

Together with (1.17), (1.18), and the Cauchy–Schwarz inequality this gives∣∣(tT (t)x | y
)∣∣ ≤ 1

2π

(∫ ∞

−∞
‖R(is,A)x‖2 ds

)1/2

·
(∫ ∞

−∞
‖R(is,A∗)y‖2 ds

)1/2

≤ (1 +Mw)2 · L2

2π
‖x‖ · ‖y‖

for all x, y ∈ D(A2). Since D(A2) is dense in H, this implies

‖tT (t)‖ = sup
{∣∣(tT (t)x | y

)∣∣ : x, y ∈ D(A2), ‖x‖ = ‖y‖ = 1
}

≤ (1 +Mw)2 · L2

2π
.

Hence limt→∞ ‖T (t)‖ = 0 and therefore ω0(T) < 0 by Proposition 1.7. �
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This stability criterion is extremely useful for the stability analysis of
concrete equations; see, e.g., Theorem VI.3.18 and Theorem VI.8.35 or
[Hua85]. Its theoretical significance is emphasized by the following com-
ments.

1.12 Comments. (i) The theorem does not hold without the bounded-
ness assumption on the resolvent in the right half-plane. Take the semigroup(
T (t)

)
t≥0 from Counterexample IV.3.4. Then

(
e−t/2T (t)

)
t≥0 is a semigroup

on a Hilbert space having spectral bound s(A) = −1/2, and hence we have
{λ ∈ C : Reλ ≥ 0} ⊂ ρ(A), but its growth bound is ω0 = 1/2.

(ii) The theorem does not hold on arbitrary Banach spaces. In fact, for the
semigroup in Counterexample IV.2.7 one has

‖R(λ+ is,A)‖ ≤ ‖R(λ,A)‖

for all λ > s(A) = −1 and s ∈ R (use the integral representation (2.5) of the
resolvent in Section IV.2). Since ‖T (t)‖ = 1 for all t ≥ 0, this semigroup is
not uniformly exponentially stable, but the resolvent of its generator exists
and is uniformly bounded in {λ ∈ C : Reλ ≥ 0}.

1.13 Exercises. (1) Show that for a strongly continuous semigroup (T (t))t≥0

on a Hilbert space X with generator A its growth bound is given by

ω0 = inf
{

λ > s(A) : sup
s∈R

‖R(λ + is, A)‖ < ∞
}

.

(2∗) Extend the construction from Paragraph I.3.16 to an arbitrary strongly
continuous semigroup (T (t))t≥0 on a Hilbert space H.

(i) Define U(t)T := T (t) · T · T (t)∗ for t ≥ 0 and T ∈ L(H) and show that
(U(t))t≥0 is a semigroup on L(H) that is continuous for the weak operator
topology on L(H).

(ii) Define R(λ)T :=
∫∞
0

e−λtU(t)T dt, T ∈ L(H) and λ large, in the weak

operator topology and show that R(λ) is the resolvent of a Hille–Yosida
operator (G, D(G)) on L(H).

(iii) Express G by a formula analogous to (3.4) in Section I.3.

(iv) Show that the following assertions are equivalent.

(a) (T (t))t≥0 is uniformly exponentially stable.

(b) (U(t))t≥0 is uniformly exponentially stable.

(c) s(G) < 0.

(d)
∫∞
0

U(t)T dt exists for every T ∈ L(H).

(e) There exists a positive definite R ∈ L(H) such that GR = −I.

(Hint: See [Nag86, D-IV, Sec. 2].)
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c. Hyperbolic Decompositions

We now use the previous stability theorems in order to decompose a semi-
group into a stable and an unstable part. More precisely, we try to decom-
pose the Banach space into the direct sum of two closed subspaces such
that the semigroup becomes “forward” exponentially stable on one sub-
space and “backward” exponentially stable on the other subspace. This
has already been done for matrix semigroups (Exercise I.2.12.(5)) and for
uniformly continuous semigroups (Exercise I.3.17.(4)). In the general case,
however, an extra property appears in the definition.

1.14 Definition. A semigroup
(
T (t)

)
t≥0 on a Banach space X is called hy-

perbolic if X can be written as a direct sum X = Xs⊕Xu of two
(
T (t)

)
t≥0-

invariant, closed subspaces Xs, Xu such that the restricted semigroups
(Ts(t))t≥0 on Xs and (Tu(t))t≥0 on Xu satisfy the following conditions.

(i) The semigroup (Ts(t))t≥0 is uniformly exponentially stable on Xs.

(ii) The operators Tu(t) are invertible on Xu, and
(
Tu(t)−1

)
t≥0

is uni-

formly exponentially stable on Xu.

It is easy to see that a strongly continuous semigroup
(
T (t)

)
t≥0 is hy-

perbolic if and only if there exists a projection P and constants M, ε > 0
such that each T (t) commutes with P , satisfies T (t) kerP = kerP , and

‖T (t)x‖ ≤Me−εt‖x‖ for t ≥ 0 and x ∈ rgP,(1.19)

‖T (t)x‖ ≥ 1
M

e+εt‖x‖ for t ≥ 0 and x ∈ kerP.(1.20)

As in the case of uniform exponential stability, we look for a spectral
characterization of hyperbolicity. Using the spectra σ

(
T (t)

)
of the semi-

group operators T (t), this is easy.

1.15 Proposition. For a strongly continuous semigroup
(
T (t)

)
t≥0, the

following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is hyperbolic.

(b) σ
(
T (t)

)
∩ Γ = ∅ for one/all t > 0.

Proof. The proof of the implication (a) ⇒ (b) starts from the observation
that σ

(
T (t)

)
= σ

(
Ts(t)

)
∪ σ
(
Tu(t)

)
because of the direct sum decompo-

sition. By assumption,
(
Ts(t)

)
t≥0 is uniformly exponentially stable; hence

r
(
Ts(t)

)
< 1 for t > 0, and therefore σ

(
Ts(t)

)
∩ Γ = ∅.

By the same argument, we obtain that r
(
Tu(t)−1

)
< 1. Since

σ
(
Tu(t)

)
=
{
λ−1 : λ ∈ σ

(
Tu(t)−1

)}
,

we conclude that |λ| > 1 for each λ ∈ σ
(
Tu(t)

)
; hence σ

(
Tu(t)

)
∩ Γ = ∅.
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To prove (b) ⇒ (a), we fix s > 0 such that σ
(
T (s)

)
∩ Γ = ∅ and use

the existence of a spectral projection P corresponding to the spectral set{
λ ∈ σ

(
T (s)

)
: |λ| < 1

}
. Then the space X is the direct sum X = Xs⊕Xu

of the
(
T (t)

)
t≥0-invariant subspaces Xs := rgP and Xu := kerP . The

restriction Ts(s) ∈ L(Xs) of T (s) in Xs has spectrum

σ
(
Ts(s)

)
=
{
λ ∈ σ

(
T (s)

)
: |λ| < 1

}
,

hence spectral radius r
(
Ts(s)

)
< 1. From Proposition 1.7.(d), it follows

that the semigroup
(
Ts(t)

)
t≥0 :=

(
PT (t)

)
t≥0 is uniformly exponentially

stable on Xs. Similarly, the restriction Tu(s) ∈ L(Xu) of T (s) in Xu has
spectrum

σ
(
Tu(s)

)
=
{
λ ∈ σ

(
T (s)

)
: |λ| > 1

}
,

hence is invertible on Xu. Clearly, this implies that Tu(t) is invertible for
0 ≤ t ≤ s, while for t > s we choose n ∈ N such that ns > t. Then

Tu(s)n = Tu(ns) = T (ns− t)Tu(t) = Tu(t)Tu(ns− t);

hence Tu(t) is invertible, since Tu(s) is bijective. Moreover, for the spectral
radius we have r

(
T−1

u (s)
)
< 1, and again by Proposition 1.7.(d) this implies

uniform exponential stability for the semigroup
(
Tu(t)−1

)
t≥0. �

The reader might be disturbed by the extra condition in Definition 1.14.
(ii) requiring the operators Tu(t) to be invertible on Xu. However, this
is necessary in order to obtain the spectral characterization in Proposi-
tion 1.15.

1.16 Example. Take the rescaled (left) shift semigroup
(
T (t)

)
t≥0 on

L1(R−) defined by

T (t)f(s) :=
{
eεtf(s+ t) for s+ t ≤ 0,
0 otherwise,

for f ∈ L1(R−), s ≤ 0, and some fixed ε > 0. Then

‖T (t)f‖ = eεt‖f‖

for all f ∈ L1(R−), i.e., estimate (1.20) holds for all f ∈ L1(R−). However,
the operators T (t) are not invertible and have spectrum

σ
(
T (t)

)
=
{
λ ∈ C : |λ| ≤ eεt

}
for all t > 0.

This phenomenon is due to the fact that an injective operator on an
infinite-dimensional Banach space need not be surjective. We can exclude
this by assuming dimXu <∞. See also Exercise 1.19.(2).
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Up to now, our definition and characterization of hyperbolic semigroups
uses explicit knowledge of the semigroup itself. As in Section 1.b, we want
to find a characterization in terms of the generator A and its spectrum
σ(A). As we should expect from Lemma 1.9, we need some extra relation
between σ(A) and σ

(
T (t)

)
. Clearly, the spectral mapping theorem (SMT)

or even the weak spectral mapping theorem (WSMT) from Section IV.3 are
sufficient for this purpose. However, we show that an even weaker property
does this job.

1.17 Theorem. Let A be the generator of a strongly continuous semigroup(
T (t)

)
t≥0. Assume that the spectrum σ(A) and the spectra σ

(
T (t)

)
satisfy

(1.21) σ
(
T (t)

)
⊂ Γ · etσ(A) :=

{
zetλ : λ ∈ σ(A), |z| = 1

}
for all t ≥ 0.

Then the following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is hyperbolic.

(b) σ
(
T (t)

)
∩ Γ = ∅ for one/all t > 0.

(c) σ(A) ∩ iR = ∅.

Proof. The equivalence of (a) and (b) has been shown in Proposition 1.15.
Property (b) always implies (c) (use Theorem IV.3.6), while (c) implies (b)
if (1.21) holds. �

In Hilbert spaces we can use Theorem 1.11 to replace (1.21) by a growth
estimate on the resolvent R(λ,A) for λ ∈ iR.

1.18 Theorem. A strongly continuous semigroup
(
T (t)

)
t≥0 with generator

A on a Hilbert space H is hyperbolic if and only if

σ(A) ∩ iR = ∅ and ‖R(λ,A)‖ ≤M for all λ ∈ iR.

1.19 Exercises. (1) Show, by rescaling the semigroup and the estimates in
(1.19) and (1.20), that a decomposition analogous to Definition 1.14 holds when-
ever

σ
(
T (t)

)
∩ αΓ = ∅

for some α > 0.

(2) Let (T (t))t≥0 satisfy (1.19) and (1.20) for a projection P commuting with
T (t) for all t ≥ 0. Assume that for some t0 > 0 the restriction Tu(t0) to ker P is
compact. Show that dimker P < ∞ and that (T (t))t≥0 is hyperbolic.

(3) Show that the generator A of a hyperbolic strongly continuous semigroup
(T (t))t≥0 is invertible and its inverse is given by

A−1x =

∫ ∞

0

Tu(t)−1(I − P )x dt−
∫ ∞

0

Ts(t)Px dt.

Derive an analogous representation of R(λ, A) for Re λ < ε, where ε is the con-
stant in (1.19) and (1.20).
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(4∗) Given a hyperbolic semigroup (T (t))t≥0 and a corresponding decomposition
X = Xs ⊕Xu, prove that

Xs =
{
x ∈ X : lim

t→∞
T (t)x = 0

}
.

Conclude from this that Xs and Xu are uniquely determined.

2. Compact Semigroups

“Stability” of a strongly continuous semigroup
(
T (t)

)
t≥0 as defined in

Definition 1.1 means that the closure of {T (t) : t ≥ 0} (for the weak,
strong, or uniform operator topology) is the compact set{

T (t) : t ≥ 0
}
∪ {0}.

This set becomes a commutative semigroup if we extend the operator mul-
tiplication by

T (t) · 0 = 0 · T (t) := 0

for each t ≥ 0. We will show that even more complicated behavior of the
operators T (t) as t→∞ can be described by the closure of {T (t) : t ≥ 0} as
well as by certain algebraic properties of it. The theory of (semitopological)
compact semigroups provides us with an elegant and powerful tool for this
investigation. We therefore start with a preparatory subsection dealing with
arbitrary semigroups instead of one-parameter semigroups only.

a. General Semigroups

We start with a purely algebraic setup in which (S, ·) is a semigroup, i.e.,
S is a set with an associative multiplication

S× S 3 (s, t) 7→ s · t ∈ S.

These semigroups become interesting to us only if endowed with an ad-
ditional topological structure. (See [Rup84] or [BJM89] for a systematic
treatment.)

2.1 Definition. A semigroup S is called a semitopological semigroup if S

has a topology for which the multiplication is separately continuous on S,
i.e., such that the maps

s 7→ ts and s 7→ st

are continuous on S for each t ∈ S. Compact semigroups are semitopological
semigroups that are compact.
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In our application of this notion to operator semigroups we will use the
weak operator topology. It is therefore important to require only separate
continuity of the multiplication (see Example 2.11.(i) and Proposition A.6).
Fortunately, this property is strong enough to yield a powerful structure
theorem. In order to develop this theory, we recall that an ideal in a semi-
group S is a nonempty subset J such that

SJ ∪ JS := {st : s ∈ S, t ∈ J} ∪ {tr : t ∈ J, r ∈ S} ⊂ J.

In addition, we state the following elementary properties.

2.2 Lemma. Let S be a semitopological semigroup and consider a sub-
semigroup H in S. Then H is a subsemigroup in S. If, in addition, H is
commutative, then H is commutative as well.

The proof is left to the reader (cf. Exercise 2.6.(1)), and we now state
the main structure theorem for commutative compact semigroups.

2.3 Theorem. Every commutative compact semigroup S contains a unique
minimal ideal K that is a compact group and is obtained as K = qS for the
unit element q ∈ K.

Proof. Let S be a commutative compact semigroup and choose finitely
many closed ideals J1, . . . , Jn in S. Then

n⋂
i=1

Ji ⊃ J1J2 · · · Jn 6= ∅,

which shows that the family of all closed ideals in S has the finite intersec-
tion property. By the compactness of S, we conclude that

(2.1) K :=
⋂
{J : J closed ideal in S}

is a nonempty, closed ideal.
If J is an arbitrary ideal in S, we take t ∈ J. The separate continuity of

the multiplication implies that tS is a closed ideal. Since tS ⊂ J, we obtain
K ⊂ tS ⊂ J, showing K to be minimal and unique. In fact, it follows that

(2.2) K =
⋂
t∈S

tS.

We now show that K is a group. Observe first that sK = K for each s ∈ K,
since K is minimal. Hence, for fixed s ∈ K, there exists q ∈ K such that
sq = s, and for every r ∈ K, we find r′ ∈ K such that r′s = r. This implies

rq = r′sq = r′s = r,

i.e., q is the unit element in K. Again from rK = K we infer the existence
of t (= r−1) such that rt = q; hence K is a group. Finally, since K is a
closed subset of a compact set, it is compact itself.
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The same arguments yield the inclusions

K = qK ⊂ qS ⊂ KS ⊂ K,

and hence

(2.3) K = qS

for the (unique) unit element q of the compact group K. �

The attentive reader may have noticed an apparent inconsistency of the
above theorem with the usual terminology, where topological groups are re-
quired to have jointly continuous multiplication (e.g., [HR63, Def. II.4.1]).
In fact, up to now we only have proved that the group K has a topology
making it a compact space such that the multiplication is separately con-
tinuous. We close this gap by quoting the following theorem by Ellis (see
[Nam74]).

2.4 Theorem. A compact semitopological group K is a topological group,
i.e., the mappings

K×K 3 (s, t) 7→ s · t ∈ K and K 3 s 7→ s−1 ∈ K

are continuous.

We now stop investigating general semigroups and will apply Theo-
rem 2.3 to compact semigroups (S, ·) containing a dense one-parameter
subsemigroup (αt)t≥0, i.e., R+ 3 t 7→ αt ∈ S is a continuous semigroup
homomorphism from (R+,+) into (S, ·). These semigroups can have quite
complicated structure (e.g., they can contain uncountably many idempo-
tents; cf. [BM71] or [Rup84, App. 4.2]). If, however, the multiplication is
jointly continuous, it is easy to determine the minimal ideal and to visualize
some examples.

2.5 Example. Let (S, ·) be a compact semigroup with jointly continu-
ous multiplication containing a dense one-parameter subsemigroup (αt)t≥0.
Then the minimal ideal K can be obtained as

(2.4) K =
⋂
t≥0

{αs : s ≥ t}.

We leave the proof as Exercise 2.6.(2) and instead visualize some concrete
examples in which the minimal ideal becomes

(i) K = {∞} (Figure 4),
(ii) K = Γ (Figure 5), and
(iii) K = Γ2 (Figure 6).
In each case, the semigroup operation is inherited from the addition on

R+ and should become clear from the picture.
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Figure 4

Figure 5

Figure 6

Before concluding this subsection, we point out a confusion possibly
caused by the term “compact semigroup” of operators. It means a com-
pactness property of the set of operators

(
T (t)

)
t≥0 and not, as in Defini-

tion II.4.23 for “eventually compact semigroups,” a compactness property
of a single operator T (t0). See also the introduction to Section 3 below.

2.6 Exercises. (1) Prove Lemma 2.2. (Hint: To prove the commutativity of H

show first that st = ts for s ∈ H and t ∈ H.)

(2) Prove identity (2.4) in Example 2.5. Then modify the construction from
[Wes68] to show that (2.4) does not hold if the multiplication in S is only sepa-
rately continuous.
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b. Weakly Compact Semigroups

From now on,
(
T (t)

)
t≥0 is again a strongly continuous semigroup of bounded

operators on a Banach space X. In order to apply the abstract semigroup
theory above, we need compactness for {T (t) : t ≥ 0} as a subset of L(X).
This can be achieved in various ways by considering the weak operator,
strong operator, or uniform operator topology on L(X). We start with
the weak operator topology, being the weakest among these three natural
operator topologies, hence yielding more compact sets.

From Proposition A.4 and Corollary A.5 we recall that relative compact-
ness of the set {T (t) : t ≥ 0} in the space Lσ(X) can be characterized as
follows.

2.7 Lemma. For {T (t) : t ≥ 0} ⊂ L(X), X a Banach space, the following
assertions are equivalent.

(a) {T (t)x : t ≥ 0} is relatively weakly compact for all x ∈ X.

(b)
(
T (t)

)
t≥0 is bounded, and {T (t)x : t ≥ 0} is relatively weakly com-

pact for all x in some dense subset of X.

(c) {T (t) : t ≥ 0} is relatively compact in Lσ(X).

As another preparation for the application of Theorem 2.3 to operator
semigroups, we observe that the multiplication in the algebra Lσ(X) is
separately continuous (but not jointly continuous; see Example 2.11.(ii)
below). Hence (Lσ(X), ·) is a semitopological semigroup in the sense of
Definition 2.1. Therefore,

(
T (t)

)
t≥0 as well as its closure in Lσ(X) (use

Lemma 2.2) are commutative semitopological semigroups.
If now the semigroup

(
T (t)

)
t≥0 satisfies the relative compactness condi-

tions in Lemma 2.7, then its closure

(2.5) S := {T (t) : t ≥ 0}
Lσ(X)

is a commutative compact semigroup in Lσ(X). Therefore, Theorem 2.3 can
be applied, and the minimal ideal K in S is a commutative compact group.
This opens the door for the application of powerful tools from harmonic
analysis (see [HR63, Chap. VI]).

The unit Q in K satisfies Q = Q2, and hence is a projection commuting
with all the operators in S. It therefore induces a decomposition

X := rgQ⊕ kerQ

ofX into
(
T (t)

)
t≥0-invariant subspaces rgQ and kerQ. As the main feature

of this approach we are now able to characterize these two spaces in terms
of the action of the semigroup

(
T (t)

)
t≥0.
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2.8 Theorem. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with gen-

erator A on the Banach space X. If {T (t) : t ≥ 0} is relatively weakly com-
pact, then there exists a projection Q ∈ L(X) commuting with

(
T (t)

)
t≥0

such that

(i) kerQ = Xs :=
{
x ∈ X : 0 ∈ {T (t)x : t ≥ 0}

σ}
(ii) rgQ = Xr := lin

{
x ∈ D(A) : ∃ α ∈ R such that Ax = iαx

}
.

Proof. As already explained above, we take as projection Q the unit
element of the minimal ideal K in the commutative compact semigroup
S := {T (t) : t ≥ 0}

Lσ(X)
⊂ Lσ(X). We have to prove the assertions on

kerQ and rgQ.
(i) Take x ∈ X such that Qx = 0. Since the map

Lσ(X) 3 T 7→ Tx ∈
(
X,σ(X,X ′)

)
is continuous and since Q ∈ {T (t) : t ≥ 0}

Lσ(X)
, we obtain that 0 = Qx ∈

{T (t)x : t ≥ 0}
σ
. Conversely, assume that 0 is a weak accumulation point

of the orbit T (·)x, i.e., 0 ∈ {T (t)x : t ≥ 0}
σ
. By the compactness of S, we

find R ∈ S satisfying Rx = 0. This implies R′QRx = 0 for each R′ ∈ S.
If we choose R′ to be the inverse of QR in the group K = QS, we obtain
Qx = 0.

(ii) We first show that rgQ ⊂ Xr. To that purpose consider the compact
group K = QS and take its character group K̂ consisting of all continuous
group homomorphisms χ : K → Γ (cf. [HR63, §23]). For each character
χ ∈ K̂ we define an operator Pχ ∈ L(X) by

Pχx :=
∫

K

χ(S)Sxdm(S) for x ∈ X.

Here, m is the normalized Haar measure on K, and the integral is un-
derstood in the weak sense. It follows from the weak compactness of Sx
in X (and of its closed convex hull, use Proposition A.1.(ii)) that Pχ

is a well-defined operator from X into X. (For the details we refer to
[Rud73, Thm. 3.27].)

For R ∈ K, we obtain

〈RPχx, x
′〉 =

〈
R
(∫

K

χ(S)Sxdm(S)
)
, x′
〉

=
∫

K

χ(S) 〈RSx, x′〉 dm(S)

= χ(R)
∫

K

χ(RS) 〈RSx, x′〉 dm(S) = 〈χ(R)Pχx, x
′〉

for every x ∈ X and x′ ∈ X ′. This implies

QPχ = Pχ
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and, taking R := T (t)Q,

T (t)Pχ = T (t)QPχ = χ
(
T (t)Q

)
Pχ for each t ≥ 0.

Since R+ 3 t 7→ χ
(
T (t)Q

)
∈ Γ is continuous and satisfies (FE) from

Section I.1, we find α ∈ R such that

T (t)Pχ = eiαtPχ for t ≥ 0.

By taking the derivative at t = 0, we obtain

APχ = iαPχ, hence PχX ⊂ Xr.

The assertion will now be proved if we show that

rgQ ⊂ lin
⋃

χ∈K̂

PχX.

Take x′ ∈ X ′ vanishing on PχX for each χ ∈ K̂, i.e., such that∫
K

χ(S) 〈Sx, x′〉 dm(S) = 0

for all χ ∈ K̂ and all x ∈ X. Since the mapping

K 3 S 7→ 〈Sx, x′〉 ∈ C

is continuous and since the characters form a total set in L2(K,m) (see
[HR63, Thm. 22.17]), this implies 〈Sx, x′〉 = 0 for all S ∈ K. For S = Q
this shows that x′ vanishes on rgQ, and the above inclusion is proved.

In a second step, we show that Xr ⊂ rgQ. This is proved if Q, the unit
element in K, acts as the identity operator on Xr.

Take x ∈ D(A) such that Ax = iαx for some α ∈ R. By the Spectral
Inclusion Theorem IV.3.6, it follows that x is also an eigenvector for each
T (t) and hence for each R ∈ S. In addition, the corresponding eigenvalues
belong to Γ. Therefore, there exists λQ ∈ Γ such that Qx = λQx. Since Q
is a projection, this implies λQ = 1 and hence Qx = x. For the linear and
continuous operator Q we obtain Qy = y for all y ∈ Xr, which completes
the proof. �

Theorem 2.8, which is a special case of the Jacobs–DeLeeuw–Glicksberg
splitting theorem (see [Kre85, Sec. II.4]), gives us the following description
of the action of a strongly continuous semigroup

(
T (t)

)
t≥0 whenever the

compactness condition from Lemma 2.7 holds.
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If S := {T (t) : t ≥ 0}
Lσ(X)

is weakly compact, then one has a decompo-
sition X = Xs ⊕Xr such that for x = xs + xr

(i) the orbit t 7→ T (t)xs is stable in the sense that it has 0 as a weak
accumulation point, and

(ii) the orbit t 7→ T (t)xr is reversible in the sense that for every T (t)
there exists R ∈ S such that RT (t)x1 = x1.

This means that each orbit approaches a reversible orbit as t→∞. In the
following corollary we improve our information about this reversible part.

2.9 Corollary. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semigroup

with generator A on the Banach space X. The following assertions are
equivalent.

(a) The eigenvectors of A corresponding to imaginary eigenvalues span
a dense subspace in X.

(b) The weak operator closure {T (t) : t ≥ 0}
Lσ(X)

is a compact group
with identity IX .

(c) The strong operator closure {T (t) : t ≥ 0}
Ls(X)

is a compact group
with identity IX .

In particular, each of the above conditions implies that

{T (t) : t ≥ 0}
Lσ(X)

= {T (t) : t ≥ 0}
Ls(X)

.

Proof. The implication (c) ⇒ (b) is obvious. Moreover, the compact-
ness in (c) implies that the weak and the strong operator topologies co-

incide on {T (t) : t ≥ 0}; hence the equality of {T (t) : t ≥ 0}
Lσ(X)

and

{T (t) : t ≥ 0}
Ls(X)

follows.
The equivalence (a) ⇐⇒ (b) follows from Theorem 2.8 for X = Xr and

from the second statement in Lemma 2.7. Finally, we observe that the
sets {T (t)z : t ≥ 0} = {eλtz : t ≥ 0} are norm-compact for each eigen-
vector z of A corresponding to an imaginary eigenvalue λ. Since the set
of all x ∈ X with relatively norm compact orbits is closed by Proposi-
tion A.4, we see that (b) in combination with Theorem 2.8.(ii) implies that

{T (t) : t ≥ 0}
Lσ(X)

is compact even for the strong operator topology. This
shows (b) ⇒ (c). �

The following corollary gives the most common situation to which the
above results apply.

2.10 Corollary. A bounded strongly continuous semigroup on a reflexive
Banach space is relatively weakly compact, and therefore the decomposition
from Theorem 2.8 is possible.
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2.11 Examples. (i) We consider the shift group
(
T (t)

)
t∈R onX := Lp(R)

for 1 ≤ p < ∞. In the reflexive case, i.e., for 1 < p < ∞, we can apply
Corollary 2.10 and obtain Xs = X, Xr = {0}. In fact, one even has

lim
t→∞

T (t) = 0

for the weak operator topology (see Example 1.3.(ii)). So, we see that the
weak operator closure of a group does not need to be a group anymore. In
addition, since

I = weak-lim
t→∞

(
T (t)T (−t)

)
6= weak-lim

t→∞
T (t) · weak-lim

t→∞
T (−t) = 0,

we note from this example that the multiplication on Lσ(X) is not jointly
continuous.

Finally, the translation group on X := L1(R) is not relatively weakly
compact, since Xr = {0} (use Theorem 2.8.(ii)), but 〈T (t)f, 1 〉 = 〈f, 1 〉 6= 0
for each 0 < f ∈ L1(R). Therefore, 0 is not a weak accumulation point of
{T (t)f : t ≥ 0} for 0 < f ∈ L1(R) and X 6= Xs.
(ii) In this example we show that a relatively weakly compact semigroup
with Xr = {0} need not be weakly stable in the sense of Definition 1.1.(d).

By [Rud62, Chap. 5], there exists a Cantor set Σ in the unit circle Γ that
is a Kronecker set , i.e., for which there exists a sequence (nk)k∈N in N such
that

lim
k→∞

sup
s∈Σ

|snk − 1| = 0

and that supports a diffuse probability measure µ. On the Hilbert space
X := L2(Γ, µ) we take the unitary group

(
T (t)

)
t∈R given by(

T (t)f
)
(s) := stf(s)

for f ∈ X, s ∈ Γ. This group is relatively weakly compact, since it is
bounded and X is reflexive. Moreover, Xr = {0}, since µ is diffuse; hence
T (t) has no eigenvalues (see Exercise I.4.13.(7)). By Theorem 2.8 this im-

plies 0 ∈ {T (t) : t ≥ 0}
Lσ(X)

.
On the other hand, we have∣∣((T (nk)− I)f | g

)∣∣ = ∣∣∣∣∫
Γ

(snk − 1)f(s)g(s) dµ(s)
∣∣∣∣

≤
∫

Σ

|snk − 1| · |f(s)g(s)| dµ(s)

≤ sup
s∈Σ

|snk − 1| · ‖f‖ · ‖g‖,

which tends to zero as k → ∞ for every f, g ∈ X. This proves I ∈
{T (t) : t ≥ 0}

Lσ(X)
, and hence

(
T (t)

)
t≥0 is not weakly stable.
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2.12 Exercises. (1) Show that Corollary 2.9 does not hold without assum-
ing (T (t))t≥0 to be bounded. (Hint: For each k ∈ N, consider the space Xk :=
C[0,k](R) of all k-periodic continuous functions on R with the norm

‖f‖k := sup
0≤s≤k

(1 + s)−1|f(s)|,

which is equivalent to the usual sup-norm. On Xk, the (left) translation semigroup
(Tk(t))t≥0 is k-periodic, Theorem IV.2.26 holds, and ‖Tk(t)‖ = 1+t for 0 ≤ t ≤ k.
If we define X := ⊕2

k∈NXk and T (t) := ⊕k∈NTk(t), we obtain an unbounded
semigroup satisfying only condition (a) in Corollary 2.9.)

(2) Let T be one of the left translation (semi) groups from Section I.4.c.

(i) Show that on X := Cub(R) the maximal subspace Y of X on which T
becomes a relatively strongly compact group is the space of almost periodic
functions, i.e.,

Y = lin {εiλ : λ ∈ R}

with εiλ(s) := eiλs, s ∈ R.

(ii) Characterize Y := lin {εiλ : λ ∈ R} ⊕ C0(R+) as the maximal subspace of
X := Cub(R+) on which T becomes a relatively strongly compact semi-
group.

(iii∗) Study the same problem for the weak compactness of T. (Hint: See [RS89]
and [RS92].)

c. Strongly Compact Semigroups

We now turn our attention to semigroups that are relatively compact with
respect to the strong operator topology. For the sake of completeness, we
recall from Proposition A.4 and Corollary A.5 the analogue of Lemma 2.7
characterizing strong operator compactness.

2.13 Lemma. For {T (t) : t ≥ 0} ⊂ L(X), X a Banach space, the following
assertions are equivalent.

(a) {T (t)x : t ≥ 0} is relatively compact for all x ∈ X.

(b)
(
T (t)

)
t≥0 is bounded and {T (t)x : t ≥ 0} is relatively compact for

all x in some dense subset of X.

(c) {T (t) : t ≥ 0} is relatively compact in Ls(X).

Moreover, we observe that the multiplication is separately continuous
in Ls(X) (and even jointly continuous on bounded subsets; see Proposi-
tion A.6). Therefore, and since weak and strong operator topologies coin-
cide on strongly compact sets, we can again apply the theory of compact
semigroups from Section 2.a and Theorem 2.8 from Section 2.b. This yields
a decomposition X = Xs ⊕Xr with a very simple and nice description of
Xs as the “stable” subspace. For a change, we formulate this result as an
equivalence.
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2.14 Theorem. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semi-

group with generator
(
A,D(A)

)
on the Banach spaceX. Then the following

assertions are equivalent.

(a) {T (t) : t ≥ 0} is relatively compact in Ls(X).
(b) There exists a projection Q ∈ L(X) commuting with

(
T (t)

)
t≥0 such

that

(i) kerQ = Xs := {x ∈ X : limt→∞ T (t)x = 0}.
(ii) rgQ = Xr := lin{x ∈ D(A) : ∃ α ∈ R such that Ax = iαx}.

Proof. Implication (b) ⇒ (a) follows from condition (b) in Lemma 2.13.
The converse implication (a) ⇒ (b) has been proved in Theorem 2.8 except
for the description of kerQ as Xs = {x ∈ X : limt→∞ T (t)x = 0}. However,
we know from Theorem 2.8 that for x ∈ kerQ one has 0 as a weak accu-
mulation point of {T (t)x : t ≥ 0}. Since by condition (a) the closures of
{T (t) : t ≥ 0} coincide for the weak and strong operator topologies, there is
a sequence (tn)n∈N such that limn→∞ T (tn)x = 0. From the boundedness
of
(
T (t)

)
t≥0 we conclude that

lim
t→∞

T (t)x = 0,

i.e., x ∈ Xs. �

We recall that Theorem 2.8 holds for every bounded semigroup on every
reflexive Banach space. In order to obtain the stronger properties from
Theorem 2.14, we have to make more restrictive assumptions.

2.15 Corollary. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semi-

group with generator
(
A,D(A)

)
on a Banach space X. Each of the condi-

tions

(i) A has compact resolvent,

(ii)
(
T (t)

)
t≥0 is eventually compact

implies that
(
T (t)

)
t≥0 is relatively compact in Ls(X) and hence that the

decomposition from Theorem 2.14.(b) holds.

Proof. Let ‖T (t)‖ ≤M for all t ≥ 0. In case (i), we have that

V := R(λ0, A)U

is relatively compact for λ0 > 0 and U := {x ∈ X : ‖x‖ ≤ 1}. By
Lemma 2.13.(b), it suffices to show that {T (t)x : t ≥ 0} is relatively com-
pact for x := R(λ0, A)y ∈ D(A). This follows, since

T (t)x = R(λ0, A)T (t)y ∈M ‖y‖V
for all t ≥ 0. In case (ii) and for T (t0) compact, we observe that

{T (t)x : t ≥ 0} = {T (t)x : 0 ≤ t ≤ t0} ∪ {T (t0)T (s)x : s ≥ 0}
is the union of two relatively compact sets, hence relatively compact itself.

�
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The examples in II.4.27 show that the conditions (i) and (ii) are indeed
independent.

The theoretical and practical importance of Theorem 2.14, and of the
space and semigroup decomposition it permits, is enormous. In particular,
it indicates how we should proceed towards a complete understanding of
the action of such semigroups.

2.16 Problem. In order to study a strongly continuous semigroup
(
T (t)

)
t≥0

that is relatively strongly compact, it suffices to restrict it to its “reversible”
part Xr and its “stable” part Xs, according to Theorem 2.14. Therefore,
the following two questions arise.

(i) Characterize all strongly continuous semigroups
(
T (t)

)
t≥0 on X such

that S := {T (t) : t ≥ 0}
Ls(X)

⊂ Ls(X) becomes a compact group,
i.e., for which, by Corollary 2.9 we have X = Xr.

(ii) Characterize all strongly continuous semigroups
(
T (t)

)
t≥0 on X that

are strongly stable, i.e., for which X = Xs.

There are many interesting answers to these questions, and we will
present some of them. However, in each case we start with a series of
examples.

2.17 Examples. (Compact Operator Groups). (i) Take X to be one of
the sequence spaces `p, 1 ≤ p <∞, or c0. For every sequence (αn)n∈N ⊂ R,
the multiplication operator

A(xn)n∈N := (iαnxn)n∈N

with maximal domain (compare Example I.4.7.(iii)) generates a group of
isometries on X. Since each canonical basis vector is an eigenvector of A
with eigenvalue iαn, it follows from Corollary 2.9 that the strong operator
closure of the multiplication semigroup

(
T (t)

)
t≥0 with

T (t)(xn)n∈N := (eiαntxn)n∈N, t ≥ 0,

is a strongly compact group. By Exercise I.4.8.(1), one has

Pσ(A) = {iαn : n ∈ N} and σ(A) = Pσ(A).

In particular, σ(A) can be any nonempty closed subset of iR.

(ii) Our next example strongly relies on the theory of locally compact
abelian groups (see [HR63]) and may be skipped by the reader not familiar
with this theory.
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Let (G, ·) be a compact group (with multiplication ·) that is assumed
to be solenoidal , i.e., there exists a dense one-parameter subgroup H =
(αt)t∈R in G (see [HR63, Def. 9.2]). In other words, G is a group compacti-
fication of (a continuous image of) the group (R,+) and therefore abelian.
We then take the Banach space X := C(G) and define the corresponding
rotation group

(
T (t)

)
t∈R on X by

T (t)f(γ) := f(αt · γ) for γ ∈ G, t ∈ R and f ∈ X.

The operators T (t) are isometries on X, satisfy

T (t+ s)f(γ) = f(αt+s · γ) = f(αt · αs · γ) =
(
T (t)(T (s)f)

)
(γ)

for γ ∈ G and s, t ∈ R, and therefore form a one-parameter operator group.
We prove the strong continuity of

(
T (t)

)
t∈R using the character group Ĝ

consisting of all continuous homomorphisms χ from G into the unit circle
Γ. For each χ ∈ Ĝ, one obtains

T (t)χ(γ) = χ(αt · γ) = χ(αt) · χ(γ) for all γ ∈ G,

i.e., χ is an eigenvector with eigenvalue χ(αt) ∈ Γ of T (t). It follows that
t 7→ T (t)χ is continuous and that {T (t)χ : t ≥ 0} is a bounded subset of a
one-dimensional subspace, hence relatively compact in X. Since the charac-
ter group Ĝ spans a dense subspace in C(G) (see [HR63, Thm. 22.17]), we
conclude from Proposition I.5.3, Corollary 2.9, and Lemma 2.13.(b) that(
T (t)

)
t≥0 is strongly continuous and that its strong operator closure S is a

compact group.

In fact, the operator group S := {T (t) : t ∈ R}
Ls(X)

⊂ Ls(X) is isomor-
phic to the group G we started with. This can be seen using the map

G 3 γ 7→ Tγ ∈ L(X)

with
Tγf(σ) := f(γ · σ) for all σ ∈ G, f ∈ X.

This is a continuous group isomorphism onto S, since γi → γ implies
Tγi

χ → Tγχ for all characters χ ∈ Ĝ; hence Tγi
→ Tγ for the strong

operator topology (use Proposition A.3).
In the next step we identify the character group Ĝ, which, by the gen-

eral theory of locally compact abelian groups, must be a discrete group
([HR63, Thm. 23.17]) with the point spectrum Pσ(A) of the generator A
of
(
T (t)

)
t∈R. Recall that Pσ(A) is contained in iR, since

(
T (t)

)
t∈R is an

isometric group.
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By continuity, every character χ is uniquely determined by its values on
the dense subgroup (αt : t ∈ R) and yields a continuous homomorphism

R 3 t 7→ χ(αt) ∈ Γ,

which, by Theorem I.1.4, is of the form

t 7→ eiβχt

for some βχ ∈ R. Recalling the definition of
(
T (t)

)
t≥0, we obtain for its

generator
(
A,D(A)

)
that χ is an eigenvector of A such that

Aχ = iβχχ,

i.e., iβχ ∈ Pσ(A).
Conversely, for each iβ ∈ Pσ(A) with corresponding eigenfunction χβ ∈

X, we have
T (t)χβ = eiβtχβ ;

hence, by evaluation at the unit element e ∈ G,
χβ(αt) = eiβtχβ(e).

This implies χβ(e) 6= 0, and we can choose the eigenfunction such that
χβ(e) = 1. Therefore, we obtain

χβ(αt) = eiβt ∈ Γ.

Since χβ is continuous and {αt : t ∈ R} is dense in G, we conclude that
(the continuous extension of) χβ is a character on G, hence belongs to Ĝ.

It is now easy to show that this correspondence yields a group isomor-
phism from Ĝ onto Pσ(A) as a subgroup of (iR,+). Finally, we use the
Pontryagin duality theorem ([HR63, Thm. 24.3]) to conclude that Ĝ de-
termines G uniquely. Hence, this yields the following result.

Proposition. For every subgroup K of (iR,+) endowed with the discrete
topology, there exists a strongly continuous operator group

(
T (t)

)
t∈R on a

Banach space X such that the strong operator closure

S := {T (t) : t ∈ R}
Ls(X)

⊂ Ls(X)

is a solenoidal compact group isomorphic to the character group K̂ of K.

Proof. Take the character group G := K̂ of K, which is compact, since
K is discrete. The characters

αt : K 3 β 7→ etβ ∈ Γ

form a one-parameter subgroup (αt)t∈R of G. Since the subgroup (αt)t∈R
separates K, it follows from [HR63, Lem. 24.4] that its closure is G; hence
G is solenoidal. Now take X := C(G) and the rotation group

(
T (t)

)
t∈R

induced by (αt)t∈R as above in order to obtain the desired objects. �

The result is useful, since one has a complete classification of all discrete
subgroups of (iR,+) and, as a consequence, of all solenoidal compact groups
(see [HR63, §25 and Thm. 25.12]).
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As specific examples we mention
• the n-tori Γn for n ≤ card R ([HR63, Cor. 25.15]),
• the a-adic solenoid

∑
a ([HR63, Thm. 10.13]),

• the Bohr compactification bR ([HR63, Thm. 25.12]).

However, the production of examples was not the only reason for going
through all these notions and results from harmonic analysis. In fact, the
operator groups coming from rotations on solenoidal compact groups are,
in a certain sense, typical among all relatively strongly compact semigroups
for which the decomposition in Theorem 2.14 yields X = Xr. In fact, on
certain function spaces they can be characterized in an abstract way.

2.18 Theorem. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with

generator A on a Banach space X := C(Ω), Ω compact, and assume the
following.

(i) The eigenvectors of A corresponding to imaginary eigenvalues form
a total set in X, i.e., X = Xr.

(ii) kerA = 〈1 〉, i.e., the fixed space of
(
T (t)

)
t≥0, consists of the constant

functions only.

(iii) T (t)f ≥ 0 for all f ≥ 0, i.e.,
(
T (t)

)
t≥0 is a positive semigroup.

Then
(
T (t)

)
t≥0 is isomorphic to a rotation (semi) group on some solenoidal

compact group. More precisely, there exists a compact group G with dense
subgroup (αt)t∈R and a homeomorphism ϕ : Ω → G such that for each
t ≥ 0, the diagram

C(Ω) T (t) - C(Ω)

Φ−1

?

6
Φ

C(G) U(t) - C(G)

commutes. Here, we define the operators

Φf(w) := f
(
ϕ(w)

)
and U(t)f(γ) := f(αtγ)

for w ∈ Ω, γ ∈ G and f ∈ C(G).

The analogous result holds for X := Lp(Ω, µ), 1 ≤ p < ∞, and µ(Ω) <
∞, and is an operator-theoretic version of the classical Halmos–von Neu-
mann theorem [HN42] (see also [Hal56] or [CFS82]). Proofs can be found
in [Nag86, C-III, Cor. 3.9], [Gre82, Thm. 2.6], or for general groups of pos-
itive operators on arbitrary Banach lattices in [Sch74, Sec. III.10].

While for the above results we needed sophisticated tools from harmonic
analysis, our subsequent discussion of Problem 2.16.(ii) uses only methods
we have developed so far for strongly continuous semigroups.
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In analogy to the case of uniform exponential stability and the various
Liapunov stability Theorems I.2.10, I.3.14, and 1.10, it is now our main
goal to find a spectral characterization of strong stability. However, the
following examples show that the situation is quite complex.

2.19 Examples. (Strongly Stable Semigroups). (i) We take the left trans-
lation semigroup

(
Tl(t)

)
t≥0 on Lp(R+), 1 ≤ p < ∞. As already observed

in Paragraph I.4.16, its adjoint semigroup is given by the right translations(
Tr(t)

)
t≥0 on Lq(R+), 1/p+ 1/q = 1. From the definition of these semigroups

it is immediate that
•
(
Tl(t)

)
t≥0 is strongly stable for all 1 ≤ p <∞, while

•
(
Tr(t)

)
t≥0 consists of (nonsurjective) isometries for all 1 ≤ q ≤ ∞.

In each case, the spectra of the corresponding generators coincide with
the closed half-plane {λ ∈ C : Reλ ≤ 0} (see Example IV.2.6.(i)) and hence
do not distinguish between the very contrasting asymptotic behaviors of(
Tl(t)

)
t≥0 and

(
Tr(t)

)
t≥0. To conclude this example, we observe that both

semigroups
(
Tl(t)

)
t≥0 and

(
Tr(t)

)
t≥0 are weakly stable for 1 < p <∞.

(ii) Next, we look at multiplication semigroups on X := C0(Ω), Ω locally
compact (see Section I.4.a). Let q : Ω → C be a continuous function induc-
ing a multiplication semigroup

(
T (t)

)
t≥0 by

T (t)f := etq · f, f ∈ X,
with generator

Af = q · f, f ∈ D(A) = {f ∈ X : qf ∈ X}

(see Paragraph II.2.9). We assume
(
T (t)

)
t≥0 to be bounded hence

sup
s∈Ω

Re q(s) ≤ 0.

If there is a point s0 ∈ Ω such that Re q(s0) = 0, then

|T (t)f(s0)| = |f(s0)| for all t ≥ 0,

i.e.,
(
T (t)

)
t≥0 is not strongly stable. On the other hand, if Re q(s) < 0

for all s ∈ Ω, then for f ∈ X with compact support Ω0 ⊂ Ω, we obtain
convergence

lim
t→∞

‖T (t)f‖ ≤ lim
t→∞

esups∈Ω0
Re q(s)·t ‖f‖ = 0.

Since the continuous functions with compact support are dense in X, we
conclude that

(
T (t)

)
t≥0 is strongly stable.
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From (iv) in Proposition I.4.2 we know that the spectrum σ(A) of the
generator is the closed range q(Ω). One can therefore construct strongly
stable multiplication semigroups on C0(Ω) such that the boundary spectrum
σ+(A) = σ(A) ∩ iR of its generator A is a given closed subset of iR.
(iii) For multiplication semigroups on Lp-spaces there is an analogous char-
acterization of strong stability. Take X := Lp(Ω, µ), 1 ≤ p < ∞, for some
σ-finite measure space (Ω, µ) and consider a measurable function q : Ω → C
satisfying

ess sup
s∈Ω

Re q(s) ≤ 0.

Then the associated multiplication semigroup
(
T (t)

)
t≥0 (see Section I.4.b)

is strongly stable if and only if

(2.6) µ(Ω0) = 0 for Ω0 := {s ∈ Ω : q(s) ∈ iR}.

To prove this assertion, we consider

Ωn :=
{
s ∈ Ω : Re q(s) ≤ −1/n

}
for n ∈ N and observe that

lim
t→∞

‖T (t)f‖ = 0

for all f ∈ Lp(Ω, µ) vanishing outside some Ωn. If (2.6) holds, then these
functions form a dense subspace of X, and the semigroup being bounded
is strongly stable. Conversely, if µ(Ω0) > 0, then

‖T (t)1 Ω0‖ = ‖1 Ω0‖ > 0 for all t ≥ 0,

and hence the semigroup
(
T (t)

)
t≥0 is not strongly stable.

As an application of this characterization and of the spectral theorem
for self-adjoint operators on Hilbert spaces (see Theorem I.4.9), we obtain
the following result with the n-dimensional Laplace operator ∆ on L2(Rn)
as a typical example (see Paragraph II.2.13).

Proposition. Let
(
A,D(A)

)
be a self-adjoint operator on a Hilbert space

H such that (Ax |x) ≤ 0 for all x ∈ D(A). Then the following assertions
are equivalent.

(a) The semigroup
(
T (t)

)
t≥0 generated by A is strongly stable.

(b) 0 is not an eigenvalue of A.

Proof. By the Spectral Theorem I.4.9, A is isomorphic to a multiplication
operator on L2(Ω, µ) such that the essential range of the corresponding
function satisfies qess(Ω) ⊂ (−∞, 0]. Moreover, µ([q = 0]) > 0 if and only
if 0 is an eigenvalue of A. �



Section 2. Compact Semigroups 325

All these examples do not suggest a characterization of strong stability
through spectral properties of the generator. However, there are some im-
mediate necessary properties. In particular, every strongly stable semigroup
must be
• bounded ,

and its generator A has to satisfy
• Pσ(A) ∩ iR = ∅, and
• Pσ(A′) ∩ iR = ∅.
The first property follows from the uniform boundedness principle. For

the other two observe that

Ax = iλx for x ∈ X (or, A′x′ = iλx′ for x′ ∈ X ′)

implies
T (t)x = eiλtx (or, T (t)′x′ = eiλtx′)

for all t ≥ 0 (use Theorem IV.3.7). Therefore, if Pσ(A)∩iR 6= ∅ or Pσ(A′)∩
iR 6= ∅, the semigroup

(
T (t)

)
t≥0 is not even weakly stable.

The following lemma shows that these properties are not unrelated.

2.20 Lemma. For a bounded strongly continuous semigroup
(
T (t)

)
t≥0

with generator A on a Banach space X, the following properties hold.

(i) Pσ(A) ⊂ Pσ(A′).
(ii) Pσ(A) = Pσ(A′) if X is reflexive.

Proof. (i) Due to the rescaling technique from Paragraph II.2.2, it suffices
to show that 0 ∈ Pσ(A) implies 0 ∈ Pσ(A′). Assume that Ax0 = 0 and
hence T (t)x0 = x0 for all t ≥ 0 and some 0 6= x0 ∈ D(A). Choose x′ ∈ X ′

such that 〈x0, x
′〉 = 1 and define

y′n :=
1
n

∫ n

0

T (s)′x′ ds, n ∈ N.

Since
(
T (t)

)
t≥0 is bounded, the sequence (y′n)n∈N is bounded as well and

has a weak∗ accumulation point y′0. This accumulation point satisfies

〈x0, y
′
0〉 = 1

and
〈y, T (t)′y′0 − y′0〉 = 0

for all y ∈ X and t > 0. Therefore, y′0 is a nontrivial fixed vector of(
T (t)′

)
t≥0, and 0 is an eigenvalue of A′.

(ii) If X reflexive, then the adjoint semigroup
(
T (t)′

)
t≥0 is strongly

continuous (see Paragraph I.5.14), and it follows from assertion (i) that
Pσ(A′) ⊂ Pσ(A′′) = Pσ(A). �
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We are now ready to give a partial answer to question (ii) in Prob-
lem 2.16. The subsequent sufficient conditions for strong stability were
found independently by W. Arendt–C.J.K. Batty [AB88] and Yu.I. Lyubich–
Q.Ph. Vũ [LV88] and confirm in a beautiful way what could be taken as a
leitmotif for these investigations:

“Small boundary spectrum σ(A) ∩ iR”
implies

“good stability properties for
(
T (t)

)
t≥0;”

see also Exercise 2.25.(4).

2.21 Theorem. (Arendt, Batty, Lyubich, Vũ, 1988). Let
(
T (t)

)
t≥0

be a bounded strongly continuous semigroup with generator A on a Banach
space X. If

(i) Pσ(A′) ∩ iR = ∅ and

(ii) σ(A) ∩ iR is countable,

then
(
T (t)

)
t≥0 is strongly stable, i.e.,

(2.7) lim
t→∞

T (t)x = 0 for all x ∈ X.

Proof. As a preparatory step, we renorm X as in Lemma II.3.10 to
make

(
T (t)

)
t≥0 a contraction semigroup. Assume now that

(
T (t)

)
t≥0 is

not strongly stable. In this case, the construction of the isometric limit
semigroup

(
S(t)

)
t≥0 performed in Proposition IV.2.20 yields a nontrivial

Banach space
Z :=

(
X/Y , |||·|||

)∼ 6= {0}
for the norm

|||x+ Y ||| := lim
t→∞

‖T (t)x‖, x ∈ X,

and the subspace

Y :=
{
x ∈ X : lim

t→∞
‖T (t)x‖ = 0

}
.

As shown in Proposition IV.2.20, the generator B of
(
S(t)

)
t≥0 satisfies

σ(B) ⊂ σ(A), and assumption (ii) implies that case (ii) of Lemma IV.2.19
holds. Hence, ∅ 6= σ(B) ⊂ iR (use Corollary IV.3.21), and

(
S(t)

)
t≥0 extends

to a group of isometries on Z.
It is now that we use the full strength of assumption (ii). In fact, σ(A)∩iR;

hence σ(B) is a countable, locally compact space. By Baire’s theorem,
there exists an isolated point λ0 ∈ σ(B). We perform the spectral de-
composition with spectral projection P0 corresponding to the spectral set
{λ0} (see Proposition IV.1.16). This yields a strongly continuous group(
S0(t)

)
t≥0 of isometries on Z0 := P0Z such that its generator B0 has spec-

trum σ(B0) = {λ0}. By the Weak Spectral Mapping Theorem for Bounded
Groups IV.3.16, we conclude that

σ
(
S0(t)

)
= {eλ0t} for all t ∈ R.
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Gelfand’s T = I theorem (see Theorem B.17) then implies that

S0(t) = eλ0t · I and B0 = λ0 · I.

From this we can show that λ0 ∈ Pσ(A′), contradicting assumption (i). In
fact, take 0 6= z′ ∈ Z ′0 and define 0 6= x′ ∈ X ′ by

〈x, x′〉 := 〈P0(x+ Y ), z′〉 for all x ∈ X.

Then

〈x, T (t)′x′〉 = 〈T (t)x, x′〉 =
〈
P0

(
T (t)x+ Y

)
, z′
〉

= 〈S0(t)P0(x+ Y ), z′〉 =
〈
eλ0tP0(x+ Y ), z′

〉
=
〈
x, eλ0tx′

〉
for all x ∈ X.

This proves that eλ0t ∈ Pσ
(
T (t)′

)
for all t ≥ 0; hence λ0 ∈ Pσ(A′). �

If we assume our Banach space to be reflexive, we obtain from Lemma 2.20
the following slightly simpler version of the above stability theorem.

2.22 Corollary. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semi-

group with generator A on a reflexive Banach space X. If

(i) Pσ(A) ∩ iR = ∅ and

(ii) σ(A) ∩ iR is countable,

then
(
T (t)

)
t≥0 is strongly stable.

We have already seen in Example 2.19.(i) that condition (ii) is not nec-
essary for strong stability. Still, Theorem 2.21 and its Corollary 2.22 are
quite useful, and the examples below (in particular, Example 2.23.(iii))
show that the result is, in a certain sense, optimal.

2.23 Examples. (i) Let
(
T (t)

)
t≥0 be a bounded analytic semigroup in

a sector Σδ. Then the resolvent set ρ(A) of its generator A contains the
sector Σπ/2+δ (see Theorem II.4.6); hence σ(A) ∩ iR ⊂ {0}. From Theo-
rem 2.21 we deduce the following equivalence extending the proposition in
Example 2.19.(iii).

A bounded analytic semigroup
(
T (t)

)
t≥0 is strongly stable if and only if

0 is not an eigenvalue of the adjoint A′ of its generator A.

(ii) Using multiplication operators as in Examples 2.19.(ii) and 2.19.(iii), it
is easy to produce strongly stable semigroups such that σ(A)∩ iR becomes
a given countable and closed subset of iR.
(iii) For the following example, we start with an arbitrary uncountable
and closed subset Ω of iR. It is known from measure theory (e.g., see
[Sem71, 8.5.5 and 19.7.6]) that there exists a nontrivial diffuse probability
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measure µ whose support is contained in Ω. On the space X := L2(Ω, µ) we
then take the semigroup

(
T (t)

)
t≥0 generated by the multiplication operator

Af(s) := sf(s), s ∈ Ω and f ∈ L2(Ω, µ).

Then σ(A) = suppµ (by Proposition I.4.10.(iv)) is uncountable and the
point spectrum Pσ(A) is empty (since µ is diffuse). However,

(
T (t)

)
t≥0

is not strongly stable (since each T (t) is an isometry) and, in general, not
even weakly stable (use Example 2.11.(ii)). This shows that the countability
condition in Theorem 2.21, while not being necessary, cannot be weakened
in general.

However, by adding an appropriate assumption, we can characterize
strong stability by a spectral property.

2.24 Corollary. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with

generator A on a Banach space X. If
(
T (t)

)
t≥0 is relatively compact for

the strong operator topology, then the following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is strongly stable.

(b) Pσ(A) ∩ iR = ∅.

Proof. By Theorem 2.14, strong stability is equivalent to Xr = {0}, which
by definition is condition (b). �

The conditions (i) and (ii) in Corollary 2.15 provide examples in which
the above compactness assumption is satisfied. See also Exercise 2.25.(2).

2.25 Exercises. (1) Let (T (t))t≥0 be a bounded strongly continuous semigroup
on the Banach space X with generator A. Show that for each λ ∈ C,

ker(λ−A′) separates ker(λ−A)

and, if X is reflexive,

ker(λ−A) separates ker(λ−A′).

(Hint: Use the idea in the proof of Lemma 2.20.)

(2) Let (T (t))t≥0 be a bounded strongly continuous semigroup and assume that

there exists a compact operator K ∈ L(X) such that rg K = X and T (t0)K =
KT (t0) for some t0 > 0. Show that (T (t))t≥0 is relatively compact for the strong
operator topology.

(3) Let (T (t))t≥0 be a strongly continuous semigroup on the Banach space X that
is relatively compact for the weak operator topology and consider the splitting
X = Xs ⊕Xr according to Theorem 2.8. Construct examples satisfying various
combinations of the following properties.

(i) Xr = {0} or Xr = fix(T (t))t≥0.

(ii) Xs =
{
x ∈ X : limt→∞ eεt‖T (t)x‖ = 0

}
for some ε > 0,

Xs = {x ∈ X : limt→∞ ‖T (t)x‖ = 0}, or
Xs = {x ∈ X : limt→∞ 〈T (t)x, x′〉 = 0 for all x′ ∈ X ′}.
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(4∗) Let (T (t))t≥0 be a bounded strongly continuous semigroup with generator
A on a Banach space X such that σ(A) ∩ iR ⊆ {0}.

(i) Show that limt→∞ ‖T (t)(T (s)− I)R(λ, A)‖ = 0 for all s > 0, λ > 0. (Hint:
See [Vũ92].)

(ii) If X is reflexive, this implies that limt→∞ T (t)x exists for every x ∈ X.
(Hint: Use the property stated in Example 4.7 below.)

3. Eventually Compact and Quasi-compact Semigroups

The structure theory for compact semigroups, developed in Section 2.a,
was the clue for the systematic treatment of asymptotic properties with re-
spect to the weak or the strong operator topology carried out in Section 2.b
and 2.c. This theory will not be needed if we are interested in convergence
properties for the uniform operator topology. Instead, we will assume that
some or all semigroup operators, and not the semigroup or the semigroup
orbits, satisfy some compactness condition. However, we continue to call
such semigroups “compact,” even if the two concepts are logically indepen-
dent. For instance, if T (t) = I for all t ≥ 0, then the semigroup is (norm)
compact, while no T (t) is a compact operator (if dimX = ∞). On the
other hand, a multiplication semigroup on c0 satisfying property (ii) in the
proposition in Paragraph II.4.32 consists of compact operators, but may
be unbounded, hence is not compact. We will distinguish between the two
compactness concepts by using a prefix such as “strongly” or “weakly” in
the first case and “eventually” or “quasi” in the second case.

The analysis of semigroups
(
T (t)

)
t≥0 containing some compact operator

T (t0) is based on the description of its spectrum. From this, we then deduce
important consequences for its asymptotic behavior. We start with a more
general situation and use the essential spectrum from Paragraph IV.1.20
and the essential growth bound ωess from Definition IV.2.9.

3.1 Theorem. Let T :=
(
T (t)

)
t≥0 be a strongly continuous semigroup

with generator A and take λ1, . . . , λm ∈ σ(A) satisfying Reλ1, . . . ,Reλm >
ωess(T). Then λ1, . . . , λm are isolated spectral values of A with finite alge-
braic multiplicity. If P1, . . . , Pm denote the corresponding spectral projec-
tions and k1, . . . , km the corresponding orders of poles of R(·, A), then

where

T (t) = T1(t) + · · ·+ Tm(t) +Rm(t),

Tn(t) = eλnt
kn−1∑
j=0

tj

j!
(A− λn)jPn for n = 1, . . . ,m.

Moreover, for every w > sup
{
ωess(T)

}
∪
{

Reλ : λ ∈ σ(A) \ {λ1, . . . , λm}
}

there exists M > 0 such that

‖Rm(t)‖ ≤Mewt

for all t ≥ 0.
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Proof. By Corollary IV.2.11, the spectral values λ1, . . . , λm are isolated
with finite algebraic multiplicity. Now let P :=

∑m
n=1 Pn be the spectral

projection of A corresponding to the spectral set {λ1, . . . , λm}; cf. Propo-
sition IV.1.16. We then obtain T (t) = T (t)P1 + · · ·+T (t)Pm +T (t)(I−P ),
and by Paragraph II.2.3, the restricted semigroup

(
T (t)| rg Pn

)
t≥0 has gen-

erator A| rg Pn
. Since rgPn is finite-dimensional and (A− λn)kn

| rg Pn
= 0 (cf.

Example I.2.5), we obtain T (t)| rg Pn
= eλnt

∑kn−1
j=0

tj

j! (A− λn)j
| rg Pn

, i.e.,

Tn(t) = T (t)Pn = eλnt
kn−1∑
j=0

tj

j!
(A− λn)jPn for all t ≥ 0.

Consider now the semigroup
(
T (t)| ker P

)
t≥0. By Corollary IV.2.11 its growth

bound is given by

ω0(T| ker P ) = max
{
ωess(T| ker P ), s(A| ker P )

}
.

Since ωess(T| ker P ) = ωess(T) (use Proposition IV.2.12) and

s(A| ker P ) = sup
{

Reλ : λ ∈ σ(A) \ {λ1, . . . , λm}
}
,

this implies

ω0(T| ker P ) = sup
{
ωess(T)

}
∪
{

Reλ : λ ∈ σ(A) \ {λ1, . . . , λm}
}
.

Hence, for every w ∈ R larger than this number there exists M > 0 such
that

‖Rm(t)‖ = ‖T (t)(I − P )‖ ≤ ‖T (t)| ker P ‖ · ‖I − P‖ ≤Mewt

for all t ≥ 0. �

We now consider semigroups T =
(
T (t)

)
t≥0 containing some compact

operator, i.e., that are eventually compact semigroups in the sense of Sec-
tion II.4.d. In this case, we have ωess(T) = −∞, and Theorem 3.1 combined
with Corollary IV.2.11 gives the following result.

3.2 Corollary. Let
(
T (t)

)
t≥0 be an eventually compact semigroup with

generator A on a Banach space X. Then the following properties hold.

(i) The spectrum σ(A) is countable (or finite or empty) and consists of
poles of R(·, A) of finite algebraic multiplicity only.

(ii) The set {µ ∈ σ(A) : Reµ ≥ r} is finite for every r ∈ R.
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Therefore, we can write σ(A) = {λ1, λ2, . . .} with Reλn+1 ≤ Reλn for all
n ∈ N and Reλn ↓ −∞ if σ(A) is infinite. Denote by kn the order of the
pole λn of R(·, A) and by Pn the corresponding residue. Then one has for
every m ∈ N that

(iii) T (t) = T1(t) + T2(t) + · · ·+ Tm(t) +Rm(t), where

(3.1) Tn(t) = eλnt
kn−1∑
j=0

tj

j!
(A− λn)jPn, t ≥ 0 and 1 ≤ n ≤ m,

and for every ε > 0 there exists M > 0 such that

(3.2) ‖Rm(t)‖ ≤Me(ε+Re λm+1)t for all t ≥ 0.

From (3.1) and (3.2) it is now clear which additional hypotheses imply
norm convergence of T (t) as t → ∞. First, we assume the existence of a
dominant eigenvalue λ1, i.e.,

(3.3) Reλ1 > Reλn for n = 2, 3, . . . .

Moreover, λ1 has to be a pole of order 1; hence T1(t) simply becomes eλ1tP1.
Using estimate (3.2), we obtain∥∥e−λ1tT (t)− P1

∥∥ ≤ e−λ1t ‖T (t)− T1(t)‖ = e−λ1t ‖R1(t)‖ ≤Me−εt

for some ε > 0 and M ≥ 1.

3.3 Corollary. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup that is

eventually compact. If λ1 is a dominant eigenvalue of the generator and a
first-order pole of the resolvent with residue P , then there exist constants
ε > 0 and M ≥ 1 such that∥∥e−λ1tT (t)− P1

∥∥ ≤Me−εt

for all t ≥ 0.

It should be evident that the most interesting case occurs if λ1 = 0 in
the above corollary, and we refer to [Nag86, B-IV, Prop. 2.4 and Expl. 2.6]
for an important class of examples.

The above results, and the asymptotic behavior they describe, are quite
satisfying. However, the assumption of eventual compactness is not needed
in order to obtain a conclusion as in Corollary 3.3. In fact, we used only
the existence of a dominated eigenvalue λ1 and therefore the representation
from Corollary 3.2.(iii) for m = 1 only. This leads to the following property.
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3.4 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach

space X is called quasi-compact if

lim
t→∞

inf
{
‖T (t)−K‖ : K ∈ L(X), K compact

}
= 0.

So, the operators in a quasi-compact semigroup
(
T (t)

)
t≥0 need not be

compact, but have to approach the subspace K(X) of all compact operators
on X. Quasi-compactness can be characterized in various ways, e.g., using
the essential growth bound ωess from Definition IV.2.9.

3.5 Proposition. For a strongly continuous semigroup T =
(
T (t)

)
t≥0 on

a Banach space X the following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is quasi-compact.

(b) ωess(T) < 0.
(c) ‖T (t0)−K‖ < 1 for some t0 > 0 and K ∈ K(X).

Proof. Property (a) implies (c) by definition, and (c) implies ress
(
T (t0)

)
≤

‖T (t0)‖ess < 1, hence ωess(T) < 0 (use Proposition IV.2.10).
We now show that (b) ⇒ (a). Again by Proposition IV.2.10, we have that

ress
(
T (1)

)
< 1; hence limn→∞ ‖T (n)‖

1/n

ess < 1 for ‖S‖ess := dist
(
S,K(X)

)
.

Thus, we find n0 ∈ N and a < 1 such that

‖T (n)‖ess < an for all n ≥ n0.

Now choose compact operators Kn ∈ K(X) such that ‖T (n)−Kn‖ < an

for n ≥ n0 and define M := sup0≤s≤1 ‖T (s)‖. We then obtain

‖T (t)− T (t− n)Kn‖ ≤ ‖T (t− n)‖ · ‖T (n)−Kn‖ ≤Man

for t ∈ [n, n+1] and n ≥ n0. This implies limt→∞ dist
(
T (t),K(X)

)
= 0. �

A natural name for these semigroups could also be essentially uniformly
exponentially stable semigroups. In fact, condition (b) above means that
the semigroup of quotient operators in the Calkin algebra L(X)/K(X) is
uniformly exponentially stable.

The easiest examples of quasi-compact semigroups, which are not even-
tually compact, are uniformly exponentially stable semigroups. The gener-
ators of such semigroups can now be perturbed by an arbitrary compact
operator destroying the uniform exponential stability but without losing the
quasi-compactness. In fact, from Proposition IV.2.12 and Proposition 3.5.
(c) we deduce the following result.

3.6 Proposition. Let
(
T (t)

)
t≥0 be a quasi-compact strongly continuous

semigroup with generator A on the Banach space X and take a compact
operator K ∈ L(X). Then A+K generates a quasi-compact semigroup.
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It is now possible to obtain for quasi-compact semigroups the (essen-
tial part of the) assertions in Corollary 3.2. In fact, the following result
follows immediately from Theorem 3.1 and the characterization of quasi-
compactness in Proposition 3.5.(b).

3.7 Theorem. Let
(
T (t)

)
t≥0 be a quasi-compact strongly continuous semi-

group with generator A on a Banach space X. Then the following holds.

(i) The set {λ ∈ σ(A) : Reλ ≥ 0} is finite (or empty) and consists of
poles of R(·, A) of finite algebraic multiplicity.

If we denote these poles by λ1, . . . , λm, their residues by P1, . . . , Pm with
poles of order k1, . . . , km, we have

(ii) T (t) = T1(t) + T2(t) + · · ·+ Tm(t) +R(t), where

(3.4) Tn(t) = eλnt
kn−1∑
j=0

tj

j!
(A− λn)jPn, t ≥ 0 and 1 ≤ n ≤ m,

and

(3.5) ‖R(t)‖ ≤Me−εt for some ε > 0, M ≥ 1 and all t ≥ 0.

Clearly, assumptions as in Corollary 3.3, i.e., the existence of a dominant
eigenvalue being a first-order pole, imply norm convergence of the (rescaled)
semigroup. We do not restate this explicitly, but apply it to a concrete
example.

3.8 Example. On the Banach space X := C(R−∪{−∞}) we consider the
first-order differential operator

(3.6) Af := f ′ +mf

with domain

(3.7) D(A) :=
{
f ∈ X : f is differentiable, f ′ ∈ X and f ′(0) = Lf

}
,

where m ∈ X is real-valued and L is a continuous linear form on X. As
in Paragraph II.3.29 we can show that the operator

(
A,D(A)

)
generates a

strongly continuous semigroup
(
T (t)

)
t≥0.

Lemma 1. The semigroup
(
T (t)

)
t≥0 satisfies

T (t)f(s) =


e
∫ 0

s
m(σ) dσ

[
e(s+t)m(0)f(0)

+
∫ s+t

0

eτ m(0)LT (s+ t− τ)f dτ
]

for s+ t > 0,

e
∫ s+t

s
m(σ) dσ

f(s+ t) for s+ t ≤ 0.
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Proof. For f ∈ D(A) we have

d

dr

(
erm(0)

(
T (t− r)f

)
(0) +

∫ r

0

eτm(0)LT (t− τ)f dτ
)

= 0.

This implies

(
T (t)f

)
(0) = etm(0)f(0) +

∫ t

0

eτm(0)LT (t− τ)f dτ.

On the other hand, we have

d

dr

(
e
∫ s+r

s
m(σ) dσ(

T (t− r)f
)
(s+ r)

)
= 0.

Therefore, we obtain

(
T (t)f

)
(s) =

 e
∫ 0

s
m(σ) dσ(

T (s+ t)f
)
(0) for s+ t > 0,

e
∫ s+t

s
m(σ) dσ

f(s+ t) for s+ t ≤ 0.

�

This lemma allows us to give a condition that forces the semigroup(
T (t)

)
t≥0 to be quasi-compact.

Lemma 2. If m(−∞) < 0, then the semigroup
(
T (t)

)
t≥0 is quasi-compact.

Proof. We define operators K(t) ∈ L(X) by

K(t)f(s) :=



e
∫ 0

s
m(σ) dσ

[
e(s+t) m(0)f(0)

+
∫ s+t

0

e(s+t−τ) m(0)LT (τ)f dτ
]

for 0 < s+ t,

(t+ s+ 1) · e
∫ 0

s
m(σ) dσ

f(0) for − 1 < s+ t ≤ 0,
0 for s+ t ≤ −1.

These operators are compact by the Arzelà–Ascoli theorem. On the other
hand, since m(−∞) < 0, we have

lim
t→∞

‖T (t)−K(t)‖ = 0.

Therefore, the semigroup
(
T (t)

)
t≥0 is quasi-compact. �
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Assume in the following that m(−∞) < 0. In order to apply the above re-
sult, we have to find the eigenvalues λ of A with Reλ ≥ 0. An eigenfunction
f ∈ D(A) with eigenvalue λ satisfies

f ′ = λf −mf,

hence is of the form f = cgλ, where

gλ(s) := e
∫ 0

s
m(σ) dσeλs

for all s ∈ R−. Since Reλ ≥ 0, the functions gλ and g′λ vanish at −∞,
hence belong to X. Consequently, gλ ∈ D(A) if and only if

λ− Lgλ −m(0) = 0.

This shows that λ is an eigenvalue of A if and only if the characteristic
equation

(3.8) ξ(λ) := λ− Lgλ −m(0) = 0

holds.
Now, suppose that λ with Reλ ≥ 0 is not an eigenvalue of A. For each

g ∈ X we want to find a function f ∈ D(A) such that

f ′ = λf −mf − g.

This equation is solved by

f = cgλ + hλ,

where

hλ(s) :=
∫ 0

s

e
∫ τ

s
m(σ) dσeλ(s−τ)g(τ) dτ

for all s ∈ R−. If the constant c is chosen as

(3.9) c :=
g(0) + Lhλ

λ− Lgλ −m(0)
,

we then obtain the unique f ∈ D(A) satisfying (λ − A)f = g. This yields
an explicit representation of the resolvent of A in λ.

In the remaining part of this paragraph we assume that L is of the form

(3.10) L = L0 + aδ0,

where a is a real number and L0 is a positive linear form on X. We then
have the following lemma proving the existence of a dominant eigenvalue.

Lemma 3. Suppose that m(−∞) < 0. If ξ(0) ≤ 0, i.e., Lg0 ≥ −m(0), then
the characteristic function ξ has a unique zero λ0 ≥ 0 that is a dominant
eigenvalue of the operator A.
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Proof. The function ξ : R+ 3 λ 7→ λ−L0gλ−a−m(0) is strictly increasing
from ξ(0) to ∞. Consequently, if ξ(0) ≤ 0, it has a unique zero λ0 that is an
eigenvalue of A. Now take an arbitrary eigenvalue λ of A with Reλ ≥ λ0.
Then, we have

|λ− a−m(0)| = |L0gλ| ≤ L0gλ0 = λ0 − a−m(0).

This implies λ = λ0, and therefore λ0 is a dominant eigenvalue of A. �

The eigenspace corresponding to the dominant eigenvalue λ0 is spanned
by the function gλ0 , hence is one-dimensional. Moreover, it is a first-order
pole, as can be seen from (3.9).

After these preparations, we can give a precise description of the asymp-
totic behavior of the semigroup

(
T (t)

)
t≥0. In particular, it follows that the

rescaled semigroup
(
e−λ0tT (t)

)
t≥0 converges in norm to a one-dimensional

projection (see also Exercise 3.9.(3)).

Proposition 4. Assume that m(−∞) < 0, L = L0 + aδ0 as in (3.10), and
L0g0 + a ≥ −m(0). Then there is a dominant eigenvalue λ0 ≥ 0 of A, a
continuous linear form ϕ on X, and constants ε, M > 0 such that∥∥e−λ0tT (t)f − (gλ0 ⊗ ϕ)f

∥∥ ≤Me−εt‖f‖ for all f ∈ X, t ≥ 0,

where (gλ0 ⊗ ϕ)f := ϕ(f) · gλ0 .

3.9 Exercises. (1) Let (T (t))t≥0 be an eventually compact semigroup such that
the spectrum σ(A) of its generator A is infinite. Show that there exists a sequence
(µn)n∈N in C such that σ(A) = Pσ(A) = {µn : n ∈ N} and limn→∞ Re µn = −∞.
(Hint: Use Corollary 3.2 and Theorem II.4.18.)

(2) Call a strongly continuous semigroup T = (T (t))t≥0 with generator A essen-
tially compact if ωess(T) < s(A) and prove an analogue of Theorem 3.7 for these
semigroups. (Hint: Rescale the semigroup to make it quasi-compact.)

(3) A strongly continuous semigroup (T (t))t≥0 with generator A on a Banach
space X satisfies balanced exponential growth if there exists a projection P ∈
L(X) such that

lim
t→∞

∥∥e− s(A)tT (t)− P
∥∥ = 0.

(i) A semigroup with balanced exponential growth is essentially compact if
and only if P has finite-dimensional range.

(ii) An essentially compact semigroup has balanced exponential growth if and
only if s(A) is a dominant eigenvalue (cf. Corollary 3.3). (Hint: See [Web87, Sec. 2].)
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4. Mean Ergodic Semigroups

Up to now the asymptotic behavior of a semigroup
(
T (t)

)
t≥0 has been

described by looking at the existence of the limit

“ lim
t→∞

T (t)”

in some appropriate topology. However, it is also interesting to study the
convergence of certain “mean values” of the semigroup. The most natural
means for this purpose are the Cesàro means to be introduced now for a
strongly continuous semigroup

(
T (t)

)
t≥0 on a Banach space X.

4.1 Definition. For each r > 0, the operators

C(r) :=
1
r

∫ r

0

T (s) ds,

defined pointwise as

C(r)x :=
1
r

∫ r

0

T (s)x ds for each x ∈ X,

will be called the Cesàro means of the semigroup
(
T (t)

)
t≥0.

These means have some simple algebraic and analytic properties that we
collect in the following lemma. To that purpose we use the notation coK
for the closed convex hull of a subset K ∈ X and

fix
(
T (t)

)
t≥0 :=

⋂
t≥0

fix
(
T (t)

)
=
{
x ∈ X : T (t)x = x for all t ≥ 0

}
for the fixed space of a semigroup

(
T (t)

)
t≥0. Recall that if

(
T (t)

)
t≥0 is

strongly continuous and has generator A, then

fix
(
T (t)

)
t≥0 = kerA

by Corollary IV.3.8.(i).

4.2 Lemma. The Cesàro means
(
C(r)

)
r≥0 of a strongly continuous semi-

group
(
T (t)

)
t≥0 with generator

(
A,D(A)

)
satisfy the following properties.

(i) C(r)x ∈ co{T (t)x : t ≥ 0} for each x ∈ X.

(ii)
(
I − T (t)

)
C(r) = C(r)

(
I − T (t)

)
= 1/r

(
I − T (r)

) ∫ t

0
T (s) ds for each

t, r > 0.
(iii) If y := limr→∞ C(r)x exists for some x ∈ X and limr→∞ 1/r ‖T (r)‖ =

0, then
y ∈ fix

(
T (t)

)
t≥0 = kerA.

Proof. Assertion (i) follows from the definition of the Riemann integral,
while (ii) is an immediate consequence of the semigroup law (FE).
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To prove (iii), we take y := limr→∞ C(r)x and conclude from (ii) that

(
I − T (t)

)
y = lim

r→∞

1
r

(
I − T (r)

) ∫ t

0

T (s)y ds = 0

for each fixed t > 0. This proves y ∈ fix
(
T (t)

)
t≥0. �

Under the assumption limr→∞ 1/r ‖T (r)‖ = 0, it follows from identity (ii)
in Lemma 4.2 that limr→∞ C(r)x exists for each x of the form x := y−T (t)y
for some y ∈ X, t > 0.

In our new concept of asymptotic behavior we require convergence of the
Cesàro means C(r) for all x ∈ X.

4.3 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach

space X is called mean ergodic if

lim
r→∞

C(r)x

exists for all x ∈ X. For such semigroups, the operator

P : x 7→ Px := lim
r→∞

C(r)x

will be called the (mean ergodic) projection associated to
(
T (t)

)
t≥0.

The reader interested in the roots of this notion in nineteenth century
thermodynamics and in its manifold applications throughout mathematics
and theoretical physics is referred to books on ergodic theory (e.g., [Kre85]).
We discuss only the basic mathematical consequences of the above defini-
tion and explain first why we call the limit operator P a “projection.”

4.4 Lemma. Let
(
T (t)

)
t≥0 be a mean ergodic semigroup on a Banach

space X satisfying limr→∞ 1/r ‖T (r)‖ = 0. For the associated projection P
we have

P = T (t)P = PT (t) = P 2 for all t ≥ 0.

Therefore, P is a projection decomposing X into

X = rgP ⊕ kerP

such that

(i) rgP = fix
(
T (t)

)
t≥0 = kerA and

(ii) kerP = lin{x− T (t)x : x ∈ X, t ≥ 0} = rgA.
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Proof. The identity P = T (t)P = PT (t) follows from Lemma 4.2.(ii) and
implies

P = C(r)P =
(

lim
r→∞

C(r)
)
P = P 2.

Therefore, P is a bounded projection and its range is fix
(
T (t)

)
t≥0 by

Lemma 4.2.(iii). Its kernel kerP is closed and contains lin{x− T (t)x : x ∈
X, t ≥ 0} by Lemma 4.2.(ii). To show the converse inclusion, assume that
a linear form x′ ∈ X ′ vanishes on each x − T (t)x. Then T (t)′x′ = x′ for
each t ≥ 0 and therefore

〈x, x′〉 = 〈C(r)x, x′〉

for each x ∈ X and r > 0. If we choose x ∈ kerP , i.e., such that
limr→∞ C(r)x = 0, then this implies 〈x, x′〉 = 0. This shows that each
continuous linear form vanishing on {x− T (t)x : x ∈ X, t ≥ 0} vanishes on
kerP . The Hahn–Banach theorem now yields the desired inclusion. �

Bounded semigroups
(
T (t)

)
t≥0 clearly satisfy limr→∞ 1/r ‖T (r)‖ = 0,

and their mean ergodicity can be characterized by the following series of
quite different, but equivalent, properties.

4.5 Theorem. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup with

generator
(
A,D(A)

)
on a Banach space X. If ‖T (t)‖ ≤ M for all t ≥ 0,

then the following assertions are equivalent.

(a)
(
T (t)

)
t≥0 is mean ergodic.

(b) The Cesàro means
(
C(r)

)
r>0 converge in the weak operator topology

as r →∞.

(c) For each x ∈ X there exists a monotone, unbounded sequence (rn)n∈N
such that (C(rn)x)n∈N has a weak accumulation point in X.

(d) For each x ∈ X one has co{T (t)x : t ≥ 0} ∩ fix
(
T (t)

)
t≥0 6= ∅.

(e) The fixed space fix
(
T (t)

)
t≥0 = kerA separates the dual fixed space

fix
(
T (t)′

)
t≥0 = kerA′.

Proof. The implications (a) ⇒ (b) ⇒ (c) are trivial.
To show that (c) ⇒ (d), assume that y is contained in the weak closure

of {C(rn)x : n ≥ m} for each m ∈ N and some sequence rn ↑ ∞. Then,
since each operator T (t) is weakly continuous, y − T (t)y is in the weak
closure of {(

I − T (t)
)
C(rn)x : n ≥ m

}
,

which again, by Lemma 4.2.(ii) and the fact that the unit ball U := {x ∈
X : ‖x‖ ≤ 1} is weakly closed, is contained in

1
rm

(
tM + tM2

)
‖x‖ U.
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Since this holds for each m ∈ N, we obtain y − T (t)y = 0; hence y ∈
fix
(
T (t)

)
t≥0. Finally, since C(rn)x is contained in the weakly closed set

co{T (t)x : t ≥ 0} (use Proposition A.1.(i)), we conclude that y ∈ co{T (t)x :
t ≥ 0} ∩ fix

(
T (t)

)
t≥0.

(d) ⇒ (e). Take x′, y′ ∈ kerA′ = fix
(
T (t)′

)
t≥0 such that x′ 6= y′ and

choose x0 ∈ X such that 〈x0, x
′〉 6= 〈x0, y

′〉.
By assumption (d) there exists x̄ ∈ co{T (t)x0 : t ≥ 0}∩fix

(
T (t)

)
t≥0. The

linear forms x′ and y′, both belonging to fix
(
T (t)′

)
t≥0, remain constant on

co{T (t)x0 : t ≥ 0}. Therefore, we obtain

〈x̄, x′〉 = 〈x0, x
′〉 6= 〈x0, y

′〉 = 〈x̄, y′〉 ,

i.e., fix
(
T (t)

)
t≥0 separates fix

(
T (t)′

)
t≥0.

(e) ⇒ (a). Consider the subspace

G := fix
(
T (t)

)
t≥0 ⊕ lin{x− T (t)x : x ∈ X, t ≥ 0}

of X and take a linear form x′ ∈ X ′ vanishing on G. Since x′ vanishes on
each element of the form x − T (t)x, this implies that x′ ∈ fix

(
T (t)′

)
t≥0.

However, x′ also vanishes on fix
(
T (t)

)
t≥0, which is assumed to separate

fix
(
T (t)′

)
t≥0. As a conclusion, we obtain that x′ = 0 and therefore G = X.

Since the Cesàro means converge for each x ∈ G (use Lemma 4.2.(ii)) and
since they form a bounded family, we have proved (by Proposition A.3)
that they converge for each x ∈ X, i.e.,

(
T (t)

)
t≥0 is mean ergodic. �

The above equivalences are powerful tools to decide whether a given
semigroup is mean ergodic or not. For example, property (c) immediately
implies that the relatively compact semigroups studied in Section 2.b are
always mean ergodic.

4.6 Corollary. If a strongly continuous semigroup is relatively compact
for the weak operator topology, then it is mean ergodic.

The main examples are provided, as in Corollary 2.10, by bounded semi-
groups on reflexive Banach spaces.

4.7 Example. All bounded strongly continuous semigroups on reflexive
Banach spaces are mean ergodic. The corresponding mean ergodic projec-
tion is nonzero if and only if 0 is an eigenvalue of the generator.

As the next step, we show that compactness of the resolvent, as in
Corollary 2.15.(i), improves the type of convergence of the Cesàro means.
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4.8 Corollary. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semigroup

whose generator has compact resolvent. Then
(
T (t)

)
t≥0 is mean ergodic

with projection P , and the Cesàro means converge in norm, i.e.,

lim
r→∞

‖C(r)− P‖ = 0.

Proof. If the resolvent of A is compact, we know from Proposition II.4.25
that the canonical injection i : X1 → X is compact. (Recall that X1 :=
(D(A), ‖·‖A), as in Definition II.5.1.) Moreover, the operator

V :=
∫ 1

0

T (τ) dτ

is continuous from X into X1 (use (1.6) in Chapter II). Composing V with
the injection i, we conclude that V is compact in X.

After this preparation, we observe that boundedness of the semigroup
and compactness of the resolvent imply relative compactness of

(
T (t)

)
t≥0 in

the strong, hence weak, operator topology (use Corollary 2.15). Therefore,(
T (t)

)
t≥0 is mean ergodic by Corollary 4.6, and we denote its mean ergodic

projection by P . Since P is a projection onto fix
(
T (t)

)
t≥0, one has PV = P

and (
C(r)− P

)
V = C(r)V − P for all r > 0.

We now use that V is compact and that
(
C(r) − V

)
converges pointwise,

hence uniformly, on compact sets to zero as r →∞ (use Proposition A.3).
Therefore, we obtain

lim
r→∞

‖C(r)V − P‖ = 0.

On the other hand, one has

C(r)V − C(r) =
1
r

∫ r

0

∫ 1

0

T (s)T (τ) dτ ds− 1
r

∫ r

0

T (s) ds

=
1
r

∫ 1

0

(∫ r

0

T (s+ τ) ds−
∫ r

0

T (s) ds
)
dτ

=
1
r

∫ 1

0

(∫ r+τ

r

T (s) ds−
∫ τ

0

T (s) ds
)
dτ

for all r > 0. It is now an easy consequence of the boundedness of
(
T (t)

)
t≥0

to show that
lim

r→∞
‖C(r)V − C(r)‖ = 0.

By adding both limits, we obtain the desired conclusion. �

This corollary motivates us to have a closer look at the type of conver-
gence appearing there.



342 Chapter V. Asymptotics of Semigroups

4.9 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach

space X is called uniformly mean ergodic if limr→∞ C(r) exists in the
operator norm.

Clearly, a uniformly mean ergodic semigroup is mean ergodic, and one
has

lim
r→∞

‖C(r)− P‖ = 0,

where P is the associated mean ergodic projection. In analogy to Theo-
rem 4.5, we now try to characterize uniform mean ergodicity by different
properties. Here, spectral properties turn out to be particularly adequate.

4.10 Theorem. For a bounded strongly continuous semigroup
(
T (t)

)
t≥0

with generator A on a Banach space X, the following conditions are equiv-
alent.

(a)
(
T (t)

)
t≥0 is uniformly mean ergodic.

(b) limλ↓0 λR(λ,A) exists in the operator norm.

(c) rgA is closed in X.

(d) 0 ∈ ρ(A) or 0 is a first-order pole of the resolvent of A.

Proof. (a) ⇒ (d). Let
(
T (t)

)
t≥0 be uniformly mean ergodic with cor-

responding projection P . Since rgP = kerA and kerP = rgA (use
Lemma 4.4 and (1.6) in Chapter II), we obtain the resolvent of A as

R(λ,A) =
1
λ
P +R(λ,A|)(I − P )

for 0 6= λ ∈ ρ(A|), where A| is the restriction of A to kerP (use Proposi-
tion IV.2.15). For the proof of (d), it suffices to consider the case 0 ∈ σ(A).
Then the above representation shows that 0 is a first-order pole if 0 /∈ σ(A|).
Assume the contrary, i.e., 0 ∈ σ(A|) ⊂ {λ ∈ C : Reλ ≤ 0}. By Proposi-
tion IV.1.10, there exist xn ∈ D(A|) = D(A) ∩ kerP , ‖xn‖ = 1 such that
‖Axn‖ → 0. This implies that

(
T (s)− I

)
xn =

∫ s

0

T (τ)Axn dτ → 0

uniformly in s ∈ [0, r] for every r > 0 (use (1.7) in Chapter II). In particular,(
C(r)− I

)
xn → 0

for every r > 0. This shows that
∥∥C(r)|ker P

∥∥ ≥ 1, while the uniform mean
ergodicity implies ∥∥C(r)|ker P

∥∥→ 0.
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(d) ⇒ (b). If 0 ∈ ρ(A), we have limλ→0 λR(λ,A) = 0. If 0 is a first-order
pole, we can write the resolvent as

R(λ,A) =
1
λ
P +H(λ)

for 0 6= λ in a suitable neighborhood of 0. Here, λ 7→ H(λ) ∈ L(X) is
analytic and P is the residue of R(·, A) at 0. This implies

lim
λ↓0

λR(λ,A) = P.

(b) ⇒ (c). Consider Y := rgA, which is a
(
T (t)

)
t≥0-invariant subspace

of X. Therefore, it is also R(λ,A)-invariant for all λ > 0 (use the integral
representation (1.14) of the resolvent in Chapter II). Take x ∈ D(A) and
y := Ax. Then

λR(λ,A)y = λ[λR(λ,A)x− x] → 0

as λ ↓ 0, i.e., the operators λR(λ,A) converge to zero pointwise on Y .
Assumption (b) now implies

lim
λ↓0

∥∥λR(λ,A)|Y
∥∥ = 0.

From the identity AR(λ,A) = λR(λ,A)− I, we conclude that AR(λ,A)|Y
must be invertible on Y ; hence

rgA = AR(λ,A)Y ⊂ rgA.

(c) ⇒ (a). For y = Ax ∈ rgA, we have

‖rC(r)y‖ =
∥∥∥∥∫ r

0

T (s)y ds
∥∥∥∥ =

∥∥∥∥∫ r

0

T (s)Axds
∥∥∥∥ = ‖T (r)x− x‖;

hence
lim

r→∞
‖rC(r)y‖ <∞.

By the uniform boundedness principle, this implies

lim
r→∞

‖rC(r)| rg A‖ <∞,

and therefore

(4.1) lim
r→∞

‖C(r)| rg A‖ = 0.

Since the assumption 0 ∈ σ(A|rg A
) implies, as in the proof of the impli-

cation (a) ⇒ (d), that 1 ∈ σ
(
C(r)| rg A

)
, it follows from (4.1) that A| rg A

is invertible. Now, for x ∈ D(A), choose y ∈ rgA with Ax = Ay. Then
x = (x− y) + y and D(A) ⊂ kerA⊕ rgA. Since D(A) is dense, this proves
X = kerA⊕rgA, and the uniform mean ergodicity of

(
T (t)

)
t≥0 follows. �
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The spectral condition (d) in the above theorem allows us to improve
Corollary 4.8.

4.11 Corollary. Let
(
T (t)

)
t≥0 be a bounded strongly continuous semi-

group with generator A on a Banach space X satisfying one of the following
conditions.

(i) The semigroup
(
T (t)

)
t≥0 is quasi-compact.

(ii) The generator A has compact resolvent.

Then, for each λ ∈ R, the semigroups
(
eiλtT (t)

)
t≥0 are all uniformly mean

ergodic, and the associated mean ergodic projections have finite rank.

Proof. Observe first that the assumptions (i) and (ii) also hold for the
rescaled semigroups

(
eiλtT (t)

)
t≥0. Therefore, the boundedness of

(
T (t)

)
t≥0

and Theorem 3.7 or Corollary IV.1.19 imply that σ(A) ∩ iR consists of
finitely many first-order poles having residue of finite rank. Since the gen-
erator of

(
eiλtT (t)

)
t≥0 is A+ iλ, the assertions follow from Theorem 4.10.

(d). �

We conclude this section by a series of examples by which the reader
should realize how much the mean ergodicity of the “same” semigroup
depends on the choice of the underlying Banach space.

4.12 Examples. (i) In the case of multiplication semigroups (cf. Defini-
tion I.4.3) on C0(Ω) given by

T (t)f := etq · f, t ≥ 0,

for some continuous function q, it is convenient to test mean ergodicity
by using Theorem 4.5.(e). To guarantee boundedness of the semigroup, we
assume Re q ≤ 0, and then identify the fixed space of

(
T (t)

)
t≥0 as

fix
(
T (t)

)
t≥0 =

{
f ∈ C0(Ω) : supp f ⊂ [q = 0]

}
,

where [q = 0] := {s ∈ Ω : q(s) = 0}. Similarly, the dual fixed space consists
of all µ ∈ C0(Ω)′ such that suppµ ⊂ [q = 0]. Therefore, the separation
property from Theorem 4.5.(e) is satisfied if and only if F separates all
point measures δs with s ∈ [q = 0]. This is the case if and only if [q = 0] is
open (and closed) in Ω.

If we consider the same multiplication semigroup on L1(Ω, µ), we have

fix
(
T (t)

)
t≥0 = L1([q = 0], µ) and fix

(
T (t)′

)′
t≥0 = L∞([q = 0], µ);

hence Theorem 4.5.(e) is satisfied, and
(
T (t)

)
t≥0 is always mean ergodic

on L1(Ω, µ) and, by Example 4.7, on Lp(Ω, µ) for 1 < p <∞.
(ii) The left translation (semi) group

(
Tl(t)

)
t≥0 (cf. Paragraph I.4.16) is

always mean ergodic on the reflexive spaces Lp(R) and Lp(R+), 1 < p <∞.
On L1(R), however, it has trivial fixed space fix

(
T (t)

)
t≥0 = {0}, while the

adjoint group
(
Tr(t)

)
t∈R (see Example (i) in Paragraph II.2.6) has one-

dimensional fixed space lin{1 }. By Theorem 4.5.(e),
(
Tl(t)

)
t∈R is not mean

ergodic on L1(R).
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This changes again for the semigroup
(
Tl(t)

)
t≥0 on L1(R+). There it

becomes strongly stable (see Example 2.19.(i)), hence mean ergodic with
projection P = 0.

The same argument applies on the space C0(R+), while the translation
semigroup is not mean ergodic on the larger space Cub(R+) (see Para-
graph I.4.16). This can be seen directly by calculating the Cesàro means
for a function f ∈ Cub(R+) satisfying

f(s) :=
{

1 for s ∈
[
102n, 102n+1 − 1

]
,

−1 for s ∈
[
102n+1, 102(n+1) − 1

]
,

for n ∈ N0.

4.13 Exercises. (1) Show that every bounded semigroup (T (t))t≥0 on a re-
flexive Banach space X is totally ergodic, i.e.,

Pλx := lim
t→∞

1

t

∫ t

0

eiλsT (s)x ds

exists for every x ∈ X and λ ∈ R. Characterize the subspaces rg Pλ as eigenspaces
of the generator A of (T (t))t≥0.

(2) A continuous semiflow Φ : R+ × Ω → Ω (compare the definition in Para-
graph II.3.28) on a compact space Ω is called uniquely ergodic if there exists a
unique Φ-invariant probability measure on Ω (see [Kre85, §5.1]). Show that for
such flows the limit as t →∞ of

1

t

∫ t

0

f
(
Φ(τ, s)

)
dτ

exists uniformly in s ∈ Ω and for every f ∈ C(Ω). (Hint: Apply Theorem 4.5.(e).)

(3) Show the following properties for the left translation semigroup (T (t))t≥0 on
the Banach space X := {f ∈ L1(R) :

∫∞
−∞ f(s) ds = 0}.

(i) (T (t))t≥0 is mean ergodic with projection P = 0.

(ii) The “discrete” Cesàro means 1/n

∑n−1

k=0
T (kt0) do not converge as n → ∞

whenever t0 > 0.

Notes to Chapter V

Section 1. Most of the results on the asymptotic behaviour of semigroups of
linear operators presented in this chapter are contained and even extended in
van Neerven’s monograph [Nee96] (see also the short survey on the interplay
between spectral theory and asymptotics in [Nag93]). A different approach to
the asymptotic behavior of solutions of Cauchy problems, essentially based on
the Laplace transform, is pursued in [ABHN99].

Section 1.a. Starting with [Sle76] and followed, e.g., by [Wei90] and [NSW95],
many more growth bounds for semigroups T = (T (t))t≥0 have been introduced
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and then characterized by spectral properties of the generator A. As the Banach
space analogue of Theorem 1.11, it is shown in [WW96] that

ω1(T) := inf

{
w ∈ R :

for all x ∈ D(A) exists Mw(x) ≥ 1 such

that ‖T (t)x‖ ≤ Mw(x) ewt for all t ≥ 0

}
is dominated by

s0(A) := inf
{
w ∈ R : {λ ∈ C : Re λ > w} ⊆ ρ(A) and sup

Re λ>w

‖R(λ, A)‖ < ∞
}

(see also [Nee96, Cor. 4.2.7]). This result shows that s0(A) < 0 implies exponen-
tial stability. Therefore, this can be considered as the most general Banach space
version of Liapunov’s stability theorem.

Section 1.b. Theorem 1.8 is due to R. Datko [Dat70] and A. Pazy [Paz72], while
the short proof is taken from [PZ81]. It allows the following qualitative version:
If ∫ ∞

0

‖T (t)x‖p dt ≤ Cp‖x‖p for all x ∈ X,

then ω0 ≤ −1/(pCp), which is the best possible constant up to renorming of X
(see [Nee96, Thm. 3.1.8]).

Theorem 1.10 is due to Gearhart [Gea78], Prüss [Prü84], and Greiner [Nag86, A-III.7]
and is of great practical importance (see Section VI.3 and Section VI.8). Our
proof, however, uses ideas of M. Blake and S. Huang.

Section 1.c. Hyperbolicity is one of the basic concepts in the qualitative study
of differential equations. We refer to [Cop78] and [DK74] for the classical theory
and to [DGLW95], [Hen81], [HVL93], and [Lun95] for applications to nonlinear
equations. The results presented follow from the previous spectral and stability
theorems and are well known.

Section 2.a. The theory of semitopological semigroups contained in [Rup84] and
[BJM89] has found applications in quite different branches of mathematics (see,
e.g., [HLP90]). A systematic application to groups and semigroups of operators
on Banach spaces is given in [Lyu88].

Section 2.b. More on the Jacobs–DeLeeuw–Glicksberg splitting theorem (i.e.,
Theorem 2.8) can be found in [Lyu88] and in [Kre85] with emphasis on applica-
tions to ergodic theory. Example 2.11.(ii) and a more detailed analysis of the com-

plicated structure of weakly compact operator semigroups {T (t) : t ≥ 0}
Lσ(X)

can be found in [BM71] and [Wes71].

Section 2.c. Operators generating compact groups as in Corollary 2.9 and
Example 2.17 are said to have discrete (or pure point) spectrum. The classification
of solenoidal groups is well known in harmonic analysis and is taken from [HR63].
The papers by Arendt–Batty [AB88] and Lyubich–Vũ [LV88] started the research
on strongly stable semigroups and their spectral properties. The state of the art
is surveyed in [Bat94] and [Vũ97].

Section 3. Our presentation closely follows [Nag86, B-IV, Sec. 2]. Some typi-
cal applications are treated in Sections VI.1 and VI.2. For a detailed study of
semigroups with balanced exponential growth (see Exercise 3.9.(3)) we refer to
[Thi98a], [Thi98b].

Section 4. The standard reference for ergodic theorems is the monograph by
Krengel [Kre85], but the basic results are also contained in [Dav80]. We point
out that ergodic theorems can be proved for much more general semigroups (see
[Sch74, Sec. III.7]).



Chapter VI

Semigroups Everywhere

I hail a semigroup when I see one and I seem to see them everywhere!1

(Einar Hille [Hil48, Foreword])

It is only now that evolution equations or, more precisely, initial value
problems will become the focus of our investigation. We will establish “well-
posedness” for such equations and, in addition, investigate the qualitative
properties of their solutions. To this end, we use one-parameter semigroups
and the theory developed so far. As a general rule, we propose the following
steps.

(i) Take an evolution equation (i.e., the initial value problem) and try
to understand its physical, biological. . . significance.

(ii) Find a Banach space X and a linear operator A : D(A) ⊂ X →
X such that the original equation can be rewritten as an abstract
Cauchy problem (see Definition II.6.1)

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,
u(0) = x.

(iii) Show that A generates a strongly continuous semigroup
(
T (t)

)
t≥0 on

X and discuss how the solutions t 7→ u(t) := T (t)x of (ACP) yield
solutions of the original problem.

(iv) Study the spectrum of A and then the qualitative and, in particular,
asymptotic behavior of

(
T (t)

)
t≥0.

1 Friends have observed, however, that there are mathematical objects which are not
semigroups (Einar Hille, continued).

347
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In the following sections we will try to perform, in a more or less complete
way, this program. In each case, however, it is not our intention to give an
exhaustive treatment of the particular equation. For this we will refer to
the specialized literature. Instead, it is our aim to show how semigroups
can be “seen everywhere” and that they yield a flexible and unifying tool
for the study of many and quite different equations.

1. Semigroups for Population Equations

Semigroup methods have been applied with great success to equations aris-
ing from biomathematical models describing the growth (and/or properties
like diffusion or convection) of certain populations. We refer to the mono-
graphs by Metz–Diekmann [MD86] and Webb [Web85] for a systematic
treatment and concentrate here on a simple, but typical, type of equation.

We consider a population of cells that are distinguished by their individ-
ual size. Therefore, we can describe the population at time t by the number
n(t, s) of cells having size s. More precisely,∫ s2

s1

n(t, s) ds

is the number of cells that at time t have size s between s1 and s2. As time
passes, the following processes are supposed to take place in this population.
• Each cell grows linearly in time.
• Each cell dies with a probability depending on its size.
• Each cell divides into 2 daughter cells of equal size with a probability

depending on its size.
Moreover, we assume that
• there exists a maximal cell size (normalized to s = 1) and
• there exists a minimal cell size s = α > 0 after which division can

occur.
As a consequence, we have that the size s of each cell in our popula-

tion must satisfy s ≥ α/2. From these assumptions the following evolution
equation can be derived (see [MD86, Part A-I.4]):

(CE)

∂
∂tn(t, s) = − ∂

∂sn(t, s)− µ(s)n(t, s)− b(s)n(t, s)

+
{

4b(2s)n(t, 2s) for α/2 ≤ s ≤ 1/2,
0 for 1/2 < s ≤ 1,

with the boundary condition

n(t, α/2) = 0 for 0 ≤ t
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and the initial condition

n(0, s) = n0(s) for α/2 ≤ s ≤ 1.

Moreover, we assume that the death rate µ is a positive, continuous function
on [α/2, 1], while the division rate b should be continuous with

b(s) > 0 for s ∈ (α, 1) and b(s) = 0 otherwise.

Using one-parameter semigroups we will show “well-posedness” of this
equation and discuss the qualitative properties of its solutions.

a. Semigroup Method for the Cell Equation

We will, in a more or less complete way, perform the steps (ii)–(iv) outlined
in the introduction to this chapter. Therefore, we start with the necessary
definitions in order to rewrite (CE) as an abstract Cauchy problem. As
a natural Banach space we choose L1[α/2, 1], in which the norm ‖f‖ of a
positive function is the size of the total cell population represented by f .

1.1 Definition. On the Banach space X := L1[α/2, 1] define the operators

A0f := −f ′ − (µ+ b)f with D(A0) :=
{
f ∈ W1,1[α/2, 1] : f(α/2) = 0

}
,

Bf(s) :=
{

4b(2s)f(2s) for α/2 ≤ s ≤ 1/2,
0 for 1/2 < s ≤ 1,

for all f ∈ X,

A := A0 +B with D(A) := D(A0).

With these definitions our partial differential equation (CE) becomes the
abstract Cauchy problem

(ACP)

{
u̇(t) = A0u(t) +Bu(t) for t ≥ 0,
u(0) = n0,

for the vector-valued function u : R+ → L1[α/2, 1]. In order to show that
A = A0 + B generates a strongly continuous semigroup on X, and hence
that (ACP) is well-posed by Corollary II.6.9, we use perturbation methods.
In fact, for the operator A0 everything can be computed explicitly.

1.2 Lemma. (i) The operator
(
A0, D(A0)

)
generates a strongly contin-

uous semigroup
(
T0(t)

)
t≥0 on X given by

(1.1) T0(t)f(s) :=
{

e
−
∫ s

s−t
(µ(τ)+b(τ)) dτ · f(s− t) for s− t > α/2,

0 elsewhere.

(ii) The spectrum of A0 is empty. Moreover, the resolvent R(λ,A0) is a
compact operator that is given by

(1.2) R(λ,A0)g(s) :=
∫ s

α/2

e−
∫ s

τ
(λ+µ(σ)+b(σ)) dσ · g(τ) dτ

for all g ∈ X, α/2 ≤ s ≤ 1, and λ ∈ C.
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Proof. (i) The operator A0 is the sum of the generator of the nilpotent
right translation semigroup on L1[α/2, 1] (cf. Paragraph II.2.11) and the
bounded multiplication operator given by the function m := −µ − b. The
formula (1.1) now follows as in Exercise III.1.17. (5).

(ii) Since
(
T0(t)

)
t≥0 is a nilpotent semigroup, we have σ(A0) = ∅. The

resolvent R(λ,A0) is compact, since D(A0) ⊂ W1,1[α/2, 1]
i
↪→ L1[α/2, 1]

with compact injection i (use Exercise II.4.30.(4) and Proposition II.4.25).
Finally, the explicit formula (1.2) is obtained as the unique solution f ∈
D(A0), i.e., satisfying f(α/2) = 0, of the differential equation (λ− A0)f =
λf + f ′ + (µ+ b)f = g. �

It now suffices to observe that B is a bounded operator on X. By
Theorem III.1.3, we conclude that A0 +B is again a generator.

1.3 Proposition. The operator
(
A,D(A)

)
generates a strongly continuous

semigroup
(
T (t)

)
t≥0 on X, and the above abstract Cauchy problem (ACP)

is well-posed.

This result yields solutions of the original cell equation (CE) (see Exer-
cise 1.6), but in the following we concentrate on the qualitative properties
of our semigroup.

While it was easy to obtain the generation property of A from that of
A0 established in Lemma 1.2, it is not so clear which qualitative properties
of the nilpotent semigroup

(
T0(t)

)
t≥0 are inherited by

(
T (t)

)
t≥0 (compare

Example III.1.15). We are particularly interested in compactness proper-
ties and note first that the resolvent of A remains compact by Propo-
sition III.1.12.(ii). It is much less evident that the semigroup

(
T (t)

)
t≥0

remains eventually compact.

1.4 Proposition. The semigroup
(
T (t)

)
t≥0 is eventually norm continuous

and even eventually compact for t > 1− α/2.

Proof. Using the Volterra operator V introduced in Definition III.1.8
(with A and T (t) replaced by A0 and T0(t), respectively), we first verify
that the map t 7→ V T0(t) is norm continuous for t > 0.

In order to simplify the notation we set2

E(s) := e
−
∫ s

α/2
(µ(τ)+b(τ)) dτ

and observe that

T0(t)f(s) =
E(s)

E(s− t)
· f(s− t),

2 In fact, E(s)/E(σ) for σ < s is the probability that a cell of size σ reaches size s.
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where we extend the functions µ, b, and f for arguments outside the interval
[α/2, 1] by zero. Using this representation for T0(t) we obtain

(
V T0(t)f

)
(s) =

(∫ t

0

T0(t− r)BT0(r)f dr
)

(s)

=
∫ 2s−t

2s−2t

E(s)
E(t+ τ − s)

· 4b
(
2(t+ τ − s)

)
·
E
(
2(t+ τ − s)

)
E(τ)

· f(τ) dτ

=:
∫ 2s−t

2s−2t

G(t, τ, s) · f(τ) dτ.

Hence, for fixed t > 0 and t > h > 0, we can estimate∥∥(V T0)(t+ h)f − (V T0)(t)f
∥∥

=
∫ 1

α/2

∣∣∣∣∣
∫ 2s−(t+h)

2s−2(t+h)

G(t+ h, τ, s) · f(τ) dτ −
∫ 2s−t

2s−2t

G(t, τ, s) · f(τ) dτ

∣∣∣∣∣ ds
≤
∫ 1

α/2

∫ 2s−2t

2s−2t−2h

∣∣G(t+ h, τ, s)
∣∣ · |f(τ)| dτ ds

+
∫ 1

α/2

∫ 2s−t−h

2s−2t

∣∣G(t+ h, τ, s)−G(t, τ, s)
∣∣ · |f(τ)| dτ ds

+
∫ 1

α/2

∫ 2s−t

2s−t−h

∣∣G(t, τ, s)
∣∣ · |f(τ)| dτ ds.

Observe next that in the above integrals the arguments of G = G(·, ·, ·)
run over a compact subset Ω of R3. Hence, since G is continuous, it is
uniformly continuous and bounded by some constant K ≥ 0. Using these
facts we obtain∥∥(V T0)(t+h)f−(V T0)(t)f

∥∥ ≤ 3hK ‖f‖+t sup
τ,s

∥∥G(t+h, τ, s)−G(t, τ, s)
∥∥·‖f‖,

which converges to zero as h ↓ 0 uniformly for ‖f‖ ≤ 1. Similarly, it follows
that the difference

∥∥(V T0)(t + h) − (V T0)(t)
∥∥ converges to zero for h ↑ 0,

and hence t 7→ V T0(t) is norm continuous for t > 0.
Thus, by Theorem III.1.16.(ii) we conclude that the perturbed semigroup(
T (t)

)
t≥0 generated by A0 + B is norm continuous for t > 1 − α/2. More-

over, we recall from Lemma 1.2.(ii) that R(λ,A0) is compact, and hence
Proposition III.1.12.(ii) implies that R(λ,A) = R(λ,A0 +B) is compact as
well. This implies that R(λ,A)T (t) is compact and therefore T (t) is com-
pact for t > 1− α/2 by Lemma II.4.28. �

Once we have obtained the eventual compactness of
(
T (t)

)
t≥0, we know

that the spectral mapping theorem holds (see Corollary IV.3.12) and that
the behavior of

(
T (t)

)
t≥0 is described by the eigenvalues of A (see Corol-

lary V.3.2). So it remains to determine the spectrum σ(A).
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1.5 Proposition. The spectrum σ(A) of A consists of eigenvalues only
and is determined by a characteristic equation, more precisely,

(1.3) λ ∈ σ(A) ⇐⇒ ξ(λ) = 0,

where ξ(·) is the characteristic function

(1.4) ξ(λ) := −1 +
∫ 1/2

α/2

4b(2σ)e−
∫ 2σ

σ
(µ(τ)+b(τ)+λ) dτ

dσ for λ ∈ C.

Proof. The first assertion is clear, since A has compact resolvent (cf.
Corollary IV.1.19). For the second statement we have to determine λ ∈ C
for which there exists 0 6= g ∈ D(A) such that

(1.5) λg −Ag = 0.

This equation means that

λg(s) + g′(s) +
(
µ(s) + b(s)

)
g(s) = 0 for 1/2 ≤ s ≤ 1,

and, by normalizing to g(1) = 1, that

g(s) = e
∫ 1

s
(µ(σ)+b(σ)+λ) dσ for 1/2 ≤ s ≤ 1.

On the interval [α/2, 1/2], (1.5) means that

λg(s) + g′(s) +
(
µ(s) + b(s)

)
g(s)− 4b(2s)g(2s) = 0 for α/2 ≤ s ≤ 1/2.

Since g must be continuous at s = 1/2, we then obtain

g(s) = e
∫ 1

s
(µ(σ)+b(σ)+λ) dσ

[
1−

∫ 1/2

s

4b(2σ) e−
∫ 2σ

σ
(µ(τ)+b(τ)+λ) dτ

dσ
]

for α/2 ≤ s ≤ 1/2. In order to become an eigenfunction of A, the function
g ∈ W1,1[α/2, 1] must also belong to D(A); hence we need in addition

g(α/2) = 0.

This yields (1.3) with the characteristic function ξ as in (1.4). �

At this point it may seem that we have accomplished our task in a
satisfactory way. However, a look at the characteristic function ξ in (1.4)
tells us that it will be quite difficult to determine all the zeros of ξ or
even to obtain information on the location of these zeros, as needed in
stability theorems like Theorem V.1.10. In order to tackle this problem
and to present a very elegant answer, we interrupt the discussion of the
cell equation and introduce some additional abstract tools.

1.6 Exercise. Discuss in which sense the semigroup solutions of (ACP) above

yield solutions of (CE).
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b. Intermezzo on Positive Semigroups

In the above model, as in many others arising from biology or physics (see
also Section 2 and Section 6), there is a natural notion of “positivity,” and
only “positive” solutions of the equation make sense. In terms of the cor-
responding semigroup

(
T (t)

)
t≥0 this means that the operators T (t) should

be “positive.”
The rich theory of such “one-parameter semigroups of positive operators”

can be found in [Nag86]. In the following we present only a few fundamental
results in a concrete context.

For our purposes it suffices to restrict our attention to Banach spaces of
type X := Lp(Ω, µ) or C0(Ω). On these spaces we call a function f ∈ X
positive (in symbols: 0 ≤ f) if

0 ≤ f(s) for (almost) all s ∈ Ω.

For real-valued functions f, g ∈ X we then write f ≤ g if 0 ≤ g − f
and obtain an ordering making (the real part of) X into a vector lattice;
cf. [Sch74, Sec. II.1]. Moreover, for an arbitrary (complex-valued) function
f ∈ X we define its absolute value |f | as

|f |(s) := |f(s)| for s ∈ Ω.

Recalling the definition of the norm on X, we see that

(1.6) |f | ≤ |g| implies ‖f‖ ≤ ‖g‖ for all f, g ∈ X.

These properties make the spaceX a Banach lattice, and we refer to [Sch74]
or [AB85] for precise definitions. It will be convenient to use this general
terminology and to state the results for general Banach lattices. However,
the reader not accustomed to this terminology may always think of the
space X as one of the concrete function spaces Lp(Ω, µ) or C0(Ω) with the
canonical ordering.

1.7 Definition. A strongly continuous semigroup
(
T (t)

)
t≥0 on a Banach

lattice X is called positive if each operator T (t) is positive, i.e., if

0 ≤ f ∈ X implies 0 ≤ T (t)f for each t ≥ 0.

There are many ways to characterize positivity of a semigroup (mainly
by properties of its generator; see [Nag86, C-II]). We give only a very ele-
mentary characterization.

1.8 Characterization Theorem. A strongly continuous semigroup T :=(
T (t)

)
t≥0 on a Banach lattice X is positive if and only if the resolvent

R(λ,A) of its generator A is positive for all sufficiently large λ.
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Proof. The positivity of T implies the positivity of R(λ,A) by the integral
representation (1.13) in Section II.1. Conversely, the positivity of T (t) =
limn→∞

[
n/tR(n/t, A)

]
n (see Corollary III.5.5) follows from that of R(λ,A)

for λ large. �

In the years 1907–1912, O. Perron and G. Frobenius discovered very
peculiar properties of the spectrum of positive matrices. Many of these
properties still hold for the spectra of positive operators on arbitrary Ba-
nach lattices (cf. [Sch74, Secs. V.4&5]), and even carry over to generators
of positive semigroups (cf. [Nag86]).

In order to prove the basic results of this theory, we need the following
lemma. It shows that for positive semigroups the integral representation of
the resolvent holds even for Reλ > s(A) and not only for Reλ > ω0(A) as
shown in Theorem II.1.10.

1.9 Lemma. For a positive strongly continuous semigroup
(
T (t)

)
t≥0 with

generator A on a Banach lattice X we have

(1.7) R(λ,A)f =
∫ ∞

0

e−λsT (s)f ds, f ∈ X,

for all Reλ > s(A). Moreover, the following properties are equivalent for
λ0 ∈ ρ(A).

(a) 0 ≤ R(λ0, A).
(b) s(A) < λ0.

Proof. Using the rescaling techniques from Paragraph I.5.11 it suffices to
prove the representation (1.7) for Reλ > 0 whenever s(A) < 0.

Since the integral representation (1.7) certainly holds for Reλ > ω0(A),
we obtain from the positivity of

(
T (t)

)
t≥0 the positivity of R(λ,A) for

λ > ω0(A). The power series expansion (1.3) in Proposition IV.1.3 of the
resolvent yields 0 ≤ R(λ,A) for all λ > s(A).

The assumption s(A) < 0 and Lemma II.1.3.(iv) then imply

0 ≤ V (t) :=
∫ t

0

T (s) ds = R(0, A)−R(0, A)T (t) ≤ R(0, A),

hence ‖V (t)‖ ≤M for all t ≥ 0 and some constant M . From this estimate
we deduce that ∫ ∞

0

e−λsV (s) ds, Reλ > 0,

exists in operator norm. An integration by parts yields∫ t

0

e−λsT (s) ds = e−λtV (t) + λ

∫ t

0

e−λsV (s) ds,

which converges to λ
∫∞
0

e−λsV (s) ds as t → ∞. This proves (1.7) by
Theorem II.1.10.(i) and then the implication (b) ⇒ (a).
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Moreover, as shown in Theorem 1.10 below, the integral representation
(1.7) implies that s(A) ∈ σ(A). Therefore, by Corollary IV.1.14, we obtain
for the spectral radius of the resolvent

(1.8) r
(
R(λ,A)

)
=

1
λ− s(A)

for all λ > s(A).
In order to prove (a) ⇒ (b) we now assume that R(λ0, A) ≥ 0 and

observe that this can be true only for λ0 real. As we have shown above,
R(λ,A) is positive for λ > max{λ0, s(A)}. Hence, an application of the
resolvent equation yields

R(λ0, A) = R(λ,A) + (λ− λ0)R(λ,A)R(λ0, A) ≥ R(λ,A) ≥ 0

for λ > max{λ0, s(A)}. It follows from (1.8) and (1.6) that

1
λ− s(A)

= r
(
(R(λ,A))

)
≤ ‖R(λ,A)‖ ≤ ‖R(λ0, A)‖

for all λ > max{λ0, s(A)}. This implies that λ0 is greater than s(A). �

The semigroup version of Perron’s result from 1907 assuring that the
spectral radius of a positive matrix is always an eigenvalue reads as follows.

1.10 Theorem. Let
(
T (t)

)
t≥0 be a positive strongly continuous semigroup

with generator A on a Banach lattice X. If s(A) > −∞, then

s(A) ∈ σ(A).

Proof. The positivity of the operators T (t) means that

|T (t)f | ≤ T (t)|f | for all f ∈ X, t ≥ 0.

We therefore obtain from the integral representation (1.7) that

|R(λ,A)f | ≤
∫ ∞

0

e−Re λ·sT (s)|f | ds

for all Reλ > s(A) and f ∈ X. Using the inequality in (1.6) we deduce that

(1.9) ‖R(λ,A)‖ ≤ ‖R(Reλ,A)‖ for all Reλ > s(A).

By Corollary IV.1.14, there exist λn ∈ ρ(A) such that Reλn ↓ s(A) and
‖R(λn, A)‖ ↑ ∞. The estimate (1.9) then implies ‖R(Reλn, A)‖ ↑ ∞ and
therefore s(A) ∈ σ(A) by Proposition IV.1.3.(iii). �
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The arguments above now lead to the monotonicity of the spectral bound
under positive perturbations.

1.11 Corollary. Let A be the generator of a positive strongly continu-
ous semigroup

(
T (t)

)
t≥0 and let B ∈ L(X) be a positive operator on the

Banach lattice X. Then the following hold.

(i) A+B generates a positive semigroup
(
S(t)

)
t≥0 satisfying 0 ≤ T (t) ≤

S(t) for all t ≥ 0.

(ii) s(A) ≤ s(A+B) and R(λ,A) ≤ R(λ,A+B) for all λ > s(A+B).

Proof. Since B is bounded, we obtain the generation property of A + B
from Theorem III.1.3. Moreover, the perturbed resolvent is

R(λ,A+B) = R(λ,A) +R(λ,A)
∞∑

n=1

(BR(λ,A))n for λ large

(see Section III.1, (1.3)). Since B and R(λ,A) are positive for λ > s(A),
this implies

(1.10) 0 ≤ R(λ,A) ≤ R(λ,A+B)

for λ large. The inequality in (i) then follows from the Post–Widder inver-
sion formula in Corollary III.5.5. Next, we use the representation (1.7) for
the resolvents of A and A+B, respectively, and infer that (1.10) and hence

‖R(λ,A)‖ ≤ ‖R(λ,A+B)‖

holds for all λ > max{s(A), s(A+B)}. The inequality in (ii) for the spectral
bounds then follows, since s(A) ∈ σ(A) by Theorem 1.10 and therefore
limλ↓s(A) ‖R(λ,A)‖ = ∞. �

The above elementary properties will be applied in Section 1.c below, in
Section 2.b, and in Section 6 to positive semigroups arising from concrete
evolution equations and will enormously facilitate the discussion of their
qualitative behavior. Moreover, we will make use the following Perron–
Frobenius results concerning the boundary spectrum

σ+(A) := σ(A) ∩ (s(A) + iR)

see [Nag86, C-III, Cor. 2.12, Thm. 3.12].
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1.12 Theorem. Let
(
T (t)

)
t≥0 be a positive strongly continuous semigroup

with generator A on a Banach lattice X such that σ+(A) consists of poles
of the resolvent. Then the following assertions hold.

(i) The boundary spectrum σ+(A) is cyclic, i.e.,

s(A) + iα ∈ σ(A)
for some α ∈ R

}
⇒

{
s(A) + ikα ∈ σ(A)
for all k ∈ Z.

(ii) Assume, for simplicity, that X := L1(Ω, µ) and let
(
T (t)

)
t≥0 be

irreducible, i.e.,

0 � f ∈ X ⇒

{(
R(λ,A)f

)
(s) > 0 for almost

all s ∈ Ω and some λ > s(A).

Then

• s(A) is a first-order pole of R(λ,A) with one-dimensional residue
P such that 0 < Pf whenever 0 < f , and

• σ+(A) = s(A) + iαZ for some α ∈ R.

For many generalizations of this result we refer to [Nag86, C-III] and
only state an immediate, but important, consequence.

1.13 Corollary. If the positive strongly continuous semigroup
(
T (t)

)
t≥0 is

eventually norm continuous and its generator has compact resolvent, then
the boundary spectrum σ+(A) of its generator A is equal to {s(A)}.

Proof. It suffices to recall from Theorem II.4.18 that σ(A) is bounded
along imaginary lines. Since σ+(A) is cyclic by the theorem above, we
must have σ+(A) = {s(A)}. �

Before concluding this short intermezzo, we look at stability properties
of positive semigroups.

Using Theorem 1.10 it is often quite simple to determine the spectral
bound s(A) of a positive semigroup

(
T (t)

)
t≥0 with generator A. If s(A) < 0,

we can, in general, not conclude that ω0 < 0, i.e., the semigroup
(
T (t)

)
t≥0

need not be uniformly exponentially stable (cf. Counterexample IV.2.7,
which is a positive semigroup on a Banach lattice). However, it is one of
the nice features of positive semigroups that exponential stability (see
Definition V.1.5) always holds.

1.14 Proposition. Let
(
T (t)

)
t≥0 be a positive strongly continuous semi-

group with generator A on a Banach lattice X. Then the spectral bound
s(A) satisfies s(A) < 0 if and only if

(
T (t)

)
t≥0 is exponentially stable.
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Proof. Let s(A) < −ε < 0 and f ∈ D(A). By the identity (1.11) in
Lemma II.1.9, we have

eεtT (t)t = f +
∫ t

0

eεsT (s)(A+ ε)f ds for t ≥ 0.

The integral representation of the resolvent shown in Lemma 1.9 then im-
plies that

lim
t→∞

eεtT (t)f = f +
∫ ∞

0

eεsT (s)(A+ ε)f ds

exists; hence

lim
t→∞

e
εt/2T (t)f = 0 for all f ∈ D(A).

The proof of the converse implication is left as Exercise 1.16.(3). �

However, if we restrict ourselves to Banach lattices X := Lp(Ω, µ),
1 ≤ p < ∞, then the following much stronger result has been proved
by Derndinger [Der80] for p = 1, by Greiner–Nagel [GN83] for p = 2,
and by Weis [Wei95], [Wei98] for arbitrary p (see also [Nag86, C-IV.1] or
[Nee96, Sec. 3.5]).

1.15 Theorem. Let
(
T (t)

)
t≥0 be a positive strongly continuous semigroup

with generator A on a Banach lattice Lp(Ω, µ), 1 ≤ p <∞. Then

s(A) = ω0

holds.

1.16 Exercises. (1) Let (T (t))t≥0 be a positive strongly continuous semigroup
(T (t))t≥0 with generator A on a Banach lattice X.

(i) Show that s(A) = inf{λ > s(A) : supµ∈R ‖R(λ + iµ, A)‖ < ∞}. (Hint: Use
Lemma 1.9.)

(ii) If X is a L2-space, then s(A) = ω0(A). (Hint: Use Theorem V.1.11.)

(2) Let (T (t))t≥0 satisfy all the assumptions in Theorem 1.12.(ii). Show that
s(A) is a dominant eigenvalue and that (T (t))t≥0 satisfies balanced exponential
growth (see Exercise V.3.9.(3)). (Hint: Use Corollary V.3.3.)

(3) Show that a positive, exponentially stable strongly continuous semigroup
(T (t))t≥0 with generator A on a Banach lattice X satisfies s(A) < 0. (Hint: Use
Theorem II.1.10.(i).)

c. Asymptotics for the Cell Equation

We now return to the cell equation (CE) and the corresponding semigroup(
T (t)

)
t≥0 generated by the operator A on the Banach latticeX := L1[α/2, 1]

(see Definition 1.1 and Proposition 1.3). In order to apply the results from
Section 1.b, we note from the explicit formulas in Lemma 1.2 and Defi-
nition 1.1 that the unperturbed semigroup

(
T0(t)

)
t≥0 and the perturbing

operator B are all positive. Therefore, Corollary 1.11.(i) guarantees the
positivity of

(
T (t)

)
t≥0.
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1.17 Corollary. The semigroup
(
T (t)

)
t≥0 corresponding to the cell equa-

tion (CE) is positive on the Banach lattice X := L1[α/2, 1].

The positivity of
(
T (t)

)
t≥0 and Theorem 1.10 imply that the spectral

bound s(A) is a spectral value of A. However, the spectrum σ(A) is ob-
tained as the zeros of the characteristic function ξ (see (1.3) in Proposi-
tion 1.5). This function, restricted to R, is continuous, strictly decreasing,
with limλ→−∞ ξ(λ) = +∞ and limλ→+∞ ξ(λ) = −1. Therefore, ξ has a
unique real zero λ0, which by the above must be the spectral bound s(A).

1.18 Lemma. The spectral bound s(A) is the unique λ0 ∈ R such that
ξ(λ0) = 0.

While it is already much easier to determine the real instead of all com-
plex zeros of ξ, we are mainly interested in the sign of s(A). In fact, since(
T (t)

)
t≥0 is eventually norm continuous by Proposition 1.4, we know by

Theorem V.1.10 (or directly by Theorem 1.15) that it is uniformly expo-
nentially stable if and only if

s(A) < 0.

A look at the behavior of ξ as a function on R (see Figure 7)

ξ(0)

ξ(λ)

λλ0

Figure 7

immediately yields the following criterion.

1.19 Theorem. The semigroup
(
T (t)

)
t≥0 corresponding to the cell equa-

tion (CE) is uniformly exponentially stable if and only if

(1.11) ξ(0) = −1 +
∫ 1/2

α/2

4b(2σ)e−
∫ 2σ

σ
(µ(τ)+b(τ)) dτ

dσ < 0.

This is a simple stability criterion for (CE) involving in a direct and
computable manner only the given parameters µ and b. Exactly the same
arguments apply to many more equations and yield similar stability criteria
(see, e.g., Corollary 6.17).
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We conclude our discussion of (CE) with a more precise description of
the asymptotic behavior of the corresponding semigroup. This will be based
on Theorem 1.12.(ii) and is valid for irreducible semigroups.

1.20 Lemma. The semigroup
(
T (t)

)
t≥0 corresponding to the cell equation

(CE) is irreducible on L1[α/2, 1].

Proof. We verify the property of R(λ,A) stated in Theorem 1.12.(ii) and
use the formula for the perturbed resolvent

R(λ,A) = R(λ,A0 +B) = R(λ,A0) +R(λ,A0)BR(λ,A0) + · · ·

for λ > s(A0+B) (see (1.3) in the proof of Theorem III.1.3). By assumption,
all the above summands are positive, and for 0 ≤ f ∈ L1[α/2, 1] and s0 :=
sup
{
s ≥ α/2 : supp f ⊂ [s, 1]

}
, the explicit formula (1.2) and the definition

of B yield (
R(λ,A0)f

)
(s) > 0 for s ∈ [s0, 1],(

BR(λ,A0)f
)
(s) > 0 for s ∈ [s0/2, 1/2] ,(

R(λ,A0)BR(λ,A0)f
)
(s) > 0 for s ∈ [s0/2, 1] ,(

BR(λ,A0)BR(λ,A0)f
)
(s) > 0 for s ∈ [s0/4, 1/2] .

Continuing in this way, we obtain

R
(
(λ,A)f

)
(s) > 0 for all s ∈ [α/2, 1] .

�

We now collect the information we have gained so far for the semigroup(
T (t)

)
t≥0 and apply the theoretical results from Section V.3.

•
(
T (t)

)
t≥0 is positive and eventually norm continuous (see Proposi-

tion 1.4); hence
σ+(A) = {s(A)}

by Corollary 1.13.
•
(
T (t)

)
t≥0 is irreducible (Lemma 1.20), and its generator has compact

resolvent (see Lemma 1.2.(ii) and Proposition III.1.12.(ii)); hence s(A)
is an eigenvalue that is a first-order pole with one-dimensional residue
P by Theorem 1.12.

•
(
T (t)

)
t≥0 is eventually compact (see Proposition 1.4); hence s(A) is a

dominant eigenvalue by Corollary V.3.2, i.e.,

Reλ < s(A) for all λ ∈ σ(A) \ {s(A)}.

Combining these properties as in Corollary V.3.3, we obtain our final
result.
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1.21 Theorem. Let
(
T (t)

)
t≥0 be the strongly continuous semigroup on

X := L1[α/2, 1] corresponding to the cell equation (CE). Then there exist
a one-dimensional projection P ∈ L(X) and constants ε > 0, M ≥ 1 such
that ∥∥∥e− s(A)·tT (t)− P

∥∥∥ ≤Me−εt for all t ≥ 0.

1.22∗ Exercise. Replace the equation (CE) by

∂
∂t

n(t, s) = − ∂
∂s

(
g(s)n(t, s)

)
− µ(s)n(t, s)− b(s)n(t, s) + 4b(2s)n(t, 2s)

for α/2 ≤ s ≤ 1, 0 ≤ t, where g is a differentiable “growth function” satisfying

0 < ε ≤ g(s) ≤ δ for s ∈ [α/2, 1] and 2g(s) > g(2s) for s ∈ [α/2, 1/2]. Prove for the

corresponding semigroup the same results as above. (Hint: See [GN88].)

Notes and Further Reading to Section 1
The two monographs [MD86] and [Web85] by Metz–Diekmann and Webb are
the main references for the semigroup approach to population equations. The
systematic use of positivity and the Perron–Frobenius theory can be found in
[GN88] and [Hei86]. Greiner applied in [Gre84c] the same methods to a different
population equation. More sophisticated equations involving several populations
and their interactions are treated in [GW87], [Gra94], and [Ulm96].

2. Semigroups for the Transport Equation

A class of equations where semigroups and in particular positive semigroups
have been applied with great success are linear transport (or Boltzmann)
equations. In the following Section 2.a we discuss one particular transport
equation describing the flow of neutrons in a reactor. The spectral and
asymptotic behavior of the corresponding semigroup is then treated in
Section 2.b.

a. Solution Semigroup for the Reactor Problem

As a typical, but simple, example of a linear transport (or Boltzmann)
equation we consider the so-called reactor problem.

2.1 A Transport Equation. We assume that n(s, v, t) describes the den-
sity distribution of particles at position s ∈ S with speed v ∈ V at time
t ≥ 0. The configuration space S is assumed to be a compact convex subset
of R3 with nonempty interior, and the velocity space V is

V :=
{
v ∈ R3 : vmin ≤ ‖v‖2 ≤ vmax

}
for some minimal speed vmin > 0 and some maximal speed vmax <∞. The
particles are assumed
• to move according to their speed v,
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• to be absorbed with probability σ depending on the position s and the
speed v,

• to be scattered according to a scattering kernel κ depending on the
position s, the incoming speed v′, and the outgoing speed v.

These assumptions lead to the equation

(2.1)

∂
∂tn(s, v, t) = −

3∑
i=1

vi
∂

∂si
n(s, v, t)− σ(s, v)n(s, v, t)

+
∫

V

κ(s, v, v′)n(s, v′, t) dv′

with initial value
n(s, v, 0) = n0(s, v)

and boundary conditions given by the domain of the operator A0 below.
We now rewrite this equation as an abstract Cauchy problem in an ap-

propriate Banach space.

2.2 The Abstract Cauchy Problem. As Banach space we take X :=
L1(S × V ) with Lebesgue measure on S × V ⊂ R6 and then define the
collisionless transport operator A0 by

(
A0f

)
(s, v) := −

3∑
i=1

vi
∂

∂si
f(s, v)

with suitable domain D(A0) (see the following paragraph), the absorption
operator (

Mσf
)
(s, v) := σ(s, v) · f(s, v)

for some 0 ≤ σ ∈ C(S × V ), and the scattering operator

(
Kκf

)
(s, v) :=

∫
V

κ(s, v, v′)f(s, v′) dv′

for some 0 ≤ κ ∈ C(S × V × V ). The transport , or Boltzmann, operator is
then

B := A0 −Mσ +Kκ

with
D(B) := D(A0).

With these definitions, equation (2.1) corresponds to the abstract Cauchy
problem

(2.2) u̇(t) = Bu(t), u(0) = u0

in L1(S × V ). Next we show that it can be solved by semigroup methods.
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2.3 The Streaming Semigroup. We start from the strongly continuous
semigroups

(
T0(t)

)
t≥0 and

(
T (t)

)
t≥0 on X given by(

T0(t)f
)
(s, v) := 1 S(s− vt)f(s− vt, v), and(2.3) (

T (t)f
)
(s, v) := e−

∫ t

0
σ(s−vτ,v) dτ

1 S(s− vt)f(s− vt, v)(2.4)

for all s ∈ S, v ∈ V and f ∈ X (cf. Exercise 2.9.(1.i)). From these formulas
and the assumption on σ we immediately obtain that both semigroups
consist of positive operators on X and satisfy

(2.5) 0 ≤ T (t) ≤ T0(t) for all t ≥ 0.

The generator of
(
T0(t)

)
t≥0 is the above collisionless transport operator A0,

thereby defining its domain D(A0) (see Exercise 2.9.(1.ii)). Moreover, since
Mσ is a bounded perturbation, one obtains the generator of the streaming
semigroup

(
T (t)

)
t≥0 as

A := A0 −Mσ, D(A) = D(A0).

We finally note that due to the minimal speed vmin > 0 and the compact-
ness of S, both semigroups

(
T0(t)

)
t≥0 and

(
T (t)

)
t≥0 are nilpotent.

2.4 The Transport Semigroup. We now perturb A by the bounded
scattering operator Kκ and obtain the solution semigroup

(
S(t)

)
t≥0 corre-

sponding to the Cauchy problem (2.2).

Theorem. The transport operator B := A0 − Mσ + Kκ on L1(S × V )
generates the transport semigroup

(
S(t)

)
t≥0 given by

(2.6) S(t) =
∞∑

n=0

Sn(t),

where S0(t) := T (t) and

Sn+1(t)f :=
∫ t

0

Sn(t− τ)KκT (τ)f dτ for f ∈ L1(S × V ), n ∈ N.

For the proof it is enough to quote the Bounded Perturbation Theo-
rem III.1.3 and to refer to the Dyson–Phillips expansion in Theorem III.1.10
(see also Exercise III.1.17.(3)). Moreover, since all terms in (2.6) are pos-
itive operators on the Banach lattice L1(S × V ), we obtain preliminary
information on the qualitative behavior of the transport semigroup.

Corollary. For the streaming semigroup
(
T (t)

)
t≥0 and the transport semi-

group
(
S(t)

)
t≥0 one has

(2.7) 0 ≤ T (t) ≤ S(t) for all t ≥ 0.

Moreover, the growth bound ω0 of the transport semigroup
(
S(t)

)
t≥0 co-

incides with the spectral bound s(B) of the transport operator B.
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Proof. Since X is an L1-space and
(
S(t)

)
t≥0 is a positive semigroup, the

second assertion follows from Theorem 1.15. �

While this result already allows us to characterize the stability of the
transport semigroup by spectral properties of the transport operator, it is
our goal to obtain more precise information on the asymptotic behavior
of
(
S(t)

)
t≥0. In particular, we are interested in properties like balanced

exponential growth (see Exercise V.3.9.(3)).

b. Spectral and Asymptotic Behavior

The strategy is to compute the spectra σ
(
S(t)

)
and then use the results

from Sections IV.4 and V.3. For the streaming semigroup
(
T (t)

)
t≥0 the

situation is quite simple. In fact, it is a nilpotent semigroup, and hence
we have σ

(
T (t)

)
= {0} and σ(A) = ∅. In order to obtain information on

σ
(
S(t)

)
we will use Theorem IV.4.4 and therefore need certain compactness

properties of the terms Sn(t) in the Dyson–Phillips series (2.6).
It was G. Greiner in [Gre84b] who discovered that the order properties

of the operators involved are helpful.

2.5 Order Properties. We first introduce some notation and then list
some elementary properties.

The characteristic function 1 of S × V belongs to the Banach lattice
X = L1(S × V ) and to its dual space X ′ = L∞(S × V ). Therefore, we can
define a one-dimensional operator 1 ⊗ 1 ∈ L(X) by

(1 ⊗ 1 )f :=
(∫

S

∫
V

f(s, v) dv ds
)
· 1 for f ∈ X.

This positive operator “dominates” the streaming semigroup
(
T (t)

)
t≥0 in

the following way.
(i) T (t)1 ≤ T0(t)1 ≤ 1 for the order in L1(S × V ).
(ii) T (t)′ 1 ≤ T ′0(t)1 ≤ 1 for the order in L∞(S × V ).
(iii) T (t) ◦ (1 ⊗ 1 ) = 1 ⊗

(
T (t)1

)
≤ 1 ⊗ 1 for the order in L(X).

(iv) (1 ⊗ 1 ) ◦ T (t) =
(
T (t)′ 1

)
⊗ 1 ≤ 1 ⊗ 1 for the order in L(X).

These properties allow the decisive estimate for operator products in-
volving the scattering operator.

Lemma. With the above notation we have

(2.8) KκT (t)Kκ ≤
‖κ‖2

∞
t3

1 ⊗ 1 for all t > 0.



Section 2. Semigroups for the Transport Equation 365

Proof. We first recall that T (t) ≤ T0(t) by (2.5). Moreover, we have(
Kκf

)
(s, v) =

∫
V

κ(s, v, v′)f(s, v′) dv′ ≤ ‖κ‖∞
∫

V

f(s, v′) dv′

for all 0 ≤ f ∈ X and s ∈ S, v ∈ V . This and the substitution s′ := s− v′′t
imply the estimate(

KκT (t)Kκf
)
(s, v) ≤

(
KκT0(t)Kκf

)
(s, v)

≤ ‖κ‖2
∞

∫
V

∫
V

1 S(s− v′′t)f(s− v′′t, v′) dv′′ dv′

≤ ‖κ‖2
∞

∫
V

∫
S

1 S(s′)f(s′, v′)t−3 ds′ dv′

≤ ‖κ‖2
∞t

−3

∫
V

∫
S

f(s′, v′) ds′ dv′

≤ ‖κ‖2
∞t

−3 〈f, 1 〉 .
�

The estimate (2.8) shows that each operatorKκT (t)Kκ is dominated by a
one-dimensional, hence by a compact, operator. The theorem of Aliprantis–
Burkinshaw [AB80] (see also [AB85, Cor. 16.16]) then implies that its square
is a compact operator. We now show that the same property holds for the
operators S2(t) in the Phillips–Dyson series (2.6).

Proposition. The square of the operators S2(t), defined by

S2(t)f :=
∫ t

0

∫ τ

0

T (t− τ)KκT (τ − r)KκT (r)f dr dτ

for f ∈ X, is compact for every t ≥ 0.

Proof. For ε > 0 consider

Sε
2(t) :=

∫ t

ε

∫ τ−ε

0

T (t− τ)KκT (τ − r)KκT (r) dr dτ

and note that
‖S2(t)− Sε

2(t)‖ ≤ m3‖Kκ‖2
∞εt

for m := sup{‖T (τ)‖ : 0 ≤ τ ≤ t}. Since the square compact operators
form a closed subspace in L(X), it suffices to show that the square of Sε

2(t)
is compact for each ε > 0. Using the lemma and properties (iii) and (iv)
above we obtain

T (t− τ)KκT (τ − r)KκT (r) ≤ ‖κ‖2
∞(τ − r)−3

1 ⊗ 1 ,

hence

Sε
2(t) ≤

(
‖κ‖2

∞

∫ t

ε

∫ τ−ε

0

(τ − r)−3 dr dτ
)

1 ⊗ 1 .

Again by the Aliprantis–Burkinshaw theorem quoted above, we obtain that
the square of Sε

2(t) is compact. �
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This proposition ensures that the assumptions of Theorem IV.4.4 are
satisfied for n = 2, and we obtain

(2.9) ress
(
S(t)

)
≤ ress

(
T (t)

)
.

Since we have ress
(
T (t)

)
= r
(
T (t)

)
= 0 for all t > 0, we can describe the

spectrum of S(t) in the following way.

2.6 Theorem. (Greiner, 1984). Let B be the transport operator gen-
erating the transport semigroup

(
S(t)

)
t≥0 on X = L1(S × D). Then the

following hold.

(i) The spectral mapping theorem (SMT) holds for
(
S(t)

)
t≥0, and for

all t > 0 each 0 6= λ ∈ σ
(
S(t)

)
is a pole of the resolvent and the

corresponding residue is of finite rank.

(ii) For every λ0 ∈ R, the set {λ ∈ σ(B) : Reλ ≥ λ0} contains only
finitely many elements, each of which is a pole of the resolvent with
finite rank residue.

(iii) If s(B) > −∞, then s(B) is a dominant eigenvalue of B, i.e.,

σ(B) ∩
{
λ ∈ C : Reλ > s(B)− ε

}
= {s(B)}

for some ε > 0.

Proof. Assertion (i) follows from the inequality (2.9) and the definition
of the essential spectrum (see Paragraph IV.1.20), while Corollary IV.2.11
implies (ii).

Finally, in case (iii) we have s(B) ∈ σ(B) by Theorem 1.10. Moreover, the
boundary spectrum σ+(B) := σ(B)∩(s(B)+iR) is cyclic by Theorem 1.12.
(i). Hence, if σ+(B) 6= {s(B)}, we must have infinitely many elements in
σ+(B), contradicting (ii). Combined with (ii) this implies that s(B) is a
dominant eigenvalue. �

If we now assume
(
S(t)

)
t≥0 to be irreducible, then we obtain from

Theorem 1.12 our final result.

2.7 Corollary. Assume that s(B) > −∞ and that
(
S(t)

)
t≥0 is irreducible.

Then the transport semigroup
(
S(t)

)
t≥0 has balanced exponential growth.

More precisely, there exists a one-dimensional projection P satisfying 0 <
Pf whenever 0 < f such that∥∥e− s(B)tS(t)− P

∥∥ ≤Me−εt

for all t ≥ 0 and appropriate constants M ≥ 1 and ε > 0.

2.8 Example. If the scattering kernel κ is strictly positive, i.e., κ(s, v, v′) >
0 for all s ∈ S, v, v′ ∈ V , then the transport semigroup

(
S(t)

)
t≥0 is irre-

ducible; hence Corollary 2.7 applies. Moreover, it follows from [Pag86] that
r
(
S2(t)

)
> 0, and therefore s(B) > −∞. See also Exercise 2.9.(2.iii).
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2.9 Exercises. (1) Let T0(t) and T (t), t ≥ 0, be defined by (2.3) and (2.4) in
Paragraph 2.3, respectively.

(i) Show that (T0(t))t≥0 and (T (t))t≥0 are strongly continuous semigroups on
L1(S × V ).

(ii) Show that

D :=

{
f ∈ W1,1(S × V ) :

f(s, v) = 0 if s ∈ ∂S and

s− vt /∈ S for all t > 0

}
is a core for both semigroups.

(2∗) Discuss the transport equation (2.1) for vmin = 0.

(i) Show that the spectral bound of the streaming operator is

s(A) = − inf
{
σ(s, 0) : s ∈ S

}
.

(ii) Assume s(B) > s(A) and prove that the transport semigroup has balanced
exponential growth (see Exercise V.3.9.(3)).

(iii) Find conditions on the scattering kernel κ implying irreducibility of the
transport semigroup. In particular, show that it suffices that κ not vanish
in a neighborhood of the boundary of S. (Hint: See [Gre84a].)

(3∗) Discuss the transport equation (2.1) for S = R3 and assume σ and κ to
vanish outside a compact convex set in the configuration space R3. (Hint: See
[Gre84b, Sec. 3].)

Notes and Further Reading to Section 2
The use of spectral and order-theoretic methods for the transport equation has a
long history. We mention [Bir59], [Jör58], and [Vid70]. Our presentation is based
on the work of Greiner [Gre84b], whose results were improved by [Voi84] and
[Tak85]. For more information on the underlying physics we refer to [KLH82],
while more recent developments are presented in [BMM98] and [MK97].

3. Semigroups for Second-Order Cauchy Problems

In this section we will study the abstract second-order Cauchy problem

(ACP2)

{
ü(t) = Bu̇(t) +Au(t) for t ≥ 0,
u(0) = x, u̇(0) = y

with closed linear operators
(
A,D(A)

)
and

(
B,D(B)

)
on a Banach space

X. Problems of this type arise frequently in mathematical physics. For
example, in the study of wave equations, B can be interpreted as a damping
(or dissipation) operator for the “undamped” (or conservative) abstract
wave equation ü(t) = Au(t) governed by the elastic operator A.
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In order to treat the second-order problem (ACP2) within our semigroup
framework we will reduce it to a first-order Cauchy problem (ACP) on a
bigger Banach space X. To this end, we introduce the variable

(3.1) v := u̇

and obtain the (formally) equivalent system

(ACP)

{
U̇(t) = AU(t) for t ≥ 0,
U(0) = X

for U :=
(
u
v

)
, the initial value X :=

(
x
y

)
, and the operator

A :=
(

0 I
A B

)
.

Before justifying this reformulation in the following subsections, we explain
what is meant by a solution of (ACP2).

3.1 Definition. A function u : R+ → X is called a (classical) solution of
(ACP2) if

(i) u is twice continuously differentiable,

(ii) u(t) ∈ D(A) for all t ≥ 0 and Au : R+ → X is continuous,

(iii) u̇(t) ∈ D(B) for all t ≥ 0 and Bu̇ : R+ → X is continuous, and

(iv) u satisfies (ACP2).

The problem is now to find an appropriate state space X and a domain
for the reduction matrix A such that (ACP) corresponding to the matrix
A is solvable and its solution yields a (unique) solution of the second-order
problem (ACP2).

As we know from Theorem II.6.7, (ACP) is well-posed if and only if the
operator A generates a strongly continuous semigroup

(
T(t)

)
t≥0 on X. In

this case, (ACP) is uniquely solvable for all initial values X ∈ D(A), and
the solution is given by the function U : t 7→ T(t)X. By Definition II.6.1
this means that U ∈ C1(R+,X) ∩ C(R+,X

A
1 ) and that U satisfies (ACP).

In order to obtain a solution of the problem (ACP2) from the semigroup(
T(t)

)
t≥0 we need the following condition.

Condition (S). If U =
(
u
v

)
is a solution of (ACP) for the operator A and

the initial value X =
(
x
y

)
belonging to D(A), then the first coordinate u of

U is a solution of (ACP2) for the initial values u(0) = x and u̇(0) = y.

Our goal is now to construct, depending on the properties of A and B, a
state space X such that Condition (S) is satisfied. In this way we obtain a
solution of (ACP2) whenever A generates a strongly continuous semigroup
on X. First, however, we will show the uniqueness of the solution of (ACP2)
obtained in this way.
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3.2 Proposition. Let A :=
(

0 I
A B

)
be the generator of a strongly contin-

uous semigroup on the Banach space X ⊆ X × X. If
(
D(A) ∩ D(B)

)
×(

D(A)∩D(B)
)
⊆ D(A) and (XA

1 ∩XB
1 )×XB

1 ↪→ X with continuous injec-
tion, then (ACP2) has at most one solution for each pair of initial values(
x
y

)
∈ D(A).

Proof. It suffices to show the uniqueness of the zero solution of (ACP2)
for the initial values x = y = 0. To this end, we take a solution u of (ACP2)
with u(0) = u̇(0) = 0. Then from Definition 3.1 it follows that

u̇ ∈ C(R+, X
B
1 ) and u ∈ C(R+, X

A
1 ) ∩ C(R+, X

B
1 );

hence the map U : R+ → X with U(t) :=
(
u(t)
u̇(t)

)
is well-defined and continu-

ous. Moreover,∫ t

0

U(s) ds =
(∫ t

0
u(s) ds
u(t)

)
∈
(
D(A) ∩D(B)

)
2 ⊆ D(A)

and

A

∫ t

0

U(s) ds =
(

u(t)
A
∫ t

0
u(s) ds+Bu(t)

)
= U(t),

where the last equality follows by integrating (ACP2). This shows that U is
a mild solution of (ACP) for A with zero initial value, and therefore U = 0
by Proposition II.6.4. �

a. The State Space X = XB
1 ×X

The continuity condition Bu̇ ∈ C(R+, X) in Definition 3.1.(iii) is in par-
ticular satisfied if u ∈ C1(R+, X

B
1 ). Therefore, it is quite natural to choose

the state space
X := XB

1 ×X.

In this way the first coordinate u of the function U : t 7→ T(t)X automatically
satisfies condition (iii) in Definition 3.1 for every initial value X ∈ D(A).
We then consider A on X with its “maximal” domain, i.e.,

(3.2) A :=
(

0 I
A B

)
, D(A) :=

(
D(A) ∩D(B)

)
×D(B).

It is now easy to verify that in this setting solutions of (ACP2) can be
obtained from solutions of (ACP).

3.3 Lemma. Condition (S) holds for A defined by (3.2) on the space
X := XB

1 ×X.

Due to this lemma and Theorem II.6.7, we obtain a (classical) solution
of (ACP2), provided that

(
A, D(A)

)
generates a strongly continuous semi-

group on X = XB
1 ×X. Since in this case the assumptions of Proposition 3.2

are satisfied, this solution will be also unique.
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In order to study the generator property of A, we first assume that A is
B-bounded, i.e., D(B) ⊆ D(A) and A ∈ L(XB

1 , X) (cf. Definition III.2.1).
This means that the damping operator B is “more unbounded” than A and
is usually referred to as the overdamped case.

3.4 Corollary. If B generates a strongly continuous semigroup onX and A
is B-bounded, then the second-order Cauchy problem (ACP2) has a unique
classical solution for all initial values x, y ∈ D(B).

Proof. We need to show only that the assumptions imply that A with
domain D(A) = D(B)×D(B) is a generator on X = XB

1 ×X. To this end
we decompose A = A0 + B1 + B2, where

and

A0 :=
(

0 0
0 B

)
, D(A0) := D(A),

B1 :=
(

0 I
0 0

)
, B2 :=

(
0 0
A 0

)
.

Obviously, A0 is a generator on X, and the corresponding Sobolev space of
order 1 is XA0

1 = XB
1 ×XB

1 . Hence B1 ∈ L(XA0
1 ), and from Corollary III.1.5

applied to the generator A0 and the perturbation B1 we obtain that A1 :=
A0 + B1 with domain D(A1) := D(A) is a generator on X. Finally, B2 ∈
L(X) and the Bounded Perturbation Theorem III.1.3 implies that A =
A1 + B2 is a generator on X. �

3.5 Example. The previous result applies in particular if A = CB for
some bounded operator C ∈ L(X). More specific examples of this type
are given by the Euler–Bernoulli beam with Kelvin–Voigt damping (cf.
[Rus91, (1.04)], [Rus86, (3.8)]) or the Kirchhoff plate (see [Lag89, Chap. 6]
or [LLP94]).

If we assume some additional regularity, we can even consider operators
A that are not B-bounded. In the following the product of operators is
always defined as in Proposition B.2.

3.6 Corollary. Assume that there exists λ ∈ ρ(B) such that

(i) AR(λ,B) is B-bounded with B-bound zero, and

(ii) B and AR(λ,B) both generate analytic semigroups.

Then the second-order Cauchy problem (ACP2) has a unique classical so-
lution for all initial values x ∈ D(A) ∩D(B) and y ∈ D(B).

Proof. Again it suffices to prove that the assumptions imply that A gen-
erates a strongly continuous semigroup on X = XB

1 × X, which, in fact,
turns out to be analytic.
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First, we observe that due to the Bounded Perturbation Theorem III.1.3,
we may assume that B is invertible. Otherwise, we can replace B by B−λ
for some λ ∈ ρ(B). For ε > 0 define the bounded operator Vε from X ×X
to X by

Vε :=
(
−εB−1 B−1

0 I

)
.

It is invertible with bounded inverse from X to X ×X given by

V−1
ε =

(
−B/ε I/ε

0 I

)
.

It then follows from Paragraph II.2.1 that A is a generator on X if and only
if Aε := V−1

ε AVε is a generator on X × X. Let A0 := −AB−1. A simple
matrix calculation shows that Aε = A0 + Bε for

A0 :=
(
A0 0
0 B −A0

)
with domain D(A0) := D(A0)×D(B), and

Bε :=
(

0 −A0/ε
εA0 0

)
with domain D(A0) := D(A0)×D(A0).

By assumption, the operator A0 generates an analytic semigroup on X.
Moreover, by Theorem III.2.10, we know that

(
B − A0, D(A)

)
; hence A0

generates an analytic semigroup. The assertion then follows from another
application of Theorem III.2.10 to A0 and the perturbation Bε if we can
show that the A0-bound of Bε converges to zero as ε ↓ 0. To do so it suffices
to prove that A0 is (B −A0)-bounded with (B −A0)-bound equal to zero.
Observe that for every δ ∈ (0, 1) there exists bδ > 0 such that

‖A0z‖ ≤ δ ‖Bz‖+ bδ‖z‖ ≤ δ
(
‖(B −A0)z‖+ ‖A0z‖

)
+ bδ‖z‖;

hence

‖A0z‖ ≤ δ
1−δ ‖(B −A0)z‖+ bδ

1−δ ‖z‖ for all z ∈ D(B).

Since δ/1−δ converges to 0 for δ ↓ 0, this proves the assertion. �

By doing some extra bookkeeping of the constants in the above proof
one can also consider operators A for which AR(λ,B) is only B-bounded
with sufficiently small B-bound; cf. Exercise 3.9.(2). In particular, one can
deal with the following situation.

3.7 Example. Assume that A = −αB2 for B the generator of an analytic
semigroup and some α > 0. Then, for sufficiently small α, the operator
matrix A defined by (3.2) generates an analytic semigroup on X = XB

1 ×X;
hence the associated Cauchy problem (ACP2) permits a unique classical
solution for all x ∈ D(B2), y ∈ D(B). A specific example of this type is
given by the Euler–Bernoulli beam with structural damping where

B = d2

dx2

with suitable boundary conditions and defined on the space C[0, 1]. For a
detailed analysis of this model see [DBKS93].
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3.8 Remark. The fact that the semigroup generated by the reduction ma-
trix A of a second-order Cauchy problem is analytic is closely related to
so-called structural (or frequency proportional) damping . The basic prop-
erty of this kind of damping mechanism is that the damping rates of the
eigenmodes of vibration are proportional to their frequencies, a feature that
is consistent with extensive empirical studies. In terms of the operator A

this means that its eigenvalues are contained in two half-lines bordering a
sector in the left half-plane. For a detailed account of elastic systems ex-
hibiting structural damping we refer to [CR82], [CT89], [DBKS93], [Hua90],
[LLP94], and the references therein.

3.9 Exercises. (1) Prove Lemma 3.3.

(2) If in Corollary 3.6 we assume in condition (i) the operator AR(λ, B) to be
merely B-bounded, then the matrix

Aα :=
(

0 I

αA B

)
, D(A) :=

(
D(A) ∩D(B)

)
×D(B),

generates an analytic semigroup on X = XB
1 ×X for sufficiently small α > 0. In

particular, for those α the second-order Cauchy problem{
ü(t) = Bu̇(t) + αAu(t) for t ≥ 0,

u(0) = x, u̇(0) = y

has a unique classical solution for all x ∈ D(A) ∩D(B) and y ∈ D(B).

(3) Assume that A :=
(

0 I

A B

)
defined by (3.2) generates a strongly continuous

semigroup on X := XB
1 ×X. Then AD :=

(
0 I

A+D B

)
with domain D(AD) := D(A)

generates a strongly continuous semigroup for every D ∈ L(XB
1 , X). Discuss the

consequences of this result for the perturbed second-order Cauchy problem{
ü(t) = Bu̇(t) + (A + D)u(t) for t ≥ 0,

u(0) = x, u̇(0) = y.

b. The State Space X = X ×X

At first glance X × X seems to be the most natural candidate for the
state space X. However, it turns out that for this choice of X the generator
property of A will produce a solution only for an “extended” second-order
Cauchy problem (ACP2).

In order to define the operator A on X = X × X we first recall from
Exercise II.5.9.(5) which operators A on X can be extended to a bounded
operator A from X to the extrapolated Sobolev space XB

−1 with respect to
B (cf. Section II.5.a).
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3.10 Lemma. If A and B are densely defined operators with ρ(B) 6= ∅,
then the following assertions are equivalent.

(a) D(B′) ⊆ D(A′).
(b) R(λ,B)A ∈ L(X) for one (hence all) λ ∈ ρ(B).
(c) A : D(A) ⊆ X → XB

−1 is bounded.

If one of these assertions is satisfied, we denote by A the unique bounded
extension of A to an operator from X to XB

−1.

We now assume that one of the conditions (a)–(c) is satisfied and define

(3.3)
A :=

(
0 I
A B−1

)
,

D(A) :=
{(

x

y

)
∈ X ×X : Ax+B−1y ∈ X

}
.

Then we have the following result for the operator A.

3.11 Proposition. Let A and B be densely defined with ρ(B) 6= ∅ and
D(B′) ⊂ D(A′). Then the reduction matrix A defined by (3.3) is a gener-
ator on X = X ×X if and only if B is a generator on X.

Proof. By the Bounded Perturbation Theorem III.1.3 it suffices to show
that

Ã :=
(

0 0
A B−1

)
, D(Ã) := D(A),

is a generator if and only if B is a generator. As before, we assume B to
be invertible and then factorize Ã as

Ã =
(

0 0
0 B

)(
I 0

B−1A I

)
=: Ã0S,

where D(Ã0) := X × D(B). Since S is invertible, we conclude by Para-
graph II.2.1 that Ã is a generator if and only if

S(Ã0S)S−1 = SÃ0 = Ã0

is. Obviously, the latter is the case if and only if B is a generator, and the
proposition is proved. �

Due to our choice of the state space X = X ×X and the domain D(A)
of A, a solution of (ACP) corresponding to A will not yield a solution
of (ACP2) in general. In fact, while it is clear that D := D(A) ×D(B) is
contained in D(A), there is no need for the solution U : R+ 3 t 7→ T(t)

(
x
y

)
∈

X of (ACP) to stay in D if it starts with an initial value
(
x
y

)
∈ D. For the

first coordinate u of U, which is our candidate for the solution of (ACP2),
this means that in general we do not necessarily have that u(t) ∈ D(A)
and u̇(t) ∈ D(B), conditions that are imposed in Definition 3.1.
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These difficulties can be circumvented if instead of (ACP2) we consider
the extended abstract second-order Cauchy problem

(ACP2)

{
ü(t) = B−1u̇(t) +Au(t) for t ≥ 0,
u(0) = x, u̇(0) = y.

For this problem we have the following result, whose proof is left as an
exercise.

3.12 Corollary. If B generates a strongly continuous semigroup on X and
A′ is B′-bounded, then the extended second-order Cauchy problem (ACP2)
has a unique classical solution u ∈ C2(R+, X) for all initial values x, y ∈ X
satisfying Ax+B−1y ∈ X.

Concrete examples of this type can easily be given using Exercise 3.13.
(2).

3.13 Exercises. (1) Show that the reduction matrix A :=
(

0 I

A B

)
with domain

D(A) := D(A) × D(B) is a generator on X := X × X if and only if A ∈ L(X)
and B is a generator on X.

(2) Show that the conditions in Lemma 3.10 are satisfied if B is densely defined
with ρ(B) 6= ∅ and A = BA1 + A2 for bounded operators A1, A2 ∈ L(X).

(3) Prove Corollary 3.12.

c. The State Space X = XC
1 ×X

The results obtained so far cover a wide variety of overdamped second-
order Cauchy problems. However, to an undamped equation ü(t) = Au(t)
these results can be applied only in the “trivial” situation of a bounded
operator A. Moreover, for the previous choices of X, the norm in X is, in
general, not related to the energy of the system described by (ACP2).

Thus, we now study second-order problems where the elastic operator A
is, in some sense, the principal coefficient of the equation (ACP2). To this
end, we assume that X is a Hilbert space and that A can be written as

A = −C∗C

for a densely defined, invertible operator
(
C,D(C)

)
on X. This implies that

A is self-adjoint and negative definite (see [Wei80, Thm. 5.39]). In addition,
we will assume that B is dissipative on X. Under these assumptions the
appropriate state space is the Hilbert space

X := XC
1 ×X
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equipped with the scalar product

((
x
y

) ∣∣ (u
v

))
:= (Cx |Cu) + (y | v) for x, u ∈ D(C), y, v ∈ X.

In order to find conditions implying that the operator A =
(

0 I
A B

)
is a

generator, we consider its inverse, which is (formally) given by

(3.4) A−1 :=
(
−A−1B A−1

I 0

)
.

This should be a bounded operator on X, which is the case if and only if
we assume that

(3.5)

{
D(A−1B) = D(B) ∩D(C) is dense in XC

1 , and

A−1B ∈ L(XC
1 )

or, equivalently,

(3.6)

{
D
(
(C∗)−1BC−1

)
= C

(
D(B) ∩D(C)

)
is dense in X, and

Q := (C∗)−1BC−1 ∈ L(X).

Under these assumptions, the operator

A0 :=
(

0 I
−C∗C B

)
, D(A0) := D(C∗C)×

(
D(B) ∩D(C)

)
,

is densely defined on X. Moreover, a simple calculation shows that A0 is
dissipative; hence by Proposition II.3.14.(iv) it is closable, and its closure

(3.7) A := A0

is dissipative as well.
Before discussing the relationship between the solutions of (ACP2) and

(ACP), we study the generator property of A.

3.14 Proposition. Let A = −C∗C for a densely defined, invertible op-
erator

(
C,D(C)

)
on the Hilbert space X. Moreover, assume that B is

dissipative and that (3.5) (or (3.6)) is satisfied. Then A defined by (3.7)
generates a contraction semigroup on X := XC

1 ×X.
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Proof. We introduce the operator

(3.8)
Ã :=

(
C−1 0

0 C∗

)(
0 I
−I Q

)(
C 0
0 C

)
,

D(Ã) :=
{(

x
y

)
∈ D(C)×D(C) : Cx−QCy ∈ D(C∗)

}
.

Then A0 ⊆ Ã and

ÃD(A0) =
{(

y
−C∗Cx+By

)
:
(
x
y

)
∈ D(C∗C)×

(
D(B) ∩D(C)

)}
⊃
(
D(B) ∩D(C)

)
×X

is dense in X. Moreover, Ã is invertible with inverse given by the right-
hand side of (3.4). Hence, by Exercise II.1.15.(2), D(A0) is a core for Ã,
and therefore Ã = A0 = A. Since the assumptions on A and B imply that
A is dissipative and densely defined, the assertion follows from the Lumer–
Phillips Theorem II.3.15. �

As in the previous subsection, we now have the problem that a solution
of (ACP) corresponding to A will, in general, not give rise to a solution of
(ACP2). In fact, if A is a generator on X = XC

1 ×X, we are only able to
find a solution u ∈ C2(R+, X) of the second-order problem

{
ü(t) = C∗

(
QC u̇(t)− C u(t)

)
for t ≥ 0,

u(0) = x, u̇(0) = y,

with initial values x, y ∈ D(C) satisfying Cx − QCy ∈ D(C∗). However,
if we impose an additional assumption on the domain of B, Condition (S)
will be satisfied.

3.15 Lemma. If B is dissipative and D(C) ⊆ D(B), then (3.5) (or, equiv-
alently, (3.6)) holds, D(A) = D(A)×D(C), and Condition (S) is satisfied.

The proof is left as Exercise 3.21.(2). Together with Proposition 3.2 we
now immediately obtain the following result.

3.16 Corollary. Let A = −C∗C for a densely defined, invertible operator(
C,D(C)

)
on a Hilbert space X. Moreover, assume that B is dissipative

and D(C) ⊆ D(B). Then the second-order Cauchy problem (ACP2) has a
unique classical solution for all initial values x ∈ D(A) and y ∈ D(C).
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3.17 Example. On the interval [0, 1] we consider the second-order Cauchy
problem

(3.9)



∂2u(t, x)
∂t2

= b
∂3u(t, x)
∂t ∂x2

− ∂

∂x

(
a(x)

∂u(t, x)
∂x

)
− c

∂4u(t, x)
∂x4

, t ≥ 0, x ∈ [0, 1],

u(t, x) = 0 =
∂2u(t, x)
∂x2

, t ≥ 0, x = 0, 1,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ [0, 1],

for a ∈ C1[0, 1], b ∈ C with Re b ≥ 0 and c > 0.
In order to apply our previous results, we rewrite (3.9) as an abstract

second-order Cauchy problem (ACP2) on X := L2[0, 1]. To that purpose
we introduce the operators

A := −c∆2, D(A) :=
{
f ∈ H4

0[0, 1] : f ′′(0) = 0 = f ′′(1)
}
,

B := b∆, D(B) := H2
0[0, 1],

C :=
√
c∆, D(C) := H2

0[0, 1],

D := −DmMaD0, D(D) := H2
0[0, 1].

We refer to Appendix A for the definition of the spaces Hk
0 [0, 1]. More-

over, Dm and D0 denote the first derivative with maximal domain and
Dirichlet boundary conditions, respectively, ∆ := DmD0 is the Lapla-
cian with Dirichlet boundary conditions, and Ma stands for the multi-
plication operator induced by the function a. Then A = −C∗C, where
C = C∗ =

√
cDmD0 is positive definite (cf. Exercise II.4.12.(12)), B is dis-

sipative with D(C) = D(B), and D ∈ L(XC
1 , X). Hence, by Corollary 3.16

and Exercise 3.21.(3) the partial differential equation (3.9) has a unique
classical solution for all initial values u0 ∈ D(A), u1 ∈ D(C). The uniform
exponential stability of this solution is treated in Exercise 3.21.(6).

Next, we are interested in the asymptotic behavior of the solution of
(ACP2). To this end, we suppose that for

(
B,D(B)

)
there exist constants

γ ≥ 0 and δ > 0 such that

(3.10)
∣∣Im(By | y)

∣∣ ≤ γ Re(−By | y) and δ‖y‖2 ≤ Re(−By | y)

for all y ∈ D(B). We then obtain the following result.

3.18 Theorem. In addition to the assumptions made in Proposition 3.14,
let
(
B,D(B)

)
satisfy the estimates (3.10). Then the following holds.

(i) If γ > 0, then
ω0(A) ≤ w,
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where w ∈ (−δ/2, 0) is the unique solution of the equation

w2 +
w2γ2δ2

(δ + 2w)2
=
∥∥A−1

∥∥−2
,

cf. Figure 8.

(ii) If γ = 0, then

ω0(A) ≤ w := max
{
−δ

2
, −
∥∥A−1

∥∥−1
}
.

In particular, the solution of (ACP2) tends exponentially to zero as t→∞.

α

β = ∓ αγδ
δ+2α

w ‖A−1‖−1

− δ
2

Figure 8

The proof of this result is based on the theorem of Gearhart–Greiner–
Prüss V.1.11 and the following technical lemma.

3.19 Lemma. Let ε > 0 and α ∈ (−δ/2 + ε, 0]. If

inf
X∈D(A), ‖X‖=1

‖(α+ iβ −A)X‖ < ε,

then

|β| < (ε− α)γ + 3ε
δ − 2(ε− α)

· δ.

Proof. Let X :=
(
x
y

)
∈ D(A) satisfy ‖X‖ = 1 and ‖(α + iβ − A)X‖ < ε.

Then, since D(A0) = D(C∗C) ×
(
D(B) ∩D(C)

)
is a core for A, we may

assume that X ∈ D(A0) and therefore obtain

(3.11) ‖(α+ iβ −A)X‖ =
∥∥∥∥( αx+ iβx− y

C∗Cx+ αy + iβy −By

)∥∥∥∥ < ε.
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Thus
∣∣((α+ iβ −A)X |X

)∣∣ < ε, i.e.,

(3.12)
∣∣α+ iβ + 2i Im(Cx |Cy)− Re(By | y)− i Im(By | y)

∣∣ < ε,

and therefore ∣∣Re(By | y)− α
∣∣ < ε.

This, together with (3.10), implies

(3.13) δ‖y‖2 ≤ −Re(By | y) < ε− α;

hence

‖y‖2 < ε−α
δ and ‖Cx‖2 = ‖x‖2

C = 1− ‖y‖2 > 1− ε−α
δ .

This shows that

(3.14) 1− 2 ‖x‖2
C < 2 ε−α

δ − 1.

On the other hand, we obtain from (3.11) the estimate

‖y − (α+ iβ)x‖C = ‖Cy − C(α+ iβ)x‖ < ε,

which gives ∣∣Im(Cx |Cy)− Im(Cx | iβCx)
∣∣ < ε.

Next, we combine this with (3.12) and conclude, by taking imaginary parts,
that

(3.15) |β|·
∣∣1−2 ‖x‖2

C

∣∣−∣∣Im(By | y)
∣∣ ≤ ∣∣β(1− 2 ‖x‖2

C

)
− Im(By | y)

∣∣ < 3ε.

However, by (3.14) we have for α ∈ (−δ/2 + ε, 0]

1− 2 ‖x‖2
C < 2 ε−α

δ − 1 < 0,

hence
|β| ·

(
1− 2 ε−α

δ

)
< |β| ·

∣∣1− 2 ‖x‖2
C

∣∣.
Together with (3.10), (3.13), and (3.15) this implies

|β| ·
(
1− 2 ε−α

δ

)
< 3ε− γ Re(By | y) < 3ε+ γ(ε− α),

and the assertion follows. �
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Proof of Theorem 3.18. (i) By Exercise V.1.13.(1) it suffices to show
that

(3.16)

α+ iR ⊂ ρ(A) and
sup
β∈R

‖R(α+ iβ,A)‖ <∞ for all α > w.

Since by Proposition 3.14 the matrix A generates a contraction semigroup,
we know that {z ∈ C : Re z > 0} ⊂ ρ(A). On the other hand, by Proposi-
tion IV.1.10 the boundary ∂σ(A) is always contained in the approximate
point spectrum Aσ(A). However, from Lemma IV.1.9 and Lemma 3.19 it
follows that for λ := α+ iβ satisfying α ∈ (−δ/2, 0] and

|β| ≥ − αγδ

δ + 2α

we have infZ∈D(A), ‖Z‖=1 ‖(λ−A)Z‖ > 0, and therefore λ /∈ ∂σ(A) ⊂ σ(A).
Moreover, by Proposition IV.1.3.(i) the set {µ ∈ C : |µ| < 1/‖A−1‖} is
contained in ρ(A), and a simple geometric argument, cf. Figure 8, implies
the first part of (3.16). The second part then follows from the inequality

‖X‖ =
∥∥(λ−A)[R(λ,A)X]

∥∥ ≥ inf
Z∈D(A), ‖Z‖=1

‖(λ−A)Z‖ · ‖R(λ,A)X‖

for all X ∈ X.
Assertion (ii) follows from (i) by taking the limit γ ↓ 0. �

We close this section with a typical application.

3.20 Example. (Damped vibrating string). On the interval [0, 1] we con-
sider the second-order Cauchy problem

(3.17)


∂2u(t, x)
∂t2

= q(x)
∂u(t, x)
∂t

+
∂2u(t, x)
∂x2

, t ≥ 0, x ∈ [0, 1],

u(t, 0) = 0 = u(t, 1), t ≥ 0,

u(0, x) = u0(x),
∂u(0, x)
∂t

= u1(x), x ∈ [0, 1],

describing the motion of a damped vibrating string fixed at its endpoints
x = 0 and x = 1.

As in Example 3.17, we rewrite (3.17) as an abstract second-order Cauchy
problem (ACP2) on X := L2[0, 1] for the operators

(3.18)
A : = ∆, D(A) := H2

0[0, 1],
B : = Mq, D(Mq) := {f ∈ X : qf ∈ X}.

Moreover, we assume that the measurable function q : [0, 1] → C satisfies

(3.19) | Im q(x)| ≤ −γ Re q(x) and Re q(x) ≤ −δ a.e.
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for some constants γ ≥ 0, δ > 0. Then A is self-adjoint and negative
definite, B is dissipative, and the conditions in (3.10) are satisfied. Our
next goal is to find conditions on q implying (3.6) for B = Mq and the
(unique) positive definite square root

(3.20) C := (−A)
1/2

of −A (cf. Section II.5.c). Since by Exercise II.5.36.(4) we have D(C) =
H1

0[0, 1], we first study the relation between the domain of a multiplication
operator and H1

0[0, 1].

Lemma. For a measurable function p : [0, 1] → C the following hold.

(i) D(Mp)∩H1
0[0, 1] is dense in H1

0[0, 1] if and only if p ∈ L2[ε, 1− ε] for
every 0 < ε < 1/2.

(ii) H1
0[0, 1] ⊂ D(Mp) if the map x 7→ x(1− x) p2(x) belongs to L1[0, 1].

Proof. (i) We show only that D(Mp) ∩ H1
0[0, 1] is dense in H1

0[0, 1] if
p ∈ L2[ε, 1 − ε] for every 0 < ε < 1/2. The converse implication is left as
Exercise 3.21.(7).

For arbitrary fixed f ∈ H1
0[0, 1] and 0 < ε < 1/2 we define the function

g(x) :=


0 if x ∈ [0, ε/2] ∪ [1− ε/2, 1],
(2x/ε − 1)f(ε) if x ∈ [ε/2, ε],
f(x) if x ∈ [ε, 1− ε],
(2(1−x)/ε − 1)f(1− ε) if x ∈ [1− ε, 1− ε/2].

Then g ∈ H1
0[0, 1], and the assumption p ∈ L2[ε/2, 1 − ε/2] combined with

the boundedness of g implies g ∈ D(Mp).
In order to estimate ‖f−g‖H1

0[0,1], we first observe that Hölder’s inequal-
ity implies

(3.21)
|f(ε)| ≤ ‖f ′‖L1[0,ε] ≤

√
ε ‖f ′‖L2[0,ε],

|f(1− ε)| ≤ ‖f ′‖L1[1−ε,1] ≤
√
ε ‖f ′‖L2[1−ε,1]

for all ε ∈ (0, 1/2). Using these estimates we obtain

‖f − g‖H1
0[0,1] = ‖f ′ − g′‖L2[0,1] = ‖f ′ − g′‖L2([0,ε]∪[1−ε,1])

≤ ‖f ′‖L2([0,ε]∪[1−ε,1]) + ‖g′‖L2([0,ε]∪[1−ε,1])

= ‖f ′‖L2([0,ε]∪[1−ε,1]) +
[

2
εf(ε)2 + 2

εf(1− ε)2
]1/2

≤ ‖f ′‖L2([0,ε]∪[1−ε,1]) +
[
2‖f ′‖2

L2[0,ε] + 2‖f ′‖2
L2[1−ε,1]

]1/2

≤ (1 +
√

2)‖f ′‖L2([0,ε]∪[1−ε,1]).

Since f ′ ∈ L2[0, 1], we conclude that

‖f ′‖L2([0,ε]∪[1−ε,1]) → 0, as ε ↓ 0,

and hence D(Mp) ∩H1
0[0, 1] is dense in H1

0[0, 1].
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(ii) For f ∈ H1
0[0, 1] we obtain from (3.21)

‖Mpf‖2
L2[0,1] =

∫ 1/2

0

∣∣f2(x)p2(x)
∣∣ dx+

∫ 1

1/2

∣∣f2(x)p2(x)
∣∣ dx

≤
(∫ 1/2

0

∣∣xp2(x)
∣∣ dx+

∫ 1

1/2

∣∣(1− x)p2(x)
∣∣ dx) · ‖f ′‖2

L2[0,1]

≤
(∫ 1/2

0

∣∣xp2(x) · 2(1− x)
∣∣ dx+

∫ 1

1/2

∣∣(1− x)p2(x) · 2x
∣∣ dx) · ‖f ′‖2

L2[0,1]

= 2
∫ 1

0

∣∣x(1− x) p2(x)
∣∣ dx · ‖f ′‖2

L2[0,1] <∞,

and hence f ∈ D(Mp) as claimed. �

We are now able to prove the following result on the well-posedness and
the stability of the damped vibrating string from (3.17).

Proposition. If q : [0, 1] → C satisfies (3.19), then the following holds.

(i) If q ∈ L2[ε, 1− ε] for every 0 < ε < 1/2 and x 7→ x(1−x)q(x) belongs
to L1[0, 1], then the closure A of the operator matrix

A0 :=
(

0 I
∆ Mq

)
, D(A0) := H2

0[0, 1]×
(
D(Mq) ∩H1

0[0, 1]
)
,

generates an exponentially stable contraction semigroup on X :=
H1

0[0, 1]× L2[0, 1].
(ii) If the function x 7→ x(1− x) q2(x) belongs to L1[0, 1], then D(A) =

H2
0[0, 1]×H1

0[0, 1] and Condition (S) is satisfied. Moreover, for every
u0 ∈ H2

0[0, 1], u1 ∈ H1
0[0, 1], the problem (3.17) has a unique classical

solution u that tends exponentially to 0 as t→∞.

Proof. (i) To verify condition (3.6), we first observe that by statement (i)
in the previous lemma with p := q the intersection D(Mq)∩H1

0[0, 1] is dense
in H1

0[0, 1]. Hence, the operator (C∗)−1BC−1 = (−∆)−1/2Mq(−∆)−1/2 is
densely defined on X := L2[0, 1]. In order to show that it has a bounded
closure Q ∈ L(X), we write

(−∆)
−1/2Mq(−∆)

−1/2 = (−∆)
−1/2M√

r ·Ma ·M√
r (−∆)

−1/2,

where q(x) = a(x)r(x) for a measurable function a with |a(x)| = 1 and
r(x) := |q(x)|. Since x 7→ x(1 − x)r(x) belongs to L1[0, 1], it follows
by statement (ii) of the previous lemma with p :=

√
r that H1

0[0, 1] ⊂
D(M√

r). Proposition B.2.(i) and the closed graph theorem then imply that
M√

r (−∆)−1/2 ∈ L(X). On the other hand, (−∆)−1/2M√
r is densely defined

and
(
(−∆)−1/2M√

r

)∗ = M√
r (−∆)−1/2 ∈ L(X). From this we conclude

that (−∆)−1/2M√
r is closable and its closure is bounded. Since ‖Ma‖ = 1,

this proves the second part of (3.6). The assertion now follows from Propo-
sition 3.14 and Theorem 3.18.
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(ii) Assume that the function x 7→ x(1− x) q2(x) belongs to L1[0, 1].
Then statement (ii) of the previous lemma applied to p := q implies that
D(C) = H1

0[0, 1] ⊂ D(Mq) = D(B). The assertion now follows from Corol-
lary 3.16 and Theorem 3.18. �

3.21 Exercises. (1) Give an explicit formula for the semigroup (T(t))t≥0 gen-
erated by A in the undamped case, i.e., for B = 0. Moreover, show that (T(t))t≥0

can be extended to a group. (Hint: Show that A and −A are similar.)

(2) Prove Lemma 3.15.

(3) Take D ∈ L(XC
1 , X) and reconsider Exercise 3.9.(3) under the hypotheses of

this subsection. In particular, show that in the case D(C) ⊆ D(B) Condition (S)
is also satisfied for the perturbed generator AD.

(4) Show that under the assumptions of Theorem 3.18 one has the estimates
ω0(A) ≤ max{s(A), −δ/2} < 0 for the growth bound of A.

(5) (Uniformly damped wave equation). Let A = −C∗C be self-adjoint negative
definite and let B := −2b for some b > 0. Show that for the generator

A :=
(

0 I
A B

)
, D(A) := D(A)×D(C)

on X := XC
1 ×X one has

ω0(A) = s(A) = −b + Re
√

b2 + s(A).

(Hint: Verify first that σ(A) =
{
−b ±

√
b2 + µ : µ ∈ σ(A)

}
and then apply

Exercise (4).)

(6) Show that the solution of the second-order Cauchy problem from Exam-
ple 3.17 is exponentially stable if Re b > 0. (Hint: Modifying Example 3.17, define
the operator A := −c∆2−DmMaD0. Then A is self-adjoint and negative definite,

and for C := (−A)
1/2 the conditions of Theorem 3.18 are satisfied. Observe also

that D(C) = H2
0[0, 1].)

(7) Prove the “only if” part in statement (i) of the lemma in Example 3.20.

Notes and Further Reading to Section 3
As general references on second-order (and, more generally, higher-order) Cauchy
problems we refer to the monographs by Fattorini [Fat85] and Xiao–Liang [XL98].
Among the methods used in the literature we mention:

• The theory of operator cosine functions and M, N-families, which can be
viewed as the semigroup analogue for second-order Cauchy problems, cf.
Sova [Sov66], Kisyński [Kis72], Lutz [Lut82], Mel’nikova–Filinkov [MF88],
Goldstein [Gol85, Sec. 2.8], Zheng [Zhe94].

• Hille–Yosida–type theorems, which impose growth conditions on the inverse
of the operator pencil λ2−λB−A; see Xiao–Liang [XL90] and Zheng [Zhe92].

• The theory of parabolic second-order equations, which uses a holomorphic
functional calculus to obtain representations for the solution; see Favini–
Obrecht [FO91].

• Factorized equations of the form (d/dt − A)(d/dt − B)u(t) = 0 for which an
extensive theory of “equipartition of energy” was developed by Goldstein–
Sandefur [GS82].

• Perturbation methods for m-dissipative operators; see [CP89] and [Eng94].
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For still other approaches we refer to [deL94], [FY99], and [Neu89].
The first-order reduction used in this section is standard. The existence of

an appropriate state space for the operator matrix A =
(

0 I

A B

)
was discussed in

detail by Fattorini [Fat81], [Fat85, Chap. VIII], and Obrecht [Obr91]. The results
presented in Section 3.a are quite similar to those in [Kre71, Sec. III.3], where a
different reduction matrix on the state space X×X is considered. The situation in
Section 3.b is, in some sense, dual to the one studied in [Neu86], where operators
A and B with D(B) ⊂ D(A) are treated. In Section 3.c we follow [Hua97] and
[BE99]. Example 3.17 is taken from [XL90, (3.7), p. 193]. For related results on
the well-posedness and the stability of second-order Cauchy problems see also
[Eng97] and [Wyl92].

4. Semigroups for Ordinary Differential Operators
(by M. Campiti, G. Metafune, D. Pallara, and S. Romanelli)

In this section we present some results on the existence and regularity of
semigroups generated by second-order ordinary differential operators on
spaces of continuous functions. The general operator is given by

(4.1) Au = mu′′ + qu′ + ru

on some interval J and for continuous functions m, q, r. We say that A is
nondegenerate if m, q, r are bounded, infx∈J m(x) > 0, and the limits of
m(x) exist when x approaches the real endpoints of J . In this case, several
generation results already appeared in the previous chapters, and hence
we concentrate on the analyticity of the generated semigroup, which we
prove under general boundary conditions. To make the exposition clearer,
we distinguish the case of an unbounded interval from that of an bounded
interval J . In both cases, we first study the generator Au = u′′ with elemen-
tary methods, and then use a perturbation argument to deduce the general
case. The theory can be developed along the same lines in the Lp-setting,
as outlined in Exercises 4.4.(2)–(3) and Exercises 4.7.(1)–(2).

Next, we consider degenerate operators A keeping m > 0 in J and r
bounded, but allowing degeneracy of m and q at the endpoints. In this
case, the boundary conditions that lead to the generation in C(J) depend
on the behavior of the coefficients at the endpoints. This is the content
of Feller’s theory, partly presented in Section 4.c, which relies on more
delicate arguments. Clearly, the regularity of the semigroups generated by
these operators is even more difficult. We discuss in the last section a few
analyticity results in spaces of continuous functions, omitting most of the
proofs and giving only some indications on the main ideas and techniques
involved.

To shorten the notation, we set R := [−∞,∞] and R+ := [0,∞]. Ac-
cordingly, we write u ∈ Ck(R) if u ∈ Ck(R) and the derivatives of u up to
the order k have finite limits at ±∞, and similarly for Ck(R+).
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a. Nondegenerate Operators on R and R+

We start with the case of the second-order derivative operator. For clar-
ity’s sake, we denote this operator by A0, A1, regarded on R, R+ respec-
tively, with suitable domains. In each case, we prove that they generate
analytic semigroups

(
T (t)

)
t≥0 of angle π/2, the (one-dimensional) diffusion

semigroups already treated in Paragraph II.2.12, Paragraph II.3.30, and
Example II.4.8.

We first look at the case of the whole real line and consider A0 with the
maximal domain, i.e., D(A0) := C2(R). Then the operator

(
A0, D(A0)

)
is

densely defined in C(R), and from Lemma III.2.4 and Example III.2.2 it
easily follows that it is also closed.

There are many ways to verify that
(
A0, D(A0)

)
is the generator of

a bounded analytic semigroup in C(R), as one likely expects in such an
archetypical case. The simplest one, cf. Example II.4.10, is to apply Corol-
lary II.4.9 viewing A0 as the square of the first derivative operator, which
generates the bounded translation group. Another way, which seems to be
worth mentioning, is to write down explicitly the solution of the Cauchy
problem {

ut(t, x) = uxx(t, x) for t > 0, x ∈ R,
u(0, x) = f(x) for x ∈ R,

and to deduce the estimate (4.9) in Theorem II.4.6. Using the Fourier
transform, as is done in much greater generality in Section 5, we obtain
(see Section II.2, (2.10))

u(t, x) = T (t)f(x) =
1√
4πt

∫ ∞

−∞
e−

|x−y|2
4t f(y) dy,

and it is readily seen that Theorem II.4.6.(c) applies. Although these argu-
ments are sufficient in the present situation, we give still another proof of
the analyticity, based on the estimate of the resolvent operator, according
to Theorem II.4.6.(d). In fact, this method can be applied in the general
situation that we discuss later on.

4.1 Theorem. The spectrum of the operator
(
A0, D(A0)

)
is contained in

the interval (−∞, 0], and if λ = |λ|eiϑ with |ϑ| < π, then

‖R(λ,A0)‖ ≤
1

|λ| cos(ϑ/2)
.

Hence,
(
A0, D(A0)

)
generates a bounded analytic semigroup of angle π/2.

Proof. Let λ /∈ (−∞, 0] and write λ = |λ|eiϑ for |ϑ| < π. Since no nonzero
solution of the equation λu − u′′ = 0 is in C(R), the operator λ − A0 is
injective.
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To show the surjectivity of λ − A0 we write λ = µ2 with Reµ > 0. As-
suming for a moment f ∈ L2(R)∩C(R), we can apply the Fourier transform
and obtain Fu(y) = Ff(y)

µ2+y2 for the solution u of the equation λu− u′′ = f .
By taking the inverse Fourier transform, we obtain

(4.2) u(x) =
1
2µ

∫ ∞

−∞
e−µ|x−s|f(s) ds = (f ∗ hµ)(x) for x ∈ R,

where hµ(x) := 1
2µe−µ|x|. Let us check that the above formula gives a

solution u = R(λ,A0)f ∈ D(A0) for any f ∈ C(R). In fact, the integral in
(4.2) converges, since Reµ > 0. Splitting it into the integral from −∞ to
x and from x to ∞ and differentiating, we obtain

(4.3) u′(x) = −1
2

∫ x

−∞
eµ(s−x)f(s) ds+

1
2

∫ ∞

x

eµ(x−s)f(s) ds.

Differentiating again, we obtain λu− u′′ = f . Writing

u(x) =
1
2µ

∫ ∞

−∞
e−µ|s|f(x− s) ds

and letting x→ ±∞, we deduce the existence of the limits limx→±∞ u(x).
Then the equation λu − u′′ = f implies that u ∈ D(A0). Finally, a direct
computation yields

‖u‖ = ‖R(λ,A0)f‖ ≤ ‖hµ‖L1 · ‖f‖ =
‖f‖

|µ|Reµ
=

‖f‖
|λ| cos(ϑ/2)

.

�

We now consider the operator A1u = u′′ in C(R+) under general bound-
ary conditions. To that purpose fix two real numbers α and β with α2+β2 6=
0 and define the domain of A1 by

(4.4) D(A1) :=
{
u ∈ C2(R+) : αu(0) + βu′(0) = 0

}
⊂ C(R+).

Then the operator
(
A1, D(A1)

)
is closed by Lemma III.2.4 and Exam-

ple III.2.2, and its domain is dense in C(R+) in the case β 6= 0.
If β = 0, then D(A1) is not dense in C(R+). However, if we take the

part of
(
A1, D(A1)

)
in the subspace X := {u ∈ C(R+) : u(0) = 0}, then

A1 becomes densely defined, and the following results are valid in X.

4.2 Theorem. The operator
(
A1, D(A1)

)
generates an analytic semigroup

of angle π/2.
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Proof. We proceed as in Theorem 4.1 and take λ = |λ|eiϑ /∈ (−∞, 0] with
|ϑ| < π. We write λ = µ2 with Reµ > 0. Then the function x 7→ uµ(x) :=
e−µx is (up to a constant) the only nonzero solution of the equation λu−
u′′ = 0 in C(R+) and satisfies the boundary condition at x = 0 if and
only if αβ > 0 and λ = (α/β)2. Therefore, we also assume λ 6= (α/β)2. For
f ∈ C(R+), we put

u(x) := (f ∗ hµ)(x) =
1
2µ

∫ ∞

0

e−µ|x−s|f(s) ds for x ≥ 0.

By extending f ≡ 0 for x < 0, we infer from the proof of Theorem 4.1 that
u ∈ C2(R+) and that ‖u‖ ≤ 1

|λ| cos(ϑ/2)
‖f‖. Moreover, we have that

αu(0) + βu′(0) = (α+ βµ)γ,

where
γ :=

1
2µ

∫ ∞

0

e−µsf(s) ds.

We define w := R(λ,A1)f = u + cuµ with c := α+βµ
βµ−αγ. Then w ∈ D(A1)

and (λ− A1)w = f . It remains to estimate ‖cuµ‖. To this aim we observe
that ‖uµ‖ = 1 and that |γ| ≤ ‖f‖/(2|µ|Re µ). From these inequalities we
deduce that there exists k > 0 such that

‖R(λ,A1)‖ ≤
k

|λ| cos(ϑ/2)

for λ /∈ (−∞, 0] if αβ ≤ 0, and for λ /∈ (−∞, 0] with |λ| large if αβ > 0.
The assertion then follows from Proposition II.4.3. �

We remark that the semigroup generated by
(
A1, D(A1)

)
is bounded

analytic if and only if αβ ≤ 0.
We can extend the above results to the general nondegenerate operator

by using a perturbation argument.
Let J = R or J = R+, m ∈ C1(J) with infx∈J m(x) > 0 and m,m′ ∈

Cb(J), q ∈ Cb(J), r ∈ C(J), and consider the operator A given by

Au := mu′′ + qu′ + ru.

If J = R, we define D(A) := D(A0) = C2(R), while for J = R+ we take
D(A) := D(A1) (see (4.4)) or the part of A in the space X := {u ∈ C(R+) :
u(0) = 0} in the case β = 0.

4.3 Theorem. The operator
(
A,D(A)

)
generates an analytic semigroup

of angle π/2 in C(J).

Proof. We first consider the case m ≡ 1 and define Bu := qu′ + ru with
domain D(B) := C1(J). Then, by Example III.2.2, the operator B is Ai-
bounded for i = 0, 1 with Ai-bound 0. Hence, the assertion follows from
Exercise III.2.18.(3), Theorem 4.1, and Theorem 4.2.
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The general case can be deduced from the previous one by a similarity
transformation arising from a change of variables. In fact, let

(4.5) ϕ(x) :=
∫ x

0

1√
m(t)

dt for x ∈ J.

Then ϕ : J → J is bijective, and hence Qϕ ∈ L
(
C(J)

)
defined by

(4.6) Qϕu := u ◦ ϕ, u ∈ C(J),

is invertible with Q−1
ϕ = Qϕ−1 . Next, we apply Exercise 4.4.(1) and obtain

(4.7) Ãv := Q−1
ϕ AQϕv = v′′ +

q̃ − m̃′/2√
m̃

v′ + r̃v,

where h̃ := Q−1
ϕ h = h ◦ ϕ−1 for a function h ∈ C(J). If J = R+, then v ∈

D(Ã) = Qϕ−1D(A) if and only if v ∈ C2(R+) and the boundary condition
αv(0) +

(
β/
√

m(0)

)
v′(0) = 0 holds, while in the case J = R we obtain

D(A) = C2(R) = D(A0). Since the similarity transformation preserves the
relevant properties, we can apply the previous argument to Ã and conclude
that

(
A,D(A)

)
generates an analytic semigroup of angle π/2. �

4.4 Exercises. (1) For two intervals J, K ⊆ R and a twice continuously dif-
ferentiable, bijective function ϕ : J → K define the operator Qϕ : C(K) → C(J)

by Qϕv := v ◦ ϕ. Then Qϕ is invertible, and for the operator (A, D(A)) on C(J)
given by Au := mu′′ + qu′ + ru with m, q, r as above the following holds.

(i) The operator Ã := Q−1
ϕ AQϕ is given by

Ãv = m̃ · (̃ϕ′)2 · v′′ +
(
m̃ϕ̃′′ + q̃ϕ̃′

)
· v′ + r̃ · v for v ∈ D(Ã) = Q−1

ϕ D(A),

where we write h̃ := h ◦ ϕ−1 ∈ C(K) for h ∈ C(J).

(ii) There exists a function ϕ that transforms the operator A into Ã of the form

Ãv = m1v
′′ + rv.

(2∗) Let 1 ≤ p < ∞ and define A0 on X := Lp(R) by A0u := u′′ for u ∈
Dp(A0) := W2,p(R).

(a) Prove that the spectrum of (A0, Dp(A0)) is contained in (−∞, 0].

(b) Using a suitable cutoff function, construct for every λ < 0 an approximate
eigenvector, thus proving that σ(A0) = (−∞, 0].

(c) Use Young’s inequality in (4.2) to estimate ‖R(λ, A0)‖p for λ /∈ (−∞, 0]
and deduce that (A0, Dp(A0)) generates a bounded analytic semigroup of
angle π/2.

(3) For α, β ∈ R with α2 + β2 6= 0 and 1 ≤ p < ∞ define the operator A1 on
X := Lp(R+) by A1u := u′′ for u in its domain

Dp(A1) :=
{
u ∈ W 2,p(R+) : αu(0) + βu′(0) = 0

}
.

Following the path of Exercise (2), prove that σ(A1) = (−∞, 0] if αβ ≤ 0,
σ(A1) = (−∞, 0] ∪ {(α/β)2} if αβ > 0, and that (A1, Dp(A1)) generates an
analytic semigroup. When is this semigroup bounded analytic?
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b. Nondegenerate Operators on Bounded Intervals

In this subsection we consider the operator A given by Au := mu′′+qu′+ru
on a bounded interval J assuming m, q, r ∈ C(J) and infx∈J m(x) > 0.
Without loss of generality, we always take J = (0, 1).

Given α0, β0, α1, β1 ∈ R with α2
0 + β2

0 > 0, α2
1 + β2

1 > 0, we put

D(A) :=
{
u ∈ C2(J) : α0u(0) + β0u

′(0) = 0, α1u(1) + β1u
′(1) = 0

}
and obtain a closed operator

(
A,D(A)

)
on C(J).

We first consider the operator A2 given by

(4.8) A2u := u′′ for u ∈ D(A2) := D(A).

In order to determine its spectrum we take 0 6= λ = µ2 with Reµ ≥ 0. Then
the functions x 7→ u1(x) := e−µx and x 7→ u2(x) := eµx are two linearly
independent solutions of the equation λu− u′′ = 0, whence every solution
u of this equation can be written as u = c1u1 + c2u2. A direct computation
shows that u ∈ D(A2) if and only if the coefficients c1, c2 satisfy a linear
homogeneous system whose determinant ξ(µ) is given by

(4.9) ξ(µ) = eµ(α0 − µβ0)(α1 + µβ1)− e−µ(α0 + µβ0)(α1 − µβ1).

Therefore, λ is an eigenvalue if and only if it satisfies the characteristic
equation ξ(µ) = 0. Since ξ(·) is an entire function, we deduce that the point
spectrum Pσ(A2) of

(
A2, D(A2)

)
is (at most) countable. Now a simple

integration by parts shows that for every u, v ∈ D(A2) we have∫ 1

0

(
A2u(x)

)
· v(x) dx =

∫ 1

0

u(x) ·
(
A2v(x)

)
dx;

hence Pσ(A2) is real. Moreover, the above formula for ξ(µ) easily implies
the existence of a constant l > 0 such that every solution of the equation
ξ(µ) = 0 satisfies Reµ ≤ l, and therefore we obtain Pσ(A2) ⊆ (−∞, l2].

Finally, we show that the spectrum coincides with the point spectrum. In
fact, let λ ∈ C not be an eigenvalue. Then for f ∈ C(J) we take a solution
w ∈ C2(J) of the equation λw − w′′ = f . Since ξ(µ) 6= 0, we can find k1,
k2 such that w + k1u1 + k2u2 ∈ D(A2), whence λ−A2 is surjective. Since
A2 is closed, this implies that λ belongs to the resolvent set ρ(A2).

Next, we prove that A2 generates an analytic semigroup on C(J). How-
ever, if β0β1 = 0 the domain D(A2) is not dense in C(J), and as before we
have to consider the part of A2 in X := D(A2).

4.5 Theorem. The operator
(
A2, D(A2)

)
generates an analytic semigroup

of angle π/2.
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Proof. We write λ ∈ ρ(A2) as λ = µ2 = |λ|eiϑ with Reµ > 0. Then, for
f ∈ C(J) define

u(x) :=
1
2µ

∫ 1

0

e−µ|x−s|f(s) ds for x ∈ [0, 1].

We already know from the proof of Theorem 4.1 that u is a C2-solution of
the equation λu− u′′ = f satisfying ‖u‖ ≤ ‖f‖

|λ| cos(ϑ/2)
. Define next

γ0 :=
1
2µ

∫ 1

0

e−µsf(s) ds, γ1 :=
1
2µ

∫ 1

0

e−µ(1−s)f(s) ds

and observe that u′(0) = µγ0 and u′(1) = −µγ1.
We now set v := c1u1 + c2u2 +u, where u1(x) := e−µx and u2(x) := eµx.

Since λ is not an eigenvalue, we can find c1, c2 ∈ C such that v ∈ D(A2).
A straightforward computation yields
(4.10)

c1 =
1

ξ(µ)
[
(α0 + µβ0)(α1 − µβ1)γ1 − eµ(α0 + µβ0)(α1 + µβ1)γ0

]
,

c2 =
1

ξ(µ)
[
(−α0 + µβ0)(α1 − µβ1)γ1 + e−µ(α0 + µβ0)(α1 − µβ1)γ0

]
,

where ξ(µ) is defined in (4.9). We have

‖u1‖ = 1, ‖u2‖ = eRe µ,

and

|γ0| ≤
‖f‖

2|µ|(Reµ)
, |γ1| ≤

‖f‖
2|µ|(Reµ)

.

Moreover, if |ϑ| ≤ |ϑ0| < π, then Reµ ≥ |µ| cos(ϑ0/2), and we obtain that
the coefficients of γ0, γ1 in the formulas (4.10) for c1, c2 are bounded, as is
easily seen by taking the limit as |µ| → ∞. As a consequence, it follows
that

‖c1u1‖ ≤
k

|λ|
‖f‖ and ‖c2u2‖ ≤

k

|λ|
‖f‖

for a suitable k > 0 and sufficiently large |λ|. This shows that ‖v‖ ≤ k‖f‖/|λ|,
and the result follows from Proposition II.4.3. �

We now obtain the same result for the general operator A by using
perturbation and similarity arguments. As before, in the case β0β1 = 0 we
have to consider the part of A in X := D(A) instead of the operator A.

4.6 Theorem. The operator
(
A,D(A)

)
generates an analytic semigroup

of angle π/2.

Proof. Set Bu := qu′ + ru for u ∈ D(B) := C1(J). As in the proof of
Theorem 4.3, we conclude that the operator A := A2 + B with domain
D(A) generates an analytic semigroup of angle π/2.
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For the general case we use the similarity transformation Q−1
ϕ AQϕ =: Ã

given by (4.5) and (4.6). Then Ãv is given by (4.7) for v in the domain

D(Ã) =
{
v ∈ C2[0, b] : α0v(0) + β̃0v

′(0) = 0, α1v(b) + β̃1v
′(b) = 0

}
,

where b = ϕ(1), β̃0 = β0/
√

m(0), and β̃1 = β1/
√

m(1). Since by the first part
of the proof Ã generates an analytic semigroup of angle π/2, by similarity
the same conclusion holds for A. �

4.7 Exercises. (1) For 1 ≤ p < ∞ and α0, β0, α1, β1 ∈ R with α2
0 + β2

0 > 0,
α2

1 + β2
1 > 0 take the domain

Dp(A2) :=
{
u ∈ W 2,p(0, 1) : α0u(0) + β0u

′(0) = 0, α1u(1) + β1u
′(1) = 0

}
for the operator A2 on X := Lp[0, 1] given by A2u := u′′. Check that the compu-
tations leading to Theorem 4.5 can be performed in X, and adapt the proof of
Theorem 4.5 to the Lp-setting.

(2) State the analogues of Theorem 4.3 and Theorem 4.6 in Lp. Prove them using
the similarity transformation with Qϕ for ϕ in (4.5) and the usual perturbation
argument.

(3) Let (A2, D(A2)) be the operator defined in (4.8). Show that A2 is dissipative
if α0β0 ≤ 0, α1β1 ≥ 0 and that if one of these inequalities fails, the operator
A2 − λ is not dissipative for arbitrary λ ∈ R.

c. Degenerate Operators

In this subsection we study the boundary conditions for which a degenerate
second-order differential operator A as in (4.1) generates a strongly contin-
uous semigroup in the space of continuous functions. Since the generation
is not affected by bounded perturbations, we restrict ourselves to operators
having the form

(4.11) Au := mu′′ + qu′

in some interval J = (r1, r2), −∞ ≤ r1 < r2 ≤ ∞. We assume m, q : J → R
to be continuous functions with m strictly positive on J , but do not impose
any condition at the endpoints. We will choose boundary conditions in order
to define the appropriate domain D(A) ⊂ C(J) ∩ C2(J).

We start by studying the behavior of the solutions of the differential
equation

(4.12) λu− (mu′′ + qu) = f,

with f ∈ C(J) for λ > 0. The general solution of (4.12) can be written in
the form u = F + c1v1 + c2v2, where F is a particular solution and v1, v2
are two linearly independent solutions of the homogeneous equation

(4.13) λu− (mu′′ + qu) = 0.
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We fix a point x0 ∈ J and introduce the Wronskian

(4.14) W (x) = exp
(
−
∫ x

x0

q(s)
m(s)

ds

)
, x ∈ J.

To simplify the notation, henceforth we drop the dependence on λ. Once
two linearly independent solutions u1, u2 of (4.13) have been found, we
obtain F by the variation of parameters formula in the form F = γ1u1 +
γ2u2. Since u′1u2 − u1u

′
2 = w0W with w0 6= 0, an easy computation gives

(formally)

(4.15) γ1(x) =
∫ r2

x

u2(s)f(s)
w0m(s)W (s)

ds, γ2(x) =
∫ x

r1

u1(s)f(s)
w0m(s)W (s)

ds,

but the convergence of the integrals must be justified. We define the Green’s
function

(4.16) G(x, s) =


u1(x)u2(s)
w0W (s)m(s)

for x, s ∈ J with x ≤ s,

u1(s)u2(x)
w0W (s)m(s)

for x, s ∈ J with x ≥ s.

By this (up to now formal) argument we can represent F as the image of
f under the integral operator Tλ defined by the kernel G, i.e.,

(4.17) F (x) = Tλf(x) :=
∫ r2

r1

G(x, s)f(s) ds.

To close the gaps in the preceding formal argument, we construct two
positive monotone solutions u1, u2 of (4.13), so that w0 > 0 and the Green’s
function G becomes positive.

The construction of the functions u1, u2 is based on the elementary ob-
servation that a real solution of (4.13) can have neither a positive maximum
nor a negative minimum in J (in fact, u(x) and u′′(x) have the same sign
if u′(x) = 0), and therefore it cannot vanish at two distinct points of J .

If a nonzero solution u of (4.13) vanishes at some point, then it is strictly
monotone on all of J . In fact, if u(x1) = 0, then u′(x1) 6= 0 by the unique-
ness of the solution of (4.13) with initial conditions u(x1) = 0, u′(x1) = 0.
Assuming u′(x1) > 0, suppose that u′ vanishes in some point, and let x2

be the point nearest to x1 where u′(x2) = 0. Then, if x2 > x1, u is strictly
increasing in (x1, x2), and x2 cannot be a relative minimum of u. On the
other hand, we have u(x2) > 0, whence u′′(x2) > 0 which implies that x2

is a relative minimum of u. An analogous argument can be used if x2 < x1,
and therefore u is strictly monotone as claimed.

Moreover, u′ can vanish at most once, and then any solution is definitely
monotone near the endpoints, where, as a consequence, its limits exist,
possibly ±∞.
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Notice that (4.13) can be written in the form

(4.18)
( u′
W

)′
= λ

u

mW
.

Hence, if u is a positive solution, then u′/W is increasing and admits limits
at the endpoints (possibly ±∞ again). In particular, we have for every
positive solution u the equivalence

(4.19) u decreasing ⇐⇒ lim
x→r2

u′(x)
W (x)

≤ 0,

since the limit is the supremum of u′/W and W is positive.

4.8 Lemma. There exist a positive increasing solution u1 and a positive
decreasing solution u2 of (4.13). The limits lij := limx→ri

u′j(x)/W (x) exist
for i, j = 1, 2, and if for i 6= j we have limx→ri uj(x) = ∞, then ljj = 0.

Proof. For every γ ∈ R denote by uγ the solution of (4.13) satisfying the
initial conditions uγ(x0) = 1 and u′γ(x0) = γ. For the set

Υ :=
{
γ : uγ vanishes at some point of (x0, r2)

}
,

we show that Υ 6= ∅. Let v1, v2 be two linearly independent solutions of
(4.13). For every x1 ∈ (x0, r2) it is possible to determine c1, c2 such that for
v := c1v1 + c2v2 we have v(x0) = 1 and v(x1) = 0 (hence v′(x0) ∈ Υ). This
follows from Cramer’s rule because the only solution with v(x0) = v(x1) =
0 is v ≡ 0.

If γ ∈ Υ, then uγ is decreasing, since it vanishes at some point x1 > x0.
Moreover, if γ1 < γ2, then uγ1 > uγ2 in (r1, x0) and uγ1 < uγ2 in (x0, r2).
Indeed, uγ1 and uγ2 cannot attain the same value at any point x1 6= x0,
since otherwise their difference would vanish twice. Then γ2 ∈ Υ implies
γ1 ∈ Υ as well, and Υ is an interval.

The solution of (4.13) with u(x0) = 1 and u′(x0) = 0 has an absolute
minimum at x0 because u′′(x0) > 0 and u′ can vanish at most once. As a
consequence, we obtain 0 /∈ Υ, hence c := supΥ ≤ 0. We now take u2 := uc.
The continuity with respect to the initial value u′(x0) shows that uc is the
limit of solutions uγ , γ ∈ Υ, and therefore it is decreasing. Finally, if there
were x1 ∈ (x0, r2) with uc(x1) = 0, we could find for each x2 ∈ (x1, r2) a
solution u with u(x0) = 1 and u(x2) = 0. Then u′(x0) ∈ Υ and u′(x0) > c,
which is a contradiction.

Arguing in an analogous way in (r1, x0) we can construct u1.
The existence of the limits lij has already been observed above. Assum-

ing, e.g., u1(x) → ∞ as x → r2, we show that limx→r2
u′2(x)/W (x) = 0. In

fact, u′1u2 − u1u
′
2 = w0W , whence 0 ≤ −u1u′2/W ≤ w0 and the assertion

follows. �
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We now know that Tλ is a positive operator. In the next step we show
that it is bounded.

4.9 Proposition. For every λ > 0 the operator Tλ : C(J) → C(J) is
bounded and satisfies ‖Tλ‖ ≤ 1/λ.

Proof. We first prove that Tλ is a bounded operator from C(J) to L∞(J).
Since Tλ is positive, it suffices to show that the function Tλ 1 is bounded.
We have

Tλ 1 (x) =
∫ r2

r1

G(x, s) ds

=
u2(x)
w0λ

∫ x

r1

(
u′1(s)
W (s)

)′
ds+

u1(x)
w0λ

∫ r2

x

(
u′2(s)
W (s)

)′
ds

=
u2(x)
w0λ

(
u′1(x)
W (x)

− lim
s→r1

u′1(s)
W (s)

)
+
u1(x)
w0λ

(
lim

s→r2

u′2(s)
W (s)

− u′2(x)
W (x)

)
=
u1(x)
w0λ

lim
s→r2

u′2(s)
W (s)

− u2(x)
w0λ

lim
s→r1

u′1(s)
W (s)

+
1
λ
≤ 1
λ
.

The above limits are always finite by the elementary properties of u1, u2.
Moreover, by Lemma 4.8, lims→r2

u′2(s)/W (s) = 0 if u1 is unbounded at
s = r2. A similar argument can be used at r1. This shows that Tλ 1 ∈ C(J)
and ‖Tλ‖ ≤ 1/λ.

Now let f ∈ C(J) be such that f ≡ 0 in a neighborhood of r2. Then
u = Tλf is a bounded solution of (4.13) near r2, whence it is eventually
monotone and has a finite limit. The existence of limx→r2 Tλf(x) ∈ R for
functions f vanishing at r2 easily follows by a density argument and the
boundedness of Tλ. Writing f = (f − l) + l, with l ≡ f(r2), we obtain the
general result by linearity. �

As a consequence of the above proposition, the integrals in (4.15) are
convergent, and for every f ∈ C(J) the formula F = Tλf gives a solution
of the equation (4.12) that belongs to C(J) ∩ C2(J). Moreover, if f has
compact support in J , then the function F coincides with a linear com-
bination of u1 and u2 near r1 and r2, respectively. Hence, its boundary
behavior can be studied by looking at the solutions of the homogeneous
equation. In order to give a complete description of the possible cases, we
introduce the functions

(4.20)
Q(x) :=

1
m(x)W (x)

∫ x

x0

W (s) ds,

R(x) := W (x)
∫ x

x0

1
m(s)W (s)

ds for x ∈ J.

In the sequel we deal only with the endpoint r2.
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4.10 Remark. If R ∈ L1(x0, r2), then W ∈ L1(x0, r2). Analogously, Q ∈
L1(x0, r2) implies (mW )−1 ∈ L1(x0, r2). Moreover, if W ∈ L1(x0, r2) and
(mW )−1 ∈ L1(x0, r2), then R,Q ∈ L1(x0, r2).

4.11 Lemma. All solutions of (4.13) are bounded near r2 if and only if
R ∈ L1(x0, r2).

Proof. Since u2 is certainly bounded near r2, it is enough to prove that
u1 is bounded if and only if R ∈ L1(x0, r2). Using (4.18), we write

(4.21) u′1(x) = W (x)
[
u′1(x0) + λ

∫ x

x0

u1(s)
m(s)W (s)

ds
]

and remark that u1 is bounded if and only if u′1 ∈ L1(x0, r2). Note that all
terms on the right-hand side of (4.21) are positive, u1(x0) = 1, and that u1

is increasing. Therefore, we have

λR(x) ≤ λW (x)
∫ x

x0

u1(s)
m(s)W (s)

ds ≤ u′1(x)

≤ u′1(x0)W (x) + λu1(x)R(x) for x ≥ x0.

This shows that u′1 ∈ L1(x0, r2) implies R ∈ L1(x0, r2). Conversely, R ∈
L1(x0, r2) implies W ∈ L1(x0, r2). We conclude that u1 is bounded near r2
by comparing it with the solution of the Cauchy problem

v′(s) = u′1(x0)W (s) + λR(s)v(s), v(x0) = 1,

given by

v(x) = e
λ
∫ x

x0
R(s) ds

[
1 + u′1(x0)

∫ x

x0

W (s)e
−λ
∫ s

x0
R(τ) dτ

ds
]
.

�

4.12 Lemma. A decreasing solution u of (4.13) with l := limx→r2 u(x) > 0
exists if and only if Q ∈ L1(x0, r2). If Q ∈ L1(x0, r2) and R /∈ L1(x0, r2),
then limx→r2

u′(x)/W (x) = 0 for every positive, decreasing solution u of
(4.13).

Proof. Assume l > 0. Since u′ ≤ 0, we deduce from (4.21) that

l

∫ x

x0

1
m(s)W (s)

ds ≤
∫ x

x0

u(s)
m(s)W (s)

ds ≤ |u′(x0)|
λ

;

hence (mW )−1 ∈ L1(x0, r2). Integrating (4.18) in (x, r2) we obtain

(4.22) −u′(x) = W (x)
[
k + λ

∫ r2

x

u(s)
m(s)W (s)

ds
]
,

where the limit k := − limx→r2
u′(x)/W (x) ≥ 0 is finite because u(mW )−1

is integrable. Since the function u is decreasing and k ≥ 0, we deduce that
λW (x)

∫ r2

x
1

m(s)W (s) ds ≤ −u′(x)/l, and this implies Q ∈ L1(x0, r2).
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Conversely, take a positive, decreasing solution u of (4.13). If Q (and
then, by Remark 4.10, (mW )−1) is integrable, then (4.22) holds. If k = 0,
then

−u′(x) ≤ λu(x)W (x)
∫ r2

x

1
m(s)W (s)

ds;

hence u′/u is integrable and − log u is bounded, so that l > 0. If k > 0, the
boundedness of u and (4.22) imply that W ∈ L1(x0, r2), and the existence
of a solution u with the stated properties is proved in the next lemma.

Finally, let Q ∈ L1(x0, r2), R /∈ L1(x0, r2) (hence, by Remark 4.10,
W /∈ L1(x0, r2)) and let u be a positive decreasing solution of (4.13). Then
equation (4.22) holds, and k = − limx→r2

u′(x)/W (x) = 0, since otherwise
we would obtain W ∈ L1(x0, r2). �

4.13 Lemma. If Q,R ∈ L1(x0, r2), then for every solution u of (4.13) the
limits limx→r2 u(x) and limx→r2

u′(x)/W (x) are finite. Moreover, there exist
two decreasing solutions ū, v̄ of (4.13) such that

lim
x→r2

ū(x) = 0, lim
x→r2

ū′(x)
W (x)

= −1,

lim
x→r2

v̄(x) = 1, lim
x→r2

v̄′(x)
W (x)

= 0.

Proof. By Lemma 4.11, all solutions u of equation (4.13) are bounded;
hence the limit limx→r2 u(x) is finite. Moreover, identity (4.21) implies that
limx→r2

u′(x)/W (x) is finite.
Let u1, u2 be the solutions constructed in Lemma 4.8 and define u := u2−

cu1, where c ≥ 0 is chosen so that u vanishes at r2. Since u1 > u2 in (x0, r2),
we have c < 1 and u(x0) > 0. Thus, the nonexistence of positive maxima
and negative minima for u (noted above) implies that u is decreasing on the
whole of J . As in Lemma 4.12, the limit −k := limx→r2

u′(x)/W (x) exists and
cannot vanish because otherwise we would have u(x) → l > 0 as x → r2.
Then we can take ū := u/k.

Now let w be the solution of (4.13) with w(x0) = 0 and w′(x0) = 1.
Since it is increasing and positive in [x0, r2), we obtain by (4.19) that
limx→r2

w′(x)/W (x) > 0. We choose τ > 0 such that the function v :=
ū + τw satisfies limx→r2

v′(x)/W (x) = 0. Then v is positive in [x0, r2) and
decreasing by (4.19), hence positive and decreasing in J , so that we can
take v̄ := v(x)/v(r2). �

The above discussion shows that the behavior of the solutions of (4.13)
near the endpoints depends on the integrability of the functions Q and R.
Accordingly, we classify the boundary points into four types and say that
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the boundary point r2 is

(4.23)

regular if Q ∈ L1(x0, r2), R ∈ L1(x0, r2),

exit if Q /∈ L1(x0, r2), R ∈ L1(x0, r2),

entrance if Q ∈ L1(x0, r2), R /∈ L1(x0, r2),

natural if Q /∈ L1(x0, r2), R /∈ L1(x0, r2).

Analogous definitions can be given for r1 by considering the interval (r1, x0)
instead of (x0, r2). Observe that ±∞ are natural boundary points for the
operators of Section 4.a (this is obvious for A0 and A1; for general A see
Exercise 4.19.(7)). On the other hand, 0 and 1 are regular boundary points
for the operators of Section 4.b. Other examples are listed in Exercise 4.19.
(3). We summarize the results proved so far as follows.

4.14 Theorem. (i) The boundary point r2 is regular if and only if there
exist two positive, decreasing solutions v1 and v2 of (4.13) satisfying

lim
x→r2

v1(x) = 0, lim
x→r2

v′1(x)
W (x)

= −1, lim
x→r2

v2(x) = 1, lim
x→r2

v′2(x)
W (x)

= 0.

In this case, every solution of (4.13) is bounded near r2.

(ii) The boundary point r2 is exit if and only if every solution of (4.13) is
bounded at r2 and every positive decreasing solution v1 satisfies

lim
x→r2

v1(x) = 0, lim
x→r2

v′1(x)
W (x)

≤ 0.

(iii) The boundary point r2 is entrance if and only if there exists a positive,
decreasing solution v1 of (4.13) satisfying

lim
x→r2

v1(x) = 1, lim
x→r2

v′1(x)
W (x)

= 0

and every solution of (4.13) independent of v1 is unbounded at r2. In this
case, no nonzero solution tends to 0 as x→ r2.

(iv) The boundary point r2 is natural if and only if there exists a positive,
decreasing solution v1 of (4.13) satisfying

lim
x→r2

v1(x) = 0, lim
x→r2

v′1(x)
W (x)

= 0

and every solution of (4.13) independent of v1 is unbounded at r2.

Analogous statements hold for the boundary point r1. One has to replace
decreasing by increasing everywhere, the condition limx→r2

v′1(x)/W (x) = −1
by limx→r1

v′1(x)/W (x) = 1 in (i), and finally limx→r2
v′1(x)/W (x) ≤ 0 by

limx→r1
v′1(x)/W (x) ≥ 0 in (ii).
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We now apply the preceding results to the generation problem for the
operator A given by Au := mu′′ + qu′ on C(J). We start by choosing for
A the maximal domain

DM (A) :=
{
u ∈ C(J) ∩ C2(J) : Au ∈ C(J)

}
.

We observe that Tλf ∈ DM (A) for every f ∈ C(J), since (λ− A)Tλf = f
and Tλf ∈ C(J), by Proposition 4.9.

4.15 Theorem. The operator
(
A,DM (A)

)
generates a strongly continuous

semigroup on C(J) if and only if each of the points r1 and r2 is either of
entrance or of natural type. In this case, the semigroup is positive and
contractive.

Proof. We leave as an exercise to show that A is closed and densely
defined. By Lemma 4.11 the operator λ−A is injective for λ > 0 on DM (A)
if and only if R /∈ L1(r1, x0) and R /∈ L1(x0, r2), that is, if both endpoints
are of entrance or of natural type. In this case, the resolvent is given by Tλ;
hence

(
A,DM (A)

)
generates a contraction semigroup by Proposition 4.9

and Generation Theorem II.3.5. Finally, the generated semigroup is positive
by Theorem 1.8. �

If r1 and r2 are regular boundary points, we define the domain of A by
using general boundary conditions. Given αi, βi ∈ R such that α2

i +β2
i > 0,

i = 1, 2, we consider the so-called elastic barrier conditions, i.e., we put

(4.24) D(A) :=
{
u ∈ DM (A) : αiu(ri) + βi lim

x→ri

u′(x)
W (x)

= 0, i = 1, 2
}
.

Observe that if W is bounded away from 0 (which is certainly true for
nondegenerate operators), the above conditions reduce to those considered
in Section 4.b. Moreover, if β1 = β2 = 0, we are imposing Dirichlet (or
“absorbing barrier”) conditions, while if α1 = α2 = 0, then we are imposing
generalized Neumann (or “reflecting barrier”) conditions.

The operator
(
A,D(A)

)
is not always dissipative (see Exercise 4.7.(3)).

Even though the general case can be treated completely, we confine our-
selves to the contractive case and impose the sign conditions α1β1 ≤ 0
and α2β2 ≥ 0, guaranteeing dissipativity. For simplicity, we also suppose
β1β2 > 0, so that D(A) is dense in C(J). The remaining case can be re-
covered as in Section 4.b. We state the following theorem, whose proof is
outlined in Exercise 4.19.(1).

4.16 Theorem. If r1 and r2 are regular boundary points and for the
domain given by (4.24) with α1β1 ≤ 0, α2β2 ≥ 0, and β1β2 > 0, the
operator

(
A,D(A)

)
generates a strongly continuous contraction semigroup

on C(J).
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Finally, we turn to Ventcel (or “adhesive”) boundary conditions, i.e., the
domain of A is

(4.25) DV (A) :=
{
u ∈ C(J) ∩ C2(J) : lim

x→r1,r2
Au(x) = 0

}
.

4.17 Lemma. The operator
(
A,DV (A)

)
is closed, densely defined, and

dissipative. Moreover, (λ−A)u ≥ 0 implies u ≥ 0.

Proof. The verification that A is closed and densely defined is standard
and left as an exercise.

Now, for u ∈ DV (A), u real, and λ > 0, we prove that

(4.26) inf
x∈J

(λ−A)u(x) ≤ λ inf
x∈J

u(x), λ sup
x∈J

u(x) ≤ sup
x∈J

(λ−A)u(x).

If the maximum (respectively, the minimum) of u is attained at an internal
point x1 ∈ J , we have Au(x1) ≤ 0 (respectively, Au(x1) ≥ 0), and hence
(4.26) is valid. If the supremum or infimum of u is attained at r1 or r2, the
inequalities (4.26) hold again because Au vanishes at r1, r2. �

By the preceding lemma and Theorem II.3.15, the operator
(
A,DV (A)

)
generates a strongly continuous contraction semigroup on C(J) if and only
if the operator I −A is surjective.

4.18 Theorem. The operator
(
A,DV (A)

)
generates a strongly continuous

semigroup on C(J) if and only if both the endpoints r1 and r2 are not of
entrance type. In this case, the semigroup is positive and contractive.

Proof. It suffices to use the above results for λ = 1 only. In particular, we
write T := T1 for the operator defined in (4.17).

Let f ∈ C(J) and u be a solution of the equation u − Au = f . Then
u = Tf+c1v1+c2v2, where v1 and v2 are two linearly independent solutions
of the homogeneous equation and c1, c2 ∈ C. Writing Au = g+ c1v1 + c2v2
with g := Tf − f , we see that the problem is to find constants c1, c2 such
that Au vanishes at the boundary.

Suppose first that r1, r2 are regular or exit boundaries. In this case all
the solutions of (4.13) are bounded, and we can take v1 positive increasing
and vanishing at r1, and v2 positive decreasing and vanishing at r2. This
implies the existence of the constants as above.

Before discussing the case where a natural boundary point ri occurs, we
check that in this case the equality Tf(ri) = f(ri) holds for every f ∈ C(J).
In fact, assume that r2 is a natural boundary point. If f vanishes in a
neighborhood of r2, then Tf is a bounded solution of (4.13) near r2; hence
Tf vanishes at r2 by Theorem 4.14.(iv). The same holds if f(r2) = 0 by
the same density argument used at the end of the proof of Proposition 4.9.
It remains to check the statement for the constant function f = 1 . In
this case, since both 1 and T 1 are solutions of u − Au = 1 , we can write
T 1 = 1 + c1v1 + c2v2, with v1 as in Theorem 4.14.(iv) and v2 unbounded.
Then c2 = 0, and the assertion follows, since v1 vanishes at r2.
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If r1 is regular or exit and r2 is natural, then g(r2) = 0 by the above
argument. By Theorem 4.14, we can take a positive, decreasing solution v2
of (4.13) vanishing at r2 and with a finite positive limit at r1. The function
u := Tf + c2v2 then belongs to DV (A) for an appropriate constant c2.

If both the endpoints are natural, then, using again that Tf(ri) = f(ri),
we have g(ri) = 0 for i = 1, 2 and can take u := Tf .

This shows that I−A is surjective if both r1, r2 are not of entrance type.
We now assume that I − A is surjective and show that r2 is not an

entrance boundary point. To this aim, by Theorem 4.14.(iii), it suffices to
show that there exists a nonzero solution u of u − Au = 0 vanishing at
r2. Choose f ≥ 0, f 6≡ 0, vanishing in [x1, r2) and let u ∈ DV (A) be the
solution of u−Au = f . Then u ≥ 0 by Lemma 4.17, and u is a solution of
u− Au = 0 in (x1, r2). If we show that u 6≡ 0 in (x1, r2), we can take as v
the continuation of u to the whole of J and we are done. In fact, we prove
that if K = {x ∈ J : u(x) = 0} 6= ∅, then u ≡ 0. Hence u never vanishes
in J . Assume that u(x2) = 0 and observe that u′(x2) = 0, since u does not
change sign. From the equation we have Au ≤ u, that is,( u′

W

)′
≤ u

mW
.

Then

u′(x) ≤W (x)
∫ x

x2

u(s)
m(s)W (s)

ds

for x ∈ (x2, r2). Choose δ < 1 such that W (x)
∫ x

x2

1
m(s)W (s) ds < 1 for

x ∈ (x2, x2+δ) and takeM = sup{u(x) : x ∈ (x2, x2+δ)}. Then u′(x) ≤M ;
hence u(x) ≤ Mδ for x ∈ (x2, x2 + δ), and M ≤ Mδ implies M = 0.
A similar argument shows that u vanishes in a left neighborhood of x2.
Therefore K is open, and since it is trivially closed, K = J .

Finally, the positivity of the generated semigroup follows from Lemma 4.17
and Theorem 1.8. �

Looking at the evolution problem ut = Au, u(0) = u0, Ventcel conditions
mean that the solution u(t, x) is constant at x = r1, r2. In particular,
if u0(r1) = u0(r2) = 0, then u(t, x) satisfies the classical homogeneous
Dirichlet boundary conditions u(t, r1) = u(t, r2) = 0.

4.19 Exercises. (1) Let r1, r2 be regular boundary points, and αi, βi ∈ R
such that (−1)iαiβi ≥ 0, α2

i + β2
i > 0 for i = 1, 2 and β1β2 6= 0. Moreover, let

(A, D(A)) be defined as in (4.24).

(i) Show that (A, D(A)) is closed, densely defined, and dissipative.

(ii) Using Theorem 4.14, choose two monotone solutions w1, w2 of λu−Au = 0
such that

w1(r1) = w2(r2) = 0, lim
x→r1

w′
1(x)

W (x)
= 1, lim

x→r2

w′
2(x)

W (x)
= −1.

Show that for every f ∈ C(J) there exist constants c1, c2 such that u =
Tλf + c1w1 + c2w2 ∈ D(A). Finally, deduce Theorem 4.16.
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(iii) Arguing as in Lemma 4.17, show that the resolvent of (A, D(A)) is positive,
so that the generated semigroup is positive.

(2) Show, using Lemma III.2.4 and Example III.2.2 in any compact interval
K ⊂ J , that the operators (A, DV (A)) and (A, DM (A)) are closed and densely
defined.

(3) Classify, according to Theorem 4.14, the endpoints of J in the following
situations: Au(x) := u′′(x), J := (0,∞); Au(x) := xαu′′(x), J := (0,∞);
Au(x) := (xαu′(x))′, J := (0,∞); Au(x) := u′′(x) + xu′(x), J := R; Au(x) :=

x(1− x)u′′(x) + b(x)u′(x), J := (0, 1); Au(x) := u′′(x) + b(x)
x(1−x)

u′(x), J := (0, 1),

where α ∈ R and b is assumed to be Hölder continuous at the endpoints.

(4) Show that DM (A) = DV (A) if the endpoints are natural boundaries.

(5) Let A be a nondegenerate operator on C(R) as in Section 4.a. Show that

C2(R) = DM (A). (Hint: Use Example III.2.2 together with elementary arguments
to control the limits at ±∞.)

(6) Show that the classification (4.23) of the endpoints is invariant under simi-
larity transformations arising from a change of variables as in Exercise 4.4.(1).
(Hint: Use Lemmas 4.11 and 4.12.)

(7∗) Consider the operator A with Au := mu′′+qu′ on J := [0,∞) studied in Sec-
tion 4.a. Prove that ∞ is a natural boundary point. (Hint: Assume R ∈ L1(0,∞)
and observe that W ∈ L1(0,∞) and 1/(mW ) /∈ L1(0,∞), since infx≥0 m(x) > 0.
Then take a sequence xn → ∞ such that R(xn) → 0 and apply the general-

ized mean value theorem to the ratio
(∫ xn

0
1/(m(x)W (x)) dx

)
/(1/W (xn)) to deduce

a contradiction. In a similar way, prove that Q /∈ L1(0,∞).)

d. Analyticity of Degenerate Semigroups

On C[0, 1] we consider a highly degenerate operator B given by

Bu := mu′′ + qu′,

where m(0) = m(1) = 0,
√
m ∈ C1[0, 1], q ∈ C[0, 1], and q/√m is bounded

in (0, 1). Observe that m(x) = O(x2) as x→ 0 and m(x) = O((1− x)2) as
x→ 1. Therefore, the map ϕ : [0, 1] → R with

ϕ(x) :=
∫ x

1/2

1√
m(t)

dt, x ∈ [0, 1],

is bijective, and hence the corresponding operator Qϕ given by (4.6) is
invertible as a map from C(R) to C[0, 1]. Moreover, as in (4.7) (or see
Exercise 4.4.(1)), Qϕ transforms the operator B into A := Q−1

ϕ BQϕ given
by

Av = v′′ +
q̃ − m̃′/2√

m̃
v′,

where we write h̃ := Q−1
ϕ h ∈ C(R) for h ∈ C[0, 1]. The hypotheses on

the coefficients m and q are exactly those for which the operator A be-
longs to the class considered in Section 4.a. By Theorem 4.3 we obtain
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that
(
A,D(A)

)
, with D(A) := C2(R), generates an analytic semigroup

on C(R). Moreover, D(A) is the maximal domain of A, that is, D(A) ={
u ∈ C(R) ∩ C2(R) : Au ∈ C(R)

}
(see Exercise 4.19.(5)). Therefore, we take

the domain of B as

DM (B) :=
{
u ∈ C[0, 1] ∩ C2(0, 1) : Bu ∈ C[0, 1]

}
and obtain DM (B) = QϕD(A) = D

(
QϕAQ

−1
ϕ

)
. By similarity, this implies

the following result.

4.20 Theorem. The operator
(
B,DM (B)

)
generates an analytic semi-

group of angle π/2 in C[0, 1].

Observe that both 0 and 1 are natural boundary points for B, so that
DM (B) coincides with the Ventcel domain DV (B) (see Exercise 4.25).

We now consider the case of first-order zeros at x = 0, 1, that is, the
differential operator

(4.27) Lu(x) := m(x)[x(1− x)u′′(x) + b(x)u′(x)]

with Ventcel boundary conditions, i.e., we take the domain

(4.28) DV (L) :=
{
u ∈ C[0, 1] ∩ C2(0, 1) : lim

x→0,1
Lu(x) = 0

}
.

In addition, we suppose m, b ∈ C[0, 1], m strictly positive and b Hölder
continuous at the endpoints. By Theorem 4.18 we know that

(
L,DV (L)

)
generates a C0-semigroup if and only if both 0 and 1 are not entrance
boundary points, that is, if and only if b(0) < 1 and b(1) > −1 (see
Exercise 4.19.(3)).

The analyticity of the semigroup is stated in the following theorem.

4.21 Theorem. Under the above assumptions the operator
(
L,DV (L)

)
generates a bounded analytic semigroup of angle π/2.

We point out only the main techniques used in the proof of the above
theorem. For details see [Met98] and [CM98].

The aim is to solve in DV (L) the stationary equation λu − Lu = f
for each f ∈ C[0, 1] and to obtain the right decay (in λ) of the norm of
the resolvent. It is clear that the difficulties come from the degeneration
at the endpoints. If we can solve the equation (with the given boundary
conditions) in neighborhoods of 0 and 1, a partition of unity argument
yields a global solution. In this approach, the easiest way to localize near
x = 0 is to consider an auxiliary problem in R+ with degeneration at x = 0.
Therefore, we define

L1u(x) := m1(x)[xu′′(x) + b1(x)u′(x)]

for u ∈ DV (L1) := {u ∈ C[0,∞] ∩ C2(0,∞] : limx→0 L1u(x) = 0}. We
assumem1 to be bounded and uniformly continuous with infx>0m1(x) > 0,
and b1 to be continuous, bounded, and Hölder continuous at x = 0 with
b1(0) < 1.
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The similarity transformation with Qϕ for ϕ(x) :=
√
x transforms the

operator L1 into the operator L2 given by

L2u := m2

[
u′′ +

b2
s
u′
]
,

where m2(s) := 1/4m1(s2) and b2(s) := 2b1(s2)− 1, with domain

DV (L2) :=
{
u ∈ C[0,∞] ∩ C2(0,∞] : lim

s→0
L2u(s) = 0

}
.

The coefficients of the operator L2 satisfy the same properties as the coef-
ficients of L1, and moreover, b2(0) < 1.

Writing b2(s) = b2(0)+c(s), it is possible to deduce the general case from
the case where b2 is constant, treating the additional term as a perturba-
tion. However, the needed perturbation argument is not standard because
of the degeneracy of the operator. Here, we discuss only the case of “con-
stant” coefficients, i.e., m2 ≡ 1 and b2 ≡ b < 1, and

L0u(s) := u′′(s) +
b

s
u′(s)

with domain DV (L0) := {u ∈ C[0,∞] ∩ C2(0,∞] : lims→0 L0u(s) = 0}. To
prove the analyticity of the semigroup generated by L0, we argue as in
Section 4.a, localizing first its spectrum and then proving estimate (4.9) in
Theorem II.4.6.

The location of the spectrum of L0 heavily depends on the properties of
Bessel functions and is stated in the following lemma.

4.22 Lemma. The spectrum of
(
L0, DV (L0)

)
is contained in (−∞, 0].

We now prove that the norm of the resolvent R(λ, L0) decays like |λ|−1.
In our situation such an estimate, which in general is quite difficult to
obtain, can be easily obtained by a simple rescaling argument. The possi-
bility of using this technique is the main reason for which we consider these
operators in [0,∞).

4.23 Theorem. The operator
(
L0, DV (L0)

)
generates a bounded analytic

semigroup of angle π/2.

Proof. Consider the group of isometries (It)t>0 on C[0,∞] defined by
Itf(x) := f(t1/2x). It is easily verified that L0It = tItL0, and, as a con-
sequence, It

(
DV (L0)

)
= DV (L0). If λ = tω with |ω| = 1 and ω 6= −1,

then
(λ− L0)−1 = t−1It(ω − L0)−1It−1

and ∥∥(λ− L0)−1
∥∥ ≤ |λ|−1C(ω),

where C(ω) := ‖(ω − L0)−1‖ depends continuously on ω. This estimate,
together with the preceding lemma, shows that

(
L0, D(L0)

)
generates a

bounded analytic semigroup of angle π/2. �
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We conclude this section with an application to a more general degener-
ate operator in the space C[0, 1] given by

Aαβu(x) := m(x)[xα(1− x)βu′′(x)],

where α and β are positive real numbers, m is continuous and strictly
positive on [0, 1]. We assume Ventcel boundary conditions, and we define

DV (Aαβ) :=
{
u ∈ C[0, 1] ∩ C2(0, 1) : lim

x→0,1
Aαβu(x) = 0

}
.

4.24 Proposition. The operator
(
Aαβ , DV (Aαβ)

)
generates an analytic

semigroup of angle π/2 for every α, β > 0.

Sketch of Proof. For α, β ≥ 2 the result follows from Theorem 4.20.
Suppose 0 < α, β < 2 and put

ϕ(x) :=
∫ x

0

t
−α/2(1− t)

−β/2 dt for x ∈ [0, 1].

Then the operator
(
Aαβ , DV (Aαβ)

)
on C[0, 1] transforms via the similarity

transformation with Qϕ into a degenerate operator A1 := Q−1
ϕ AαβQϕ on

C[0, l] for l := ϕ(1). More precisely, A1 is of the form

A1v(s) = m(s)
[
v′′(s) +

b1(s)
s(l − s)

v′(s)
]
, s ∈ [0, l],

with Ventcel boundary conditions. Near the endpoints x = 0 and l the
operator A1 behaves like the operator L2 near x = 0; hence it can be
proved, using the strategy outlined above, that it generates an analytic
semigroup of angle π/2. The general case can be deduced by a partition of
unity argument. �

4.25 Exercise. Use Exercise 4.19.(7), together with an appropriate similarity

transformation, to show that 0 and 1 are natural boundaries for the operator

B and deduce that DM (B) = DV (B). Prove that limx→0,1

√
m(x)u′(x) = 0 for

every u ∈ DM (B).

Notes and Further Reading to Section 4

Sections 4.a and 4.b. Here we have presented in the framework of semigroup
theory some classical results on evolution problems in one space dimension with
general boundary conditions. All the results hold with a uniformly continuous
coefficient m. Since this requires more technical proofs based on a partition of
unity argument, we assumed m ∈ C1 to simplify the exposition.
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Section 4.c. This part is meant as an introduction to Feller’s theory of semi-
groups of positive contractions in spaces of continuous functions. Most of the
material is already contained in [Fel52]. We give his classification of the end-
points in a different but, by Remark 4.10, equivalent way. Theorem 4.15 and
Theorem 4.16 are in [Fel52]. Theorem 4.18, which we prove more in the spirit
of Feller, is in [CT86]. The whole theory originated from applications to one-
dimensional diffusion processes in probability theory. In this setting, the evolu-
tion equation ut = Au is Kolmogorov’s backward equation. We refer to [Fel54],
[Man68], and [Lam77] for a detailed analysis of this matter as well as for an ex-
planation of the terminology and a discussion of the probabilistic meaning of the
type of boundaries and boundary conditions.

For references on Feller semigroups in the case of higher dimensions we refer
to the Notes of Section II.2.b and, for the discussion of boundary conditions, to
[Tai92], [Tai95], and [Tai97].

Section 4.d. This part is devoted to some regularity results for Feller’s semi-
groups. A version of Theorem 4.20 is in [FR98]; the case q ≡ 0 is in [AR94].
The first analyticity result for first-order degeneration in spaces of continuous
functions is due to Angenent (see [Ang88]) in the case of Neumann boundary
conditions. Complete proofs of Theorems 4.21 and 4.23 are given in [Met98] and
[CM98].

5. Semigroups for Partial Differential Operators
(by Abdelaziz Rhandi)

Starting with Hadamard’s work (see [Had23] or the quotations in Sec-
tion II.6), initial value problems for partial differential equations were one of
the motivating forces for the development of semigroup theory as well as the
main source for applications of the results. Today, most books on partial dif-
ferential equations (e.g., [RR93], [Eva98]) contain a section on semigroups.
Conversely, the semigroup books by Goldstein [Gol85] and Pazy [Paz83]
devote a large part to applications to partial differential equations, and in
the monographs by Amann [Ama95] and Lunardi [Lun95] semigroups are
a main tool for a systematic study of parabolic equations.

Therefore, this section is meant only as a brief introduction to this field.
We restrict our attention to partial differential operators on all of RN ,
thus avoiding the delicate discussion of boundary conditions (already en-
countered in the one-dimensional situation in Section 4). Our aim is to
solve initial value problems for parabolic partial differential equations with
constant coefficients

(cPDE)
∂u(x, t)
∂t

=
∑
|α|≤m

aα
∂αu(x, t)
∂xα

or with variable coefficients

(vPDE)
∂u(x, t)
∂t

=
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x, t)
∂xj

)
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for x ∈ RN and t ≥ 0. To that purpose, we use operators and semigroups
on the Hilbert space L2(RN ). For deeper and more general results we refer
to the literature quoted above and in the notes.

The section is organized as follows. In Section 5.a we fix some notation
and recall various properties of the Fourier transform. Section 5.b contains
a discussion of partial differential operators with constant coefficients using
the Fourier transform approach. Finally, the last subsection is concerned
with second-order elliptic differential operators with symmetric variable
coefficients using variational methods.

a. Notation and Preliminary Results

In this subsection we briefly discuss the Fourier transform on L2(RN ) and
on the corresponding Sobolev spaces. We first fix some notation.

For a multi-index α := (α1, . . . , αN ) ∈ NN , we define

|α| :=
N∑

k=1

αk, xα := xα1
1 · . . . · xαN

N ,

|x|2 :=
N∑

k=1

x2
k, xy :=

N∑
k=1

xkyk for x, y ∈ RN ,

and Dα := Dα1
1 · · ·DαN

N , where Dk := ∂/∂xk for k ∈ {1, . . . , N}. We now
introduce the Schwartz space S (RN ).

5.1 Definition. A function f : RN → C is said to be rapidly decreasing if
it is infinitely many times differentiable, i.e., f ∈ C∞(RN ), and

lim
|x|→∞

|x|nDαf(x) = 0 for all n ∈ N and α ∈ NN .

The space

S (RN ) :=
{
f ∈ C∞(RN ) : f is rapidly decreasing

}
is called the Schwartz space.

When endowed with the family of seminorms

|f |nα := sup
x∈RN

|xnDαf(x)| ,

the space S (RN ) becomes a Fréchet space containing C∞c (RN ) as a dense
subspace (see [RR93, Def. 5.15 and the following remark] or [DL88, App. Distributions, 3.2]).
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5.2 Definition. The Fourier transform Ff of f ∈ S (RN ) is defined by3

(Ff)(y) :=
∫

RN

e−ixyf(x) dx for y ∈ RN .

5.3 Example. The function µt : RN → R given by

µt(x) := (4πt)
−N/2 e

−|x|2/4t, x ∈ RN ,

belongs to S (RN ) for each t > 0. Moreover,

(Fµt)(y) = e−t|y|2 , y ∈ RN

(see, e.g., [RS75, Sec. IX.1, Expl. 1]).

The Fourier transform leaves S (RN ) invariant and transforms deriva-
tions into multiplications. This is the content of the following lemma. For
the proof we refer to [DL88, App. Distributions, 3.2, Prop. 2].

5.4 Lemma. For all f ∈ S (RN ) and α ∈ NN the following properties
hold.

(i) Ff ∈ C∞(RN ) and Dα(Ff) = (−i)|α|F(xαf).
(ii) F(Dαf) = i|α|yαFf .

(iii) Ff ∈ S (RN ).

Since |(Ff)(y)| ≤ ‖f‖1 for all y ∈ RN , it follows that the Fourier trans-
form can be continuously extended to L1(RN ). Since S (RN ) is dense in
L1(RN ) and contained in C0(RN ), we obtain from Lemma 5.4.(iii) the
following important property, whose vector-valued analogue is stated in
Theorem C.8.

5.5 Riemann–Lebesgue Lemma. The extended Fourier transform sat-
isfies F L1(RN ) ⊂ C0(RN ), i.e., lim|y|→∞(Ff)(y) = 0 for all f ∈ L1(RN ).

Next, we give an explicit representation of the inverse Fourier transform.
For the proof we refer again to [DL88, App. Distributions, 3.2, Rem. 3].

5.6 Theorem. For all f ∈ S (RN ) we have(
F(Ff)

)
(x) = (2π)Nf(−x), x ∈ RN .

In particular, the Fourier transform F : S (RN ) → S (RN ) is bijective, and
its inverse F−1 is given by

(F−1f)(x) =
1

(2π)N

∫
RN

eixyf(y) dy, x ∈ RN .

Moreover, we have that

(2π)−N (Ff |Fg)L2 = (f | g)L2 :=
∫

RN

f(x) g(x) dx

for all f, g ∈ S (RN ).

3 In the context of differential equations it is more common to define the Fourier trans-
form with the factor (2π)−N/2 in front of the integral. However, for reasons explained
in Appendix C.b we prefer the above definition.
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Since S (RN ) is also dense in L2(RN ), it follows from Theorem 5.6 that
F can be extended continuously to L2(RN ). This extension will still be
denoted by F and satisfies Plancherel’s equation

(PE) (2π)−N (Ff |Fg)L2 = (f | g)L2 for all f, g ∈ L2(RN ),

i.e., (2π)−N/2 F is a unitary operator.
Next, we define the (classical) Sobolev spaces needed in the sequel.

5.7 Definition. The space Hn(RN ) :={
f ∈ L2(RN ) :

for every |α| ≤ n there exists gα ∈ L2(RN ) such that

(f |Dαϕ)L2 = (−1)|α| (gα |ϕ)L2 for all ϕ ∈ C∞c (RN )

}

is called the (classical) Sobolev space of order n. For f ∈ Hn(RN ) and
|α| ≤ n we call Dαf := gα the weak derivative of order α of f .

Equipped with the inner product

(5.1) (f | g)Hn :=
∑
|α|≤n

(Dαf |Dαg)L2

and the associated norm ‖ · ‖Hn the space Hn(RN ) is a Hilbert space.
Note that for an n-times continuously differentiable function f ∈ Hn(RN )

its weak derivative Dαf and its classical derivative coincide for all |α| ≤ n.
Next, we relate Hn(RN ) to

Xn,q :=
(
D(Mn

q ), ‖ · ‖n

)
,

the nth abstract Sobolev space associated to multiplication operator Mq

on X := L2(RN ), where

(5.2) q(y) := (1 + |y|2)1/2, y ∈ RN

(see Definition II.5.1). In Example II.5.7 we have shown that

Xn,q =
{
f ∈ L2(RN ) : qnf ∈ L2(RN )

}
,

where the corresponding norm ‖ · ‖n is given by

‖f‖n,q :=
(∫

RN

(1 + |y|2)n|f(y)|2 dy
)1/2

for f ∈ Xn,q.

By the above results the Fourier transform is an isomorphism on L2(RN )
and transforms the weak derivative Dα into multiplication by i|α|yα. These
two facts imply the following result (see Exercise 5.11).
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5.8 Theorem. With the above definitions we have

F Hn(RN ) = Xn,q.

Moreover, the norm ‖ · ‖Hn is equivalent to the norm defined by

|f |n := ‖Ff‖n,q for f ∈ Hn(RN );

hence the Fourier transform is an isomorphism from Hn(RN ) onto Xn,q.

It is easy to verify that S (RN ) is dense in Xn,q; hence by the previous
theorem it is dense in Hn(RN ). Since we already observed that C∞c (RN ) is
dense in S (RN ), we obtain the following result.

5.9 Corollary. The spaces C∞c (RN ) and S (RN ) are dense in Hn(RN ) for
each n ∈ N.

Moreover, the Sobolev space Hn(RN ) for n sufficiently large consists
of continuous functions vanishing at infinity. This is the content of the
following embedding theorem. For its proof, which relies on Theorem 5.8,
we refer to [RR93, Cor. 6.92].

5.10 Sobolev’s Embedding Theorem. Let n ∈ N and k ∈ N0 with
n > k + N/2. If f ∈ Hn(RN ), then Dαf ∈ C0(RN ) for all α ∈ NN with
|α| ≤ k, and the embedding

Hn(RN ) ↪→ Ck
0(RN )

is continuous.

5.11 Exercise. Give the details of the proof of Theorem 5.8. (Hint: For the

inclusion FHn(RN ) ⊆ Xn,q observe that 1 + |y|2 ≤ c(1 + y2n
1 + · · · + y2n

N )
1/n for

all y ∈ RN and a suitable constant c > 0. To show the equivalence of the norms

‖ · ‖Hn and | · |n use Plancherel’s equation and the open mapping theorem.)

b. Elliptic Differential Operators
with Constant Coefficients

In this subsection we apply semigroup theory and the Fourier transform to
the formal differential operator

A(D) :=
∑
|α|≤m

aαD
α,

where aα ∈ C. In order to define an operator on L2(RN ) corresponding to
A(D) we use Lemma 5.4 and the multiplication operator Ma on L2(RN )
defined by the polynomial

a(ξ) :=
∑
|α|≤m

aα · (iξ)α, ξ ∈ RN .
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Then the operator A is defined by

(5.3)
A := F−1MaF,

D(A) := F−1D(Ma) =
{
f ∈ L2(RN ) : a(·)Ff ∈ L2(RN )

}
.

As a consequence of Propositions I.4.11, I.4.12 and Paragraph II.2.1 we
immediately obtain the following result.

5.12 Theorem. Let
(
A,D(A)

)
be the operator on L2(RN ) defined in (5.3).

Then the following assertions are equivalent.

(a) A generates a strongly continuous semigroup.

(b) Ma generates a strongly continuous semigroup.

(c) supξ∈RN Re a(ξ) <∞.

In order to obtain special properties such as analyticity of the semigroup
generated by A, it therefore suffices to look at the function a(·) and the
properties of the corresponding multiplication semigroup. This is the idea
behind the following definition.

5.13 Definition. (i) The operator A defined in (5.3) is called elliptic if
the principal part am(ξ) :=

∑
|α|=m aα · (iξ)α of a(·) satisfies

am(ξ) 6= 0 for all 0 6= ξ ∈ RN .

(ii) If a(ξ) = am(ξ), then A is called homogeneous.

We start by proving some estimates for the polynomial defining an elliptic
operator.

5.14 Lemma. Suppose A to be an elliptic operator defined by (5.3). For
the corresponding polynomial a the following properties hold.

(i) There are positive constants c1, c2, and R such that

c1|ξ|m ≤ |a(ξ)| ≤ c2|ξ|m for all |ξ| ≥ R.

(ii) Let A be homogeneous with real coefficients aα. If N ≥ 2, then m is
even. If m is even, then a(ξ) < 0 or a(ξ) > 0 for all 0 6= ξ ∈ RN .

Proof. (i) For |ξ| ≥ 1 we have

|a(ξ)| ≤
∑
|α|≤m

|aα| · |ξ||α| ≤
( ∑
|α|≤m

|aα|
)
· |ξ|m =: c2|ξ|m.

On the other hand, since A is elliptic, we have c := inf{|am(ξ)| : |ξ| = 1} >
0. Hence,

|am(ξ)| = |ξ|m|am

(
ξ
|ξ|
)
| ≥ c|ξ|m for all 0 6= ξ ∈ RN .

Combining both estimates we obtain
|a(ξ)| ≥ |am(ξ)| − |am−1(ξ)| − · · · − |a0(ξ)|

≥ c|ξ|m − c2
(
|ξ|m−1 + · · ·+ 1

)
≥ c

2 |ξ|
m for all |ξ| ≥ R

and a sufficiently large constant R > 0. This proves (i) for c1 := c/2.
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(ii) Let N ≥ 2. By the ellipticity of A we can take 0 6= ξ0 ∈ RN such
that a(iξ0) 6= 0. Choose ξ1 ∈ RN such that the vectors ξ1 and ξ0 are
independent. If we put ã(ξ) := a(iξ) and P (s) := ã(ξ1+sξ0) for s ∈ R, then
P is a real mth-degree polynomial in s with leading coefficient ã(ξ0) 6= 0.
Such a polynomial of odd order m has at least one real root s0. Hence, the
ellipticity of A and the linear independence of ξ0 and ξ1 imply ξ0 = ξ1 = 0.
Therefore, m must be even. Since a is real and RN \ {0} is connected for
N ≥ 2, it follows that a(RN \ {0}) is an interval of R. Consequently, due
to the ellipticity of A, we have a(ξ) < 0 or a(ξ) > 0 for all 0 6= ξ ∈ RN .
Since the case N = 1 is trivial, the proof is complete. �

With this lemma we characterize elliptic differential operators generating
analytic semigroups.

5.15 Theorem. Let A be the operator defined in (5.3). Assume that A
is elliptic and that condition (c) in Theorem 5.12 is satisfied. Then the
following assertions are true.

(i) D(A) = Hm(RN ) and A = A(D), i.e., Af =
∑

|α|≤m aαD
αf for all

f ∈ D(A), where Dα denotes the weak derivative introduced in
Definition 5.7.

(ii) If there is δ ∈ (0, π/2] such that a(RN ) ⊂ C\Σδ+π/2, then A generates
a bounded analytic semigroup

(
T (t)

)
t≥0 of angle δ on L2(RN ).

(iii) If A is homogeneous with real coefficients aα, and m is even in
the case N = 1, then A generates a bounded analytic semigroup(
T (t)

)
t≥0 of angle π/2 on L2(RN ).

Proof. (i) By Theorem 5.8 and Lemma 5.4.(ii) it suffices to show that the
multiplication operators corresponding to a(·) and qm(·) defined in (5.2)
have the same domain. This, however, follows easily from the inequalities
in Lemma 5.14.(i).

Since σ(A) = σ(Ma), assertion (ii) follows from Proposition I.4.10.(iv)
and statement (i) in the theorem in Paragraph II.4.32.

Finally, we prove assertion (iii). If we suppose that a(ξ) > 0 for all
0 6= ξ ∈ RN , then Lemma 5.14.(i) shows that condition (c) in Theorem 5.12
is violated. Hence, by Lemma 5.14.(ii), we obtain

a(ξ) < 0 for all 0 6= ξ ∈ RN .

Thus, the spectrum σ(Ma) is contained in R−, and assertion (iii) follows
from Proposition I.4.10.(iv) and statement (i) in the theorem in Para-
graph II.4.32. �

5.16 Remark. Suppose that A satisfies the condition (ii) or (iii) in Theo-
rem 5.15. Then

(
A(D),Hm(RN )

)
generates a bounded analytic semigroup(

T (t)
)
t≥0 on L2(RN ). So, by Theorem II.4.6.(c) we know that

T (t)u0 ∈ D(A∞)
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for each t > 0 and u0 ∈ L2(RN ). From this we infer by Theorem 5.10 and
Exercise 5.17.(1) below that

T (t)u0 ∈ C∞0 (RN ) for all t > 0.

5.17 Exercises. (1) Suppose that A is elliptic and that condition (c) in
Theorem 5.12 is satisfied. Prove that for every n ∈ N the abstract Sobolev space
Xn := D(An) coincides with Hmn(RN ) and that the norm ‖ · ‖n is equivalent to
‖ · ‖Hmn(RN ). (Hint: Use Theorem 5.8 and the inequalities in Lemma 5.14.(i).)

(2) Discuss the consequences of Theorem 5.12, Theorem 5.15, and Remark 5.16
for the solutions of (cPDE).

c. Elliptic Differential Operators
with Variable Coefficients

In this subsection we consider uniformly elliptic differential expressions

A(D) :=
N∑

i,j=1

Diaij(·)Dj

with variable, real-valued coefficients aij(·) satisfying

aij(·) = aji(·) ∈ L∞(RN ) for i, j = 1, . . . , N,(5.4)
N∑

i,j=1

aij(x)yiyj ≥ c|y|2 for all x, y ∈ RN and some c > 0.(5.5)

Since the matrix function
(
aij(·)

)
N×N is symmetric and real, one can see

that (5.4) is equivalent to

Re
N∑

i,j=1

aij(x)zizj ≥ c|z|2 for all x ∈ RN , z ∈ CN .

In order to define an operator on L2(RN ) associated to A(D) we intro-
duce the sesquilinear form a(·, ·) defined by
(5.6)

a(u, v) :=
N∑

i,j=1

∫
RN

aij(x)Dju(x)Div(x) dx for u, v ∈ D(a) := H1(RN ),

where Dj denotes the weak derivative with respect to the jth coordinate.
The main properties of this sesquilinear form are collected in the next

theorem.
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5.18 Theorem. If (5.4) and (5.5) are satisfied for A(D), then the following
properties hold for a(·, ·).

(i) D(a) = L2(RN ).
(ii) a(·, ·) is symmetric and positive, i.e., a(u, v) = a(v, u) and a(u, u) ≥ 0

for u, v ∈ D(a).
(iii) (u | v)a := (u | v)L2 + a(u, v) defines an inner product on D(a) =

H1(RN ) that is equivalent to (· | ·)H1 from (5.1).
(iv) There is a unique self-adjoint, dissipative operator

(
−A,D(A)

)
such

that D(A) ⊂ D(a) and a(u, v) = (Au | v)L2 for all u ∈ D(A) and
v ∈ D(a).

(v) The operator
(
−A,D(A)

)
generates an analytic contraction semi-

group
(
T (t)

)
t≥0 of angle π/2 on L2(RN ).

Proof. Assertion (i) follows from the density of C∞c (RN ) in L2(RN ), while
(ii) is clear from the definition.

From (5.5) we deduce that

a(u, u) ≥ c
N∑

i=1

‖Diu‖2
L2 for u ∈ D(a).

On the other hand, since aij ∈ L∞(RN ), by Hölder’s inequality there is a
constant c̃ > 0 such that

‖u‖2
a := ‖u‖2

L2 + a(u, u) ≤ c̃ ‖u‖2
H1 for u ∈ D(a).

This proves (iii).
Next, we define the operator

(
A,D(A)

)
by

D(A) :=
{
u ∈ D(a) : ∃ v ∈ L2(RN ) with a(u, ϕ) = (v |ϕ)L2 ∀ ϕ ∈ D(a)

}
,

Au := v for u ∈ D(A).

Observe first that

(−Au |u)L2 = −a(u, u) ≤ 0 for u ∈ D(A);

hence −A is dissipative by Example II.3.26.(iii). In order to verify the range
condition of the Lumer–Phillips theorem, we consider the Hilbert space
Ha :=

(
D(a), (· | ·)a

)
and the associated norm ‖ · ‖a. Now, for v ∈ L2(Rn)

define the mapping Lv by

Ha 3 ϕ 7→ Lvϕ := (v |ϕ)L2 .

Then Lv ∈ H ′
a, and the Riesz representation theorem (cf. [Wei80, Thm. 4.8])

yields a unique u ∈ D(a) such that

(u |ϕ)a = Lvϕ for all ϕ ∈ D(a).
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This implies a(u, ϕ) = (v − u |ϕ)L2 for all ϕ ∈ D(a) and consequently
u ∈ D(A) with (I+A)u = v. Thus I+A is surjective, and Corollary II.3.20
implies that A generates a contraction semigroup

(
T (t)

)
t≥0 on L2(RN ).

Next, observe that by (ii) the operator A is symmetric, i.e., A ⊆ A∗. More-
over, 1 ∈ ρ(A) ∩ ρ(A∗), and therefore A = A∗ by Exercise IV.1.21.(5).
In particular, it follows from Corollary II.4.7 that

(
T (t)

)
t≥0 is analytic of

angle π/2, and we obtain (iv) and (v) except for the uniqueness of A.
Let

(
B,D(B)

)
be another operator satisfying (iv). Then, by the defini-

tion of A, we have

D(B) ⊂ D(A) and Bu = Au for u ∈ D(B).

Since both (I + B) : D(B) → L2(RN ) and (I + A) : D(A) → L2(RN ) are
bijective, we obtain A = B (use again Exercise IV.1.21.(5)). This proves
the uniqueness in assertion (iv), and the proof is complete. �

While it was relatively easy, using the sesquilinear form a(·, ·), to define
an operator A corresponding to the differential expression A(D), it is by
no means clear in which sense this operator is a “differential operator.” By
this we mean that its domain D(A) should be a classical Sobolev space and
A should be defined by the weak derivatives, i.e., f ∈ H1(RN ), aij(·)Djf ∈
H1(RN ), and

−Af =
N∑

i,j=1

Di

(
aij(·)Djf

)
for all f ∈ D(A). Only in this case, the semigroup generated by −A pro-
duces solutions of the partial differential equation (vPDE).

To achieve this goal we need additional regularity assumptions on the
coefficients aij(·).

5.19 Definition. For n ∈ N consider the vector space Wn,∞(RN ) :=f ∈ L∞(RN ) :
∀ |α| ≤ n ∃ gα ∈ L∞(RN ) such that ∀ ϕ ∈ C∞c (RN )∫

RN

f(x)Dαϕ(x) dx = (−1)|α|
∫

RN

gα(x)ϕ(x) dx

.
Then, for f ∈ Wn,∞(RN ) and |α| ≤ n, we define the weak derivative of
order α of f by Dαf := gα.

Using functions in W1,∞(RN ) we can prove a product rule for the weak
derivatives Dj .

5.20 Lemma. For f ∈ W1,∞(RN ) and u ∈ H1(RN ) we have fu ∈ H1(RN )
and Dj(fu) = (Djf)u+ fDju for j = 1, . . . , N .
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Proof. For u ∈ C∞c (RN ) the assertion follows from the definition of the
weak derivative and the analogous property of the classical derivative. For
arbitrary u ∈ H1(RN ) choose, using Corollary 5.9, a sequence (un)n∈N ⊂
C∞c (RN ) converging to u in H1(RN ). Then, we have

fun ∈ H1(RN ) and Dj(fun) = (Djf)un + fDjun

for each n ∈ N and j = 1, . . . , N . Since fun converges to fu in H1(RN ),
the assertion follows. �

This lemma allows us to define a differential operator corresponding to
the expression A(D) as soon as the coefficients aij(·) belong to W1,∞(RN ).

5.21 Definition. Let aij(·) ∈ W1,∞(RN ) for i, j = 1, . . . , N . Then the

operator
(
Ã,D(Ã)

)
is defined by

Ãf :=
N∑

i,j=1

Di

(
aij(·)Djf

)
for f ∈ D(Ã) := H2(RN ).

From this definition it is clear that our operator
(
−A,D(A)

)
defined

via the sesquilinear form a(·, ·) is an extension of the differential operator(
Ã,D(Ã)

)
. Therefore, in order to prove the following theorem, it remains

to show the converse inclusion.

5.22 Theorem. Assuming (5.4), (5.5), and aij(·) ∈ W1,∞(RN ) for i, j =
1, . . . , N , it follows that the operator

(
−A,D(A)

)
coincides with the dif-

ferential operator
(
Ã,D(Ã)

)
defined on D(Ã) := H2(RN ).

Proof. We have only to show that u ∈ D(A) implies u ∈ H2(RN ). In
order to do so we introduce the strongly continuous (left) translation groups(
Tj(t)

)
t∈R in direction j defined by

(5.7) Tj(t)u(x) := u(x+ tej) for u ∈ L2(RN ), t ∈ R,

and j = 1, . . . , N . Its generator Aj coincides with the weak derivative Dj

on its maximal domain

D(Aj) :=
{
u ∈ L2(RN ) : Dju ∈ L2(RN )

}
;

see Exercise 5.26.(1.i). By Corollary II.5.21, this domain coincides with its
Favard space, i.e., u ∈ D(Aj) if and only if

‖∆j
hu‖L2 :=

∥∥ 1
h

(
Tj(h)u− u

)∥∥
L2



416 Chapter VI. Semigroups Everywhere

remains bounded for h > 0. As a consequence (see Exercise 5.26.(1.ii)) we
obtain that u ∈ H1(RN ) if and only if

(5.8) sup
0<h≤1

‖∆j
hu‖L2 ≤ ‖u‖H1 for all j = 1, . . . , N.

For u ∈ H1(RN ) this implies that u ∈ H2(RN ) if and only if

(5.9) sup
0<h≤1

‖∆j
hu‖H1 <∞ for all j = 1, . . . , N.

We now assume u ∈ D(A) and prove (5.9). Writing v := ∆k
hu we then have

‖v‖2
a =

(
∆k

hu | v
)
a

= −
(
u |∆k

−hv
)
a

+
(
u |∆k

−hv
)
a

+
(
∆k

hu | v
)
a

= −
[(
u |∆k

−hv
)
L2 +

(
Au |∆k

−hv
)
L2

]
+
[(
u |∆k

−hv
)
a

+
(
∆k

hu | v
)
a

]
=: P k

h (u) +Qk
h(u) for all h > 0, k = 1, . . . , N.

Since v ∈ H1(RN ), the estimate (5.8), which also holds for −h since(
Tj(t)

)
t∈R is a group, implies that

(5.10)
|P k

h (u)| ≤ ‖u‖L2‖v‖H1 + ‖Au‖L2‖v‖H1

≤ c̃ ‖v‖a

(
‖u‖L2 + ‖Au‖L2

)
for h > 0, k = 1, . . . , N

and some constant c̃ > 0. On the other hand, the term Qk
h(u) is the sum of(

u |∆k
−hv

)
L2+

(
∆k

hu | v
)
L2 andN2 terms of the form

(
aijDiu |Dj∆k

−hv
)
L2+(

aijDi∆k
hu |Djv

)
L2 . They can be estimated as∣∣(aijDiu |Dj∆k
−hv

)
L2 +

(
aijDi∆k

hu |Djv
)
L2

∣∣
=
∣∣(aij∆k

hDiu−∆k
h(aijDiu) |Djv

)
L2

∣∣
=
∣∣∣ 1
h

(
aijTk(h)Diu− Tk(h)(aijDiu) |Djv

)
L2

∣∣∣
=
∣∣∣ 1
h

(
(aij − Tk(h)aij) · (Tk(h)Diu) |Djv

)
L2

∣∣∣
≤
∥∥∥aij − Tk(h)aij

h

∥∥∥
L∞

· ‖u‖H1 · ‖v‖H1 .

Applying Exercise 5.26.(1.iii) and Theorem 5.18.(iii), we obtain

(5.11) |Qk
h(u)| ≤ d‖u‖H1‖v‖a for h > 0, k = 1, . . . , N

and some constant d > 0. So, we infer from (5.10) that

‖∆k
hu‖a = ‖v‖a ≤ d̃

(
‖u‖H1 + ‖Au‖L2

)
for h > 0, k = 1, . . . , N,

where d̃ is a positive constant that is independent of h and k. Thus (5.9)
holds, and the proof is complete. �
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If the coefficients aij(·) are “sufficiently smooth,” we can show that
even the higher-order abstract Sobolev spaces Xn := D(An) coincide with
H2n(RN ). To establish this, we first prove the following estimate.

5.23 Lemma. If aij(·) ∈ W2,∞(RN ), then there exists a constant C > 0
such that the estimate

| (Dku | v)a + (u |Dkv)a | ≤ C‖u‖H2‖v‖L2

holds for all u, v ∈ H2(RN ) and k = 1, . . . , N .

Proof. For fixed k, the expression (Dku | v)a + (u |Dkv)a is the sum of
(Dku | v)L2 + (u |Dkv)L2 and N2 terms of the form

Lijk(u, v) := (aijDiDku |Djv)L2 + (aijDiu |DjDkv)L2

for i, j = 1, . . . , N . So, by Lemma 5.20, we obtain

|Lijk(u, v)| =
∣∣(aijDkDiu−Dk(aijDiu) |Djv

)
L2

∣∣
=
∣∣−((Dkaij)(Diu) |Djv

)
L2

∣∣
=
∣∣((DjDkaij)(Diu) + (Dkaij)DjDiu | v

)
L2

∣∣
≤ C‖u‖H2‖v‖L2

as claimed �

5.24 Proposition. If (5.4) and (5.5) hold and if aij(·) ∈ W2n−1,∞(RN ) for
some n ∈ N, then the operator

(
−A,D(A)

)
coincides with the differential

operator
(
Ã,D(Ã)

)
, and one has

(5.12) D(An) = H2n(RN ).

Proof. By Theorem 5.22 we only have to verify (5.12). To that purpose
we first prove the following claim:

(5.13)

{
If aij ∈ Wn+1,∞(RN ) for some n ∈ N,
then

(
I +A

)−1Hn(RN ) = Hn+2(RN ).

Let u ∈ Hn+2(RN ) ⊂ H2(RN ). Then Lemma 5.20 yields

Au =
N∑

i,j=1

DiaijDju =
N∑

i,j=1

[(Diaij)Dju+ aijDiDju].

Applying Lemma 5.20 once again yields Au ∈ Hn(RN ) and hence

Hn+2(RN ) ⊂ (I +A)−1Hn(RN ).



418 Chapter VI. Semigroups Everywhere

We now show the converse inclusion for n = 1. Let v ∈ H1(RN ) and set
u := (I + A)−1v. Then u ∈ H2(RN ), and for every ϕ ∈ H2(RN ) and
k = 1, . . . , N we have

| (Dku |ϕ)a

∣∣ = ∣∣(−u |Dkϕ)a + (u |Dkϕ)a + (Dku |ϕ)a

∣∣
≤
∣∣(−u |Dkϕ)L2 − (Au |Dkϕ)L2

∣∣+ ∣∣(u |Dkϕ)a + (Dku |ϕ)a

∣∣
=
∣∣(−v |Dkϕ)L2

∣∣+ ∣∣(u |Dkϕ)a + (Dku |ϕ)a

∣∣
=
∣∣(Dkv |ϕ)L2

∣∣+ ∣∣(u |Dkϕ)a + (Dku |ϕ)a

∣∣.
From Lemma 5.23 we obtain

| (Dku |ϕ)a | ≤ ‖v‖H1‖ϕ‖L2 + C‖u‖H2‖ϕ‖L2

for all ϕ ∈ H2(RN ). From the density of H2(RN ) in L2(RN ) and the
Riesz representation theorem it follows that there is w ∈ L2(RN ) such
that (Dku |ϕ)a = (w |ϕ)L2 for all ϕ ∈ H2(RN ). Since H2(RN ) is dense in
H1(RN ), we infer that

(Dku |ϕ)a = (w |ϕ)L2 for ϕ ∈ H1(RN ) = D(a).

This implies that Dku ∈ D(A) = H2(RN ) for k = 1, . . . , N. Hence, u ∈
H3(RN ), and (5.13) is proved for n = 1.

Assume now that (5.13) is satisfied for some n ∈ N. Let v ∈ Hn+1(RN ),
set u := (I + A)−1v, and suppose that aij ∈ Wn+2,∞(RN ). Then u ∈
Hn+2(RN ), and so

Dku = (I +A)−1Dkv − (I +A)−1[Dk(I +A)− (I +A)Dk]u

= (I +A)−1Dkv − (I +A)−1[DkA−ADk]u
=: f1 − f2.

SinceDkv ∈ Hn(RN ), we have f1 ∈ Hn+2(RN ). For the second term we first
note that due to u ∈ Hn+2(RN ) ⊂ H3(RN ), the expression w := [DkA −
ADk]u is meaningful. By applying Lemma 5.20 and using the assumption
aij ∈ Wn+2,∞(RN ), we infer that w ∈ Hn(RN ). Thus (5.13) yields f2 =
(I +A)−1w ∈ Hn+2(RN ). Therefore, u ∈ Hn+3(RN ), and (5.13) follows by
induction.

We now prove (5.12). By Theorem 5.22, the assertion holds for n = 1.
Proceeding again by induction and using (5.13), we obtain

D(An+1) = (I +A)−1D(An)

= (I +A)−1H2n(RN )

= H2(n+1)(RN )

for aij ∈ W2n+1,∞(RN ). �
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From this proposition and from the analyticity of the semigroup gener-
ated by −A we draw the following conclusion yielding classical solutions of
the partial differential equation (vPDE).

5.25 Corollary. If (5.4) and (5.5) hold and if aij(·) ∈ C∞b (RN ) for all
i, j = 1, . . . , N , then

(
−A,D(A)

)
with domain D(A) = H2(RN ) generates

an analytic semigroup
(
T (t)

)
t≥0 on L2(RN ) such that T (t)u0 ∈ C∞0 (RN )

for all t > 0 and u0 ∈ L2(RN ).

Proof. Arguing as in Remark 5.16 and using Proposition 5.24 we obtain

T (t)u0 ∈ D(A∞) =
⋂
n∈N

H2n(RN ) ⊂ C∞0 (RN )

for all t > 0 and u0 ∈ L2(RN ). �

5.26 Exercises. (1) Let (Tj(t))t∈R denote the (left) translation group in di-
rection j ∈ {1, . . . , N} as defined in (5.7).

(i) Show that the generator Aj of (Tj(t))t∈R coincides with the weak derivative

Dj on its maximal domain D(Aj) :=
{
u ∈ L2(RN ) : Dju ∈ L2(RN )

}
.

(ii) Show that H1(RN ) = ∩N
j=1D(Dj).

(iii) Show that ‖ (Tj(h)f−f)/h‖L∞ ≤ ‖f‖W1,∞ for all f ∈ W1,∞(RN ) and h > 0.
(Hint: Use Proposition II.5.19.)

(2) Let the assumptions of Theorem 5.22 be satisfied and denote by (T (t))t≥0

the analytic semigroup generated by −A on L2(RN ).

(i) Show that there exists a constant d > 0 such that

‖DjT (t)‖ ≤ d t
1/2 for all t > 0 and j = 1, . . . , N.

(ii) Define an operator (B, D(B)) by

Bu :=

N∑
i=1

ai(·)Diu + a0(·)u

for u ∈ D(B) := H1(RN ) and with ai(·) ∈ L∞(RN ) for i = 0, . . . , N .
Show that the operator (−A + B, D(A)) generates an analytic semigroup
on L2(RN ). (Hint: Use Theorem III.2.10.)

(iii) Discuss the consequences of these results for the solutions of the initial
value problem for the second-order partial differential equation

∂u(x, t)

∂t
=

N∑
i,j=1

∂

∂xi

(
aij(x)

∂u(x, t)

∂xj

)
+

N∑
i=1

ai(x)
∂u(x, t)

∂xi
+ a0(x)u(x, t)

for x ∈ RN and t ≥ 0.
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Notes and Further Reading to Section 5
The literature on semigroups and partial differential equations is enormous. Be-
sides the references given in the introduction to this section, we mention the books
by Dautray–Lions [DL88], Fattorini [Fat83], Friedman [Fri69], Jacob [Jac99],
Taira [Tai88], [Tai95], and Tanabe [Tan79], [Tan97].

The generation of analytic semigroups by elliptic differential operators was
proved for X = Lp(Ω, µ), Ω ⊂ RN , and 1 < p < ∞ by [ADN59], [Agm62],

and for X = C(Ω) by [Ste74] (see also [AT87a] and [Tan97]). For more detailed
information we refer to the books [Lun95] and [Ama95]; see also [CV87], [CV88].

Form methods (as used in Theorem 5.18 to define an operator associated
to a formal differential expression) can be found, e.g., in [Kat80, Chap. VI],
[RS72, Chap. VIII] and [RS75, Chap. X]. See also [LV91].

6. Semigroups for Delay Differential Equations

As explained in the Epilogue and verified in the previous sections, deter-
ministic systems should be described by an abstract Cauchy problem of the
form

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,
u(0) = x,

where the infinitesimal change of u at time t depends, via the operator A,
only on the state u(t) at time t.

In contrast to this situation, there are many examples where the change
of u at time t also depends on the history of the system. A very simple
example is the scalar population equation

(6.1) u̇(t) = −du(t) + bu(t− r)

with constants d, b ≥ 0 and r > 0. Here, u(t) denotes the number of
individuals of a population at time t, while d is the death rate, b is the
birth rate, and r is the delay due to pregnancy (cf. Example 6.18 below).

If we consider this equation in the state space Y := C, then it is not
deterministic and therefore not accessible to the semigroup theory devel-
oped above. In order to resolve this problem and in agreement with the
biological interpretation, we have to enlarge the state space, such that a
state also contains the relevant information on the history of the system.
For equation (6.1), e.g., we can take X := C[−r, 0] and consider the time
evolution of the history segments

(6.2) ut : [−r, 0] → Y, ut(s) := u(t+ s);

cf. Figure 9.
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u(s)

0

h

t− r−r s

ut

−r

t

Figure 9

As initial value we now take a function h : [−r, 0] → Y describing the
prehistory of the system, i.e., u(t) = h(t) for t ∈ [−r, 0].

The aim of this section is to show how this and much more general
equations with delay can be treated within our semigroup framework.

a. Well-Posedness of Abstract
Delay Differential Equations

As our general setup, we associate to a Banach space Y the Banach space

X := C
(
[−r, 0], Y

)
of all continuous functions on [−r, 0] with values in Y equipped with the
sup-norm. Moreover, we take a delay operator Φ ∈ L(X,Y ) and the gener-
ator

(
B,D(B)

)
of a strongly continuous semigroup

(
S(t)

)
t≥0 on Y . With

this notation we consider the abstract delay differential equation

(ADDE)

{
u̇(t) = Bu(t) + Φut for t ≥ 0,
u0 = h ∈ X,

where ut : [−r, 0] → Y is defined by (6.2). We then call a continuous
function u : [−r,∞) → Y a (classical) solution of (ADDE) if

(i) u is right-sided differentiable at t = 0 and continuously differentiable
for t > 0,

(ii) u(t) ∈ D(B) for all t ≥ 0, and
(iii) u satisfies (ADDE).
To solve (ADDE) by our semigroup methods we introduce the corre-

sponding delay differential operator
(
A,D(A)

)
on X defined by

(6.3)

Af := f ′,

D(A) :=

{
f ∈ C1

(
[−r, 0], Y

)
:
f(0) ∈ D(B) and
f ′(0) = Bf(0) + Φf

}
.

For this operator we have the following generation result generalizing
Proposition II.3.29.
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6.1 Theorem. The operator A defined in (6.3) generates a strongly con-
tinuous semigroup

(
T (t)

)
t≥0 on X.

Proof. We proceed in two steps. First, we consider the operator Ã that
is obtained if we take Φ = 0, i.e.,

(6.4)
Ãf : = f ′,

D(Ã) : =
{
f ∈ C1

(
[−r, 0], Y

)
: f(0) ∈ D(B), f ′(0) = Bf(0)

}
.

Then Ã generates the strongly continuous semigroup
(
T̃ (t)

)
t≥0 given ex-

plicitly by (
T̃ (t)f

)
(s) =

{
f(t+ s) if t+ s ≤ 0,
S(t+ s)[f(0)] if t+ s > 0,

where
(
S(t)

)
t≥0 denotes the semigroup on Y generated by B. In fact, the

semigroup law and the strong continuity for
(
T̃ (t)

)
t≥0 follow immediately

from the corresponding property of
(
S(t)

)
t≥0. In order to verify that the

generator of
(
T̃ (t)

)
t≥0 coincides with Ã, we consider for s ∈ [−r, 0] and

small t > 0 the difference quotient

(6.5)
( T̃ (t)f − f

t

)
(s) =

{
f(t+s)−f(s)

t if s < 0,
S(t)[f(0)]−f(0)

t if s = 0.

Hence, its limit as t ↓ 0 exists in X if and only if f is continuously differ-
entiable, f(0) ∈ D(B) and f ′(0) = Bf(0).

In the second step, we show that A can be obtained as a Desch–Schap-
pacher perturbation of Ã; see Section III.3.a. To this end, we first note that
for λ ∈ ρ(B) we have

(6.6) A− λ = (Ã− λ) · [I − ελ ⊗R(λ,B)Φ],

where ελ ⊗R(λ,B) ∈ L(Y,X) is defined by(
[ελ ⊗R(λ,B)]y

)
(s) := eλsR(λ,B)y for y ∈ Y, −r ≤ s ≤ 0.

To verify this representation, we denote the right-hand side of equation
(6.6) by C. Then

D(C) =
{
f ∈ X : f − ελ ⊗R(λ,B)Φf ∈ D(Ã)

}
=

{
f ∈ X :

f ∈ C1
(
[−r, 0], Y

)
, f(0) ∈ D(B), and

f ′(0)− λR(λ,B)Φf = B
(
f(0)−R(λ,B)Φf

)}
= D(A),
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and

Cf = ( d
ds − λ) · [I − ελ ⊗R(λ,B)Φ]f = ( d

ds − λ)f = (A− λ)f

for all f ∈ D(C) = D(A). We now look at the extrapolated operator Ã−1

defined in Section II.5.a. Then the connection between multiplicative and
additive perturbations stated in Proposition III.3.18.(ii) gives

A =
(
Ã−1 − (Ã− λ)−1

(
ελ ⊗R(λ,B)

)
Φ
)∣∣X .

By Corollary III.3.6, the proof is complete if we can show that the perturb-
ing operator maps into the extrapolated Favard space associated to Ã−1.
More precisely, we have to verify that

rg
(
(Ã− λ)−1(ελ ⊗R(λ,B))Φ

)
⊂ F Ã

0 ,

or, equivalently, R := rg
(
(ελ ⊗ R(λ,B))Φ

)
⊂ F Ã

1 . To this end, we take
f := ελ ⊗ y ∈ R. Then y ∈ D(B), and from (6.5) it follows that

lim
t↓0

∥∥∥ T̃ (t)f − f

t

∥∥∥ ≤ max
{
‖λελ‖∞ · ‖y‖, ‖By‖

}
<∞,

i.e., f ∈ F Ã
1 . �

To relate the semigroup
(
T (t)

)
t≥0 generated by the operator A from (6.3)

to the abstract delay differential equation (ADDE), we need the following
result, which, in the caseX = C, we already encountered in Exercise II.3.31.
(2).

6.2 Lemma. The semigroup
(
T (t)

)
t≥0 satisfies the translation property

(TP)
(
T (t)f

)
(s) =

{
f(t+ s) if t+ s ≤ 0,
[T (t+ s)f ](0) if t+ s > 0

for all f ∈ X.

Proof. It suffices to show that (TP) holds for all f ∈ D(A) and t > 0. To
this purpose we distinguish for s ∈ [−r, 0] the following two cases.

Case 1: t + s > 0. We have to verify that [T (−s)g](s) = g(0) for g :=
T (t+ s)f . To this end, we define the function

ϕ : [−t, 0] → Y, ϕ(τ) := δτ [T (−τ)g],
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where δτ : X → Y denotes the point evaluation in τ ∈ [−t, 0]. Then, for
ϑ > 0, we obtain

ϕ(τ + ϑ)− ϕ(τ)
ϑ

=
[T (−τ − ϑ)g](τ + ϑ)− [T (−τ)g](τ)

ϑ

=
[T (−τ − ϑ)g](τ)− [T (−τ)g](τ)

ϑ

+
(δτ+ϑ − δτ )

(
T (−τ − ϑ)g − T (−τ)g

)
ϑ

+
[T (−τ)g](τ + ϑ)− [T (−τ)g](τ)

ϑ
=: D1(ϑ) +D2(ϑ) +D3(ϑ).

Taking the limits as ϑ→ 0 we obtain
lim
ϑ→0

D1(ϑ) = −[AT (−τ)g](τ),

lim
ϑ→0

D2(ϑ) = 0,

lim
ϑ→0

D3(ϑ) = [T (−τ)g]′(τ) = [AT (−τ)g](τ);

hence ϕ is differentiable with ϕ′ ≡ 0. This implies that ϕ is constant, and
therefore

[T (−s)g](s) = ϕ(s) = ϕ(0) = g(0).

Case 2: t+ s ≤ 0. Analogously to the first case, we define a map

ψ : [0, t] → Y, ψ(τ) := δt+s−τ [T (τ)f ]

and show that it is differentiable with derivative ψ′ ≡ 0. Thus

f(t+ s) = ψ(0) = ψ(t) = [T (t)f ](s),

and the proof is complete. �

We are now ready to state the main result of this subsection relating the
semigroup

(
T (t)

)
t≥0 generated by A to the solution of (ADDE).

6.3 Corollary. If h ∈ D(A), then the function u : [−r,∞) → Y defined by

u(t) :=
{
h(t) if −r ≤ t ≤ 0,
[T (t)h](0) if 0 < t

is the unique (classical) solution of (ADDE).

Proof. From the translation property (TP) and the definition of ut in
(6.2) it follows that

(6.7) ut = T (t)h

for all t ≥ 0. Since we assume h ∈ D(A), we have ut ∈ D(A) for all
t ≥ 0, which implies that u is continuous on [−r,∞) and continuously
differentiable on [0,∞). Moreover, u(t) ∈ D(B) for all t ≥ 0 and

u̇(t) = [ d
dt (ut)](0) = [Aut](0) = (ut)′(0) = Bu(t) + Φut;

hence u is a solution of (ADDE).
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In order to show uniqueness of the solution u, we assume v to be another
solution of (ADDE). Then w := u− v solves the equation{

ẇ(t) = Bw(t) + Φwt for t ≥ 0,
w0 = 0,

where wt is defined analogously to (6.2). Now let x(t) := wt for t ≥ 0. Then
x(t) ∈ C1

(
[−r, 0], Y

)
for all t ≥ 0, and since

(wt)′(0) = ẇ(t) = Bw(t) + Φwt,

we even have x(t) ∈ D(A). Moreover,

(
ẋ(t)

)
(s) = lim

ϑ→0

wt+ϑ(s)− wt(s)
ϑ

= lim
ϑ→0

wt(s+ ϑ)− wt(s)
ϑ

= (wt)′(s) = (Awt)(s)

for all s ∈ [−r, 0]. Therefore, x(·) solves the Cauchy problem

(6.8)

{
ẋ(t) = Ax(t) for t ≥ 0,
x(0) = 0.

However, since A is a generator, equation (6.8) has the unique solution
x(t) = wt = 0, which implies u = v as claimed. �

6.4 Exercises. (1) Show that the converse to Corollary 6.3 is true. More
precisely, if u is a solution of (ADDE) with u0 ∈ D(A), then x : R+ → X defined
by x(t) := ut is a solution of the abstract Cauchy problem associated to A with
initial value x(0) = u0. In this sense, (ADDE) and (ACP) for A defined by (6.3)
correspond to each other.

(2) Show that for bounded B ∈ L(Y ) the function u defined in Corollary 6.3
is a solution of (ADDE) for every h ∈ X. Express this as a property of the
corresponding semigroup.

(3) Show that the assertion in Exercise (2) is false in general for unbounded
generators B. (Hint: Take a generator B of a strongly continuous semigroup on
Y that is not differentiable and choose h(s) ≡ y for some y ∈ Y such that
t 7→ S(t)y is not differentiable.)

b. Regularity and Asymptotics

Having established the well-posedness of the abstract delay differential
equation (ADDE), we are now interested in the asymptotic behavior of
its solution. Since by the previous results the solution is given by the map
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t 7→ u(t) = [T (t)h](0), its long-time behavior is determined by that of
the semigroup

(
T (t)

)
t≥0. However, in order to apply stability criteria such

as Theorem V.1.10, we need eventual norm continuity for this semigroup.
To that purpose we prove the following “variation of parameters”-type
formula relating the semigroup T =

(
T (t)

)
t≥0 on X and the semigroup

S =
(
S(t)

)
t≥0 on Y generated by A and B, respectively.

6.5 Lemma. With the above notation we have

(6.9) [T (t)f ](0) = S(t)[f(0)] +
∫ t

0

S(t− s)ΦT (s)f ds

for all t ≥ 0 and f ∈ X.

Proof. It suffices to verify (6.9) for f ∈ D(A) only. In this case, by
Corollary 6.3, we can interpret the map t 7→ u(t) := [T (t)f ](0) as the
solution of the inhomogeneous Cauchy problem (compare Section 7 below){

u̇(t) = Bu(t) + g(t) for t ≥ 0,
u(0) = f(0)

for g(t) := Φut. Since g(t) = ΦT (t)f by (6.7), the assertion then follows
from Exercise 7.10.(1). �

Formula (6.9) turns out to be quite useful in determining which regu-
larity properties of

(
S(t)

)
t≥0 are inherited by

(
T (t)

)
t≥0. In particular, for

immediately norm-continuous semigroups
(
S(t)

)
t≥0 we obtain the follow-

ing result.

6.6 Theorem. If S =
(
S(t)

)
t≥0 is immediately norm continuous, then

T =
(
T (t)

)
t≥0 is norm continuous for t > r.

Proof. Let t > r and ϑ ∈ (0, t). Then, from (6.9) and the translation
property (TP), we obtain for s ∈ [−r, 0] and f ∈ X that[(

T (t+ ϑ)− T (t)
)
f
]
(s) =

[(
T (t+ ϑ+ s)− T (t+ s)

)
f
]
(0)

=
[
S(t+ ϑ+ s)− S(t+ s)

]
[f(0)]

+
[
(S ∗ ΦT )(t+ ϑ+ s)− (S ∗ ΦT )(t+ s)

]
f,

where we used the convolution notation introduced in (1.11), Section III.1.
Since

(
S(t)

)
t≥0 is immediately norm continuous, it follows from part (i) in

Lemma III.1.13 that the convolution S∗ΦT is immediately norm continuous
as well. Hence, the maps S(·) and (S∗ΦT )(·) are uniformly norm continuous
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on the compact interval [t− r, 2t], which implies that∥∥(T (t+ ϑ)−T (t)
)
f
∥∥ = sup

s∈[−r,0]

∥∥∥[S(t+ ϑ+ s)− S(t+ s)
]
[f(0)]

+
[
(S ∗ ΦT )(t+ ϑ+ s)− (S ∗ ΦT )(t+ s)

]
f
∥∥∥

≤ sup
s∈[−r,0]

∥∥S(t+ ϑ+ s)− S(t+ s)
∥∥ · ‖f‖

+ sup
s∈[−r,0]

∥∥∥(S ∗ ΦT )(t+ ϑ+ s)− (S ∗ ΦT )(t+ s)
∥∥∥ · ‖f‖

converges to zero as ϑ→ 0 uniformly for ‖f‖ ≤ 1. �

As the next step towards the description of the behavior of
(
T (t)

)
t≥0,

we need information on the resolvent and the spectrum of its generator A
in terms of B and Φ. To this end, we introduce for λ ∈ C the operators

Hλ ∈ L(X), (Hλf)(s) :=
∫ 0

s

eλ(s−τ)f(τ) dτ,

Φλ ∈ L(Y ), Φλy := Φ(ελ ⊗ y),

where, as usual, ελ(s) := eλs for λ ∈ C and s ∈ [−r, 0]. With this no-
tation we have the following result, which generalizes the proposition in
Paragraph IV.2.8.

6.7 Proposition. For every λ ∈ C one has

λ ∈ σ(A) if and only if λ ∈ σ(B + Φλ).
Moreover, for λ ∈ ρ(A), the resolvent of A is given by

(6.10) R(λ,A)f =
[
ελ ⊗R(λ,B + Φλ)

](
f(0) + ΦHλf

)
+Hλf, f ∈ X.

Proof. By definition, λ ∈ ρ(A) if and only if for every g ∈ X, there exists
a unique solution f ∈ D(A) of the equation

λf − f ′ = g.

Solving this differential equation, one sees that it is satisfied if and only if
f = ελ ⊗ y +Hλg

for some y ∈ Y . On the other hand, f ∈ D(A) if and only if y ∈ D(B) and
f ′(0) = Bf(0) + Φf , i.e.,

λy − g(0) = By + Φλy + ΦHλg.

This shows that λ ∈ ρ(A) if and only if for every g ∈ X there exists a
unique y ∈ Y such that

(λ−B − Φλ)y = Sλg,

where Sλ := δ0 + ΦHλ ∈ L(X,Y ). Hence, the proof is complete if we can
show that Sλ is surjective from X to Y . This, however, follows from

Sλ(εµ ⊗ I) = I + ΦHλ(εµ ⊗ I) ∈ L(X),
since ‖ΦHλ(εµ ⊗ I)‖ → 0 as µ→∞, and hence Sλ(εµ ⊗ I) is bijective for
µ sufficiently large. �
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This description of the spectrum of A together with Theorem 6.6 and
Theorem V.1.10 characterizes uniform exponential stability of the semi-
group

(
T (t)

)
t≥0 and hence of the solutions u of (ADDE). However, it is

not easy to determine all λ ∈ C satisfying λ ∈ σ(B+Φλ) in order to obtain
σ(A). For example, if dimY <∞, then

σ(A) =
{
λ ∈ C : det

(
λ−B − Φ(ελ ⊗ I)

)
= 0
}
.

Hence, we have to find the zeros of the characteristic equation

(6.11) ξ(λ) := det
(
λ−B − Φ(ελ ⊗ I)

)
= 0,

a task that, even for simple operators B and Φ, is not solvable explicitly; see
Exercise 6.10.(2) and [BC63]. In Section 6.c we will show how this problem
can be simplified if we make an additional positivity assumption. (Compare
also Proposition 1.5.)

We continue this subsection by looking at compactness properties of the
semigroup

(
T (t)

)
t≥0.

6.8 Lemma. If B has compact resolvent, then R(λ,A)T (r) is compact for
all λ ∈ ρ(A).

Proof. For arbitrary but fixed λ, we define the set

C :=
{
R(λ,A)T (r)f : f ∈ U

}
⊂ X,

where U denotes the unit ball in X. Then it follows from∥∥ d
ds

(
R(λ,A)T (r)f

)∥∥ ≤ ∥∥AR(λ,A)T (r)
∥∥ for all f ∈ U

that the set C is equicontinuous in X.
On the other hand, the translation property (TP) and the representation

of R(λ,A) in (6.10) imply that for arbitrary s ∈ [−r, 0] and f ∈ X we have

[R(λ,A)T (r)f ](s) = [R(λ,A)T (r + s)f ](0)

=
([
ελ ⊗R(λ,B + Φλ)

][(
T (r + s)f

)
(0) + ΦHλT (r + s)f

])
(0)

= R(λ,B + Φλ)(δ0 + ΦHλ)T (r + s)f.

Since by Exercise II.4.30.(2) the resolvent R(λ,B + Φλ) is compact, this
shows that the set

C(s) :=
{
g(s) : g ∈ C

}
⊂ Y

is relatively compact for all s ∈ [−r, 0]. Hence, we can apply the (vector-
valued) Arzelà–Ascoli theorem (see [Dug66, Chap. XII, Thm. 6.4]) and con-
clude that C is relatively compact, which means that R(λ,A)T (r) is a com-
pact operator. �



Section 6. Semigroups for Delay Differential Equations 429

If we combine this proposition with the results of Section II.4.d, we arrive
at the following compactness criterion for

(
T (t)

)
t≥0; see also [TW74].

6.9 Proposition. If
(
S(t)

)
t≥0 is immediately compact, then

(
T (t)

)
t≥0 is

eventually compact for t > r.

Proof. By the compactness assumption on
(
S(t)

)
t≥0 and Theorem II.4.29

it follows that B has compact resolvent and that
(
S(t)

)
t≥0 is immediately

norm continuous. Hence, by Lemma 6.8, the operator R(λ,A)T (r) is com-
pact for all λ ∈ ρ(A). On the other hand, Theorem 6.6 implies that the
semigroup

(
T (t)

)
t≥0 is norm continuous for t > r, and thus the assertion

follows from Lemma II.4.28. �

Note that the above compactness assumption on
(
S(t)

)
t≥0 is always

satisfied if Y is finite-dimensional.

6.10 Exercises. (1) Show that the conclusion of Theorem 6.6 is not valid
for eventually norm-continuous semigroups (S(t))t≥0. (Hint: Take an eventually

norm continuous semigroup (S(t))t≥0 and a bounded operator Φ̃ ∈ L(Y ) such

that the semigroup generated by B + Φ̃ is not eventually norm continuous (cf.

Example III.1.15). Then, for Φ := Φ̃δ0 ∈ L(X, Y ), the semigroup generated by A
is not eventually norm continuous.)

(2) Determine the spectrum of the operator A associated to the scalar population
model (6.1) and try to estimate the growth bound of the semigroup (T (t))t≥0

generated by it. Determine the values of b, d, and r such that every solution of
(6.1) is exponentially stable. Compare this with Exercise 6.20.(1).

(3) Show that the semigroup (T (t))t≥0 is eventually differentiable if B generates
an analytic semigroup. (Hint: Use the characterization in Theorem II.4.14.)

(4∗) Describe the asymptotic behavior of the solutions of (ADDE) in the situa-
tion of Proposition 6.9. (Hint: Use Corollary V.3.2. Compare also [KVL92, Sec. II].)

c. Positivity for Delay Differential Equations

Under appropriate assumptions, we could show in the previous subsection
that the negativity of the spectral bound s(A) of the generator A in X
implies stability of the solutions of the associated abstract delay differential
equation (ADDE) in Y . However, even if dimY <∞, it is quite difficult to
determine the zeros of the characteristic equation (6.11) in order to obtain
the spectral bound s(A); cf. Exercise 6.10.(2).

The aim of this subsection is to show how “positivity” can help in facil-
itating this task (compare also Section 1.c).

To this end we assume throughout that Y is a Banach lattice (cf. Sec-
tion 1.b), which makes X := C

(
[−r, 0], Y

)
with the canonical order a Ba-

nach lattice as well. First, we give sufficient conditions on B and Φ to
ensure that A generates a positive semigroup

(
T (t)

)
t≥0 (cf. Definition 1.7)

on this Banach space.
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6.11 Theorem. If B generates a positive semigroup on Y and the delay
operator Φ ∈ L(X,Y ) is positive, then the semigroup generated by A on
X is positive as well.

Proof. By Theorem 1.8 it suffices to show that R(λ,A) is positive for
sufficiently large λ ∈ R. To this end, note that Φλ = Φ(ελ ⊗ I) ≥ 0 for all
λ ∈ R, and, again by Theorem 1.8, that R(λ,B) ≥ 0 for λ large. Hence,
using the Neumann expansion

R(λ,B + Φλ) = R(λ,A)
∞∑

n=0

[
ΦλR(λ,A)

]
n,

we conclude that R(λ,B + Φλ) is positive for λ large. Since the operator
Hλ in (6.10) is positive for all λ ∈ R, this proves that R(λ,A) is positive
for λ large, and the assertion follows. �

It is important to note that the converse of this result is not true (cf.
Exercise 6.20.(2)). This is due to the fact that the boundary condition
f ′(0) = Bf + Φf can be written in different ways. However, if Φ has
no atomic part in zero (cf. Paragraph IV.2.8), the positivity hypotheses
in Theorem 6.11 are also necessary in order to obtain the positivity of(
T (t)

)
t≥0 on X. For details see [Ker86, III.3].

Before we show how positivity can be used to obtain simple stability
criteria for the solutions of (ADDE), we prove the following technical lemma
on the operator-valued map R : ρ ⊂ C2 → L(Y ) defined by

(λ, µ) 7→ R(λ, µ) := R(λ,B + Φµ) for

(λ, µ) ∈ ρ :=
{
(r, s) ∈ C2 : r ∈ ρ(B + Φs)

}
.

6.12 Lemma. The following assertions are true.

(i) The set ρ ⊂ C2 is open.

(ii) The map R(·, ·) is analytic.

Proof. (i) Let (λ0, µ0) ∈ ρ and (λ, µ) ∈ C. Then

(λ−B − Φµ)− (λ0 −B − Φµ0) = (λ− λ0) + Φ
(
(εµ − εµ0)⊗ I

)
=: ∆λ,µ.

Since lim(λ,µ)→(λ0,µ0) ‖∆λ,µ‖ = 0 and

(6.12) (λ−B − Φµ) =
(
I + ∆λ,µR(λ0, µ0)

)
(λ0 −B − Φµ0),

it follows that (λ−B −Φµ) is invertible for ‖(λ, µ)− (λ0, µ0)‖ sufficiently
small, i.e., (λ, µ) ∈ ρ.
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(ii) From (6.12) it follows that for ‖(λ, µ) − (λ0, µ0)‖ sufficiently small,
we have

R(λ, µ) = R(λ0, µ0)
∞∑

n=0

[
∆λ,µR(λ0, µ0)

]
n.

Since this series converges uniformly in small balls and the map C2 3
(λ, µ) 7→ ∆λ,µ ∈ L(Y ) is analytic, we infer that R(·, ·) is analytic as well.

�

With this lemma we will now describe the behavior of the spectral bound
function

s : R → R ∪ {−∞} defined by s(λ) := s(B + Φλ) for λ ∈ R.

6.13 Proposition. Let B generate a positive semigroup on Y and assume
that Φ ∈ L(X,Y ) is positive. Then the spectral bound function s(·) is
decreasing and continuous from the left on R. If, in addition, s(B+Φµ0) is
isolated in σ(B + Φµ0) ∩ R, then s(·) is even continuous in µ0 ∈ R.

Proof. For µ0 ≤ µ1 we have Φµ1 ≤ Φµ0 and therefore s(B + Φµ1) ≤
s(B+Φµ0) by Corollary 1.11. This shows that the function s(·) is decreasing.

In order to show that s(·) is left-continuous, we assume by contradiction
that

s(µ0) < s− := lim
ε↓0

s(µ0 − ε)

for some µ0 ∈ R. Then s− ∈ ρ(B + Φµ0), and therefore (s−, µ0) ∈ ρ. This
contradicts the fact that ρ ⊂ C2 is open, since by Theorem 1.10 we have
s(µ0 − ε) ∈ σ(B + Φµ0−ε), i.e.,

(
s(µ0 − ε), µ0 − ε

)
/∈ ρ for all ε > 0, while(

s(µ0 − ε), µ0 − ε
)
→ (s−, µ0) as ε ↓ 0.

Now, assume in addition that s(B + Φµ0) is isolated in σ(B + Φµ0) ∩R.
In order to show that s(·) is right-continuous, we assume by contradiction
that

(6.13) s+ := lim
ε↓0

s(µ0 + ε) < s(µ0).

Then by assumption, there exists λ ∈ ρ(B + Φµ0) ∩ R satisfying

s+ < λ < s(µ0).

In particular, (λ, µ0) ∈ ρ, and we conclude from Lemma 6.12.(ii) that

R(λ, µ0) = lim
ε↓0

R(λ, µ0 + ε) ≥ 0.

This contradicts Lemma 1.9, and s(·) must be right-continuous. �

We mention that the spectral bound function s(·) is always continuous
if B has compact resolvent, or if Φλ0 is compact; see Exercise 6.20.(3).



432 Chapter VI. Semigroups Everywhere

We are now well prepared to prove the following result, which allows us
to estimate the spectral bound s(A) of the generator A in terms of the
operators B and Φ.

6.14 Theorem. Let B generate a positive semigroup on Y and assume
that Φ ∈ L(X,Y ) is positive. Then the following is true.

(i) If s(B + Φλ) < λ, then s(A) < λ.

(ii) If s(B + Φλ) = λ, then s(A) = λ.

(iii) In addition, assume that σ(B) 6= ∅. If B has compact resolvent or if
Φ is compact, then the spectral bound s(A) is the unique solution of
the generalized characteristic equation

(6.14) λ = s(B + Φλ), λ ∈ R.

Moreover, in this case

(6.15) s(B + Φλ) S λ ⇐⇒ s(A) S λ.

Proof. (i) Let λ > s(B + Φλ). Then we obtain from the monotonicity of
s(·) that

µ ≥ λ > s(B + Φλ) ≥ s(B + Φµ)

for all µ ≥ λ. This implies µ ∈ ρ(B + Φµ) and therefore µ ∈ ρ(A) for
all µ ≥ λ by Proposition 6.7. On the other hand, Theorem 1.10 implies
s(A) ∈ σ(A); hence λ > s(A), as claimed.

(ii) If λ = s(B+Φλ), then again by Theorem 1.10 we have λ ∈ σ(B+Φλ)
and therefore λ ∈ σ(A). On the other hand, we can show as in (i) that
µ ∈ ρ(A) for all µ > λ, which implies λ = s(A).

(iii) If σ(B) 6= ∅, then by Corollary 1.11.(ii) we have −∞ < s(B) ≤ s(λ)
for all λ ∈ R. Moreover, by Exercise 6.20.(3) it follows that the map s(·) is
continuous and decreasing. Therefore, equation (6.14) has a unique solution
λ0, which by (ii) coincides with s(A). The estimates in (6.15) are then
immediate (cf. Figure 7, p. 359 with ξ(λ) := s(B + Φλ)). �

In particular, under the assumptions in Theorem 6.14.(iii) we have that

s(A) < 0 if and only if s(B + Φ0) < 0.

In order to prove this equivalence without any compactness assumption,
we need the following characterization of the spectral bound of A.

6.15 Lemma. Let B generate a positive semigroup on Y and assume that
Φ ∈ L(X,Y ) is positive. If σ(B + Φλ) 6= ∅ for some λ ∈ R, then

(6.16) s(A) = sup
{
λ ∈ R : s(B + Φλ) ≥ λ

}
.

In the other case one has s(A) = −∞.

Proof. If σ(B+Φλ) = ∅ for all λ ∈ R, then s(A) = −∞ by Theorem 6.14.
(i), and the second statement follows.
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Assume now σ(B + Φλ) 6= ∅ for some λ ∈ R, and denote the right-hand
side of equation (6.16) by µ. Then it follows from the left-continuity of s(·)
that s(B + Φµ) ≥ µ. Accordingly, we distinguish two cases.

Case 1: s(B + Φµ) = µ. Then s(A) = µ by Theorem 6.14.(ii), and (6.16)
follows.

Case 2: s(B + Φµ) > µ. We first show that this implies the inclusion

(6.17)
(
µ, s(B + Φµ)

]
⊂ σ(B + Φµ).

Assume by contradiction that there exists r ∈ (µ, s(B + Φµ)] ∩ ρ(B + Φµ).
Then (r, µ) ∈ ρ, and by the definition of µ, we have r + ε > µ + ε >
s(B + Φµ+ε) for all ε > 0. Next, we use Lemma 1.9 and Lemma 6.12 to
conclude that

R(r,B + Φµ) = lim
ε↓0

R(r + ε,B + Φµ+ε) ≥ 0.

Again by Lemma 1.9, this contradicts the fact that r ≤ s(B + Φµ). Hence
(6.17) is proved, and from the closedness of the spectrum we deduce µ ∈
σ(B + Φµ). Consequently, µ ∈ σ(A) by Proposition 6.7, and therefore
s(A) ≥ µ.

It remains to show that s(A) > µ is not possible. To this end, we assume
by contradiction that s(A) > µ. Then from the definition of µ, we infer
that

s(B + Φs(A)) < s(A), and hence s(A) ∈ ρ(B + Φs(A)).

By Proposition 6.7 this implies s(A) ∈ ρ(A), contradicting Theorem 1.10.
�

Under the above assumptions it is now possible to characterize delay
differential operators having negative spectral bound.

6.16 Corollary. Let B generate a positive semigroup on Y and assume
that Φ ∈ L(X,Y ) is positive. Then we have for the corresponding delay
differential operator A on X that

s(A) < 0 ⇐⇒ s(B + Φ0) < 0.

Proof. We can assume that there exists λ ∈ R such that σ(B + Φλ) 6= ∅,
since otherwise s(A) = s(B + Φ0) = −∞ by Lemma 6.15.

Suppose first that s(A) < 0. Then s(B+Φ0) < 0, since otherwise s(A) ≥
0 by Lemma 6.15. This proves the “only if” part. The “if” part follows
immediately from Theorem 6.14.(i), and the proof is complete. �

Finally, we combine Corollary 6.16 with the results of Chapters IV and V
in order to obtain simple conditions implying the stability of the semigroup(
T (t)

)
t≥0 generated by A. To that purpose we use the notions uniformly

exponentially stable (see Definitions V.1.1) and exponentially stable (see
V.1.5).
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6.17 Corollary. Let B generate a positive semigroup on Y , assume that
Φ ∈ L(X,Y ) is positive, and denote by

(
T (t)

)
t≥0 the semigroup generated

by the corresponding delay differential operator.

(i) The semigroup
(
T (t)

)
t≥0 is exponentially stable if and only if the

spectral bound s(B + Φ0) is less than 0.

(ii) If
(
S(t)

)
t≥0 is immediately norm continuous, then the semigroup(

T (t)
)
t≥0 is uniformly exponentially stable if and only if the spectral

bound s(B + Φ0) is less than 0.

Proof. Assertion (i) follows from Proposition 1.14 and Corollary 6.16.
(ii) If

(
S(t)

)
t≥0 is immediately norm continuous, then

(
T (t)

)
t≥0 is even-

tually norm continuous by Theorem 6.6. Hence, the assertion follows from
Theorem V.1.10 and Corollary 6.16. �

6.18 Example. In order to illustrate some surprising consequences of
Corollary 6.17.(i), we consider the Cauchy problem with delay

(6.18)

{
u̇(t) = Bu(t) + Ψu(t− r) for t ≥ 0,
u0 = h,

where B generates a positive semigroup on Y , Ψ ∈ L(Y ) is positive, and
h ∈ X := C

(
[−r, 0], Y

)
is the initial (“history”) function. Using the above

notation, we have Φ = Ψδ−r, hence Φ0 = Ψ. Then, by Corollary 6.16 and
Proposition 1.14, the solution of equation (6.18) is exponentially stable
for every h ∈ D(A) if and only if the semigroup generated by B + Ψ is
exponentially stable. However, the semigroup generated by B + Ψ is the
solution semigroup of the “undelayed” Cauchy problem

(6.19)

{
u̇(t) = (B + Ψ)u(t) for t ≥ 0,
u(0) = x.

This observation proves the following result.

Corollary. The solutions of (6.18) are exponentially stable for all h ∈ D(A)
and one/all r > 0 if and only if those of (6.19) are exponentially stable for
all x ∈ D(B).

In other words, for the positive delay differential equation (6.18) the
exponential stability is independent of the delay r. This is in sharp contrast
with the general situation. In fact, even with Y = C there are examples of
stable Cauchy problems that can be destabilized by increasing the time lag
r. See Exercise 6.20.(5).

We close this section with an application to a diffusion equation with
delay that generalizes the simple model from (6.1).
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6.19 Example. We consider the partial differential equation with delay

(6.20)



∂u(t, x)
∂t

=
∂2u(t, x)
∂x2

− d(x)u(t, x)

+ b(x)u(t− r, x), t ≥ 0, x ∈ [0, 1],

∂u(t, 0)
∂x

= 0 =
∂u(t, 1)
∂x

, t ≥ 0,

u(s, x) = h(s, x), s ∈ [−r, 0], x ∈ [0, 1].

This equation can be interpreted as a model for the growth of a population
in [0, 1]. In fact, u(t, ·) is the population density at time t, and the term
d2
/dx2 u(t, x) describes the internal migration. Moreover, the continuous

functions d, b : [0, 1] → R+ represent space-dependent death and birth
rates, respectively, and r is the delay due to pregnancy.

In order to rewrite (6.20) as an abstract delay differential equation of the
form (ADDE), we introduce the spaces Y := C[0, 1] andX := C

(
[−r, 0], Y

)
.

Moreover, we define the operators

∆ := d2

dx2 , D(∆) :=
{
y ∈ C2[0, 1] : y′(0) = 0 = y′(1)

}
,

B := ∆−Md, D(B) := D(∆),
Φ := Mbδ−r ∈ L(X,Y ),

where Md and Mb are the multiplication operators induced by d and b,
respectively.

Combining the results from Exercise II.4.34.(1) and Theorem III.1.16.(i),
we infer that B generates an immediately compact semigroup

(
S(t)

)
t≥0 on

Y . Moreover, since e−tMd is positive,
(
S(t)

)
t≥0 is positive by the Trotter

product formula; cf. Exercise III.5.11.(1). Hence, Proposition 6.9 and Theo-
rem 6.11 imply that

(
T (t)

)
t≥0 is positive and eventually compact for t > r.

Next, we apply Corollary IV.3.12.(i) and Example 6.18 (with Ψ := Mb) to
conclude that

ω0(A) = s(A) < λ ⇐⇒ ω0(∆ +Mb −Md) = s(∆ +Mb −Md) < λ

for arbitrary λ ∈ R. In particular, if in every x ∈ [0, 1] the death rate
majorizes the birth rate, i.e., if δ := infx∈[0,1]

(
d(x) − b(x)

)
> 0, then the

operator ∆ + Mb − Md + δ is dissipative (use Example II.3.26.(i)), and
hence ω0(∆ +Mb −Md) < −δ. This shows that the condition b(x) < d(x),
x ∈ [0, 1], leads to uniformly exponentially stable solutions of (6.20) and
hence to the extinction of the population, no matter whether we consider
the equation with or without delay.
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6.20 Exercises. (1) Reconsider Exercise 6.10.(2) using the results of this sub-
section.

(2) Show that the converse of Theorem 6.11 does not hold, i.e., find nonpositive
operators B and Φ such that (T (t))t≥0 is positive.

(3) Show that the final conclusion of Proposition 6.13 concerning the continuity
of the spectral bound function s(·) is true if

(i) B has compact resolvent, or

(ii) Φµ0 is compact.

(Hint: For (i) use Corollary IV.1.19 and Exercise II.4.30.(2); for (ii) use the fact
that s(B) < s(B + Φµ) for all µ ∈ R together with (6.13) and Corollary IV.2.11.)

(4) Re-prove the corollary in Paragraph IV.2.8 by using the results of this subsec-
tion. Moreover, show that s(A) < 0 if and only if ω0(A) < 0. Hence, the condition
‖L0‖ + a < 0 characterizes the uniform exponential stability of the semigroup
(T (t))t≥0 generated by A. (Hint: Use Proposition 6.9.)

(5∗) In the situation of Example 6.18, take Y := C and B, Ψ ∈ R such that
0 < B < 1 and B + Ψ < 0. Then the Cauchy problem (6.19) for B + Ψ is
uniformly exponentially stable, while there exists r > 0 and a history function h
such that the delayed Cauchy problem (6.18) is not stable. (Hint: Show that for
every 0 < λ < B there exists r > 0 such that the map t 7→ eλt is a solution of
(6.18). See [Nag86, B.IV, Expl. 3.10] for more details. Compare also [Had78] and
[Hal77, p. 107].)

Notes and Further Reading to Section 6
Standard references for delay differential equations are the monographs by Hale
[Hal77], Hale–Verduyn Lunel [HVL93], Diekmann et al. [DGLW95], and [Wu96].
There, as in our discussion, the state space is a space of continuous functions.
For many applications, e.g., in control and approximation theory (cf. [CZ95],
[NY89], or [Kap86]), it is preferable to choose the state space Y × Lp([−r, 0], Y )
for 1 < p < ∞, which is reflexive if Y is reflexive, or even a Hilbert space if p = 2
and Y is a Hilbert space.

Among the many papers pursuing a functional-analytic approach to delay dif-
ferential equations or, more generally, to neutral equations, we quote [BHS83],
[BHT90], [IKT96], [KpZ86], and [TT95]. Semigroups arising from delay differen-
tial equations with unbounded delay, their regularity properties and their asymp-
totic behavior, were studied, e.g., by [DBKS84] and [DBKS85] (see also [Tan97]).

Our presentation follows closely [Nag86, B-IV.3] and [Ker86]. The aspect of
positivity and its influence on the stability of the solutions was first studied by
Kerscher–Nagel [KN84]. Lemma 6.15, which is essential to characterize delay
differential operators with negative spectral bound, is due to W. Arendt.

7. Semigroups for Volterra Equations

In many situations, the time change of a system is also caused by some
external force. This phenomenon gives rise to so-called inhomogeneous dif-
ferential equations and, in our context, to the following problem.
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7.1 Problem. Let
(
A,D(A)

)
be an operator on the Banach space X. For

a given initial value x ∈ X and a function f : R+ → X, find a function
u : R+ → X satisfying

(iACP)

{
u̇(t) = Au(t) + f(t) for t ≥ 0,
u(0) = x.

In analogy to Definition II.6.1, we call this the inhomogeneous abstract
Cauchy problem corresponding to A and f .

In what follows we assume the homogeneous problem (i.e., with f ≡
0) to be well-posed. Hence, by Theorem II.6.7, the operator

(
A,D(A)

)
should generate a strongly continuous semigroup

(
T (t)

)
t≥0. In this case,

the natural candidate for the solution of (iACP) is given by the variation
of parameters formula

(7.1) u(t) := T (t)x+
∫ t

0

T (t− s)f(s) ds for t ≥ 0.

A similar formula has already appeared in Chapter III in the context
of perturbation problems (e.g., Corollary III.1.7, Corollary III.3.2.(i), or
Corollary III.3.15.(i)).

a. Mild and Classical Solutions

It is a simple exercise in differentiation to show that if A is a bounded
operator and f is continuous, the function u defined by (7.1) is continuously
differentiable and satisfies (iACP). However, this function exists under more
general hypotheses, and as in Definition II.6.3, it is useful to introduce the
concept of a mild solution.

7.2 Definition. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0 on X and take x ∈ X and f ∈ L1(R+, X). Then the

function u(·) defined by

(7.2) u(t) := T (t)x+
∫ t

0

T (t− s)f(s) ds, t ≥ 0,

is called the mild solution of the corresponding (iACP). If a function u :
R+ → X is continuously differentiable with u(t) ∈ D(A) and satisfies
(iACP), we call it a classical solution.

It is not difficult to show that every classical solution of (iACP) is also
a mild solution (see Exercise 7.10.(1)). In particular, this implies that a
classical solution of (iACP) is always unique.
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In order to find mild, and then classical, solutions of (iACP), we adopt
the following strategy.

Find a new state space X and a new operator
(
A, D(A)

)
that generates

a semigroup
(
T(t)

)
t≥0 on X such that the (mild and classical) solutions

of (iACP) can be obtained from this semigroup using Propositions II.6.2
and II.6.4.

The fact that the data in (iACP) are the initial value x ∈ X and the
function f : R+ → X suggests that we should take as the new state space
a product of X with an X-valued function space on R+. For operators on
such product spaces we will use the matrix notation and the matrix rules
analogous to the scalar case (see [Eng97]).

We now give the precise definitions for such a construction.
Start with the generator

(
A,D(A)

)
of a strongly continuous semigroup(

T (t)
)
t≥0 on a Banach spaceX. Then the new space and the new semigroup

will be defined in the following manner.

7.3 Definition. On the Banach space

X := X × L1(R+, X),

we define operators

(7.3) T(t) :=
(
T (t) R(t)

0 S(t)

)
, t ≥ 0,

where
(
S(t)

)
t≥0 is the (left) translation semigroup on L1(R+, X) (see

Paragraph I.4.16) and R(t) : L1(R+, X) → X is defined as

(7.4) R(t)f :=
∫ t

0

T (t− s)f(s) ds for f ∈ L1(R+, X).

We leave it to the reader to verify that these operators are well-defined
and bounded on X. More interesting is the following property.

7.4 Proposition. The family
(
T(t)

)
t≥0 is a strongly continuous semigroup

on X.

Proof. Since
(
T (t)

)
t≥0 and

(
S(t)

)
t≥0 are both semigroups, we can show

that

T (t)R(s)f +R(t)S(s)

= T (t)
∫ s

0

T (s− r)f(r) dr +
∫ t

0

T (t− r)(S(s)f)(r) dr

=
∫ s

0

T (t+ s− r)f(r) dr +
∫ t+s

s

T (t+ s− r)f(r) dr

= R(t+ s)f for all t, s ≥ 0, f ∈ L1(R+, X).
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By the rules for matrix multiplication, this implies that
(
T(t)

)
t≥0 is a

semigroup. The strong continuity of
(
T(t)

)
t≥0 follows, since

lim
t↓0

R(t)f = 0

for every f ∈ L1(R+, X). �

In the next step we identify the generator of the semigroup
(
T(t)

)
t≥0.

7.5 Proposition. The generator
(
A, D(A)

)
of
(
T(t)

)
t≥0 is given by

(7.5)
A

(
x

f

)
:=
(
Ax+ f(0)

f ′

)
for(

x

f

)
∈ D(A) := D(A)×W1,1(R+, X),

or, using matrix notation,

A =
(
A δ0
0 d/ds

)
,

where δ0 is the point evaluation in 0 and d/ds denotes the generator of the
(left) translation semigroup

(
S(t)

)
t≥0 as defined in Paragraph II.2.10.

Proof. Rather than explicitly determining the generator A of
(
T(t)

)
t≥0,

we shall first compute its resolvent by using the integral representation
(1.14) from Chapter II. Indeed, for λ sufficiently large, this representation
yields

R(λ,A) :=
∫ ∞

0

e−λrT(r) dr =
(
R(λ,A) Q(λ)

0 R(λ, d/ds)

)
,

where

Q(λ)f : =
∫ ∞

0

e−λtR(t)f dt

=
∫ ∞

0

∫ t

0

e−λtT (t− r)f(r) dr dt

=
∫ ∞

0

∫ ∞

r

e−λtT (t− r)f(r) dt dr

=
∫ ∞

0

(∫ ∞

0

e−λtT (t) dt
)
e−λrf(r) dr

= R(λ,A)
∫ ∞

0

e−λrf(r) dr for f ∈ L1(R+, X).

On the other hand, direct computation shows that the operator λ−
(

A δ0
0 d/ds

)
is invertible, for large λ, with inverse

(7.6)
[
λ−

(
A δ0
0 d/ds

)]−1

=
(
R(λ,A) R(λ,A)δ0R(λ, d/ds)

0 R(λ, d/ds)

)
.
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Since
(
R(λ, d/ds)f

)
(s) =

∫∞
s

e−λ(t−s)f(t) dt (see Proposition 2 in Para-
graph II.2.10), we obtain the identity

(7.7) Q(λ) = R(λ,A)δ0R(λ, d
ds ).

This shows that the resolvents of A and
(

A δ0
0 d/ds

)
coincide. Therefore, the

generator of
(
T(t)

)
t≥0 is given by (7.5). �

Having collected this information on the semigroup
(
T(t)

)
t≥0 and its

generator A, we return to the original inhomogeneous problem. It turns
out that the first coordinate of

(
T(t)

)
t≥0 yields the (mild and classical)

solutions of (iACP). More precisely, let us write

U(t) =
(
u1(t)
u2(t)

)
:= T(t)

(
x
f

)
=
(
T (t)x+R(t)f

S(t)f

)
for
(
x
f

)
∈ X. Then, Proposition II.6.4 implies that U(·) is the mild solution

of the abstract Cauchy problem{
U̇(t) = AU(t) for t ≥ 0,

U(0) =
(
x
f

)
.

If
(
x
f

)
∈ D(A), this implies, for the first coordinate u1(·), that

u̇1(t) = Au1(t) + δ0u2(t) = Au1(t) + f(t),

which is precisely (iACP).
Therefore, we obtain classical solutions of (iACP) by choosing the first

coordinate of classical solutions of (ACP) corresponding to A.

7.6 Corollary. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0 on the Banach space X. If we take x ∈ D(A) and

f ∈ W1,1(R+, X), i.e.,
(
x
f

)
∈ D(A), then

u(t) := T (t)x+R(t)f

is the unique classical solution of (iACP).

We point out that the assumption
(
x
f

)
∈ D(A) is equivalent to the dif-

ferentiability of both coordinates of U(t) = T(t)
(
x
f

)
. On the other hand, we

need differentiability only of the first coordinate u1(·) in order to obtain
a classical solution of (iACP). However, the above considerations indicate
how we should proceed to find other sufficient conditions for the existence
of classical solutions:

Find different product spaces on which the operators T(t) defined in (7.3)
induce a strongly continuous semigroup and then identify the domain of
its generator.

We discuss one such case in which the “time regularity” f ∈ W1,1(R+, X)
is replaced by a “space regularity” f ∈ C0

(
R+, D(A)

)
.
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As usual, we start from a strongly continuous semigroup
(
T (t)

)
t≥0 with

generator
(
A,D(A)

)
on the Banach space X and denote by

(
T1(t)

)
t≥0 the

semigroup restricted to its first Sobolev space X1 := (D(A), ‖·‖A) (see Sec-
tion II.5.a). In addition, we have the (left) translation semigroup

(
S(t)

)
t≥0

on C0(R+, X1) with generator d/ds. Its extrapolated Sobolev space (see
Definition II.5.4) will be denoted by C−1

0 (R+, X1) and the corresponding
extrapolated translation semigroup by

(
S−1(t)

)
t≥0. Using these construc-

tions, we obtain the following new semigroups.

7.7 Proposition. The operators

T(t) :=
(
T1(t) R(t)

0 S(t)

)
, t ≥ 0,

with R(t)f :=
∫ t

0
T1(t − s)f(s) ds for f ∈ C0(R+, X1) form a strongly

continuous semigroup on X0 := X1 × C0(R+, X1). The corresponding ex-
trapolated Sobolev space is

X−1 = X × C−1
0 (R+, X1),

and the extrapolated semigroup
(
T−1(t)

)
t≥0 is given by

T−1(t) =
(
T (t) R−1(t)

0 S−1(t)

)
, t ≥ 0,

where the operators R−1(t) : C−1
0 (R+, X1) → X are the continuous exten-

sions of R(t) : C(R+, X1) → X1.

Proof. The first assertion is merely Proposition 7.4 with L1 replaced by
C0. Using Proposition 7.5 in combination with the proposition in Para-
graph II.2.3, it follows that the generator of

(
T(t)

)
t≥0 is precisely

A =
(
A δ0
0 d/ds

)
=
(
A 0
0 d/ds

)
+
(

0 δ0
0 0

)

on D(A) = X2×C1
0(R+, X1). Since the point evaluation δ0 is bounded from

C1
0(R+, X1) into X1, we see that A is a bounded perturbation of the “diag-

onal” operator
(

A 0
0 d/ds

)
. From Corollary III.1.4 we can then infer that the

extrapolated Sobolev space X−1 coincides with the extrapolated Sobolev
space associated to

(
A 0
0 d/ds

)
on X0. Clearly, this space is the product of X

(as the extrapolated space of X1) and C−1
0 (R+, X1). The remaining asser-

tions now follow by continuous extension to the extrapolation spaces. �
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Next, we consider the extrapolated semigroup
(
T−1(t)

)
t≥0 and observe

that the domain of its generator is the original space X0. Therefore, if we
take

(
x
f

)
∈ X0, we obtain

t 7→ U(t) := T(t)
(
x

f

)
as a differentiable function in X−1 = X × C−1

0 (R+, X1). In particular, its
first coordinate is differentiable in X and yields the classical solution of
(iACP). This is our final result. For a generalization we refer to Exer-
cise 7.10.(3).

7.8 Corollary. Let
(
A,D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)

)
t≥0 on the Banach space X. If we take x ∈ X1 := D(A)

and f ∈ C0(R+, X1), then

u(t) := T (t)x+R(t)f

is the unique classical solution of (iACP).

Having seen these two existence results, one might ask whether such
(time or space) regularity conditions on f are essential in producing classi-
cal solutions. The following is an example illustrating that, for general A,
the condition f ∈ C0(R+, X) is not sufficient for this purpose.

7.9 Example. Take
(
A,D(A)

)
to be the generator of a uniformly expo-

nentially stable semigroup
(
T (t)

)
t≥0 on a Banach space X and consider,

for some y ∈ X, the inhomogeneous term f given by

f(s) := T (s)y, s ≥ 0.

Then f ∈ C0(R+, X) and u(t) = R(t)f =
∫ t

0
T (t − s)T (s)y ds = tT (t)y is

the mild solution of (iACP) corresponding to x = 0. If, e.g., A generates a
group and y /∈ D(A), then this mild solution is differentiable only at t = 0.

7.10 Exercises. (1) Let A generate a strongly continuous semigroup (T (t))t≥0

on a Banach space X and assume that f ∈ L1(R+, X). Show that every classical
solution u : R+ → X of the corresponding inhomogeneous problem (iACP) sat-
isfies the variation of parameters formula (7.1). In particular, (iACP) admits at
most one classical solution. (Hint: For t > 0 consider the differentiable function
v : [0, t] → X defined by v(s) := T (t− s)u(s).)

(2) Let A generate a strongly continuous semigroup (T (t))t≥0 on a Banach space
X and assume that f ∈ L1(R+, X) ∩ C(R+, X) and take x ∈ X. Show that the
mild solution u : R+ → X of the corresponding inhomogeneous Cauchy problem
(iACP) is a classical solution if and only if u(·) ∈ C(R+, X1).

(3) Let (T (t))t≥0 be a strongly continuous semigroup with generator A on a
Banach space X, and take α, β ∈ (0, 1).
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(i) Consider the semigroup (T(t))t≥0 on the Banach space

X0 := Xα × C0(R+, Xα)

(see Proposition 7.7). Show that the abstract Hölder space of order β cor-
responding to (T(t))t≥0 is given by

Xβ = (Xα)β × hβ(R+, Xα).

(ii) Assume that α + β > 1. Show that for x ∈ (Xα)β and f ∈ hβ(R+, Xα)
the mild solution u(·) of the corresponding inhomogeneous abstract Cauchy
problem is already a classical solution. (Hint: Show that u(·) ∈ C(R+, (Xα)β)
and use Proposition II.5.35 to conclude that u(·) ∈ C(R+, X1).)

b. Optimal Regularity

In this subsection the underlying idea remains the same, but more sophis-
ticated techniques are employed in order to obtain classical solutions of
(iACP). In the first part we study inhomogeneities that take values in the
extrapolated Favard class F0. Hence, results from Section II.5.b will be
used extensively. In the second part, we require A to generate an analytic
semigroup in order to prove a so-called optimal (or maximal) regularity
result in the sense that u̇ and Au have the same regularity as f .

We start from a strongly continuous semigroup
(
T0(t)

)
t≥0 with generator

A0 on a Banach space X0 and construct the induced semigroups
(
Tn(t)

)
t≥0

on the corresponding Sobolev spacesXn, n ∈ Z (cf. Section II.5.a). Further-
more, we insert the Favard spaces Fn from Section II.5.b into this tower of
spaces. We already know from Definition 7.3 that the operators R(t) map
L1(R+, Xn) into Xn. In the following lemma we extend these operators to
L1(R+, Fn) → Xn.

7.11 Lemma. Under the previously discussed assumptions, define

R(t)f :=
∫ t

0

T−1(t− s)f(s) ds for t ≥ 0 and f ∈ L1(R+, F0).

Then the following properties hold.

(i) R(t) : L1(R+, F0) → X0.

(ii) ‖R(t)‖ ≤M for 0 ≤ t ≤ 1 and for some M > 0.

(iii) limt↓0 ‖R(t)f‖ = 0 for all f ∈ L1(R+, F0).

The proof is very similar to the proof of Corollary III.3.6 and is therefore
left as Exercise 7.18.

This lemma immediately implies the first part of the following proposi-
tion.
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7.12 Proposition. Under the above assumptions, define

X := X0 × L1(R+, F0) and T(t) :=
(
T0(t) R(t)

0 S(t)

)
for t ≥ 0.

Then
(
T(t)

)
t≥0 is a strongly continuous semigroup on X, and its generator

is

A :=
(
A−1 δ0
0 d/ds

)
with domain

D(A) :=
{(

x

f

)
∈ F1 ×W1,1(R+, F0) : A−1x+ f(0) ∈ X0

}
.

Proof. It remains to prove the characterization of the generator and the
coupling condition in D(A), which may seem strange at first glance. We
start from the space

Y := X−1 × L1(R+, X−1)

on which the operators T̃(t) :=
(

T−1(t) R(t)
0 S(t)

)
form a strongly continuous

semigroup by Proposition 7.4. Its generator is given by the matrix operator(
A−1 δ0

0 d/ds

)
with domain X0 × W1,1(R+, X−1) (use Proposition 7.5). Our

space X is now a continuously embedded subspace of Y, and
(
T(t)

)
t≥0 is

the restricted semigroup of
(
T̃(t)

)
t≥0. Therefore, Proposition II.2.3 tells us

that its generator is just the part of
(

A−1 δ0
0 d/ds

)
in X. Writing this explicitly

yields the above statement. �

As before, we use this semigroup to obtain classical solutions of (iACP).

7.13 Corollary. Using the above notation and for given x ∈ F1, f ∈
W1,1(R+, F0) such that

(7.8) A−1x+ f(0) ∈ X0,

there exists a unique classical solution of (iACP).

We close this discussion with two comments.
First, if

(
A,D(A)

)
is a Hille–Yosida operator (see Definition II.3.22) on

the Banach space X, it follows that

D(A) =: X0 ⊂ X ⊂ F0

(see Exercise II.5.23.(3)). Therefore, Corollary 7.13 holds for every x ∈
D(A) and f ∈ W1,1(R+, X) satisfying Ax+ f(0) ∈ X0.

Second, we recall that for the translation semigroup on Cub(R) the
extrapolated Favard space becomes F0 = L∞(R) (see Example II.5.22).
Therefore, Corollary 7.13 extends Corollary 7.6 considerably.
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Now we shall extend the results from Section 7.a in a different direction.
We derive solutions u of (iACP) such that, e.g., if f is continuous, then u̇
and Au are continuous as well. While this is always true for bounded A,
it does not hold in general (see Example 7.9). Therefore, we need further
conditions on the generator A. The standing assumption will be that A
generates an analytic semigroup, but even in this case the above regularity
property does not hold in general.

7.14 Example. Let X := `2(N) and consider the analytic multiplica-
tion semigroup T =

(
T (t)

)
t≥0 generated by the operator A(xn)n∈N :=

(−nxn)n∈N with maximal domain.
Take a nonzero function 0 ≤ g ∈ C(R+) with supp g ⊂ [1/2, 1]. Moreover,

let en be the nth unit vector in X, and define fn(t) := g
(
2n(1 − t)

)
· e2n

and sN :=
∑N

n=1 fn. Since the functions fn have disjoint supports, we have
‖sN‖∞ ≤ ‖g‖∞. A short computation shows that

AR(1)fn =
∫ 1

1/2

e−sg(s) ds · e2n =: c · e2n ,

and hence ‖AR(·)sN‖∞ ≥ ‖AR(1)sN‖X = c
√
N . Thus, there exists f ∈

C0(R+, X) such that u(t) := R(t)f is not a classical solution of (iACP).
This can be expressed by saying that the operator A does not have optimal
regularity.

As disappointing as this example might be, if we use the Favard and
abstract Hölder spaces from Section II.5.b, we obtain regularity results
that are “optimal” with respect to these spaces. To this end, we will use
the characterization of the spaces Fα and Xα given in Proposition II.5.13
for generators of analytic semigroups.

We start from with the product space

X := X0 × C0(R+, X0)

and the semigroup thereon defined by (cf. Definition 7.3)

T(t) :=
(
T (t) R(t)

0 S(t)

)
, t ≥ 0.

As in the proof of Proposition 7.7, we conclude that the extrapolated
Sobolev space is

X−1 := X−1 × C−1
0 (R+, X0),

while the extrapolated operators are given by

T−1(t) :=
(
T−1(t) R−1(t)

0 S−1(t)

)
, t ≥ 0.
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We will use the above intermediate Favard and Hölder spaces to find new(
T(t)

)
-invariant subspaces of X−1 leading to classical solutions of (iACP).

In order to do so, we seek regularizing properties of the operators

R−1(t) : C−1
0 (R+, X0) → X−1.

For each 0 < α < 1, the space C0(R+, Fα) is a subspace of C0(R+, X0).
Since (the continuous extension of) (I− d/ds) is a bijection from C0(R+, X0)
onto C−1

0 (R+, X0) with inverse R(1, d/ds), we can restrict the operators
R−1(t) to the subspace

C−1
0 (R+, Fα) := (I − d

ds )C0(R+, Fα)

and then obtain the following estimate.

7.15 Lemma. Let A be the generator of an analytic semigroup
(
T (t)

)
t≥0

on X with s(A) < 0. For each 0 < α < 1, the operators R−1(t) map
C−1

0 (R+, Fα) into Fα, and there exists a constant M such that

(7.9) ‖R−1(t)‖L(C−1
0 (R+,Fα),Fα) ≤M.

Proof. Since C∞0 (R+, Fα) is dense in C−1
0 (R+, Fα), it suffices to show that

‖R−1(t)g‖Fα
= ‖R(t)g‖Fα

≤M ‖g‖C−1
0 (R+,Fα) = M

∥∥R(1, d
ds )g

∥∥
C0(R+,Fα)

for each g ∈ C∞0 (R+, Fα) and t ≥ 0. Setting g := f − f ′ for some f ∈
C∞0 (R+, Fα), this becomes

‖R(t)f −R(t)f ′‖Fα
≤M ‖f‖C0(R+,Fα) for f ∈ C∞0 (R+, Fα).

Since we always have ‖R(t)f‖Fα
≤ c ‖f‖C0(R+,Fα) for some constant c, we

need to show only that

(7.10) ‖R(t)f ′‖Fα
≤ m ‖f‖C0(R+,Fα)

for each f ∈ C∞0 (R+, Fα) and some constant m.
First, observe that

R(t)f ′ =
∫ t

0

T (t− s)f ′(s) ds =
∫ t

0

AT (t− s)f(s) ds− T (t)f(0) + f(t)

for t ≥ 0. Since we have ‖f(t)‖Fα
≤ ‖f‖C0(R+,Fα) and ‖T (t)f(0)‖Fα

≤
m0 ‖f‖C0(R+,Fα), it remains to find a constant m̃ such that

(7.11)
∥∥∥∥∫ t

0

AT (t− s)f(s) ds
∥∥∥∥

Fα

≤ m̃ ‖f‖C0(R+,Fα) .
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We use Theorem II.4.6.(c) and the Favard norm [] · []Fα
for analytic semi-

groups introduced in Proposition II.5.13 in order to estimate

∥∥A2T (r)f(s)
∥∥ = ‖AT (r/2)AT (r/2)f(s)‖ ≤ m1

2
r ‖AT (r/2)f(s)‖

= m1
2
r ( r

2 )α−1
∥∥( r

2 )1−αAT (r/2)f(s)
∥∥

≤ m122−αrα−2[]f []C0(R+,Fα)

for all r, s ≥ 0 and an appropriate constant m1. Therefore, we obtain∥∥∥∥r1−αAT (r)
∫ t

0

AT (t− s)f(s) ds
∥∥∥∥ =

∥∥∥∥r1−α

∫ t

0

A2T (t+ r − s)f(s) ds
∥∥∥∥

≤ m122−αr1−α

∫ t

0

(t+ r − s)α−2 ds []f []C0(R+,Fα)

=
m122−α

1− α
r1−αrα−1

(
1−

(
t+r
r

)α−1
)
[]f []C0(R+,Fα)

≤ m122−α

1− α
[]f []C0(R+,Fα).

Since this last constant is independent of t, we obtain a uniform estimate
for the norm of R−1(t) as an operator from C0(R+, Fα) into Fα. �

This lemma immediately implies that the operators

T−1(t) :=
(
T (t) R−1(t)

0 S−1(t)

)
, t ≥ 0,

form a uniformly bounded semigroup on Fα ×C−1
0 (R+, Fα). However, this

semigroup need not be strongly continuous. To obtain strong continuity,
we must restrict our operators to the abstract Hölder spaces Xα.

7.16 Proposition. Let A generate an analytic semigroup
(
T (t)

)
t≥0 on X

with s(A) < 0. For 0 < α < 1, the operators

Tα(t) :=
(
T (t) R−1(t)

0 S−1(t)

)
, t ≥ 0,

form a strongly continuous semigroup on

Yα := Xα × C−1
0 (R+, Xα),

whose generator is given by

A :=
(
A δ0
0 d/ds

)
on D(A) := Xα+1 × C0(R+, Xα).
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Proof. By Theorem II.5.15.(ii),
(
T (t)

)
t≥0 induces a strongly continuous

semigroup on Xα, while the translation semigroup
(
S(t)

)
t≥0 can be contin-

uously extended to C−1
0 (R+, Xα). Since Xα is the ‖·‖Fα

-closure of X1 (use
Proposition II.5.14) and since R(t) maps C∞0 (R+, X), hence C∞0 (R+, Xα),
into X1, we conclude from Lemma 7.15 that the operators R−1(t) map
C−1

0 (R+, Xα) into Xα. The estimate (7.9) then implies that the opera-
tors Tα(t) are uniformly bounded. Finally, we obtain strong continuity of(
Tα(t)

)
t≥0, since limt↓0 ‖R(t)f‖1 = 0 for every f ∈ C∞0 (R+, X) implies

lim
t↓0

‖R−1(t)f‖Fα
= 0

for every f ∈ C−1
0 (R+, Xα). The generator of

(
Tα(t)

)
t≥0 is then found

by taking the part of the generator of
(
T−1(t)

)
t≥0 in Yα (use Proposi-

tion II.2.3). �

Interpreting this semigroup result in terms of the inhomogeneous Cauchy
problem, we obtain optimal space regularity in the following sense.

7.17 Corollary. Let A generate an analytic semigroup
(
T (t)

)
t≥0 on a

Banach space X and let 0 < α < 1. If one takes x ∈ Xα+1 and f ∈
C0(R+, Xα), then (iACP) has a unique classical solution u ∈ C1

0(R+, Xα)∩
C(R+, Xα+1).

The proof is obtained by taking as solution u the first coordinate of

t 7→ T−1(t)
(
x
f

)
for
(
x
f

)
∈ D(A).

7.18 Exercise. Prove Lemma 7.11. (Hint: For f ∈ L1(R+, F0) take an approx-

imating sequence (fn)n∈N ⊂ C1
c(R+, F0) and use arguments analogous to those

used in the proof of Corollary III.3.6 (with Bfn replaced by fn) to prove (i).

Assertion (ii) follows from an estimate analogous to (3.18) in Chapter III. Fi-

nally, due to the estimate in (ii) it suffices to verify (iii) on the dense subspace

C1
c(R+, F0).)

c. Integro-Differential Equations

We now return to the situation studied in Section 7.a and assume
(
A,D(A)

)
to be the generator of a strongly continuous semigroup

(
T (t)

)
t≥0 on the

Banach space X. We then know from Propositions 7.4 and 7.5 that the
operator

A :=
(
A δ0
0 d/ds

)
with D(A) := D(A)×W1,1(R+, X)
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generates the strongly continuous semigroup
(
T(t)

)
t≥0 :=

(
T (t) R(t)

0 S(t)

)
t≥0

on
X := X×L1(R+, X). The operator

(
A, D(A)

)
will now be perturbed in such

a way that it generates a new semigroup
(
S(t)

)
t≥0. From this semigroup

we will obtain solutions of a Volterra integro-differential equation. To this
end, we introduce the following operators.

7.19 Definition. Take a(·) ∈ W1,1(R+,C) and define

Bx := a(·)Ax for x ∈ D(A),

B
(
x
f

)
:=
(

0
Bx

)
for

(
x
f

)
∈ D(B) := D(A),

C
(
x
f

)
:=
(
Ax+f(0)
Bx+f ′

)
for

(
x
f

)
∈ D(C) := D(A).

As before, we will write these operators in matrix form as

B =
(

0 0
B 0

)
and C =

(
A δ0
0 d/ds

)
+
(

0 0
B 0

)
= A + B.

Since ‖Bx‖W1,1(R+,X) =
(∫∞

0
|a(s)| ds+

∫∞
0
|a′(s)| ds

)
‖Ax‖ ≤ c ‖x‖A for

x ∈ D(A), we see that B is bounded from D(A) into W1,1(R+, X) (for
the respective graph norms). From this we can immediately make a simple
observation that will be the key to the subsequent argument.

7.20 Lemma. The operator B maps D(A) into D(A) and is bounded with
respect to the graph norm.

We now apply Corollary III.1.5 to the operator C = A + B.

7.21 Proposition. The operator C with domain D(C) := D(A) generates
a strongly continuous semigroup

(
S(t)

)
t≥0 on X. For each x ∈ D(A) and

f ∈ W1,1(R+, X), we have

(7.12) S(t)
(

x
f

)
= T(t)

(
x
f

)
+
∫ t

0

T(t− s)CS(s)
(

x
f

)
ds.

Proof. As noted already above, the generation property follows from
Corollary III.1.5. In addition, formula (7.12) is the variation of parameters
formula (IE) from Exercise III.1.17.(4). �

Having obtained the semigroup
(
S(t)

)
t≥0, we know that its orbits t 7→

S(t)
(

x
f

)
are differentiable for

(
x
f

)
∈ D(A). It is again the first coordinate

of these orbits that satisfies an interesting equation.
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7.22 Corollary. Under the above assumptions and for each x ∈ D(A) and
f ∈ W1,1(R+, X), there exists a unique (classical) solution u ∈ C1(R+, X)∩
C
(
R+, D(A)

)
satisfying the Volterra integro-differential equation

(IDE)

 u̇(t) = Au(t) +
∫ t

0

a(t− s)Au(s) ds+ f(t), t ≥ 0,

u(0) = x.

Proof. For
(
x
f

)
∈ D(A) we write

(
u(t)
F (t)

)
:= S(t)

(
x
f

)
∈ X × L1(R+, X). By

general semigroup theory (see Proposition II.6.2), it follows that u and F
are continuously differentiable and that u satisfies

(7.13) u̇(t) = Au(t) + F (t)(0) for t ≥ 0.

On the other hand, (7.12) becomes(
u(t)
F (t)

)
=
(
T (t)x+R(t)f

S(t)f

)
+
∫ t

0

(
T (t− s) R(t− s)

0 S(t− s)

)(
0 0
B 0

)(
u(s)
F (s)

)
ds

=
(
T (t)x+R(t)f

S(t)f

)
+
∫ t

0

(
R(t− s)Bu(s)
S(t− s)Bu(s)

)
ds.

In particular,

(7.14) F (t) = S(t)f +
∫ t

0

a(·+ t− s)Au(s) ds,

whence

(7.15) F (t)(0) = f(t) +
∫ t

0

a(t− s)Au(s) ds for t ≥ 0.

After substituting (7.15) into (7.13), we obtain (IDE). The proof of the
uniqueness of the solution u is left as Exercise 7.26.(3). �

Having determined solutions of (iACP) and (IDE), we now attempt to
investigate the qualitative behavior of these solutions. However, we will
remain within our semigroup setting and study the qualitative behavior of
the semigroups

(
T(t)

)
t≥0 and

(
S(t)

)
t≥0 instead. Due to the results from

Chapter V, we know that in order to achieve this goal it is essential to
determine the spectra of the generators A and C. In the case where A =(

A δ0
0 d/ds

)
, this is quite simple.
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7.23 Lemma. With the above definitions, one has

(7.16) σ(A) ⊂ σ(A) ∪ {λ ∈ C : Reλ ≤ 0}.

Proof. Let λ ∈ ρ(A) with Reλ > 0. Then we have seen in (7.6) that the
resolvent of A is

(7.17) R(λ,A) =
(
R(λ,A) R(λ,A)δ0R(λ, d/ds)

0 R(λ, d/ds)

)
∈ L(X).

�

From (7.7) we recall that for λ ∈ ρ(A) with Reλ > 0, we have

R(λ,A)δ0R(λ, d
ds )f = R(λ,A)

(∫ ∞

0

e−λτf(τ) dτ
)

for f ∈ L1(R+, X).

Since C is a perturbation of A by the relatively bounded operator B, we
try to obtain the resolvent of C from the resolvent of A. In fact, since
B ∈ L

(
XA

1

)
, we can write

λ− C = λ−A−B = (λ−A)[1−R(λ,A)B]

as long as λ ∈ ρ(A). For such λ, the product on the right-hand side is an
invertible operator if and only if its second factor is invertible (in D(A)).
This simple observation yields the following lemma.

7.24 Lemma. For λ ∈ ρ(A) with Reλ > 0, one has

(7.18) λ ∈ σ(C) ⇐⇒ 1 ∈ σ
(
R(λ,A)B

)
.

This equivalence is useful, since we can compute R(λ,A)B. In fact, for
λ ∈ ρ(A) and Reλ > 0, it follows from (7.17) that

R(λ,A)B =
(
R(λ,A) R(λ,A)δ0R(λ, d/ds)

0 R(λ, d/ds)

)(
0 0
B 0

)
=
(
R(λ,A)δ0R(λ, d/ds)B 0

R(λ, d/ds)B 0

)
,

which is a bounded operator on D(A)×W1,1(R+, X). Observe that this is
a triangular, bounded operator matrix on D(A), and its spectrum is the
union of the spectra of its diagonal entries. Therefore, (7.18) is equivalent
to the condition

(7.19) 1 ∈ σ
(
R(λ,A)δ0R(λ, d

ds )B
)

in D(A).

This operator, defined onD(A), can be computed using (7.7), and we obtain

R(λ,A)δ0R(λ, d
ds )Bx =

(∫ ∞

0

e−λτa(τ) dτ
)
R(λ,A)Ax
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for x ∈ D(A). Since R(λ,A)A ⊂ AR(λ,A) = λR(λ,A) − I, the above
operator has a unique continuous extension Q(λ) to X, and

(
1−Q(λ)

)
is

invertible in X if and only if it is invertible in D(A). So, (7.19) becomes

1 ∈ σ
((∫ ∞

0

e−λτa(τ) dτ
)
AR(λ,A)

)
,

or

(7.20)
(∫ ∞

0

e−λτa(τ) dτ
)−1

∈ σ
(
AR(λ,A)

)
.

In the final step, we use the Spectral Mapping Theorem for the Resolvent
IV.1.13, and obtain (for unbounded A)

σ
(
AR(λ,A)

)
=
{ µ

λ− µ
: µ ∈ σ(A)

}
∪ {−1}.

This yields the following characteristic equation for the spectrum of C.

7.25 Proposition. Under the above assumptions and for λ ∈ ρ(A), Reλ >
0, one has

λ ∈ σ(C) ⇐⇒ 1 =
∫ ∞

0

e−λτa(τ) dτ
µ

λ− µ
for some µ ∈ σ(A) ∪ {∞}.

At this point we leave it to the reader to, e.g., estimate the spectral
bound s(C) and then draw conclusions, using results from Chapter IV and
Chapter V, on the asymptotic behavior of the solutions of (IDE).

7.26 Exercises. (1) Show that a function u ∈ C(R+, X) is a mild solution of

(iACP) with f ∈ L1(R+, X) if and only if
∫ t

0
u(s) ds ∈ D(A) and

u(t) = x + A

∫ t

0

u(s) ds +

∫ t

0

f(s) ds for t ≥ 0.

Compare this to Definition II.6.3.

(2) Show that in Definition 7.2 and in the subsequent results the space L1(R+, X)
can be replaced by a Banach space E(R+, X) satisfying the following properties.

(i) E(R+, X) is a subspace of L1
loc(R+, X).

(ii) E(R+, X) is left translation-invariant.

(iii) E(R+, X) is a space on which the left translation semigroup is strongly
continuous.

Find concrete examples of such spaces.

(3) Show that the solution u of (IDE) obtained in Corollary 7.22 is unique. (Hint:

Show that for a solution u of (IDE) and F (t) defined by (7.14) the map t 7→
(

u(t)
F (t)

)
is a solution of the abstract Cauchy problem with initial value

(
x
f

)
associated to

C. Use now Proposition II.6.2 to obtain uniqueness of u.)
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Notes and Further Reading to Section 7
The existence of mild and classical solutions of (iACP) was already known to
Phillips [Phi53] and the results stated in Corollary 7.6 and Corollary 7.8 are
proved in most books on semigroup theory (e.g., [Gol85, Sec. II.1] or [Paz83, Sec. 4.2]).
The idea to reduce inhomogeneous Cauchy problems and Volterra equations to an
abstract Cauchy problem on a product space goes back (at least) to Miller [Mil74].
It has been applied by many authors in various forms (e.g., Chen, Grimmer,
Desch–Schappacher; see [CG80], [DS85], [DGS88]), but the use of extrapolation
spaces is taken from [NS93]. For more information on Volterra integro-differential
equations see the monograph by Prüss [Prü93].

The result stated in Corollary 7.13 is valid also for Hille–Yosida operators and
was proved first in [DPS85], [DPS87], and then, with our method, in [NS93].
Example 7.14 is taken from [CHA+87, Exer. 6.19].

The optimal space regularity from Corollary 7.17 is due to [DPG79]. An analo-
gous time regularity result is in [Sin85], from where the estimates from Lemma 7.15
are taken. For a detailed treatment of this subject we refer to [Lun95].

Finally, we refer to [Eng97] for a systematic treatment of (unbounded) operator
matrices including the characterization of their spectra as in Lemma 7.24.

8. Semigroups for Control Theory

Control theory in infinite-dimensional spaces is a relatively new field and
started blooming only after a well-developed semigroup theory was at hand.
We therefore present a short introduction to this field and discuss some
typical applications to the control of the heat and the wave equations. For
more information we refer to the recent monographs [BDPDM93], [CZ95],
and [Zab92].

In the following, we will study “controlled” abstract Cauchy problems of
the form

(cACP)


ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) for t ≥ 0,
x(0) = x0.

Here, we assume that the system operator A generates a strongly contin-
uous semigroup

(
T (t)

)
t≥0 on the state Banach space X, B is a bounded

control operator from the control Banach space U to X, u : R+ → U is a
locally integrable control function (also called the input), C is a bounded
observation operator from X to the observation Banach space Y , the func-
tion y : R+ → Y is the observation (or output) of the system, and x0 ∈ X
is its initial state.

We denote the abstract control system associated to the controlled Cauchy
problem (cACP) by Σ(A,B,C). If there is no observation operator C or no
control operator B, we will write Σ(A,B,−) and Σ(A,−, C), respectively.
Moreover, it will be convenient to write x(t;x0, u) for the state of the con-
trol system Σ(A,B,C) at time t for the initial value x0 and the control
function u.
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Given a control system Σ(A,B,C), we address the following problems.

8.1 Problems. (i) For given states x0, x1 in X and time t > 0, find a
control u0 such that the system Σ(A,B,C) at time t reaches x1, i.e., such
that x(t;x0, u0) = x1.
(ii) Recover the initial state x0 of (cACP) from the knowledge of the ob-
servation y(·) on some time interval [0, t].
(iii) Find a feedback operator F from X to U such that (cACP) with feed-
back control u(·) := Fx(·) is stable, i.e., such that A + BF generates a
stable semigroup.

These three problems correspond to the concepts of
(i) controllability ,
(ii) observability , and
(iii) stabilizability

of Σ(A,B,C), respectively, and will first be illustrated by two concrete
examples.

8.2 Example. (Heat Equation). We consider a hot bar of length one that
is insulated at its endpoints s = 0, 1. We assume that the bar can be
heated around some point s0 ∈ (0, 1) and that we can measure its average
temperature around some other point s1 ∈ (0, 1). Denote by x(s, t) the
temperature at position s ∈ [0, 1] and time t ≥ 0 and by x0(·) the initial
temperature profile. If we now rescale all physical constants to one, then
this model can be described by the equations

(HE)



∂x(s, t)
∂t

=
∂2x(s, t)
∂s2

+ b(s)u(t) for t ≥ 0, s ∈ [0, 1],

∂x(0, t)
∂s

= 0 =
∂x(1, t)
∂s

for t ≥ 0,

x(s, 0) = x0(s) for s ∈ [0, 1],

y(t) =
∫ 1

0

c(s)x(s, t) ds for t ≥ 0.

Here b and c represent the “shaping” functions around the “control point”
s0 and the “sensing point” s1, respectively, i.e., we may take

(8.1)
b(s) :=

1
2ε0

1 [s0−ε0,s0+ε0](s),

c(s) :=
1

2ε1
1 [s1−ε1,s1+ε1](s)

for ε0, ε1 > 0, where 1 J denotes the characteristic function of a subset
J ⊂ [0, 1].
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In order to transform (HE) into an abstract control problem of the form
(cACP), we choose the state space X := L2[0, 1], the control space U := C,
and the observation space Y := C, and define the operators

(8.2)

A := d2

ds2 , D(A) :=
{
x ∈ H2[0, 1] : x′(0) = 0 = x′(1)

}
,

B ∈ L(U,X), Bu := b(·)u,

C ∈ L(X,Y ), Cx :=
∫ 1

0

c(s)x(s) ds.

Then A is self-adjoint with σ(A) ⊂ (−∞, 0] (see Exercise II.4.12.(12)),
hence generates an analytic semigroup

(
T (t)

)
t≥0 on X. Moreover, the norm

of the state x(t) := x(·, t) ∈ X can be interpreted as the energy of the
system at time t.

The questions of controllability, observability and stabilizability raised
above read now as follows.

(i) Is it possible to steer an arbitrary initial temperature profile by a
suitable control function u0 (approximately) to a given profile x1,
e.g., to x1 ≡ 0?

(ii) Is it possible to determine the initial temperature profile x0 by mea-
suring the temperature over some time interval around some point
s1?

(iii) Is it possible to find a feedback operator F ∈ L(X,U) such that the
energy of the feedback system governed by A+BF converges to zero
as t→∞?

8.3 Example. (Wave Equation). We now consider a vibrating string of
length one clipped at the endpoints s = 0, 1. We assume that we can apply
an external force around some point s0 ∈ (0, 1) and that we can measure
the average displacement around s1 ∈ (0, 1). Denote by x(s, t) the vertical
displacement from the zero stage at position s ∈ [0, 1] and time t ≥ 0,
and by x0(·), x1(·) the initial displacement and velocity profiles. Then this
model can be described by the equations

(WE)



∂2x(s, t)
∂t2

=
∂2x(s, t)
∂s2

+ b(s)u(t) for t ≥ 0, s ∈ [0, 1],

x(0, t) = 0 = x(1, t) for t ≥ 0,

x(s, 0) = x0(s),
∂x(s, 0)
∂s

= x1(s) for s ∈ [0, 1],

y(t) =
∫ 1

0

c(s)x(s, t) ds for t ≥ 0.

We again rescaled all physical constants to one and took the shaping func-
tions b and c from (8.1) around the control point s0 and the sensing point
s1, respectively.
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In order to transform (WE) into an abstract control problem of the form
(cACP), we first rewrite it as a controlled abstract second-order Cauchy
problem of the form

(cACP2)


ẍ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) for t ≥ 0,
x(0) = x0, ẋ(0) = x1.

Here, A denotes the Laplace operator

A := d2

ds2 , D(A) :=
{
x ∈ H2[0, 1] : x(0) = 0 = x(1)

}
on the space X := L2[0, 1], U and Y are one-dimensional spaces, and B ∈
L(U,X), C ∈ L(X,Y ) are defined as in (8.2). Following the ideas of
Section 3, we now transform the second-order problem (cACP2) into a
first-order system.

To this end, we first observe that −A is self-adjoint and positive definite
onX. Hence, there exists a unique positive definite square root (−A)1/2 with
domain D

(
(−A)1/2

)
= H1

0[0, 1] :=
{
x ∈ H1[0, 1] : x(0) = 0 = x(1)

}
; see Ex-

ercise II.5.36.(4). We then introduce the Hilbert space X := D
(
(−A)1/2

)
×X

with the inner product((
v1
v2

) ∣∣∣ (w1
w2

))
:=
(
(−A)1/2v1

∣∣ (−A)1/2w1

)
+ (v2 |w2),

where ( · | · ) denotes the inner product in X. With this notation, (cACP2)
is described by the control system Σ(A,B,C) on the state space X with
control space U , observation space Y , initial value X0 :=

(
x0
x1

)
, and

(8.3)
A :=

(
0 I
A 0

)
, D(A) := D(A)×D

(
(−A)

1/2
)
,

B :=
(

0
B

)
∈ L(U,X), C := (C, 0) ∈ L(X, Y ).

It is now easy to verify that ±A are dissipative and that A is invertible.
Hence, by the Lumer–Phillips Theorem II.3.15, A generates a group of
contractions, i.e., a unitary group

(
T(t)

)
t∈R on X.

As in the previous example, we can interpret the norm of X(t) ∈ X, i.e.,
of the solution of the control problem (cACP) associated with Σ(A,B,C)
at time t ≥ 0, as the energy of the system at time t.

The questions of controllability, observability, and stabilizability raised
above now read as follows.

(i) Is it possible to steer an arbitrary initial displacement/velocity profile
by a suitable control u0 (approximately) to a given profile, e.g., to
the rest position?

(ii) Is it possible to determine the initial profile of the string by measuring
the displacement over some time interval around some point s1?

(iii) Is it possible to find a feedback operator such that the energy of the
resulting feedback system tends to zero?
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The questions (i)–(iii) raised in Examples 8.2 and 8.3 will be the guide-
lines for the theory we are going to develop now.

a. Controllability

We first recall from Section 7.a that the solution x(·) of (cACP), if it exists,
is given by the variation of parameters formula

x(t) = x(t;x0, u) = T (t)x0 +
∫ t

0

T (t− r)Bu(r) dr

= x(t;x0, 0) + x(t; 0, u), t ≥ 0,

cf. Problem 7.1. Since for unbounded A classical solutions of (cACP) re-
main in D(A) 6= X for all times, we cannot steer the associated control
system Σ(A,B,−) to every given state x1 ∈ X. For this reason, we base
the concept of controllability on the notion of mild solutions introduced in
Definition 7.2. To this end, fix some p ≥ 1 and define for a control system
Σ(A,B,−) with state space X and control space U the controllability map
Bt ∈ L

(
Lp
(
[0, t], U

)
, X
)

by

Bt[u(·)] :=
∫ t

0

T (t− r)Bu(r) dr, u(·) ∈ Lp
(
[0, t], U

)
,

where
(
T (t)

)
t≥0 denotes the semigroup generated by A on the Banach

space X.

8.4 Definition. The system Σ(A,B,−) is called exactly p-controllable on
[0, t] if rg Bt = X.

Hence, Σ(A,B,−) is exactly p-controllable on [0, t] if every state x1

can be reached from the initial state 0 by some suitable control u0 ∈
Lp
(
[0, t], U

)
. However, since for given states x0, x1 ∈ X, we can find

a control u1 ∈ Lp
(
[0, t], U

)
such that x(t; 0, u1) = x1 − x(t;x0, 0), i.e.,

x(t;x0, u1) = x1, this is equivalent to the fact that every state x1 can be
reached from every initial state x0.

From the following proposition we can see that in infinite dimensions the
concept of exact controllability is too strong.

8.5 Proposition. If the control operator B ∈ L(U,X) for a given con-
trol system Σ(A,B,−) is compact, then the controllability operator Bt ∈
L
(
Lp
(
[0, t], U

)
, X
)

is compact for all p ≥ 1 and t > 0. In particular, if
dimX = ∞, then Σ(A,B,−) is never exactly p-controllable on [0, t].



458 Chapter VI. Semigroups Everywhere

Proof. In order to show that Bt is compact for all t > 0 and p > 1,
take n ∈ N and put sk := kt/n, k = 0, 1, . . . , n. Next, define operators
Kn ∈ L

(
Lp
(
[0, t], U

)
, X
)

by

Kn[u(·)] :=
n∑

k=1

T (sk)B
∫ sk

sk−1

u(s) ds, u(·) ∈ Lp
(
[0, t], U

)
.

SinceB is compact,Kn is compact as well. We now show that limn→∞Kn =
K with respect to the operator norm, where K is given by

K[u(·)] :=
∫ t

0

T (s)Bu(s) ds, u(·) ∈ Lp
(
[0, t], U

)
.

In fact, by Proposition A.3 there exists for given ε > 0 an integer n0 ∈ N
such that ‖[T (s) − T (sk)]B‖ < ε for all s ∈ [sk−1, sk], k = 0, 1, . . . , n,
whenever n ≥ n0. Using this, we conclude that

‖Knu(·)−Ku(·)‖ =
∥∥∥ n∑

k=1

∫ sk

sk−1

[T (s)− T (sk)]Bu(s) ds
∥∥∥

≤
n∑

k=1

∫ sk

sk−1

∥∥[T (s)− T (sk)]B
∥∥ · ‖u(s)‖ ds

≤ ε

∫ t

0

‖u(s)‖ ds ≤ εt
1/q‖u‖Lp for all n ≥ n0

and for 1/p + 1/q = 1. This shows that the operator K is compact; hence
Bt is compact as well. In particular, if Bt is surjective, the induced map
B̂t : Lp([0,t],U)/ker Bt → X is compact and invertible. Since this implies
dimX < ∞, a control system Σ(A,B,−) with infinite-dimensional state
space X is never exactly p-controllable for a compact control operator B.

�

In many applications, e.g., in Examples 8.2 and 8.3, the control space U
is finite-dimensional, and the above result implies that these systems will
never be exactly controllable. For this reason, we introduce the following
weaker concepts.

8.6 Definition. For fixed 1 ≤ p <∞, the system Σ(A,B,−) is called

(i) approximately p-controllable on [0, t] if rg Bt = X; it is approximately
p-controllable if

⋃
t>0 rg Bt = X;

(ii) exactly p-null controllable on [0, t] if rg Bt ⊃ rg T (t).

Hence, Σ(A,B,−) is approximately p-controllable on [0, t] if for all x0,
x1 ∈ X and all ε > 0 there exists uε ∈ Lp

(
[0, t], U

)
such that ‖x1 −

x(t;x0, uε)‖ < ε. On the other hand, Σ(A,B,−) is exactly p-null control-
lable if every initial value can be steered to zero by means of a suitable
control function u.
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We are now interested in conditions characterizing these controllability
concepts for a given system Σ(A,B,−). The idea is to apply Lemma B.13
to the controllability operator Bt. To do so we calculate its adjoint as-
suming that X and U are both reflexive. Then, for 1 < p < ∞, the
space Lp

(
[0, t], U

)
is reflexive as well, and its dual is Lq

(
[0, t], U ′

)
with

1/p + 1/q = 1, see [DU77, Chap. IV, Thm.1].

8.7 Lemma. If X and U are reflexive Banach spaces, then the adjoint of
the controllability operator Bt is given by

B′
t ∈ L

(
X ′,Lq

(
[0, t], U ′

))
, B′

t x
′ := B′T (t− ·)′x′ for x′ ∈ X ′.

The simple proof of this result is left as Exercise 8.16.(10).
Applying Lemma B.13 to I and Bt, or T (t) and Bt, respectively, we

easily obtain the following characterizations of the above controllability
conditions.

8.8 Theorem.4 Let Σ(A,B,−) be a control system with reflexive state
space X and reflexive control space U , and assume that 1 < p <∞.

(i) The following conditions are equivalent.

(a) Σ(A,B,−) is exactly p-controllable on [0, t].

(b) There exists γ > 0 such that

γ ‖B′T ′(·)x′‖Lq([0,t],U ′) ≥ ‖x′‖X′ for all x′ ∈ X ′,

where 1/p + 1/q = 1.

(ii) The following conditions are equivalent.

(a) Σ(A,B,−) is approximately p-controllable on [0, t].

(b)
⋂t

s=0 kerB′T (s)′ = {0}.
(iii) The following conditions are equivalent.

(a) Σ(A,B,−) is exactly p-null controllable on [0, t].

(b) There exists γ > 0 such that

γ ‖B′T ′(·)x′‖Lq([0,t],U ′) ≥ ‖T (t)′x′‖X′ for all x′ ∈ X ′,

where 1/p + 1/q = 1.

4 In the case that X is a Hilbert space, this and the following results referring to
Banach space adjoints “ ′ ” are also valid for Hilbert space adjoints “ ∗ ”.
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8.9 Example. (Heat Equation). We continue the discussion of the con-
trolled heat equation from Example 8.2. To this end, we first observe that
the resolvent of A is compact, and hence σ(A) = Pσ(A). Moreover, there
exists an orthonormal basis {en : n ∈ N0} of eigenvectors of A given by

en(s) :=
{

1 if n = 0,√
2 cos(nπs) if n ∈ N,

with corresponding eigenvalues λn := −π2n2 for n ∈ N0. If we identify
x ∈ X with the sequence

(
(x | en)

)
n∈N0 ∈ `2(N0) of its Fourier coefficients,

we can interpret A either as the multiplication operator M(λn) on `2(N0),
or, equivalently, as

(8.4)
A =

∞∑
n=0

λn( · | en) en,

D(A) =
{
x ∈ X :

(
λn(x | en)

)
n∈N ∈ `2(N0)

}
.

The semigroup
(
T (t)

)
t≥0 generated by A consists of the multiplication

operators M(eλnt) on `2(N0), or

(8.5) T (t) =
∞∑

n=0

eλnt( · | en) en,

while the resolvent of A, for λ ∈ ρ(A) = C \ {λn : n ∈ N0}, is the operator
M( 1

λ−λn
) on `2(N0), or

(8.6) R(λ,A) =
∞∑

n=0

1
λ− λn

( · | en) en.

Using these facts, we now show that the controlled heat equation is not
exactly 2-controllable, even if we replace the control operator in (8.2) by
an arbitrary bounded operator B on some (possibly infinite-dimensional)
control space U . More generally, we prove the following result.

Proposition. If A is a self-adjoint generator with compact resolvent on an
infinite-dimensional Hilbert space X, then the control system Σ(A,B,−) is
not exactly 2-controllable on arbitrary [0, t] for an arbitrary control Hilbert
space U and an arbitrary control operator B ∈ L(U,X).

Proof. As above, the assumptions imply that the semigroup generated by
A is given by (8.5), where Pσ(A) = {λn : n ∈ N0} ⊂ R and {en : n ∈ N0}
is an orthonormal basis consisting of the corresponding eigenvectors. More-
over, the compactness of R(λ,A) implies limn→∞ λn = −∞ and therefore

lim
n→∞

‖T (t)en‖ = lim
n→∞

‖etλnen‖ = 0 for all t > 0.
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Using the fact that T (t) is self-adjoint, Lebesgue’s dominated convergence
theorem then implies

lim
n→∞

∫ t

0

‖B∗T ∗(s)en‖2 ds = 0.

Hence condition (b) from Theorem 8.8.(i) is not be satisfied for arbitrary
γ > 0, independent of B ∈ L(U,X) and t > 0. �

Despite this negative result, one can show that under the assumptions
of the previous proposition the control system Σ(A,B,−) is exactly 2-null
controllable, provided that B ∈ L(U,X) is surjective; cf. Exercise 8.16.(5).

8.10 Example. (Wave Equation). For the controlled wave equation from
Example 8.3 the situation is quite different. In fact, we have the following
general result.

Proposition. Let A be a self-adjoint, negative definite operator on a
Hilbert space X with compact resolvent. If the control operator B ∈
L(U,X) defined on the Hilbert space U is surjective, then the control sys-
tem Σ(A,B,−) defined in (8.3) is exactly 2-controllable on arbitrary [0, t].

Proof. Using the notation from Example 8.3, we first observe that the
operator

S :=
(

(−A)−1/2 i(−A)−1/2

iI I

)
from the Hilbert space X̃ := X ×X to X := D

(
(−A)1/2

)
×X is bounded

and invertible with bounded inverse

S−1 :=
1
2

(
(−A)1/2 −iI
−i(−A)1/2 I

)
.

By Exercise 8.16.(7), it therefore suffices to show that the similar system
Σ(Ã, B̃,−) on the state space X̃ is exactly 2-controllable on [0, t], where

Ã := S−1AS =
(

i(−A)1/2 0
0 −i(−A)1/2

)
with domain

D(Ã) := D
(
(−A)

1/2
)
×D

(
(−A)

1/2
)
, and

B̃ := S−1B =
(
−iB
B

)
∈ L(U, X̃).

In order to do so, we use Theorem 8.8 and calculate the unitary group(
T̃(t)

)
t≥0 generated by Ã as

T̃(t) =
(
U(t) 0

0 U(t)∗

)
.
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Using the same arguments as in Example 8.9, one can show that
(
U(t)

)
t∈R

is given by

(8.7) U(t) =
∞∑

n=1

eiµnt( · | en) en

for the eigenvalues µn > 0 of (−A)1/2 and the corresponding eigenvectors
en forming an orthonormal basis of X. Now B̃∗ = (iB∗, B∗) ∈ L(X̃, U),
and since B is surjective, by Lemma B.13.(ii) there exists a constant γ̃ > 0
such that∥∥∥B̃∗T̃(s)∗

(
x
y

)∥∥∥2

=
∥∥B∗(iU∗(s)x+ U(s)y

)∥∥2

≥ γ̃ ·
∥∥iU∗(s)x+ U(s)y

∥∥2

= γ̃ ·
[
‖x‖2 + ‖y‖2 + 2 Re

(
U(2s)y|ix

)]
for all x, y ∈ X.

Next, we calculate

J(t) :=
∫ t

0

U(2s) ds =
∫ t

0

∞∑
n=1

e2iµns( · | en) en ds

= t
∞∑

n=1

e2iµnt − 1
2iµnt

( · | en) en;

hence

‖J(t)‖ ≤ t · sup
r≥r0

∣∣∣eir − 1
r

∣∣∣
for r0 := inf{2µnt : n ∈ N} > 0. However,

∣∣∣eir − 1
r

∣∣∣2 =
sin2(r/2)
(r/2)2

≤ sup
s≥r0

sin2(s/2)
(s/2)2

=: δ < 1 for all r ≥ r0,

and we finally obtain∫ t

0

∥∥∥B̃∗T̃(s)∗
(
x
y

)∥∥∥2

ds ≥ γ̃
[
t
(
‖x‖2 + ‖y‖2

)
− 2δt‖x‖ · ‖y‖

]
= γ̃t(1− δ)

(
‖x‖2 + ‖y‖2

)
+ γ̃tδ

(
‖x‖2 − 2‖x‖ · ‖y‖+ ‖y‖2

)
≥ γ̃t(1− δ) ·

∥∥(x
y

)∥∥2 for all
(
x
y

)
∈ X̃.

The assertion now follows from Theorem 8.8.(i) with γ := 1
γ̃t(1−δ) > 0. �
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While in the previous examples it was possible to verify the conditions
of Theorem 8.8, there are many cases in which the semigroup

(
T (t)

)
t≥0

governing the control system Σ(A,B,−) is not known explicitly. For this
reason, it is desirable to have characterizations of the above controllabil-
ity concepts involving the resolvent operators R(λ,A) or, even better, the
generator A instead. Before we proceed, recall from Section IV.2.b that
ρ+(A) denotes the connected component of ρ(A) that is unbounded to the
right. Moreover, by Corollary B.12, we have ρ(A) = ρ(A′) and therefore
ρ+(A) = ρ+(A′) as well.

8.11 Corollary. Let Σ(A,B,−) be a control system with reflexive state
space X and reflexive control space U . Then, for every 1 < p < ∞, the
following conditions are equivalent.

(a) Σ(A,B,−) is approximately p-controllable.

(b)
⋂

t≥0 kerB′T (t)′ = {0}.
(c)

⋂
n≥0 kerB′R(λ0, A

′)n = {0} for some/all λ0 ∈ ρ+(A).
(d)

⋂
λ∈Λ kerB′R(λ,A′) = {0} for some/all subsets Λ ⊆ ρ+(A) having

an accumulation point in ρ+(A).

Proof. The equivalence of (a) and (b) follows as in Theorem 8.8.(ii).
To verify that (b) ⇒ (c), we assume that x′ ∈

⋂
n≥0 kerB′R(λ0, A

′)n for
some λ0 ∈ ρ+(A). Then the function

(8.8) fx′ : ρ+(A) → X ′, fx′(λ) := B′R(λ,A′)x′

is analytic and satisfies f (n)
x′ (λ0) = (−1)nn!B′R(λ0, A

′)n+1x′ = 0 for all
n ∈ N0. We conclude that fx′ ≡ 0 and therefore f (n)

x′ (λ) = 0 for all n ∈ N0

and all λ ∈ ρ+(A). This proves x′ ∈
⋂

n≥0 kerB′R(λ,A′)n for all λ ∈ ρ+(A).
The Post–Widder inversion formula in Corollary III.5.5 implies

B′T (t)′x′ = lim
n→∞

B′ ( t/nR( t/n, A
′))n

x′ = 0 for all t > 0.

By assumption, this is possible only for x′ = 0, which proves (c).
To show that (c) ⇒ (d), we take x′ ∈

⋂
λ∈Λ kerB′R(λ,A′). Then the

function fx′ in (8.8) restricted to Λ is zero, hence, by analyticity, zero
on ρ+(A). This shows that x′ ∈

⋂
n≥1 kerB′R(λ0, A

′)n for arbitrary λ0 ∈
ρ+(A). Moreover, by Lemma II.3.4.(i) we have B′x′ = limλ→∞ λfx′(λ) = 0.
Hence, x′ ∈

⋂
n≥0 kerB′R(λ0, A

′)n = {0} and therefore x′ = 0.
Finally, we prove (d) ⇒ (b). To this end, we choose x′ ∈

⋂
t≥0 kerB′T (t)′

and obtain from the integral representation of the resolvent in part (i) of
Theorem II.1.10 that

B′R(λ,A′)x′ =
∫ ∞

0

e−λsB′T (s)′x′ ds = 0 for all λ > ω0 .

Hence, (d) is satisfied for Λ = (ω0,∞), and we conclude that x′ = 0. �
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In particular, the previous result implies that the notion of approximate
p-controllability is, in fact, independent of the value of p ∈ (1,∞).

If the semigroup
(
T (t)

)
t≥0 governing the control system Σ(A,B,−) has

some additional properties, we can strengthen the conclusion on approxi-
mate controllability.

8.12 Corollary. Let Σ := Σ(A,B,−) be an approximate p-controllable
system with reflexive state and control space.

(i) If the semigroup
(
T (t)

)
t≥0 generated by A is analytic, then Σ is

approximately p-controllable on each [0, t].

(ii) If the semigroup
(
T (t)

)
t≥0 generated by A is periodic with period τ ,

then Σ is approximately p-controllable on [0, t] for all t ≥ τ .

Proof. (i) Assume that x′ ∈ ∩t
s=0 kerB′T (s)′. Then the function gx′ :

R+ → X ′, gx′(s) := B′T (s)′x′ can be extended analytically to a sector
containing R+ and vanishes on [0, t]. Hence, by analyticity, gx′ ≡ 0, and
we conclude by Corollary 8.11.(b) that x′ = 0. The assertion then follows
from Theorem 8.8.(ii).

(ii) follows immediately from Theorem 8.8.(ii) and Corollary 8.11.(b) if
one observes that ∩t≥0 kerB′T (t)′ = ∩t

s=0 kerB′T (s)′ for all t ≥ τ . �

We consider next a rather special, but quite important, case. In fact, we
will assume that the state space X of Σ(A,B,−) is a Hilbert space and
that the generator A is given by the “multiplication” operator

(8.9) A =
∞∑

n=1

λn

rn∑
k=1

( · | en,k) en,k.

Here λn are the distinct eigenvalues of A, which we assume to be isolated
in C, and {en,k : n ∈ N, k = 1, . . . , rn} is an orthonormal basis of X con-
sisting of the corresponding eigenvectors. Moreover, we assume the control
space U to be finite-dimensional. Under these assumptions, we arrive at
the following simple criterion.

8.13 Corollary. Let Σ(A,B,−) be a control system on a Hilbert space X,
where A is given by (8.9). If U := Cm and B := (b1, . . . , bm) ∈ L(U,X)
for some b1, . . . , bm ∈ X, then Σ(A,B,−) is approximately 2-controllable
if and only if rankBn = rn for all n ∈ N, where

Bn :=

 (en,1 | b1) · · · (en,rn
| b1)

...
...

(en,1 | bm) · · · (en,rn
| bm)


m×rn

.
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Proof. We are going to apply Corollary 8.11 and therefore start by cal-
culating the (Hilbert) adjoints5

A∗ =
∞∑

n=1

λ̄n

rn∑
k=1

( · | en,k) en,k, D(A∗) = D(A),

B∗ =
(
( · | b1), . . . , ( · | bm)

)
t ∈ L(X,Cm).

Using these representations, we obtain (cf. (8.6))

(8.10)

B∗R(λ,A∗)x = B∗
∞∑

n=1

1
λ− λ̄n

rn∑
k=1

(x | en,k) en,k

=
∞∑

n=1

1
λ− λ̄n

BnΦn(x)

for all λ ∈ ρ(A∗) and x ∈ X, where

Φn(x) :=
(
(x | en,1), . . . , (x | en,rn

)
)
t ∈ Crn .

By assumption, the set {λn : n ∈ N} consists of isolated points only; hence
we can consider in (8.10) the limit ρ+(A∗) 3 λ → λ̄n for fixed n ∈ N and
infer that

(8.11)
B∗R(λ,A∗)x = 0
for all λ ∈ ρ+(A∗)

}
⇐⇒

{
BnΦn(x) = 0
for all n ∈ N.

On the other hand, the orthonormal system {en,k : n ∈ N, 1 ≤ k ≤ rn} is
complete in X, and therefore

(8.12) x = 0 ⇐⇒ Φn(x) = 0 for all n ∈ N.

Finally, for Bn : Crn → Cm we have rn = dim kerBn +rankBn. This shows
that

(8.13) rankBn < rn ⇐⇒ kerBn 6= {0}.

After these preparations, assume that Σ(A,B,−) is not approximately 2-
controllable and take, using Corollary 8.11, 0 6= x ∈ X with B∗R(λ,A∗)x =
0 for all λ ∈ ρ+(A∗). Then by (8.12) we can choose l ∈ N such that
Φl(x) 6= 0. However, from (8.11) we know that Φl(x) ∈ kerBl, and therefore
rankBl < rl by (8.13).

Conversely, if rankBl < rl for some l ∈ N, we find, by (8.13), a vector
0 6= (β1, . . . , βrl

)t ∈ kerBl. For x :=
∑rl

k=1 βkelk 6= 0, this implies

BnΦn(x) =
{
Bn0 = 0 if n 6= l,
Bl(β1, . . . , βrl

)t = 0 if n = l.

From (8.11) and Corollary 8.11, we conclude that Σ(A,B,−) is not 2-
approximately controllable. �

5 Here we denote by (β1, . . . , βm)t the transpose of the vector (β1, . . . , βm).
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In particular, this result implies that the number of controls necessary
for approximate 2-controllability has to be at least equal to the highest
multiplicity of the eigenvalues of A.

We are now in a position to examine the approximate 2-controllability
of the examples above.

8.14 Example. (Heat Equation). We continue the discussion of the con-
trolled heat equation from Examples 8.2 and 8.9. Recall from Corollary II.4.7
that a self-adjoint generator always generates an analytic semigroup. Hence,
we obtain from Corollary 8.13 and Corollary 8.12.(i) that Σ(A,B,−) for
B ∈ L(C, X) defined by (8.2) is approximately 2-controllable (on [0, t] for
some/all t > 0) if and only if we choose ε0 and s0 such that 0 6= (e0 | b) = 1
and

0 6= (en | b) =
√

2
2ε0

∫ s0+ε0

s0−ε0

cos(nπs) ds

=
√

2
sin
(
nπ(s0 + ε0)

)
− sin

(
nπ(s0 − ε0)

)
2nπε0

=
√

2
cos(nπs0) sin(nπε0)

nπε0
for all n ∈ N.

To have approximate 2-controllability it is therefore important not to place
the control in a zero of an eigenvector en of A. Moreover, it is interesting to
observe that for the limit case ε0 ↓ 0 of a point control in s = s0, we obtain
(formally) approximate 2-controllability if cos(nπs0) 6= 0 for all n ∈ N.

8.15 Example. (Wave Equation). In the same manner, we can treat the
controlled wave equation from Examples 8.3 and 8.10 with a control oper-
ator B ∈ L(C, X) of the form (8.2). Here, the system operator A of the
associated control system Σ(A,B,−) generates a 2-periodic group (use
(8.7) for µn = nπ) and the eigenvectors en of A are given by

(8.14) en(s) =
1

inπ

(
sin(nπs)

inπ sin(nπs)

)
for all n ∈ Z \ {0}.

Hence, from Corollary 8.13 and Corollary 8.12.(i), we obtain that Σ(A,B,−)
is approximately 2-controllable (on [0, t] for some/all t ≥ 2) if and only if

sin(nπs0) sin(nπε0)
nπε0

6= 0 for all n ∈ N.

As in the previous example, it is necessary for approximate 2-controllability
not to place the control point s0 in a zero of an eigenmode of A. Moreover,
for the limit case of a point control in s0, we obtain (formally) approximate
2-controllability if sin(nπs0) 6= 0 for all n ∈ N.
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8.16 Exercises. (1) Show that for all F ∈ L(X, U), µ ∈ C, and p ≥ 1 the
control system Σ(A, B,−) is exactly (approximately) p-controllable on [0, t] if
and only if Σ(A + BF + µ, B,−) is exactly (approximately) p-controllable on
[0, t].

(2) If Σ(A, B,−) is a control system on the state space X of finite dimension n,
then rg Bt = rg(B, AB, . . . , An−1B) for all t > 0 and p ≥ 1.

(3) If dim X = n < ∞, then for the system Σ := Σ(A, B,−) the following
conditions are equivalent.

(a) Σ is exactly/approximately p-controllable on [0, t] for some/all p ≥ 1, t > 0.

(b) rank(B, AB, . . . , An−1B) = n.

(c) rg(λ−A, B) = X for all λ ∈ C or, equivalently, for all λ ∈ σ(A).

(4) Show that the closure of the reachability space R :=
⋃

t≥0
rg Bt of a con-

trol system Σ(A, B,−) is the smallest closed, (T (t))t≥0-invariant subspace of X
containing rg B.

(5) Show that the heat equation in Example 8.2 with a surjective control operator
B ∈ L(U, X) on a Hilbert space U is exactly 2-null controllable on [0, t] for all
t > 0.

(6) The propositions in Example 8.10 and, for A unbounded, in Example 8.9
remain true without the assumption that A has compact resolvent. (Hint: Use
Theorem I.4.9.)

(7) Let S ∈ L(X̃, X) be an invertible operator between two Banach spaces X and

X̃. Then for every generator A on X and every control operator B ∈ L(U, X) on
some control space U , the system Σ(A, B,−) is exactly p-controllable if and only if

the similar control system Σ(Ã, B̃) on the state space X̃ is exactly p-controllable,

where Ã := S−1AS and B̃ := S−1B. Corresponding assertions are valid for
approximate p-controllability and exact p-null controllability, respectively.

(8) Show that a control system Σ(A, B,−) on an infinite-dimensional state space
X governed by an immediately compact semigroup (T (t))t≥0 is never exactly p-
controllable. (Hint: Consider the operators T (ε)Bt for ε ↓ 0 in order to show that
Bt is compact for all t > 0.)

(9) Show that for every p ∈ (1,∞) the system Σ(A, B,−) with reflexive state
and control spaces is approximately p-controllable if and only if the “bounded”
control system Σ(R(λ0, A), B,−) is approximately p-controllable for some/all
λ0 ∈ ρ+(A). (Hint: Use Corollary 8.11.)

(10) Prove Lemma 8.7.

(11) Let A be the generator of the left translation semigroup on X := Lp(R+),
1 < p < ∞ (cf. Paragraph II.2.10), and take U := X and B := M

1 [t0,∞)
for some

t0 > 0. Show that Σ := Σ(A, B,−) is exactly p-controllable on [0, t] if and only
if t > t0. For which values of t > 0 is Σ approximately p-controllable?

b. Observability

We now turn to Problem 8.1.(ii), i.e., the observability of a control system.
For fixed q ≥ 1, t > 0 and a given control system Σ(A,−, C) with state
space X and observation space Y , we introduce the observability map

Ct : X → Lq
(
[0, t], Y

)
, Ctx := CT (·)x for x ∈ X.
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8.17 Definition. The control system Σ(A,−, C) is exactly q-observable on
[0, t] if there exists γ > 0 such that

γ ‖Ctx‖ ≥ ‖x‖ for all x ∈ X.

If ker Ct = {0}, then Σ(A,−, C) is called approximately q-observable on
[0, t]. Finally, if

⋂
t>0 ker Ct = {0}, then Σ(A,−, C) is called approximately

q-observable.

Hence, Σ(A,−, C) is approximately q-observable if the knowledge of the
output y(·) uniquely determines the initial state. Moreover, Σ(A,−, C) is
exactly q-observable if, in addition, the operator mapping the output to
the initial state is continuous.

Next, we relate the observability of a control system Σ(A,−, C) with re-
flexive state spaceX and reflexive observation space Y to the controllability
of the dual system

(8.15) Σ′(A,−, C) := Σ(A′, C ′,−)

on the state space X ′ and with control space Y ′. In fact, the following result
follows immediately from Theorem 8.8 and the definition of observability.

8.18 Theorem. Let X, Y be reflexive Banach spaces and let t > 0, q > 1.
Then for p > 1 and 1/p + 1/q = 1 the following assertions are true.

(i) Σ(A,−, C) is exactly q-observable on [0, t] if and only if Σ′(A,−, C)
is exactly p-controllable on [0, t].

(ii) Σ(A,−, C) is approximately q-observable on [0, t] if and only if the
system Σ′(A,−, C) is approximately p-controllable on [0, t].

(iii) Σ(A,−, C) is approximately q-observable if and only if Σ′(A,−, C)
is approximately p-controllable.

As an immediate consequence of this result, we obtain from the con-
trollability characterizations in Section 8.a necessary and sufficient criteria
for the observability of a control system Σ(A,−, C). We state only the re-
sult corresponding to Corollary 8.13 and leave the reformulation of Corol-
lary 8.11 and Corollary 8.12 as Exercise 8.22.(3).

8.19 Corollary. Let Σ(A,−, C) be a control system on a Hilbert space X
with A given by (8.9). If Y = Cl and C =

(
( · | c1), . . . , ( · | cl)

)
for some

c1, . . . , cl ∈ X, then Σ(A,−, C) is approximately 2-observable if and only
if rankCn = rn, where

Cn :=

 (en,1 | c1) · · · (en,rn
| c1)

...
...

(en,1 | cl) · · · (en,rn
| cl)


l×rn

.

With this result it is easy to characterize the approximate 2-observability
of the controlled heat and wave equations, respectively.
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8.20 Example. (Heat Equation). By the same calculations as in Exam-
ple 8.14, we obtain from Corollary 8.19 that the controlled heat equation
is approximately 2-observable (on [0, t] for some/all t > 0) if and only if

cos(nπs1) sin(nπε1)
nπε1

6= 0 for all n ∈ N.

Again, the remark in Example 8.14 for the limit case ε1 ↓ 0 applies, and one
should not place the observation point s1 into a zero of some eigenfunction
of A.

8.21 Example. (Wave Equation). For the controlled wave equation, we
obtain from Corollary 8.19 by essentially the same calculations as in Exam-
ple 8.15 that it is approximately 2-observable (on [0, t] for some/all t ≥ 2)
if and only if

sin(nπs1) sin(nπε1)
nπε1

6= 0 for all n ∈ N.

As in Example 8.15, this shows that placing the observation in a zero of an
eigenfunction will result in a loss of approximate 2-observability.

8.22 Exercises. (1) If dim X = n < ∞, then for the system Σ := Σ(A,−, C)
the following conditions are equivalent.

(a) Σ is exactly/approximately q-observable on [0, t] for some/all q ≥ 1, t > 0.

(b) rank(C′, A′C′, . . . , (A′)n−1C′) = n.

(c) ker
(

λ−A
C

)
= {0} for all λ ∈ C/for all λ ∈ σ(A).

(2) Show that the nonobservable subspace N :=
⋂

t≥0
ker Ct of a control system

Σ(A,−, C) is the largest closed, (T (t))t≥0-invariant subspace of X contained in
the kernel ker C.

(3) Give a characterization of approximate 2-observability of a control system
Σ(A,−, C) by combining Corollary 8.11 and Theorem 8.18. How can this result
be improved by means of Corollary 8.12?

c. Stabilizability and Detectability

While in control problem (i) we search for controls u(·) steering the initial
value x0 towards a given state x1, in many applications one is interested
only in the design of a feedback control such that the resulting controlled
system is asymptotically stable in the following sense; cf. Definition V.1.1.

8.23 Definition. The control system Σ(A,B,−) with state space X, con-
trol space U , and control operator B ∈ L(U,X) is called β-exponentially
stabilizable for some β ∈ R if there exists a feedback operator F ∈ L(X,U)
such that the growth bound ω0(A + BF ) is less than β. Moreover, if
Σ(A,B,−) is 0-exponentially stabilizable, then it is called exponentially
stabilizable.



470 Chapter VI. Semigroups Everywhere

It can be shown, see Exercise 8.30.(3), that exact null controllability
implies exponential stabilizability, while approximate controllability is not
sufficient to obtain this conclusion; see Exercise 8.30.(4).

Using the spectral decomposition from Proposition IV.1.16, we now char-
acterize the stabilizability of a control system Σ(A,B,−) in the following
way. For β ∈ R, we define

C−β := {λ ∈ C : Reλ < β}, σ−β (A) := σ(A) ∩ C−β ,

C+
β := {λ ∈ C : Reλ > β}, σ+

β (A) := σ(A) ∩ C+
β .

Then, if σ−β (A) is closed and σ+
β (A) is bounded, we can perform the spec-

tral decomposition from Proposition IV.1.16. This yields the spectral pro-
jections P+

β and P−β = I − P+
β ∈ L(X) such that

X = X−
β ⊕X+

β = rgP−β ⊕ rgP+
β , D(A) = D(A−β )⊕X+

β ,

A−β = A|X−
β
, A+

β = A|X+
β
∈ L(X+

β ),

T−β (t) = T (t)|X−
β
∈ L(X−

β ), T+
β (t) = T (t)|X+

β
∈ L(X+

β ).

Here, A−β and A+
β are the generators of

(
T−β (t)

)
t≥0

and
(
T+

β (t)
)
t≥0

, respec-
tively (see Proposition II.2.3), satisfying

σ(A−β ) = σ−β (A), σ(A+
β ) = σ+

β (A).

Moreover, we can write B ∈ L(U,X) as

B =
(B−

β

B+
β

)
∈ L(U,X−

β ⊕X+
β ) = L(U,X).

We recall from Theorem V.3.7 that this decomposition can always be car-
ried out if ωess(A) < β. In this case, X+

β will be finite-dimensional and
therefore ωess(A) = ωess(A−β ), which, by Corollary IV.2.11, implies that

(8.16) ω0(A−β ) = max
{
ωess(A−β ), s(A−β )

}
< β.

We now show that β-exponential stabilizability implies, for a compact
control operator, the existence of such a spectral decomposition.

8.24 Theorem. For the control system Σ(A,B,−) with compact control
operator B ∈ L(U,X) and for β ∈ R, the following assertions are equiva-
lent.

(a) Σ(A,B,−) is β-exponentially stabilizable.

(b) ωess(A) < β and the finite-dimensional system Σ(A+
β , B

+
β ,−) is con-

trollable.
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Proof. (a) ⇒ (b). By assumption there exists F ∈ L(X,U) such that
ω0(A+BF ) < β. Since B ∈ L(U,X) is compact, BF ∈ L(X) is compact as
well, and from Proposition IV.2.12 and equation (2.6) in Corollary IV.2.11
we obtain that

ωess(A) = ωess(A+BF ) ≤ ω0(A+BF ) < β,

which shows the first assertion. Moreover, we can perform the above spec-
tral decomposition and obtain the control system Σ(A+

β , B
+
β ,−) on the

finite-dimensional state space X+
β and with control space U . Assume now

that Σ(A+
β , B

+
β ,−) is not controllable. Then we can find 0 6= z′ ∈ (X+

β )′

such that〈∫ t

0

T+
β (t− s)B+

β u(s) ds, z
′
〉

= 0 for all t > 0 and all u ∈ L1
(
[0, t], U

)
.

If we denote by
(
SF (t)

)
t≥0 the semigroup generated by A + BF , then we

obtain from the variation of parameters formula in Corollary III.1.7

P+
β SF (t)z = T+

β (t)z +
∫ t

0

T+
β (t− s)B+

β [FSF (s)z] ds for all z ∈ X+
β .

Since ω0(A+BF ) < β, these facts imply

(8.17) lim
t→∞

〈
e−βtT+

β (t)z, z′
〉

= lim
t→∞

〈
P+

β e−βtSF (t)z, z′
〉

= 0

for all z ∈ X+
β . On the other hand, X+

β is finite-dimensional, and the
spectrum of the generator A+

β −β of
(
e−βtT+

β (t)
)
t≥0 satisfies σ(A+

β −β) ⊂
{λ ∈ C : Reλ ≥ 0}. Together with (8.17), this gives z′ = 0, contradicting
the assumption of z′ 6= 0.

(b) ⇒ (a). Since Σ(A+
β , B

+
β ,−) is controllable, by Exercise 8.30.(2) there

exists a feedback operator F+
β ∈ L(X+

β , U) such that ω0(A+
β +B+

β F
+
β ) < β.

We now put F := (0, F+
β ) ∈ L(X−

β ⊕X+
β , U) = L(X,U) and obtain

A+BF =
(
A−β B−β F

+
β

0 A+
β +B+

β F
+
β

)
.

This and (8.16) imply

ω0(A+BF ) = max
{
ω0(A−β ), ω0(A+

β +B+
β F

+
β )
}
< β,

as claimed. �

Before discussing our examples, we will introduce the concept being
“dual” to stabilizability.
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8.25 Definition. The control system Σ(A,−, C) with state space X, ob-
servation space Y , and observation operator C ∈ L(X,Y ) is called β-
exponentially detectable for β ∈ R if there exists an output injection oper-
ator L ∈ L(Y,X) such that the growth bound ω0(A+ LC) is less than β.
If Σ(A,−, C) is 0-exponentially detectable, then it is called exponentially
detectable.

From this definition it is immediately clear that if A′ generates a strongly
continuous semigroup on the dual space X ′, the system Σ(A,−, C) is (β-)
exponentially detectable if and only if the dual system Σ′(A,−, C) from
(8.15) is (β-) exponentially stabilizable.

We leave it to the reader to give a characterization of exponentially de-
tectable systems Σ(A,−, C) analogous to Theorem 8.24. Instead, we return
to our two standard examples.

8.26 Example. (Heat equation). Using the notation in (8.4), we have for
the system Σ(A,B,C) describing the heat equation from Example 8.2

X+
β = lin {en : 0 ≤ n ≤ nβ}, P+

β = (P+
β )∗ =

∑
0≤n≤nβ

( · | en) en

for each β ≤ 0 and nβ :=
√
−β/π. Therefore,

A+
β =

∑
0≤n≤nβ

−n2π2( · | en) en ∈ L(X+
β ),

B+
β =

∑
0≤n≤nβ

(b | en) en ∈ L(C, X+
β ).

Since the generator A satisfies ωess(A) = −∞, we obtain from Theorem 8.24
and Corollary 8.13 applied to Σ(A+

β , B
+
β ,−) that the heat equation (HE)

in Example 8.2 is β-exponentially stabilizable if and only if (cf. the calcu-
lations in Example 8.14)

cos(nπs0) sin(nπε0) 6= 0 for all n ∈ N satisfying λn = −n2π2 ≥ β.

Similarly, it follows that Σ(A,B,C) is β-exponentially detectable if and
only if

cos(nπs1) sin(nπε1) 6= 0 for all n ∈ N satisfying λn = −n2π2 ≥ β.

As Theorem 8.24 shows, a control system Σ(A,B,−) having a generator
A with ωess(A) = 0 is never exponentially stabilizable if its control operator
B is compact. In particular, we conclude that the wave equation from
Example 8.3 is not exponentially stabilizable.

For this reason, we introduce the following weaker concept; compare also
Definition V.1.1.(c).
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8.27 Definition. The control system Σ(A,B,−) with state space X, con-
trol space U , and control operatorB ∈ L(U,X) is called strongly stabilizable
if there exists a feedback operator F ∈ L(X,U) such that the semigroup(
SF (t)

)
t≥0 generated by A+BF is strongly stable, i.e., if

lim
t→∞

SF (t)x = 0 for all x ∈ X.

Our next result gives a sufficient condition for strong stabilizability for
an important class of control systems.

8.28 Theorem. Let Σ(A,B,−) be a control system where the state space
X and the control space U are Hilbert spaces. Moreover, assume that A has
compact resolvent and generates a contraction semigroup. Then F := −B∗
yields a strongly stabilizing feedback control, i.e., the semigroup generated
by A−BB∗ is strongly stable if and only if

(8.18) ker(µ−A∗) ∩ kerB∗ = {0} for all µ ∈ iR ∩ Pσ(A∗).

Condition (8.18) is in particular satisfied if Σ(A,B,−) is approximately
2-controllable.

Proof. If there exists 0 6= x ∈ ker(µ − A∗) ∩ kerB∗, then we have x ∈
ker(µ − A∗ + BB∗), and A − BB∗ is not strongly stable by the remark
preceding Lemma V.2.20.

For the converse implication, we have to show that A−BB∗ generates a
strongly stable semigroup on X if (8.18) is true. Since BB∗ is self-adjoint
and positive semidefinite, A − BB∗ is dissipative, hence generates a con-
traction semigroup. Moreover, for λ > ‖BB∗‖ we have

R(λ,A−BB∗) =
(
I +R(λ,A)BB∗

)−1R(λ,A),

and therefore A − BB∗ has compact resolvent. In particular, we obtain
σ(A−BB∗) = Pσ(A−BB∗); hence by Theorem V.2.21 it suffices to verify
that

(8.19) Pσ(A∗ −BB∗) ∩ iR = ∅.

To this end, we assume (A∗ −BB∗)x = µx for some µ ∈ iR. Then

(A∗x |x)− ‖B∗x‖2 = µ · ‖x‖2,

and from Re(A∗x |x) ≤ 0 we obtain x ∈ kerB∗ and hence x ∈ ker(µ−A∗).
By assumption, this is possible only for x = 0, and (8.19) follows.
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Assume now that Σ(A,B,−) is approximately 2-controllable and take
some x ∈ ker(µ−A∗) ∩ kerB∗. Then, by Theorem IV.1.13.(ii), we have

B∗R(λ,A∗)x = B∗
x

λ− µ
= 0 for all λ ∈ ρ(A∗).

However, by Corollary 8.11, we have ∩λ∈ρ+(A∗) kerB∗R(λ,A∗) = {0}, and
therefore (8.18) is satisfied. �

8.29 Example. (Wave equation). In Example 8.15, we already character-
ized the approximate p-controllability of the wave equation from Exam-
ple 8.3. If s0 = s1 and ε0 = ε1, then C = B∗, and we obtain from the
previous result that the feedback system governed by A − BC is strongly
stable if

sin(nπs0) sin(nπε0)
nπε0

6= 0 for all n ∈ N.

8.30 Exercises. (1) If X is finite-dimensional, then Σ(A, B,−) is β-exponentially

stabilizable if and only if rg(λ−A, B) = X for all λ ∈ C+
β /for all λ ∈ σ+

β (A).

(2) If X is finite-dimensional, then Σ(A, B,−) is β-exponentially stabilizable for
all β ∈ R/some β < inf{Re λ : λ ∈ σ(A)} if and only if it is controllable.

(3∗) Show that if X and U are Hilbert spaces, exact null controllability of
a control system Σ(A, B,−) implies its exponential stabilizability. (Hint: See
[Zab92, Part IV, Thm. 3.3].)

(4) On X := `2(N) take the multiplication operator A := M(1/n), let U := C,

and choose some B = b = (bn) ∈ L(U, X) ∼= X satisfying bn 6= 0 for all n ∈ N.
Show that Σ(A, B,−) is approximately 2-controllable on [0, t] for all t > 0 but
not exponentially stabilizable. (Hint: Use Corollary 8.13 and Corollary 8.12.(i) to
prove the first claim. The second assertion follows from the fact that A + BF is
compact for all F ∈ L(X, U).)

(5) Let A, B, and C be as in Corollary 8.13 and Corollary 8.19. Then the following
assertions are true.

(i) Σ(A, B,−) is β-exponentially stabilizable if and only if Nβ := {n ∈ N :
Re λn ≥ β} is finite and rank Bn = rn for all n ∈ Nβ .

(ii) Σ(A,−, C) is β-exponentially detectable if and only if Nβ is finite and
rank Cn = rn for all n ∈ Nβ .

d. Transfer Functions and Stability

While all our previous considerations took place in the “time domain,” we
now give a “frequency domain” description of the control system Σ(A,B,C).
This is obtained by applying the Laplace transform to the differential equa-
tion (cACP). Indeed, at least formally and for the initial value x0 = 0, one
obtains in this way the equation

L y(λ) = CR(λ,A)B Lu(λ)

for all λ with sufficiently large real part, where L denotes the Laplace
transform.
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This motivates the following important notion.

8.31 Definition. For a control system Σ(A,B,C) the analytic map

G : ρ(A) → L(U, Y ), G(λ) := CR(λ,A)B

is called the transfer function of Σ(A,B,C). If there exists a set Λ ⊂ σ(A)
of isolated points such that each λ ∈ Λ is a removable singularity of G, we
call the unique analytic extension of G to ρ(A) ∪ Λ an extended transfer
function.

The transfer function can be interpreted as the Laplace transform of the
impulse response function

H : [0,∞) → L(U, Y ), H(t) := CT (t)B,

i.e., of the output of the system Σ(A,B,C) for the input “u(·) = δ0(·)” and
the initial value x0 = 0, where δ0(·) denotes the Dirac function.

8.32 Example. (Heat equation). From the representations of
(
T (t)

)
t≥0

and R(λ,A) in (8.5) and (8.6), respectively, we immediately obtain the
following formulas for the impulse response and transfer functions for the
heat equation of Example 8.2.

H(t) = 1 + 2
∞∑

n=1

cos(nπs0) sin(nπε0) cos(nπs1) sin(nπε1)
ε0ε1(nπ)2

e−(nπ)2t, t ≥ 0,

G(λ) =
1
λ

+ 2
∞∑

n=1

cos(nπs0) sin(nπε0) cos(nπs1) sin(nπε1)
ε0ε1(nπ)2

(
λ+ (nπ)2

) , λ 6= −(nπ)2.

We just mention that by solving the linear, second-order ordinary differen-
tial equation {

λy(s)− y′′(s) = x(s),
x′(0) = x′(1) = 0,

one obtains an integral representation for R(λ,A), hence a more explicit
representation of the transfer function. Similarly, every representation of(
T (t)

)
t≥0 yields a corresponding formula for the impulse response function.

8.33 Example. (Wave equation). By the same arguments as in the previ-
ous example, we calculate, using (8.14), the impulse response and transfer
functions for the wave equation from Example 8.3 as

H(t) = 2
∞∑

n=1

sin(nπs0) sin(nπε0) sin(nπs1) sin(nπε1)
ε0ε1(nπ)3

sin(nπt), t ≥ 0,

G(λ) = 2
∞∑

n=1

sin(nπs0) sin(nπε0) sin(nπs1) sin(nπε1)
ε0ε1(nπ)2

(
λ2 + (nπ)2

) , λ 6= −(nπ)2,

respectively.
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There is a rich interplay between the time- and the frequency-domain
descriptions of control systems. Here, we just give one example linking the
“internal” and the “external” stability of a control system.

8.34 Definition. The control system Σ(A,B,C) is called

(i) internally stable if the semigroup
(
T (t)

)
t≥0 generated by A is uni-

formly exponentially stable;

(ii) input–output stable if there exist constants M ≥ 0, w < 0 such that
‖CT (t)B‖ ≤Mewt for all t ≥ 0;

(iii) externally stable if there exists an extended transfer function G that
is analytic and bounded on C+ := {z ∈ C : Re z > 0}.

It is easy to see that internal stability always implies external and input–
output stability, and that the converse implications are, in general, false.
However, based on Theorem V.1.11, we can prove the following relation
between these stability concepts for control systems.

8.35 Theorem. Suppose Σ(A,B,C) is an exponentially stabilizable and
exponentially detectable control system on a Hilbert space X. If B and C
are compact, then the following assertions are equivalent.

(a) Σ(A,B,C) is internally stable.

(b) Σ(A,B,C) is input–output stable.

(c) Σ(A,B,C) is externally stable.

Proof. As already mentioned, the implication (a) ⇒ (b) is trivial. To ver-
ify (b) ⇒ (c), it suffices to observe that the Laplace transform L(CT (·)B)
is an extension of the transfer function G, which is analytic and bounded
on C+.

Finally, we show that (c) ⇒ (a). Since Σ(A,B,C) is exponentially sta-
bilizable, we can find an operator B ∈ L(X,U) such that the semigroup
generated by A + BF is uniformly exponentially stable. Moreover, since
Σ(A,B,C) is exponentially detectable, we can find an operator L ∈ L(Y,X)
such that the semigroup generated by A + LC is uniformly exponentially
stable. Then

R(λ,A) = R(λ,A+ LC) (λ−A− LC −BF )R(λ,A+BF )
+R(λ,A+ LC)LC R(λ,A)BF R(λ,A+BF )

for all λ ∈ C+ ∩ ρ(A). Since by assumption

sup
λ∈C+∩ρ(A)

‖CR(λ,A)B‖ <∞,

we infer
sup

λ∈C+∩ρ(A)

‖R(λ,A)‖ <∞.

Hence, Theorem V.1.11 implies that
(
T (t)

)
t≥0 is exponentially stable. �
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This result provides a criterion for uniform exponential stability of a
strongly continuous semigroup. Here, we just give one sample result.

8.36 Theorem. Let A be given by formula (8.4) for an orthonormal basis
{en : n ∈ N} of a Hilbert space X and a sequence (λn)n∈N ⊂ C satisfying
supn∈N Reλn ≤ 0. Moreover, assume that ωess(A) < 0 and that λk 6= λl

for all λk, λl ∈ iR, k 6= l. If b ∈ X satisfies (b | ek) 6= 0 for all k ∈ N with
λk ∈ iR, then the semigroup generated by A− rBB∗ for B := b ∈ L(C, X)
is uniformly exponentially stable for all r > 0.

Proof. By Theorem 8.35, it suffices to show that Σ(A− rBB∗, B,B∗) is
exponentially stabilizable and detectable, and that its transfer function is
bounded on C+. To that purpose, we consider the linear subspace X+ :=
lin{ek : λk ∈ iR}. By Corollary 8.13, the system Σ(A+, B+, (B∗)+) is
controllable, while Theorem 8.24 implies that Σ(A,B,B∗) is exponentially
stabilizable. Therefore, Σ(A − rBB∗, B,B∗) is exponentially stabilizable.
The fact that Σ(A − rBB∗, B,B∗) is exponentially detectable is proved
analogously.

We now put g(λ) := B∗R(λ,A)B and gr(λ) := B∗R(λ,A − rBB∗)B.
Then from

B∗R(λ,A−rBB∗)B−B∗R(λ,A)B = −rB∗R(λ,A−rBB∗)BB∗R(λ,A)B

it follows that gr(λ)− g(λ) = −rgr(λ)g(λ). This implies

gr(λ) =
g(λ)

1 + rg(λ)
.

Since g(λ) ∈ C+ for all λ ∈ C+, we obtain |gr(λ)| ≤ 1/r for all λ ∈ C+, and
the proof is complete. �

8.37 Example. (Heat equation). From the previous theorem and the cal-
culations in Example 8.15 it follows that the control system Σ(A,B,C) of
Example 8.2 with b = c (that is, C = B∗) and control u(·) = −ry(·) is
uniformly exponentially stable for arbitrary B = b 6= 0 and r > 0.

8.38 Exercise. Prove that the conditions in Theorem 8.35 are not equivalent

without assuming exponential stabilizability/exponential detectability.

Notes and Further Reading to Section 8
Control of infinite-dimensional systems became a vast area, and we refer to spe-
cialized monographs like [Ahm91], [BDPDM93], [CP78], [CZ95], and [Zab92] or
the survey articles [PZ81] and [Rus78] for further reading and references.

In our presentation we are guided by the standard Examples 8.2 and 8.3,
which are taken from [CP78] and [CZ95]. An early investigation of Theorems 8.24
and 8.28 was done by Triggiani in [Tri75]; see also [Tri89]. A nonautonomous
Banach space version of Theorem 8.35 appears in [CLR97]. However, examples
can be given that show that only the equivalence (a) ⇐⇒ (b) holds without the
Hilbert space structure; see [CLMSR99]. For the use of abstract Sobolev spaces
(cf. Section II.5.a) in the treatment of control problems with unbounded control
and/or observation operator see [Reb93], [Reb95], [Wei89], and [Wei91].
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9. Semigroups for Nonautonomous Cauchy Problems
(by Roland Schnaubelt)

In this section we investigate a quite natural generalization of the (au-
tonomous) Cauchy problem (ACP). We replace the fixed operator A by
operators A(t) depending on a (time) parameter t ∈ R and consider the
nonautonomous abstract Cauchy problem

(nACP)

{
u̇(t) = A(t)u(t) for t, s ∈ R, t ≥ s,

u(s) = x

on a Banach space X. As we will see below, this problem is much more
difficult than the autonomous case. We first discuss some basic properties
of (nACP). Then, we present results on the existence and asymptotic be-
havior of solutions of (nACP), which will be obtained via the semigroup
theory developed in this book. To that purpose, we introduce the so-called
evolution semigroup associated with (nACP) as our basic tool.

a. Cauchy Problems and Evolution Families6

As in the autonomous case, we define well-posedness of (nACP) by
“existence + uniqueness + continuous dependence on the data”;

see Definition II.6.8. However, we have to observe that the solvability of
(nACP) may depend heavily on the initial time s; cf. [Nic96, Expl. 3.2].

9.1 Definition. Let
(
A(t), D

(
A(t)

))
, t ∈ R, be linear operators on the

Banach space X and take s ∈ R and x ∈ D
(
A(s)

)
. Then a (classical)

solution of (nACP) is a function u(· ; s, x) = u ∈ C1([s,∞), X) such that
u(t) ∈ D

(
A(t)

)
and u satisfies (nACP) for t ≥ s.

The Cauchy problem (nACP) is called well-posed (on spaces Yt) if there are
dense subspaces Ys ⊆ D

(
A(s)

)
, s ∈ R, of X such that for s ∈ R and x ∈ Ys

there is a unique solution t 7→ u(t; s, x) ∈ Yt of (nACP). In addition, for
sn → s and Ysn

3 xn → x ∈ Ys, we have ũ(t; sn, xn) → ũ(t; s, x) uniformly
for t in compact intervals in R, where we set ũ(t; s, x) := u(t; s, x) for t ≥ s
and ũ(t; s, x) := x for t < s.

The solutions of the autonomous problem (ACP) are given by a strongly
continuous semigroup

(
T (t)

)
t≥0 as solutions of the functional equation

(FE). In the present situation, the functional equation (FE) has to be
replaced by the following concept.

6 We note that in this subsection the time interval R in (nACP) can be replaced by
any closed interval I ⊆ R.
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9.2 Definition. A family of bounded operators
(
U(t, s)

)
t,s∈R,t≥s on a Ba-

nach space X is called a (strongly continuous) evolution family if

(i) U(t, s) = U(t, r)U(r, s) and U(s, s) = I for t ≥ r ≥ s and t, r, s ∈ R
and

(ii) the mapping {(τ, σ) ∈ R2 : τ ≥ σ} 3 (t, s) 7→ U(t, s) is strongly
continuous.

We say that
(
U(t, s)

)
t≥s solves the Cauchy problem (nACP) (on spaces

Yt) if there are dense subspaces Ys, s ∈ R, of X such that U(t, s)Ys ⊆ Yt ⊆
D
(
A(t)

)
for t ≥ s and the function t 7→ U(t, s)x is a solution of (nACP)

for s ∈ R and x ∈ Ys.

Evolution families are also called evolution systems, evolution operators,
evolution processes, propagators, or fundamental solutions. Notice that a
strongly continuous semigroup

(
T (t)

)
t≥0 gives rise to the evolution family

U(t, s) := T (t− s).
In contrast to semigroups, it is possible that the mapping t 7→ U(t, s)x

is differentiable only for x = 0 (compare Theorem II.1.4). (Take, for in-
stance, X = C and U(t, s) := p(t)/p(s) for a nowhere differentiable function
p such that p, 1/p ∈ Cb(R).) Nevertheless, we can state an analogue of
Theorem II.6.7.

9.3 Proposition. The Cauchy problem (nACP) is well-posed on Yt if and
only if there is an evolution family solving (nACP) on Yt.

Since we do not need this result in the following, we omit its proof. The
details can be found in [Nic96, §3.2]. We note, however, that the implication
“ ⇒ ” is shown in the same way as (d) ⇒ (a) in Theorem II.6.7.

Generation Theorem II.3.8 provides a characterization of well-posedness
of (ACP) in terms of properties of the operator A. There is no analogue of
this result in the time-dependent situation. In fact, the following examples
indicate that it seems to be rather difficult to find necessary conditions for
the well-posedness of (nACP).

9.4 Examples. (i) Even if each operator
(
A(t), D

(
A(t)

))
is a generator

for each t ∈ R and if (nACP) is well-posed, it may happen that (nACP)
cannot be solved on all of D

(
A(t)

)
; see, e.g., [Nic96, Expl. 3.5].

(ii) There are well-posed Cauchy problems for generators A(t) such that
the intersection

⋂
t∈R D

(
A(t)

)
equals {0}; see, e.g., [Fat83, Expl. 7.3.2].

(iii) The Cauchy problem on X := Cb(R) given by A(t)f := f ′(t)1 for
f ∈ Y := C1

b(R) is solved by U(t, s)f := f +
(
f(t)− f(s)

)
1 on Y , but A(t)

is not closable in X; see [Hah95].

However, there exist several sufficient conditions for well-posedness that
are well documented in, for instance, the monographs [Ama95], [Fat83],
[Gol85], [Kre71], [Lun95], [Paz83], [Tan79], [Tan97]. We present two main
results in simplified form.
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9.5 The Hyperbolic Case. Let A(t), t ∈ R, be generators of contraction
semigroups satisfying D

(
A(t)

)
≡ Y and A(·)x ∈ C1(R, X) for x ∈ Y . Then

(nACP) is well-posed on Y .
This result is due to Kato [Kat53], who proved a more general version in

[Kat70].

9.6 The Parabolic Case. Let A(t) be generators of bounded analytic
semigroups of the same type (M, δ) such that A(t) is invertible and

‖A(t)R
(
λ,A(t)

) (
A(t)−1 −A(s)−1

)
‖ ≤ L |t− s|µ · |λ|−ν

for λ ∈ Σπ/2+δ, t, s ∈ R, and constants L ≥ 0 and µ, ν ∈ (0, 1] with
µ+ ν > 1.

This condition was introduced (in a somewhat more general form) by
Acquistapace and Terreni, [AT87b]. It is shown in [Acq88, Thm. 2.3] that
in this case (nACP) is well-posed on D

(
A(t)

)
. Moreover, the solving evo-

lution family enjoys additional regularity properties similar to those of an-
alytic semigroups. More precisely, U(t, s) maps X into the domain of the
fractional power

(
−A(t)

)
α (see Section II.5.c), t 7→

(
−A(t)

)
αU(t, s) is con-

tinuous, and

(9.1)
∥∥(−A(t)

)
αU(t, s)

∥∥ ≤ C(t− s)−αew(t−s)

for t > s, 0 ≤ α ≤ 1, and constants C ≥ 0 and w ∈ R, see [FY94, Thm. 2.3]
and [Acq88], [AT87b], [Yag90].

However, we point out that there are many situations where one can
solve (nACP) only in a “weaker” sense; see, e.g., [Tan79, §5.5]. Moreover,
Example 9.21 will show that well-posedness in the above sense is not pre-
served under bounded perturbations. Therefore, we will study evolution
families without assuming differentiability properties.

We now turn our attention to asymptotic properties of evolution families.
First, as in Definition I.5.6 we define the (exponential) growth bound of an
evolution family

(
U(t, s)

)
t≥s by

ω0(U) := inf
{
w ∈ R : ∃Mw ≥ 1 with ‖U(t, s)‖ ≤Mw ew(t−s) for t ≥ s

}
.

Notice that this number coincides with ω0 = ω0(T) if U(t, s) = T (t − s)
for a semigroup T =

(
T (t)

)
t≥0. An evolution family is called (uniformly)

exponentially stable if ω0(U) < 0 and exponentially bounded if ω0(U) <
+∞. It might be surprising that there are evolution families that are not
exponentially bounded. For instance, U(t, s) := et2−s2

on X = C. In a
manner similar to the proof of Proposition I.5.5 we can prove that

(i) ω0(U) < ∞ if and only if there are constants M0 ≥ 0, t0 > 0 such
that ‖U(s+ t, s)‖ ≤M0 for 0 ≤ t ≤ t0 and s ∈ R, and

(ii) ω0(U) < w if and only if ω0(U) <∞ and there are constantsM1, t1 >
0 such that log M1/t1 < w and ‖U(s+ t1, s)‖ ≤M1 for all s ∈ R.



Section 9. Semigroups for Nonautonomous Cauchy Problems 481

The following examples show that in contrast to Proposition V.1.7, the
growth bound is not determined by the spectral radius or the norm of a
single operator U(t, s).

9.7 Examples. (i) Let
(
Tl(t)

)
t≥0 be the nilpotent left translation semi-

group on X := L1[0, 1]; see Paragraph I.4.17. Set U(t, s) := et2−s2
Tl(t− s).

Then U(s + t, s) = 0 for t ≥ 1 and s ∈ R, but it is easy to see that
‖U(s+ 1/2, s)‖ = es+1/4, and so ω0(U) = +∞.
(ii) In [Sch99, §5] an example is constructed in which σ

(
U(t, s)

)
= {0} for

t > s, but t 7→ ‖U(t, s)‖ grows faster than any exponential function as
t→∞.

Further, one is interested in exponential estimates on “invariant” sub-
spaces; cf. [Cop78], [DK74], [Hen81], and Section V.1.c. Throughout, we
set Q := I − P for a projection P ∈ L(X).

9.8 Definition. An evolution family
(
U(t, s)

)
t≥s on a Banach space X

is called hyperbolic (or has exponential dichotomy) if there are projections
P (t), t ∈ R, and constants N, δ > 0 such that P (·) ∈ Cb(R,Ls(X)) and

(i) U(t, s)P (s) = P (t)U(t, s) for all t ≥ s,

(ii) the restriction UQ(t, s) : Q(s)X → Q(t)X is invertible for all t ≥ s
(and we set UQ(s, t) := UQ(t, s)−1),

(iii) ‖U(t, s)P (s)‖ ≤ Ne−δ(t−s) and ‖UQ(s, t)Q(t)‖ ≤ Ne−δ(t−s) for all
t ≥ s.

We remark that properties (i)–(iii) for the projections P (t) already imply
P (·) ∈ Cb(R,Ls(X)); cf. [NRS98, Lem. 4.2].

In Chapters IV and V we have seen that in many situations the spec-
trum of a generator determines exponential stability or hyperbolicity of the
semigroup. The following examples, cf. [Cop78, p. 3], show that this fails
in the time-dependent situation even for X = C2. In particular, ω0(U) can
be strictly greater or smaller than the (constant) spectral bound s

(
A(t)

)
.

9.9 Example. Let X := C and define A(t) := D(−t)A0D(t), B(t) :=
D(−t)B0D(t) for t ∈ R, where

D(t) :=
(

cos t sin t
− sin t cos t

)
, A0 :=

(
−1 −5
0 −1

)
, B0 :=

(
1 0
0 −1

)
.

The corresponding Cauchy problems are solved by

and

U(t, s) := D(−t) exp
[
(t− s)

(
−1 −4
−1 −1

)]
D(s)

V (t, s) := D(−t) exp
[
(t− s)

(
1 1
−1 −1

)]
D(s),

respectively. Thus, ω0(U) = 1 and ω0(V ) = 0 = ω0(V −1). On the other
hand, σ

(
A(t)

)
= {−1} and σ

(
B(t)

)
= {−1, 1} for all t ∈ R.
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b. Evolution Semigroups

In order to deal with some of the problems mentioned in the previous
section, we now introduce a semigroup approach to nonautonomous Cauchy
problems. Throughout, let

(
U(t, s)

)
t≥s be a strongly continuous evolution

family on a Banach space X such that ‖U(t, s)‖ ≤Mew(t−s) for t ≥ s and
constants M ≥ 1 and w ∈ R. We then define on the space E := C0(R, X),
endowed with the sup-norm ‖ · ‖∞, bounded operators T (t), t ≥ 0, by
setting

(9.2)
(
T (t)f

)
(s) := U(s, s− t)f(s− t) for s ∈ R and f ∈ E.

We first note the following basic property.

9.10 Lemma. Equation (9.2) defines a strongly continuous semigroup(
T (t)

)
t≥0 on E.

Proof. Clearly,
(
T (t)

)
t≥0 is a semigroup of bounded operators on E with

‖T (t)‖ ≤ Mewt. For f ∈ Cc(R, X), it is easy to see that T (t)f → f in E
as t → 0. Since Cc(R, X) is dense in E, Proposition I.5.3 implies strong
continuity of

(
T (t)

)
t≥0. �

9.11 Definition. Let
(
U(t, s)

)
t≥s be a strongly continuous, exponentially

bounded evolution family on a Banach space X. The strongly continuous
semigroup

(
T (t)

)
t≥0 on E = C0(R, X) defined in (9.2) is called an evolution

semigroup. Its generator is denoted by
(
G,D(G)

)
.

Recall that for bounded operators A(t) evolution semigroups were al-
ready introduced in Example III.5.9. For the special case U(t, s) ≡ I, we
designate by

(
Tr(t)

)
t∈R the group of right translations on E (and C0(R))

with generator G0f = −f ′ and D(G0) = {f ∈ C1(R, X) : f, f ′ ∈ E}; see
Exercise I.4.19.(5). Further, for a family of linear operators A(t), t ∈ R, we
define the multiplication operator A := A(·) on E with maximal domain
as in Paragraph III.4.13.

9.12 Remark. (i) There is a one-to-one correspondence between evolution
semigroups on E and exponentially bounded evolution families on X.
(ii) It is possible to define an evolution semigroup for intervals I instead of
R and on spaces Lp(I,X) for 1 ≤ p <∞. This is useful in certain situations,
see, e.g., [RRSV99] or [Sch99], but not needed in what follows.
(iii) It is shown in [Nic97, Thm. 2.9] that

(
U(t, s)

)
t≥s solves a Cauchy

problem (nACP) if and only if there is an invariant core D ⊆ C1
0(R, X) ∩

D(A) of G such that Gf = G0f + Af for f ∈ D; see also [Lum85b].
In particular, it is possible to solve (nACP) by means of results on the
sum of G0 and A; see [DPG75], [DPI76], [MP97], [MR99], [Nic97], and the
references therein.
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The following characterization of bounded multiplication operators on E
will lead to a characterization of evolution semigroups.

9.13 Proposition. A bounded operator M on E = C0(R, X) is of the
form (Mf)(s) = M(s)f(s) for an operator family M(·) ∈ Cb(R,Ls(X))
if (and only if) M(ϕf) = ϕMf for f ∈ E and ϕ ∈ Cc(R). Moreover,
‖M‖L(E) = supt∈R ‖M(t)‖L(X).

Proof. For ε > 0 and t ∈ R, choose a continuous function ϕε : R → [0, 1]
with ϕε(t) = 1 and suppϕε ⊆ [t− ε, t+ ε]. Then, by assumption,

‖(Mf)(t)‖ = ‖(Mϕεf)(t)‖ ≤ ‖M‖ · ‖ϕεf‖∞ ≤ ‖M‖ sup
|t−s|≤ε

‖f(s)‖

for every f ∈ E. Therefore, f(t) = 0 implies (Mf)(t) = 0. So we can define
linear operators M(t) on X by setting M(t)x := (Mf)(t) for some f ∈ E
with f(t) = x. Clearly, supt∈R ‖M(t)‖ = ‖M‖ and M = M(·). For x ∈ X
and t ∈ R, take f ∈ E with f(t) = x in a neighborhood J of t. Since
M(·)x = Mf(·) on J and Mf is continuous, M(·) is a strongly continuous
operator function. �

9.14 Theorem. Let
(
T (t)

)
t≥0 be a strongly continuous semigroup on

E = C0(R, X) with generator
(
G,D(G)

)
. Then the following assertions

are equivalent.

(a)
(
T (t)

)
t≥0 is an evolution semigroup.

(b) T (t) (ϕf) =
(
Tr(t)ϕ

)
T (t)f for all ϕ ∈ Cc(R), f ∈ E, and t ≥ 0.

(c) For f ∈ D(G) and ϕ ∈ C1
c(R), we have ϕf ∈ D(G) and G(ϕf) =

ϕGf − ϕ′f .

Proof. (a) ⇒ (c). For f ∈ D(G) and ϕ ∈ C1
c(R), the difference quotient

1
t

(
T (t)(ϕf)− ϕf

)
= 1

t

(
Tr(t)ϕ− ϕ

)
T (t)f + ϕ 1

t

(
T (t)f − f

)
converges to −ϕ′f + ϕGf in E as t ↓ 0.

(c) ⇒ (b). Set u(t) := (Tr(t)ϕ)T (t)f for ϕ ∈ C1
c(R), f ∈ D(G), and

t ≥ 0. By assumption, u(t) ∈ D(G) and

Gu(t) = −
(
Tr(t)ϕ′

)
T (t)f +

(
Tr(t)ϕ

)
GT (t)f = d

dtu(t).

Since u(0) = ϕf and G generates
(
T (t)

)
t≥0, this gives u(t) = T (t)(ϕf).

Now (b) follows by an obvious approximation argument.
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(b) ⇒ (a). Set Mt = T (t)Tr(−t) for t ≥ 0. The assumption and an
application of Proposition 9.13 show that Mt = M(t, ·) ∈ Cb(R,Ls(X)).
Define U(t, s) := M(t− s, t) for t ≥ s. Then(

T (t)f
)
(s) =

(
MtTr(t)f

)
(s) = M(t, s)f(s− t) = U(s, s− t)f(s− t)

for f ∈ E, t ≥ 0, and s ∈ R. Thus, strong continuity and exponential
boundedness of U(·, ·) in X follow easily from the respective properties of
T (·) in E. Finally,

U(s, s− t)x =
(
T (t)f

)
(s) =

(
T (r)T (t− r)f

)
(s)

= U(s, s− r)
(
T (t− r)f

)
(s− r) = U(s, s− r)U(s− r, s− t)x

for x ∈ X, s ∈ R, t ≥ r ≥ 0, and f ∈ E with f(s− t) = x. �

Theorem 9.14 and its proof are essentially due to Evans [Eva76], Lumer
[Lum85a], Neidhardt [Nei81], and Paquet [Paq79], in differing situations.
We will use this characterization in the next section in order to derive
perturbation results for evolution families from the perturbation theory of
semigroups. This idea goes back to Howland [How74], who has introduced
evolution semigroups in an L2-setting. Variants of Theorem 9.14 for evo-
lution semigroups on Lp(I,X) can be found in [Eva76], [How74], [Nei81],
[RRS96], [RRSV99].

In recent years, evolution semigroups have attracted renewed interest
since it was discovered that their spectra characterize the hyperbolicity
of the underlying evolution family. At first, we show the spectral mapping
theorem (SMT) for evolution semigroups.

9.15 Theorem. Let
(
T (t)

)
t≥0 be an evolution semigroup on E = C0(R, X)

with generator G. Then σ
(
T (t)

)
is rotationally invariant for t > 0 and

σ(G) is invariant under translations along the imaginary axis. Moreover,(
T (t)

)
t≥0 satisfies the spectral mapping theorem

(SMT) σ
(
T (t)

)
\ {0} = exp

(
tσ(G)

)
, t ≥ 0.

Proof. (1) We define an isomorphism on E by Mµf(s) := eiµsf(s) for
µ ∈ R. Clearly, MµT (t)M−µ = eiµtT (t) for t ≥ 0. This establishes the
asserted symmetry properties due to the results in Paragraphs II.2.1 and
II.2.2.

(2) Recall that the spectral mapping theorem follows from the inclusion
Aσ
(
T (t)

)
\{0} ⊆ etσ(G); see Theorem IV.3.6 and Theorem IV.3.7. Since the

rescaled semigroup
(
eλtT (t)

)
t≥0 is again an evolution semigroup, it suffices

to prove the following:

1 ∈ Aσ
(
T (t0)

)
for some t0 > 0 implies 0 ∈ σ(G).



Section 9. Semigroups for Nonautonomous Cauchy Problems 485

So assume that 1 ∈ Aσ
(
T (t0)

)
. For each n ∈ N, there exists fn ∈ C0(R, X)

such that ‖fn‖∞ = 1 and ‖fn − T (kt0)fn‖∞ < 1/2 for all k = 0, 1, . . . , 2n.
Hence,

(9.3)
1
2
< sup

s∈R
‖U(s, s− kt0)fn(s− kt0)‖ ≤ 2

for k = 0, 1, . . . , 2n. For each n, take sn ∈ R such that ‖U(sn, sn−nt0)xn‖ ≥
1/2 for xn := fn(sn − nt0). Let In := [sn − nt0, sn + nt0] and choose
αn ∈ C1(R) such that αn(sn) = 1, 0 ≤ αn ≤ 1, suppαn ⊆ In, and
‖α′n‖∞ ≤ 2/nt0. Define

gn(s) :=
{
αn(s)U(s, sn − nt0)xn, s ≥ sn − nt0,
0, s < sn − nt0,

for n ∈ N. Then gn ∈ E, ‖gn‖∞ ≥ ‖gn(sn)‖ ≥ 1/2, and

T (t)gn(s) = αn(s−t)U(s, s−t)U(s−t, sn−nt0)xn = αn(s−t)U(s, sn−nt0)xn

for s − t ≥ sn − nt0 and T (t)gn(s) = 0 for s − t < sn − nt0. Therefore,
gn ∈ D(G) and

Ggn(s) =
{
−α′n(s)U(s, sn − nt0)xn, s ≥ sn − nt0,
0, s < sn − nt0.

Each s ∈ In can be written as s = sn + (k+ σ− n)t0 for k ∈ {0, 1, . . . , 2n}
and σ ∈ [0, 1). Using the exponential boundedness of

(
U(t, s)

)
t≥s and (9.3),

we estimate

‖Ggn(s)‖ ≤ 2
nt0

Me|ω|t0
∥∥U(sn + (k − n)t0, sn − nt0

)
xn

∥∥
=

2M
nt0

e|ω|t0
∥∥U(sn + (k − n)t0, sn

+ (k − n)t0 − kt0
)
fn

(
sn + (k − n)t0 − kt0

)∥∥
≤ 4M
nt0

e|ω|t0

for s ∈ In. Consequently, 0 is an approximate eigenvalue of G. �

In order to relate the spectra of T (t) and G to the hyperbolicity of the
evolution family

(
U(t, s)

)
t≥s, we need some preliminary results and use the

notation introduced in Definition 9.8.

9.16 Lemma. Let
(
T (t)

)
t≥0 be a hyperbolic evolution semigroup on E

with corresponding projection P. Then ϕPf = P(ϕf) for ϕ ∈ Cb(R) and
f ∈ E.
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Proof. Since
(
T (t)

)
t≥0 is hyperbolic, there are constants N, δ > 0 such

that
N−1eδt ‖Qf‖∞ ≤ ‖T (t)Qf‖∞ ≤ ‖T (t)f‖∞ +Ne−δt ‖Pf‖∞

for f ∈ E and t ≥ 0. This implies PE = {f ∈ E : T (t)f → 0 as t → ∞}.
Hence, ϕPf ∈ PE for ϕ ∈ Cb(R). Further,

‖P(ϕQf)‖∞ =
∥∥P(ϕT (t)T−1

Q (t)
)
Qf
∥∥∞

=
∥∥T (t)P

(
Tr(−t)ϕ

)
T−1

Q (t)Qf
∥∥∞

≤ N2e−2δt ‖ϕ‖∞ · ‖f‖∞
for t ≥ 0, that is, P(ϕQf) = 0. As a result, we obtain P(ϕf) = P(ϕPf) +
P(ϕQf) = ϕPf . �

9.17 Lemma. Let
(
U(t, s)

)
t≥s be a hyperbolic evolution family on X with

projections P (t) and constantsN, δ > 0. Then the following assertions hold.

(i) UQ(t, s)Q(s) = UQ(t, r)UQ(r, s)Q(s) for t, r, s ∈ R.

(ii) The mapping R2 3 (t, s) 7→ UQ(t, s)Q(s) ∈ L(X) is strongly contin-
uous.

Proof. Assertion (i) can easily be verified. For (ii) let x ∈ X and (t′, s′) →
(t, s). We may assume t ≤ s and t′ ≤ s′ and write

UQ(t′, s′)Q(s′)x− UQ(t, s)Q(s)x

= UQ(t′, s′)Q(s′)
[
Q(s′)−Q(s)

]
x

+ UQ(t′, s′)Q(s′)
[
U(s, t)− U(s′, t′

)
]UQ(t, s)Q(s)x

+
[
Q(t′)−Q(t)

]
UQ(t, s)Q(s)x.

Since ‖UQ(t′, s′)Q(s′)‖ ≤ N and U(·, ·) and Q(·) are strongly continuous,
(ii) follows. �

Given a hyperbolic evolution family, we define its so-called Green’s func-
tion by

Γ(t, s) :=
{
U(t, s)P (s), t ≥ s,
−UQ(t, s)Q(s), t < s.

9.18 Theorem. For an exponentially bounded evolution family
(
U(t, s)

)
t≥s

on a Banach space X and the induced evolution semigroup
(
T (t)

)
t≥0 on

E := C0(R, X), the following assertions are equivalent.

(a)
(
U(t, s)

)
t≥s is hyperbolic.

(b)
(
T (t)

)
t≥0 is hyperbolic.

(c) ρ
(
T (t)

)
∩ Γ 6= ∅ for one/all t > 0.

(d) The generator G of
(
T (t)

)
t≥0 satisfies ρ(G) ∩ iR 6= ∅.

In this case, G is invertible and (G−1f)(t) = −
∫

R Γ(t, s)f(s) ds for all
f ∈ E and t ∈ R.



Section 9. Semigroups for Nonautonomous Cauchy Problems 487

Proof. The implications (b) ⇐⇒ (c) ⇐⇒ (d) are consequences of Propo-
sition V.1.15 and Theorem 9.15.

(a) ⇒ (b). By (Pf)(s) := P (s)f(s) we define a bounded projection P

on E that commutes with T (t) for t ≥ 0 due to Definition 9.8.(i). Using
Lemma 9.17, we see that the operator TQ(t) : QE → QE has the inverse

(9.4) T−1
Q (t)f(s) = UQ(s, s+ t)f(s+ t).

Finally, Definition 9.8.(iii) implies ‖T (t)P‖, ‖T−1
Q (t)Q‖ ≤ Ne−δt for t ≥ 0.

(b) ⇒ (a). By Lemma 9.16 and Proposition 9.13, the projection P cor-
responding to

(
T (t)

)
t≥0 is given by P (·) ∈ Cb(R,Ls(X)). Property (i) in

Definition 9.8 then follows from PT (t) = T (t)P. Because of T (t)QE = QE,
we obtain

Q(s)X = {(Qf)(s) : f ∈ E} =
{(
T (t)Qf

)
(s) : f ∈ E

}
= U(s, s−t)Q(s−t)X

for s ∈ R and t ≥ 0. Let s ∈ R, t ≥ 0, x ∈ Q(s − t)X, and ε > 0. Choose
f ∈ QE with f(s− t) = x and ‖T (t)f‖∞ ≤ ‖T (t)f(s)‖+ ε. Since

(
T (t)

)
t≥0

is hyperbolic, there are constants N, δ > 0 such that

N−1eδt ‖x‖ ≤ N−1eδt ‖f‖∞ ≤ ‖T (t)Qf‖∞ ≤ ‖U(s, s− t)x‖+ ε.

So we have verified Definition 9.8.(ii) and the second estimate in (c). The
other estimate is proved in the same way.

If (a)–(d) hold, thenG is invertible by Theorem 9.15. By Paragraph II.2.3,
the restricted semigroups

(
TP (t)

)
t≥0 and

(
T−1

Q (t)
)
t≥0 on PE and QE are

generated by GP := G|PE and −GQ := −G|QE , respectively. Since both
semigroups are uniformly exponentially stable, Theorem II.1.10.(i) and
(9.4) imply

−G−1f(t) =
(
R(0, GP )Pf

)
(t)−

(
R(0,−GQ)Qf

)
(t)

=
∫ ∞

0

U(t, t− τ)P (t− τ)f(t− τ) dτ

−
∫ ∞

0

UQ(t, t+ τ)Q(t+ τ)f(t+ τ) dτ

=
∫

R
Γ(t, s)f(s) ds

for f ∈ E and t ∈ R, where we have used that point evaluation is a
continuous mapping from E to X. �

Latushkin and Montgomery-Smith proved Theorem 9.15 in [LMS95]. We
have presented a somewhat simpler proof taken from [RS96]. The equiva-
lence (a) ⇐⇒ (b) in Theorem 9.18 is essentially due to Rau [Rau94]; see
also [RS94]. The representation of G−1 was found by Latushkin and Ran-
dolph [LR95]. By completely different methods, (9.18) (a) ⇐⇒ b was also
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proved in [LMS95] and [LMSR96]. Both theorems still hold when E is re-
placed by Lp(R, X), 1 ≤ p <∞; see the above references. For an alternative
approach using mild solutions of the inhomogeneous Cauchy problem, we
refer to [Cop78, §3], [DK74, §IV.3], [LRS98], [NRS98]; and the references
therein.

c. Perturbation Theory

In this section we derive perturbation results for evolution families from
the perturbation theory for semigroups.

For operators B(t), t ∈ R, on a Banach spaceX, define the multiplication
operator B := B(·) on E = C0(R, X). Notice that B is closed in E if all
operators B(t) are closed in X. A more general version of the following
result can be found in [RRSV99] (e.g., one can allow for ω0(U) = ∞),
see also [RRS96]. For the special case of bounded operators B(t) a similar
approach was already used in [Lum85a], [Lum85b], and [NR95]. We also
refer to [Eva76] and [How74] for related applications to scattering theory.

9.19 Theorem. Let
(
U(t, s)

)
t≥s be an exponentially bounded evolution

family on a Banach space X. Let B(t), t ∈ R, be closed operators on X
such that U(t, s)X ⊆ D

(
B(t)

)
, t 7→ B(t)U(t, s) is strongly continuous and

‖B(t)U(t, s)‖ ≤ k(t − s) for t > s and some locally integrable function
k : R+ → R+. Then there is a unique exponentially bounded evolution
family

(
UB(t, s)

)
t≥s on X such that

(9.5) UB(t, s)x = U(t, s)x+
∫ t

s

UB(t, τ)B(τ)U(τ, s)x dτ

for all t ≥ s and x ∈ X. Moreover, for x ∈ X and s ∈ R, we have UB(t, s)x ∈
D
(
B(t)

)
for almost all t > s, the function B(·)UB(·, s)x is locally integrable

on [s,∞), and

(9.6) UB(t, s)x = U(t, s)x+
∫ t

s

U(t, τ)B(τ)UB(τ, s)x dτ

for all t ≥ s and x ∈ X. The evolution semigroup
(
TB(t)

)
t≥0 on E =

C0(R, X) induced by
(
UB(t, s)

)
t≥s is generated by GB = G + B with

domain D(GB) = D(G) ⊆ D(B).

Proof. Let T :=
(
T (t)

)
t≥0 be the evolution semigroup associated with(

U(t, s)
)
t≥s on E, and let G be its generator. It is easy to see that T (t)E ⊆

D(B) and ‖BT (t)‖ ≤ k(t) for t > 0. Therefore, BT (·)f is continuous on
(0,∞) and ∫ t0

0

‖BT (t)f‖∞ dt ≤
∫ t0

0

k(t) dt ‖f‖∞ ≤ q ‖f‖∞
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for f ∈ E, some 0 ≤ q < 1, and sufficiently small t0 > 0. Also,∫ ∞

0

e−λt‖BT (t)f‖∞ dt ≤
∞∑

k=0

e−λk

∫ 1

0

‖BT (t)T (k)f‖∞ dt ≤ c ‖f‖∞

for λ > max{ω0(T), 0} and a suitable constant c. So the closedness of B

and (1.14) in Chapter II yield B ∈ L(E1, E). By the Miyadera–Voigt per-
turbation theorem, see Corollary III.3.16, the operator GB := G+ B with
D(GB) := D(G) generates a strongly continuous semigroup

(
TB(t)

)
t≥0

on E. For f ∈ D(GB) and ϕ ∈ C1
c(R), Theorem 9.14 implies that ϕf ∈

D(G) = D(GB) and

GB(ϕf) = −ϕ′f + ϕGf + ϕBf = −ϕ′f + ϕGBf,

and hence
(
TB(t)

)
t≥0 is an evolution semigroup induced by an exponen-

tially bounded evolution family
(
UB(t, s)

)
t≥s on X.

Fix x ∈ X, s ∈ R, t ≥ 0, and f ∈ E with f(s− t) = x. Since the mapping
f 7→ f(s) is continuous from E to X, Corollary III.3.16 implies

UB(s, s− t)x = U(s, s− t)x+
∫ s

s−t

UB(s, τ)B(τ)U(τ, s− t)x dτ

= U(s, s− t)x+
∫ s

s−t

U(s, τ)B(τ)UB(τ, s− t)x dτ,

and the remaining assertions except for the uniqueness.
Let

(
V (t, s)

)
t≥s be another exponentially bounded evolution family onX

satisfying (9.5). Then the associated evolution semigroup
(
S(t)

)
t≥0 satisfies

Corollary III.3.15.(i) for f ∈ E. Thus, by Corollary III.3.15, TB(t) = S(t),
and so UB(t, s) = V (t, s) for t ≥ s. �

9.20 Corollary. Let
(
U(t, s)

)
t≥s be an exponentially bounded evolution

family on X, and let B(·) ∈ Cb(R,Ls(X)). Then the conclusions of Theo-
rem 9.19 hold.

To interpret the above results, assume that
(
U(t, s)

)
t≥s solves (nACP).

Then, by virtue of (9.6), the function UB(·, s)x can be considered as a mild
solution of the nonautonomous Cauchy problem

(9.7)

{
d
dt u(t) =

(
A(t) +B(t)

)
u(t) for t ≥ s, t, s ∈ R,

u(s) = x;

cf. [Paz83, p. 129]. However, even if B(·) ∈ Cb

(
R,L(X)

)
, well-posedness of

(nACP) (in the sense of Definition 9.2) does not imply well-posedness of
(9.7). This follows from the next example, which is a version of [Phi53, Expl. 6.4];
see also [Lun95, Expl. 4.1.7].
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9.21 Example. On X := C0[0, 1), the operator Aϕ := ϕ′ with domain
D(A) := C1

0[0, 1) generates the left translation semigroup
(
Tl(t)

)
t≥0; cf.

Paragraph I.4.17. Define

(
B(t)ϕ

)
(ξ) :=

{
ϕ(ξ) if 2(ξ + t) ≥ 1,
2(ξ + t)ϕ(ξ) if 2(ξ + t) ≤ 1,

for ϕ ∈ X, 0 ≤ ξ < 1, and t ≥ 0. Also, set B(t) := B(0) for t < 0.
Then B(·) ∈ Cb

(
R,L(X)

)
. Each classical solution u of (9.7) for s = 0 and

A(t) := A satisfies

u(t) = Tl(t)ϕ+
∫ t

0

Tl(t− τ)B(τ)u(τ) dτ for t ≥ 0;

see Exercise 7.10.(1). On the other hand, for all ϕ ∈ X, the unique contin-
uous solution of this integral equation is given by

u(t)(ξ) =


0 if ξ + t ≥ 1,
etϕ(ξ + t) if 1 ≤ 2(ξ + t) ≤ 2,
e2(ξ+t)tϕ(ξ + t) if 0 ≤ 2(ξ + t) ≤ 1,

for t ≥ 0 and 0 ≤ ξ < 1. This function u solves (9.7) if and only if ϕ ∈ D(A)
and ϕ(1/2) = 0.

The next corollary is an easy consequence of (9.1) and the fact that the
evolution family

(
ec(t−s)U(t, s)

)
t≥s solves the “rescaled” Cauchy problem

given byA(t)+c. Results on differentiable solutions of a perturbed parabolic
problem can be found in, e.g., [Hen81, §7.1] and [RRSV99, §4]. In the latter
reference, the differentiability properties are deduced from a perturbation
theorem of Dore–Venni type [MP97], which is applied to the evolution
semigroup.

9.22 Corollary. Let A(·) + c satisfy the parabolic condition from Para-
graph 9.6 for some c ∈ R. Let Zs be the domain of (−A(s)− c)α for some
0 ≤ α < 1 endowed with the norm |||x|||α,s := ‖(−A(s) − c)αx‖. Assume

that B(s) ∈ L(Zs, X) is closable in X for s ∈ R and B(·)(−A(·)− c)−α ∈
Cb(R,Ls(X)). Then the conclusions of Theorem 9.19 hold.

Here is an application of this result to partial differential equations.

9.23 Example. Let Ω ⊆ Rn be a bounded domain with a compact bound-
ary ∂Ω of class C2. Let akl = alk ∈ Cb

(
R,C1(Ω)

)
∩ Cµ

(
R,C(Ω)

)
for

1/2 < µ ≤ 1 and b ∈ Cb

(
R,Lq(Ω)

)
for max{1, n/2} < q ≤ ∞. Assume

further that akl is real-valued and uniformly elliptic, i.e.,

n∑
k,l=1

akl(t, ξ)ηkηl ≥ ε |η|2
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for η ∈ Rn, ξ ∈ Ω, t ∈ R, and a constant ε > 0. Set X := Lp(Ω) for
p ∈ (1, q). We define

A(t)ϕ(ξ) :=
n∑

k,l=1

∂
∂ξk

(
akl(t, ξ) ∂

∂ξl
ϕ(ξ)

)
,

D
(
A(t)

)
:=
{
ϕ ∈ W2,p(Ω) :

n∑
k,l=1

akl(t, ξ)nk(ξ) ∂
∂ξl

ϕ(ξ) = 0 for ξ ∈ ∂Ω
}

on X, where n(ξ) is the outer unit normal vector at ξ ∈ ∂Ω. By (the proof
of) [Yag90, Thm. 4.1] and [Lun95, Thm. 3.1.3] there is a constant c such
that A(t)+c satisfies the parabolic condition from Paragraph 9.6 for µ > 1/2
and each ν ∈ (0, 1/2).

Fix q̃ ∈ (n/2, q) with q̃ > p and α ∈ (n/2q̃, 1). Let 1/r := 1/p − 1/q̃ and
1/r̃ := 1/p − 1/q. Then p < r̃ < r. Due to [Hen81, Thm. 1.6.1], the space
Zt is continuously embedded in Lr(Ω), and it can be seen that the norm
of the embedding is uniformly bounded in t ∈ R; cf. [RRSV99, §5]. Thus,
Zt is contained in the (maximal) domain D

(
B(t)

)
of the multiplication

operator B(t)ϕ = b(t, ·)ϕ(·), and B(t) : Zt → X is uniformly bounded.
Clearly,

(
B(t), D

(
B(t)

))
is closed in X. Further, using Hölder’s inequality

and [HS75, Thm. 13.19], we estimate

∥∥B(t)(−A(t)−c)−αϕ−B(s)(−A(s)− c)−αϕ
∥∥

p

≤ ‖b(t)− b(s)‖q̃ ·
∥∥(−A(t)− c)−αϕ

∥∥
r

+ ‖b(s)‖q ·
∥∥(−A(t)− c)−αϕ− (−A(s)− c)−αϕ

∥∥
r̃

≤ c1 ‖b(t)− b(s)‖q · ‖ϕ‖p

+ c2 ‖b(s)‖q ·
∥∥(−A(t)− c)−αϕ− (−A(s)− c)−αϕ

∥∥1−ϑ

p

·
∥∥(−A(t)− c)−αϕ− (−A(s)− c)−αϕ

∥∥ϑ

r

≤ c3

(
‖b(t)− b(s)‖q · ‖ϕ‖p

+
∥∥(−A(t)− c)−αϕ− (−A(s)− c)−αϕ

∥∥1−ϑ

p
· ‖ϕ‖ϑ

p

)
for t, s ∈ R, ϕ ∈ X, constants ck, and ϑ := r̃−p

r−p
r
r̃ ∈ (0, 1). Using the

definition of fractional powers (Definition II.5.25) one can now derive the
strong continuity of B(·)(−A(·)− c)−α, and Corollary 9.22 can be applied.

As an immediate application of Theorem 9.18, we obtain that the hyper-
bolicity of

(
U(t, s)

)
t≥s is preserved under “small” perturbations B(·). This

approach was already used in [LMSR96] and [LR95] for bounded pertur-
bations. The following results are special cases of results in [Sch99].
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9.24 Theorem. Let
(
U(t, s)

)
t≥s be a hyperbolic evolution family on a

Banach space X. Let
(
U(t, s)

)
t≥s and B(·) satisfy the hypotheses of The-

orem 9.19. Assume that ‖B(t)Γ(t, s)‖ ≤ β(t − s) for t, s ∈ R, β ∈ L1(R)
with

∫
R β(t)dt =: q < 1 and Green’s function Γ(·, ·). Then the perturbed

evolution family
(
UB(t, s)

)
t≥s is hyperbolic.

Proof. First note that UQ(t, s) = U(t, r)UQ(r, s) for t > r and t < s,
where UQ(t, s) is as in Definition 9.8. Thus, Γ(t, s)X ⊆ D

(
B(t)

)
for t 6= s.

From Theorem 9.18 and the closedness of B(t) we derive

(BG−1f)(t) = −
∫

R
B(t)Γ(t, s)f(s) ds

for t ∈ R and f ∈ E. Hence, ‖BG−1‖ ≤ q, and by [Kat80, IV.1.16], GB is
invertible. So the result follows from Theorem 9.18. �

9.25 Corollary. In the situation of Corollary 9.20, let
(
U(t, s)

)
t≥s be hy-

perbolic with constantsN, δ > 0. If supt∈R ‖B(t)‖ < δ/2N, then
(
UB(t, s)

)
t≥s

is hyperbolic. If ω0(U) < 0 and supt∈R ‖B(t)‖ < δ/N, then ω0(UB) < 0.

9.26 Corollary. In the situation of Corollary 9.22, let
(
U(t, s)

)
t≥s be

hyperbolic with constants N, δ > 0 and projections P (t). By (9.1) there is
a constant C such that ‖(−A(t)−c)αU(t, s)‖ ≤ C(t−s)−α for 0 < t−s ≤ 1.
If

b := sup
t∈R

‖B(t)‖L(Zt,X) <
(
NC ( 1

1−α + 1+e−δ

δ )
)−1,

then
(
UB(t, s)

)
t≥s is hyperbolic. If ω0(U) < 0 and

sup
t∈R

‖B(t)‖L(Zt,X) <
(
NC ( 1

1−α + 1
δ )
)−1,

then ω0(UB) < 0.

Proof. We have only to observe that ‖P (t)‖ ≤ N and∥∥B(t)Γ(t, s)
∥∥

≤

 bCN(t− s)−α, t− s ∈ (0, 1],
bC ‖U(t− 1, s)P (s)‖ ≤ bCNe−δ(t−1−s), t− s > 1,
bC ‖UQ(t− 1, s)Q(s)‖ ≤ bCNe−δ(s−t+1), t− s < 0.

�

Among the many papers on robustness of exponential dichotomy under
bounded perturbations, we mention only [Cop78, §4] and [DK74, §IV.5].
Certain classes of unbounded perturbations were considered in [CL96],
[Hen81], and [Lin92].
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d. Hyperbolic Evolution Families in the Parabolic Case

If an evolution family
(
U(t, s)

)
t≥s solves (nACP) on X, it is desirable to de-

rive the hyperbolicity of
(
U(t, s)

)
t≥s from properties of the operators A(t).

As a first guess, one could assume that each A(t) generates a hyperbolic
semigroup

(
eτA(t)

)
τ≥0 on X with uniform constants N, δ > 0. However,

Example 9.9 already shows that one needs an additional hypothesis. To
that purpose, it is natural to require A(·) to be Hölder continuous (in a
suitable sense) with a sufficiently small Hölder constant. In fact, such re-
sults are known for bounded operators A(t), [Bas94], [Cop78, §6], and for
delay equations, [Liz92]. In the sequel, we adopt ideas due to Baskakov
[Bas94] to our situation and apply Theorem 9.18. We make the following
assumptions.

(P) Let
(
A(t) + c,D

(
A(t)

))
for each t ∈ R and some fixed c ∈ R be gen-

erators of bounded analytic semigroups
(
eτA(t)

)
τ≥0 on X of the same

type (M, δ). Suppose that D
(
A(t)

)
≡ D

(
A(0)

)
, A(t) is invertible for

all t ∈ R, supt,s∈R ‖A(t)A(s)−1‖ < ∞, and ‖A(t)A(s)−1 − I‖ ≤
L|t− s|α for t, s ∈ R and constants L ≥ 0 and 0 < α ≤ 1.

(ED) Assume that (eτA(t))τ≥0 is hyperbolic with projection Pt and con-
stants N, δ > 0 for each t ∈ R. Moreover, let ‖A(t)eτA(t)Pt‖ ≤ ψ(τ)
and ‖A(t)e−τAQ(t)Qt‖ ≤ ψ(−τ) for τ > 0 and a function ψ such that
R 3 s 7→ ϕ(s) := |s|αψ(s) is integrable.

Here, we have set Qt := I −Pt, and eτAQ(t) is the restriction of eτA(t) to
QtX. Observe that (P) implies the parabolic condition from Paragraph 9.6
for A(t) + c. Thus, there is an exponentially bounded evolution family(
U(t, s)

)
t≥s solving (nACP), and we have a corresponding evolution semi-

group
(
T (t)

)
t≥0 on E = C0(R, X) with generator G.

We start with some preliminary facts.

9.27 Remark. The second sentence in (ED) is a consequence of (P) and
the first part of (ED). In fact, one can choose ψ(τ) := CN/τ for 0 < τ ≤ 1,
ψ(τ) := CNe−δ(τ−1) for τ > 1, and ψ(τ) := CNeδ(τ−1) for τ < 0, where
‖τA(t)eτA(t)‖ ≤ C for 0 ≤ τ ≤ 1 and t ∈ R. For α = 1, this gives ‖ϕ‖1 =
CN

(
1 + δ−2(1 + δ + e−δ)

)
.

Proof. The existence of the constant C follows from (4.9) in Chapter II.
Moreover, ‖Pt‖ ≤ N and

(9.8) A(t)e−τAQ(t)Qt = A(t)eA(t) e−(τ+1)AQ(t)Qt

for t ∈ R and τ ≥ 0. This implies the asserted estimates. �

In view of this remark, condition (ED) reduces to the assumption that
[−δ, δ] + iR ⊆ ρ

(
A(t)

)
and that the constant N does not depend on t, see

Theorem V.1.17 and Theorem IV.3.10.
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For the next result, recall the definition of the operators G0 and A = A(·)
following Definition 9.11.

9.28 Lemma. Assume that (P) holds. Then
(
G,D(G)

)
is the closure of

(G0 + A, D(G0) ∩D
(
A)
)
. Further, if f ∈ D(G) ∩D(A), then f ∈ D(G0).

Proof. Using rescaling, we may assume that c = 0 in (P). Due to Re-
mark 9.12.(iii) (or [LMSR96, Prop. 2.9]), the first assertion follows from
G0 + A ⊆ G. In fact, we have∥∥ 1

t

(
T (t)f − f

)
−(−f ′ + Af)

∥∥∞
≤ sup

s∈R

(∥∥ 1
t

(
U(s+ t, s)f(s)− f(s)

)
−A(s)f(s)

∥∥
+ ‖A(s)f(s)−A(s+ t)f(s+ t)‖

+
∥∥ 1

t

(
f(s)− f(s+ t)

)
+ f ′(s)

∥∥+ ‖f ′(s+ t)− f ′(s)‖
)

for f ∈ D(G0) ∩ D(A) and t > 0. Clearly, the second, third, and fourth
term on the right-hand side tend to 0 as t ↓ 0. Further, one has∥∥ 1

t

(
U(s+ t, s)f(s)− f(s)

)
−A(s)f(s)

∥∥
=
∥∥∥ 1

t

∫ s+t

s

(
A(τ)U(τ, s)−A(s)

)
f(s) dτ

∥∥∥
≤ sup

s∈R,s≤τ≤s+t

∥∥(A(τ)U(τ, s)−A(s)
)
f(s)

∥∥.
Since (τ, s) 7→ A(τ)U(τ, s)A(s)−1 is strongly continuous and uniformly
bounded for s ≤ τ ≤ s + 1 by [Ama95, Thm. II.4.4.1], the first summand
also converges to 0 as t ↓ 0.

Second, let f ∈ D(G) ∩D(A). Then,
1
t

(
f(s−t)−f(s)

)
= 1

t

(
U(s, s−t)f(s−t)−f(s)

)
+ 1

t

(
1−U(s, s−t)

)
f(s−t).

The first term on the right-hand side converges in E as t ↓ 0. The conver-
gence of the second one follows as above if one observes that∥∥ 1

t

(
1− U(·, · − t)

)
f(· − t) + Af

∥∥
∞ ≤

∥∥ 1
t

(
1− U(·+ t, ·)

)
f(·) + Af

∥∥
∞

+ ‖Af(·+ t)−Af‖∞.
�

By virtue of (ED), we can define

Γs(τ) :=
{

eτA(s)Ps, τ ≥ 0, s ∈ R,
−eτAQ(s)Qs, τ < 0, s ∈ R.

Recall that the projections Pt in (ED) are given by the spectral projections

Pt =
1

2πi

∫
Γ

R(λ, eA(t)) dλ

with respect to the spectral set
{
λ ∈ σ(eA(t)) : |λ| < 1

}
; cf. Section V.1.c.
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9.29 Lemma. Let (P) and (ED) hold. Then the mappings

(s, τ) 7→ Γs(τ) ∈ L(X) and (t, s, τ) 7→ A(t)Γs(τ) ∈ L(X)

are continuous for τ 6= 0 and t, s ∈ R.

Proof. By (4.2) in Section II.4.a, the mapping τ 7→ eτA(s) ∈ L(X) is
continuous for τ > 0 uniformly in s ∈ R. It is straightforward to show that

‖R(λ,A(t) + c)−R(λ,A(s) + c)‖ ≤ LM(M + 1) |t− s|α · |λ|−1

for t, s ∈ R and λ ∈ Σπ/2+δ. So the representation (4.2) in Chapter II of
eτA(t) yields the Hölder continuity of t 7→ eτA(t) ∈ L(X) uniformly for
0 ≤ τ ≤ d. Moreover, due to (ED), the resolvents

R(λ, eA(t)) =
∞∑

n=0

λ−(n+1) enA(t)Pt −
∞∑

n=1

λn−1 e−nAQ(t)Qt

are uniformly bounded for t ∈ R and |λ| = 1. Thus, R(λ, eA(t)) and hence
the spectral projections Pt are Hölder continuous with respect to t. Further,
one has

e−τAQ(t)Qt − e−σAQ(s)Qs = e−τAQ(t)Qt (Qt −Qs)

+ e−τAQ(t)Qt

(
eσA(s) − eτA(t)

)
e−σAQ(s)Qs

+ (Qt −Qs) e−σAQ(s)Qs

for t, s ∈ R and τ, σ > 0. Therefore, (s, τ) 7→ Γs(τ) ∈ L(X) is continuous
for τ 6= 0. From [Paz83, Lem. 5.6.2] and (9.8) it now follows that (t, s, τ) 7→
A(t)Γs(τ) ∈ L(X) is continuous for τ 6= 0. �

We now give a sufficient condition for the hyperbolicity of
(
U(t, s)

)
t≥s

taken from [Sch99]. We remark that [Cop78, Prop. 6.2] shows that, roughly
speaking, (ED) is a necessary condition if A(·) has a small Lipschitz con-
stant.

9.30 Theorem. Assume that (P) and (ED) hold. Let q := L‖ϕ‖1 < 1.
Then

(
U(t, s)

)
t≥s is hyperbolic with an exponent 0 < δ′ < δ(1−q)/2N =: η.

Proof. (1) Using (ED), we define for f ∈ E = C0(R, X) and t ∈ R the
operators

(Rf)(t) :=
∫ ∞

−∞
Γs(t− s)f(s) ds

=
∫ t

−∞
e(t−s)A(s)Ps f(s) ds−

∫ ∞

t

e(t−s)AQ(s)Qs f(s) ds,

(Lf)(t) :=
∫ ∞

−∞
Γt(t− s)f(s) ds

=
∫ t

−∞
e(t−s)A(t)Pt f(s) ds−

∫ ∞

t

e(t−s)AQ(t)Qt f(s) ds.
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By means of Lemma 9.29, it is straightforward to verify that R,L ∈ L(E)
and ‖R‖, ‖L‖ ≤ 2N/δ. Let G be the generator of the evolution semigroup(
T (t)

)
t≥0 on E = C0(R, X) induced by

(
U(t, s)

)
t≥s. We show in step (2)

and (3) that G is bijective.
(2) For f ∈ D(A), we have∫ ∞

−∞
A(t)Γs(t− s)f(s) ds =

∫ ∞

−∞
A(t)A(s)−1 Γs(t− s)A(s)f(s) ds.

Due to (ED) and Lemma 9.29, Rf(t) ∈ D
(
A(t)

)
and ARf ∈ E. Moreover,

(
d
dtRf

)
(t) = Ptf(t) +Qtf(t) +

∫ ∞

−∞
Γs(t− s)A(s)f(s) ds,

so that d/dtRf ∈ E. Now, Lemma 9.28 yields RD(A) ⊆ D(A) ∩D(G0) ⊆
D(G) and (GR+ I)f = Sf for f ∈ D(A), where

(Sf)(t) :=
∫ ∞

−∞

(
A(t)−A(s)

)
Γs(t− s)f(s) ds.

Using (P), (ED), and Lemma 9.29, we obtain for f ∈ E and t ∈ R that

‖Sf(t)‖ ≤
∫ ∞

−∞

∥∥(A(t)−A(s)
)
A(s)−1

∥∥ ‖A(s)Γs(t− s)f(s)‖ ds

≤ L ‖f‖∞
∫ ∞

−∞
ϕ(t− s) ds = q ‖f‖∞

and Sf ∈ E. This means that S is a strict contraction on E. Thus, S − I
is invertible.

Fix g ∈ E. Let f := (S − I)−1g and choose D(A) 3 fn → f . Then
Rfn → Rf and GRfn = (S−I)fn → g in E. Since G is closed, Rf ∈ D(G)
and GRf = g. So G is surjective and has the right inverse R(S − I)−1.

(3) Let f ∈ D(A) ∩D(G0) ⊆ D(G). Integrating by parts, we compute

(9.9)

(LGf)(t) =
∫ ∞

−∞
Γt(t− s)A(s)f(s) ds−

∫ ∞

−∞
Γt(t− s)f ′(s) ds

=
∫ ∞

−∞
Γt(t− s)A(s)f(s) ds− (Pt +Qt)f(t)

−
∫ ∞

−∞
Γt(t− s)A(t)f(s) ds

= − f(t) + (V f)(t)

for t ∈ R, where

(V f)(t) :=
∫ ∞

−∞
Γt(t− s)

(
A(s)−A(t)

)
f(s) ds.
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Again, for f ∈ D(A), conditions (P) and (ED) and Lemma 9.29 yield

‖A(t) (V f)(t)‖

≤
∫ ∞

−∞
‖A(t)Γt(t− s)‖ ·

∥∥(A(t)−A(s)
)
A(s)−1

∥∥ · ‖A(s)f(s)‖ ds

≤ L ‖Af‖∞
∫ ∞

−∞
ϕ(t− s) ds = q ‖Af‖∞

and V f ∈ D(A). Therefore, V is a strict contraction on D(A) endowed
with the norm ‖f‖A := ‖Af‖∞ (notice that A−1 = A(·)−1 ∈ L(E) by
(P)).

Assume Gf = 0 for some f ∈ D(G). Then it follows that f(s) =(
T (1)f

)
(s) = U(s, s − 1)f(s − 1) for s ∈ R. Since the function s 7→

A(s)U(s, s − 1) ∈ L(X) is strongly continuous and uniformly bounded
by (9.1), we have f ∈ D(A) ∩ D(G). Thus, f ∈ D(A) ∩ D(G0) due to
Lemma 9.28. Now, the identity (9.9) implies V f = f + LGf = f , and
hence f = 0.

(4) Steps (2) and (3) yield 0 ∈ ρ(G) andG−1 = R(S−I)−1. Consequently,
‖G−1‖ ≤ η−1. Due to the symmetry of σ(G), see Theorem 9.15, this implies
(−η, η) + iR ⊆ ρ(G). Using rescaling and Theorem 9.18, one sees that
the evolution families

(
e±δ′(t−s)U(t, s)

)
t≥s are hyperbolic with exponent

0 ≤ δ′ < η and the same projections P (s). �

Notes and Further Reading to Section 9
Well-posedness of abstract and concrete nonautonomous Cauchy problems is
treated in the books [Ama95], [Fat83], [Gol85], [Kre71], [Lun95], [Paz83], [Tan79],
and [Tan97]. The asymptotic behavior of solutions is investigated in, for instance,
[Cop78], [DK74], and [Hen81] and, in the time parabolic case, [DKM92], [Lun95].
The approach via evolution semigroups is developed systematically in the mono-
graph [CL99], where one finds plenty of further references.



Chapter VII

A Brief History of the
Exponential Function
(by Tanja Hahn and Carla Perazzoli∗)

1. A Bird’s-Eye View

From a philosophical perspective, the exponential function may be viewed
as a link between the seemingly contradictory positions of Heraclitus on
the one side and Parmenides on the other, as quoted in the Epilogue (
p. 550). While the time-dependent function t 7→ T (t)—the semigroup—
reflects the aspect of permanent change in a deterministic autonomous
system, its generator A stands for the eternal, timeless principle behind
the system. The exponential function ties both aspects together through
the formula

T (t) = exp(tA).

From the beginning, the scalar exponential function t 7→ exp(ta) drew
much of its significance from two very peculiar properties it enjoys. For one
thing, it satisfies the functional equation

(FE) f(t+ s) = f(t) · f(s).

On the other hand, it satisfies the differential equation

(DE)
du(t)
dt

= au(t).

(FE) expresses the idea behind the slide rule and was systematically ex-
ploited for the first time by John Napier (1550–1617). (DE), on the other

∗ The authors thank Ulf Schlotterbeck for many helpful comments.
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hand, grew out of an apparently quite different circle of ideas: The growth
rate of an amount of money under the influence of continuously calculated
compound interest is proportional, at any time, to the amount attained at
that time. It was Leonhard Euler (1707–1783) who put earlier results
into a coherent context and showed that

∞∑
n=0

tn

n!
= lim

n→∞

(
1 +

t

n

)n

= et,

with e = limn→∞(1 + 1/n)n (see [Eul48], see also Section 3).
In general terms, we could say that if we identify L(C) with C, (FE) is

the law of linear, autonomous, and deterministic evolution (see Epilogue,
Section 1), while (DE) describes the same phenomenon in the language
of calculus. Based on this interpretation, one might think that only very
special autonomous systems can possibly be described by (DE), which pre-
supposes differentiability. Our understanding and appreciation of the expo-
nential function unfolds with the realization that (DE) is very close to (FE)
far beyond the realm of classical calculus and that the scalar exponential
function serves us well as a guide into unknown territory. The following is
a striking example of visionary reasoning, under the guidance of the scalar
situation, by one of the great masters of calculus. In 1772, Joseph Louis
Lagrange (1736–1830) ventured to write Taylor’s formula

g(s+ t) =
∞∑

n=0

tng(n)(s)
n!

as
g(s+ t) = exp

(
t d

dt

)
g(s);

see [Lag72]. On might be tempted to disqualify this as purely formal think-
ing that need not even make sense for C∞-functions. A more adequate com-
ment, using the modern concept of exponential function, would be that it
took almost two hundred years and the invention of functional analysis and
modern semigroup theory to realize that Lagrange’s formula is correct if
we only suppose f to be integrable: The translation semigroup is generated
by the first derivative on the space of integrable functions on the line.

Lagrange did not care much about the justification of this formula.
Rather, he used it with great skill, and it is quite interesting that this sort of
symbolic operational calculus anticipated in many details vital parts of the
modern treatment of evolution equations. Lagrange himself noted that his
formula led him to find many new theorems that otherwise would have been
difficult to discover. Other authors who used, in different disguises, formulas
like Lagrange’s include Jean-Baptiste Joseph Fourier (1768–1830)
(see, e.g., [Fou22]), George Boole (1815–1864), and Oliver Heaviside
(1850–1925).
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Boole and Heaviside were especially outspoken concerning the ben-
efits of the symbolic calculus. Here is an excerpt from Boole’s book
[Boo59, pp. 388–389]:

There exist forms of the functional symbol f , for which we can attach a
meaning to the expression f(m), but cannot directly attach a meaning
to the symbol f (d/dx). And the question arises: Does this difference re-
strict our freedom in the use of that principle which permits us to treat
expressions of the form f (d/dx) as if d/dx were a symbol of quantity? For
instance, we can attach no direct meaning to the expression ehd/dxf(x),
but if we develop the exponential as if d/dx were quantitative, we have

ehd/dxf(x) =
(

1 + h
d

dx
+

1
1 · 2

h2 d
2

dx2
+ &c.

)
f(x) = f(x+ h)

by Taylor’s theorem. Are we then permitted, on the above principle,
to make use of symbolic language; always supposing that we can, by
the continued application of the same principle, obtain a final result of
interpretable form?

He answered his question in the affirmative:

Now all special instances point to the conclusion that this is permissible,
and seem to indicate, as a general principle, that the mere processes of
symbolical reasoning are independent of the conditions of their interpre-
tation.

At the end of the nineteenth century Heaviside commented in [Hea93]
on a similar (rhetorical) question:

Shall I refuse my dinner because I do not fully understand the process
of digestion? No, not if I am satisfied with the result.

Of course, a rigorous foundation for these ideas required the basic con-
cepts of functional analysis. Still, also in this respect a few pioneering con-
tributions stand out and stun us by their visionary quality. Thus the work of
Giuseppe Peano (1858–1932) in 1887 on systems of ordinary linear differ-
ential equations with constant coefficients, where the exponential of a com-
plex matrix is the decisive tool, is perfectly prepared for an interpretation
in infinite-dimensional Banach spaces. And Marshal Harvey Stone’s
(1903–1989) representation, in 1930, of a group of unitary operators as the
exponential of a skew-adjoint unbounded operator paved the way for the
Hille–Yosida theorem of 1947. A synopsis of the state of affairs achieved by
that time can be found in the book of Carl Einar Hille (1894–1980) on
one-parameter semigroups, which appeared in 1948 and comprises a good
portion of modern functional analysis. In its revised edition of 1957, coau-
thored and strongly influenced by Ralph S. Phillips (†1998), this book is
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a focal point in the history of operator semigroups insofar as it represents
an encyclopedic achievement, firmly anchoring semigroup methods in the
field of evolution equations. Here we find a careful analysis of the influence
of continuity properties on the way an operator semigroup may be under-
stood as the exponential of its infinitesimal generator, and ample evidence
for the philosophy that the exponential function governs deterministic and
autonomous evolution. Eventually, it became customary to reserve the no-
tation T (t) = exp(tA) mainly for the strongly continuous situation. More
general cases do occur but seem to be of lesser importance, since techniques
have been developed to produce a strongly continuous situation through
modifications of the underlying Banach space (see, e.g., Proposition II.6.6).

We have concentrated in this short survey on aspects of the exponential
function that particularly reflect the spirit of this book. There are other
aspects, equally interesting and important and also intimately related to
evolution equations, such as the Fourier and the Laplace transforms, and
the theory of Lie groups. We do not attempt to place these aspects into
our picture. Rather, we give up our general point of view now and proceed
with a more elaborate account of specific details.

2. The Functional Equation

In connection with the use and the computation of logarithms, the equation
(FE) had implicitly attracted much attention since the time of Napier.
However, it was Augustin Louis Cauchy (1789–1857) who approached
this equation for the first time in a systematic way. In 1821 he published
his Cours d’Analyse [Cau21] and considered on pages 98–113 and 220–229
in detail the real and complex functional equation

(FE) ϕ(s+ t) = ϕ(s) · ϕ(t)

as well as the equations

ϕ(s+ t) = ϕ(s) + ϕ(t),
ϕ(s · t) = ϕ(s) + ϕ(t),
ϕ(s · t) = ϕ(s) · ϕ(t)

(cf. the quotation in Section I.1). Trying to determine all continuous so-
lutions, he showed that the general continuous solution of (FE) is given
by the exponential function. Although Cauchy is generally considered the
father of rigorous calculus, he was not aware of the notions of uniform con-
tinuity and of uniform convergence, so some of his arguments are not quite
convincing. He may have thought of the following (wrong) principle, which
appears on p. 234 of his book [Cau21] and which would have filled the gaps:
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Lorsque les différents termes de la série u0 + u1 + u2 + · · · sont des fonc-
tions d’une même variable x, continues par rapport à cette variable dans
le voisinage d’une valeur particulière pour laquelle la série est conver-
gente, la somme s de la série est aussi, dans le voisinage de cette valeur
particulière, fonction continue de x.1

Niels Henrik Abel (1802–1829) gave a counterexample2 in [Abe26] and
clarified some details, so partial credit for the following theorem goes to
Abel.

2.1 Theorem. (Cauchy 1821, Abel 1826). The nontrivial continuous
complex-valued solutions of (FE) on the real line are exactly the functions
R 3 t 7→ ϕa(t) := exp(ta) with a ∈ C.

It is remarkable that, as a result, a continuous solution of (FE) must
necessarily be smooth. Today it would be natural to immediately com-
ment this result by asking whether weaker conditions on ϕ also force ϕ to
be an exponential. Actually, it was more than 70 years later that David
Hilbert (1862–1943) asked this question at the International Congress of
Mathematicians in Paris (cf. Paragraph I.1.6).

In fact, Stefan Banach (1892–1943) and Wac law Sierpiński (1892–
1969) then proved in [Ban20] and [Sie20] that it is enough to assume mea-
surability of ϕ.

2.2 Theorem. (Banach, Sierpiński 1920). Let ϕ be a nontrivial mea-
surable solution of (FE) on the real line. Then there exists a unique a ∈ C
such that ϕ(t) = exp(ta) for all t ∈ R.

The question whether there exist other solutions of (FE) at all had al-
ready been solved by Georg Hamel (1897–1954) in 1905. In his famous
paper [Ham05] on the functional equation

(2.1) f(x+ y) = f(x) + f(y)

he considered the real numbers R as a vector space over Q and obtained
solutions f of (2.1) that are not continuous. Applying the exponential func-
tion on both sides of (2.1) then yields a solution ϕ := exp ◦f of (FE) that
is not continuous. By Banach’s and Sierpiński’s result such a solution
cannot be measurable, and one can summarize the result as follows (see
Exercise I.1.7.(1)).

1 If the different terms of the series u0 +u1 +u2 + · · · are functions of the same variable
x, continuous with respect to this variable in the neighborhood of a particular value for
which the series converges, then also the sum s of the series is, in the neighborhood of
this particular value, a continuous function with respect to x.
2 A beautiful picture illustrating this episode can be found in [HW97, p. 171].
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2.3 Theorem. (Hamel 1905). There exist solutions of (FE) that are not
measurable. Furthermore, all solutions of (FE) can be written in the form
ϕ = exp ◦f , where f solves the functional equation (2.1).

3. The Differential Equation

Motivated by René Descartes’s (1596–1650) treatise on geometry [Des37],
F. Debeaune (1601–1652) posed in 1638 the problem of finding a curve
y = f(x) such that for any point P on the curve the distance between
the abscissa belonging to P and the point where the tangent in P cuts
the x-axis has a constant, preassigned value c (see [HW97, p. 25] for de-
tails). The problem turned out to be quite hard. Gottfried Wilhelm
Leibniz (1646–1716) proposed an approximate step-by-step construction
of f(x0 + kb) for a small increment b, which led to the formula

f(x0 + kb) =
(

1 +
b

c

)k

f(x0).

The connection to the compound interest formula is obvious. Leibniz him-
self was not fully satisfied, and it took the ingenuity of Euler to bring
the idea to a conclusion: If we put x0 = 0, f(x0) = c = 1 and aim at a
fixed point t > 0, approximating it in k steps of length t/k, then Leibniz’s
formula yields the approximation

fk(t) =
(

1 +
t

k

)k

.

Isolating the case t = 1, Euler proved3 through a bold application of the
binomial formula the convergence of these terms to

e := lim
k→∞

(
1 +

1
k

)k

=
∞∑

n=0

1
n!
.

He then put t/k := 1/n and obtained

f(t) = lim
k→∞

(
1 +

t

k

)k

= lim
n→∞

(
1 +

1
n

)nt

= et = exp(t).

Since (1 + t/k)k (1− t/k)k tends to 1 as k →∞, we also have

exp(t) = lim
k→∞

(
1− t

k

)−k

.

3 Euler did not specifically refer to Debeaune’s problem, but rather to several other
problems in connection with the compound interest formula.
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Now, Debeaune’s curve with constant c solves

df(t)
dt

=
1
c
· f(t);

hence the solution of (DE) with u(0) = u0 is

u(t) = exp(at) · u0.

Euler’s treatment of the exponential function was ingenious, but de-
pended largely on his superior intuition. His delicate convergence argu-
ments were put on a sound basis by the work of Cauchy (and others), so
that in 1887 Peano was able to leave the one-dimensional context and to
deal, in a rigorous way, with systems of ordinary linear differential equa-
tions with constant coefficients. Using the matrix and vector notation he
had introduced, he wrote the system

(3.1)

dx1(t)
dt

= α11x1(t) + · · ·+ α1nxn(t),

...
...

...
dxn(t)
dt

= αn1x1(t) + · · ·+ αnnxn(t)

as
dX(t)
dt

= αX(t),

where α stands for the matrix of coefficients

α =

(
α11 · · · α1n

...
. . .

...
αn1 · · · αnn

)
.

In complete analogy to the one-dimensional case he found the solution as

X(t) := etα
X(0),

where he defined etα :=
∑∞

n=0
tnαn

/n! and proved convergence of this series
(see the quotation from [Pea87] in Section I.2). We can state his result as
follows.

3.1 Theorem. (Peano 1887). Let A be a complex m×m matrix. Then
the series

U(t) :=
∞∑

n=0

tnAn

n!

converges for all t ∈ R, and t 7→ X(t) := U(t)X0 is the unique solution of
the system (3.1) with the initial condition X(0) = X0.
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Subsequently, it was one of G. Peano’s students, Maria Gramegna
(†1915), who again took up this idea in 1910 and generalized Peano’s re-
sult in [Gra10] to infinite systems of differential equations and to integral
equations. A few years before, in 1894, Henri Poincaré (1854–1912) had
already dealt successfully with infinite systems. But he considered only spe-
cial cases (see, for example, [Poi94]). By contrast, Gramegna used very
general methods for solving these problems. This gives her work a mod-
ern flair. She defined convergence with respect to the sup-norm ‖ · ‖∞ and
considered linear operators and the operator norm on `∞. With these tools
she introduced the exponential function for bounded operators and proved
convergence of the exponential series. She wrote:

Allora abbiasi un sistema di infinite equazioni differenziali lineari con
infinite incognite:

dx1

dt
= u11x1 + u12x2 + · · ·

dx2

dt
= u21x1 + u22x2 + · · ·

.......................................

dove le u sono costanti rispetto al tempo. Indichiamo con a la sostitu-
zione rappresentata dalla matrice delle u, (. . .). Chiamo x il complesso
(x1, x2, . . .) et sia x0 il suo valore iniziale. Le equazioni differenziali date
si potranno scrivere: Dx = ax. E l’integrale è: x1 = etax0 ossia i diversi
valori di x corrispondenti ai diversi valori di t si hanno applicando al
complesso x0 la sostituzione eat cioè la sostituzione:

1 + ta+
t2a2

2!
+
t3a3

3!
+ · · · .4

After that a similar treatment of integral equations followed. Using modern
terminology, she proved the following.

4 We now consider an infinite system of differential linear equations with an infinite
number of unknowns:

dx1

dt
= u11x1 + u12x2 + · · ·

dx2

dt
= u21x1 + u22x2 + · · ·

.......................................

where the u are constant with respect to time. Let us denote by a the substitution
represented by the matrix of the u’s, (. . .). Let x be the vector (x1, x2, . . .) and x0 its
initial value. One can then write the given differential equation as: Dx = ax. And the
integral is given by x1 = etax0 or also with values of x corresponding to values of t; taking
the totality x0 under consideration, one can confer that eat has the representation:

1 + ta +
t2a2

2!
+

t3a3

3!
+ · · · .
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3.2 Theorem. (Gramegna 1910).

(i) If A = (aij) ∈ L(`∞), then the series U(t) :=
∑∞

n=0
tnAn

n! converges,
and the function t 7→

(
xk(t)

)
k∈N := U(t)

(
(xk)k∈N

)
is the unique

solution of the infinite system of differential equations

x′1(t) = a11x1(t) + a12x2(t) + · · ·+ a1nxn(t) + · · · , x1(0) = x1,

...
...

x′n(t) = an1x1(t) + an2x2(t) + · · ·+ annxn(t) + · · · , xn(0) = xn,

...
...

(ii) Let Af :=
∫ 1

0
k(·, y)f(y)dy for k ∈ C([0, 1]2) and f ∈ C[0, 1]. Then

U(t) :=
∑∞

n=0
tnAn

n! converges, and t 7→ u(t) := U(t)f is the unique
solution of the integro-differential equation

∂u(t, x)
∂t

=
∫ 1

0

k(x, y)u(t, y) dy, u(0) = f.

With respect to Gramegna’s article,5 H.C. Kennedy wrote in his biog-
raphy of Peano [Ken80, p. 132].

Many of those who wrote theses under Peano’s direction were women
and, according to Terracini, they were not always well prepared, but the
1910 graduate, Maria Gramegna, was one of the most promising. In
fact, Peano had presented a long article by her on differential and in-
tegral equations to the Academy of Sciences on 13 March, 1910. In it
she anticipated the modern application of matrix theory to the study of
systems of differential equations; the idea for this probably came from
Peano. Her abilities were not to be realized, however, for she went to
teach at the Normal School in Avezzano (L’Aquila) and died on 13 Jan-
uary, 1915, a victim of the earthquake that destroyed that town and
killed 96% of its inhabitants.

5 When I was looking for the volume of the “Atti della Reale Accademia delle Science di
Torino” containing Gramegna’s article in the library of the Department of Mathematics
at the University of Rome “La Sapienza” in 1994, I was utterly surprised to find the
respective pages of this volume still connected so that I had to cut them open in order
to read the text. I must say that I could not refrain from being touched by the fact
that this important article had gone unnoticed until the very day I held it in my hands
(C.P.).
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4. The Birth of Semigroup Theory

With the results of Hamel, Banach, and Sierpiński the functional equa-
tion (FE) in its classical meaning was completely solved by 1920. However,
in the meantime a more general perspective with respect to this equa-
tion had gradually emerged. It was Jacques Hadamard (1865–1963) who
pointed out in [Had24] that what is usually called Huygens’ principle in
the theory of propagation of waves has as a consequence an abstract princi-
ple, applicable to autonomous Cauchy problems: If such a problem admits
unique solutions for all times, then these solutions are the orbits of the
initial values under a (semi) group of transformations (see Epilogue, Sec-
tion 1, and p. 152). Thus an operator-valued version of (FE), which is the
(semi) group law

(FE∗) T (t+ s) = T (t)T (s),

became increasingly important.
On the other hand, such Cauchy problems are, in modern language,

a Banach-space-valued version of (DE). Taking into account the classical
results concerning (FE) and (DE) and the success of Peano’s strategy,
(FE∗) and the abstract Cauchy problem from Definition II.6.1 appear like
the two sides of the same medal. Semigroup theory in the sense of this
book is the fusion of these two aspects into one coherent theory. However,
the extent to which the exponential function is the connecting link is truly
surprising and was not immediately realized. In the Hilbert space context,
M.H. Stone developed the operational calculus for general (unbounded)
self-adjoint transformations and characterized strongly continuous unitary
groups in [Sto30] (see also Theorem II.3.24).6

4.1 Theorem. (Stone 1930).

(i) Let A be a self-adjoint operator in a Hilbert space H. Then U(t) =
eitA, −∞ < t < ∞, is a family of unitary transformations with the
group property

(4.1) U(s+ t) = U(s) · U(t)

and the continuity property

(4.2) U(s) → U(t) in the strong sense, when s→ t.

(ii) If U(t), −∞ < t < ∞, is a family of unitary transformations on
a Hilbert space for which the properties (4.1) and (4.2) hold, then
there exists a unique self-adjoint mapping A with U(t) = eitA for all
t ∈ R.

6 The genesis of this theorem is an interesting story by itself. We refer to [Sto32b] and
the foreword in [Sto32a].
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Outside the Hilbert space scenario, the advance was quite cautious, and it
appears as if, for some time, nobody dared to hope that, as a rule, differen-
tial operators could be plugged into the exponential function. We mention
publications of D.S. Nathan [Nat35], M. Nagumo [Nag36], and Kosaku
Yosida (1909–1990) [Yos36] that seem to be particularly noteworthy and
contained the following result.

4.2 Theorem. (Nathan 1935, Nagumo 1936, Yosida 1936).

(i) Let A be a bounded linear operator on a Banach space X. Then A
generates a norm-continuous solution U of (FE∗) via the formula

(4.3) U(t) = exp(tA) :=
∞∑

n=0

tnAn

n!
.

(ii) Let U be a norm-continuous solution of (FE∗) in a Banach space.
Then there exists a unique bounded operator A such that U is given
by (4.3).

Of course, the situation where the semigroup is not uniformly contin-
uous is the real challenge. Then the exponential series does not seem to
be of much value, cf. Exercise II.3.12.(2.ii). Still, the following result, due
to Izrail Moiseevitch Gelfand (∗1913) [Gel39], indicates that the ex-
ponential function retains its value. We point out that weak continuity is
the same as strong continuity in this context (cf. Theorem I.5.8), a fact
Gelfand was aware of, and that the group property is essential in order
to get the result.

4.3 Theorem. (Gelfand 1939). Let U be a solution of (FE∗), −∞ <
t, s < ∞, that is norm bounded and continuous for the weak operator
topology on L(X). Then there exists a linear operator A on X such that

U(t)x = exp(tA)x :=
∞∑

n=0

tnAnx

n!

for all x in a dense subset of X.

In 1944, Hille and Nelson Dunford (1906–1986) characterized the
situation as follows (see [HD47]).

The problem of representing a one-parameter group of operators on a
Banach space reduces according to several well-known methods of attack
to establishing differentiability of the function Tξ at ξ = 0. The derivative

Ax = lim
ξ→0

ξ−1(Tξ − I)x

exists as a closed operator with domain D(A) dense, provided that Tξ is
continuous in the strong operator topology. It is then possible to assign
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a meaning to exp(ξA) in a natural way and so that Tξ = exp(ξA),−∞ <
ξ < ∞. The operator A is bounded if and only if Tξ is continuous in ξ
in the uniform topology, in which case A = limξ→0 ξ

−1(Tξ − I) exists
in the uniform topology. This implies that Tξ is an entire function of ξ;
conversely, if Tξ is analytic anywhere, then A is bounded. These consid-
erations extend to the semi-group case, in which Tξ+ζ = TξTζ is known
to hold only for positive values of the parameter, although the number
of distinct cases is much larger, and in particular, analyticity does not
imply that A is bounded.

A few years later Hille and Yosida simultaneously succeeded in char-
acterizing generators of strongly continuous semigroup of contractions.

4.4 Theorem. (Hille, Yosida 1948). Let
(
A,D(A)

)
be a linear operator

on a Banach space. Then the following are equivalent:

(a) A is the generator of a strongly continuous solution U : R+ → L(X)
of (FE∗) that is bounded in norm by 1.

(b) A is closed and densely defined, (0,∞) ⊂ ρ(A), and ‖(λ−A)−1‖ ≤ 1/λ
for all λ > 0.

In this case u(t) := U(t)x for x ∈ D(A) is the unique solution of (DE).

Yosida’s famous article [Yos48] (cf. also [Kat92]) and Hille’s celebrated
book [Hil48] were published in the same year. Of course, part of the theorem
was known before, as can be seen from the passage of [HD47] cited above.
It is interesting that Hille discovered the missing part while correcting
the galley proofs of his book, which sheds some light on the significance of
the theorem with respect to the making of the text. However, the result
marks the breakthrough of semigroup theory and has remained its focus
ever since.

As mentioned in Paragraph II.3.3, there are remarkable differences in
the way the semigroup was constructed from a given operator A satisfying
condition (b):

While Yosida plugged the bounded operator

Aλ := λ2R(λ,A)− λI

into the exponential series and let λ→∞, Hille considered

(I − tA/n)−n = [n/tR(A, n/t)]
n
,

again a bounded operator, and proved convergence for n→∞.
The condition ‖U(t)‖ ≤ 1 was later removed independently by William

Feller (1906–1970), Isao Miyadera, and R.S. Phillips in 1952; cf.
Generation Theorem II.3.8.

At this point, our story comes full circle and we see the genius of Eu-
ler and the boldness of Lagrange shine through this marvelous piece of
modern analysis.



Appendix A

A Reminder of Some
Functional Analysis

Our book is written in a functional-analytic spirit. Its main objects are op-
erators on Banach spaces, and we use many, sometimes quite sophisticated,
results and techniques from functional analysis and operator theory. As a
rule, we refer to textbooks like [Con85], [DS58], [Lan93], [RS72], [Rud73],
[TL80], or [Yos65]. However, for the convenience of the reader we add this
appendix, where we

• introduce our notation,

• list some basic results, and

• prove a few of them.

To start with, we introduce the following classical sequence and function
spaces. Here, J is a real interval; K denotes R or C; and Ω, depending
on the context, is a domain in Rn, a locally compact metric space, or a
measure space. The symbol X always stands for a Banach space.

`∞(X) = `∞(N, X) :=
{

(xn)n∈N ⊂ X : sup
n∈N

‖xn‖ <∞
}
,

‖(xn)n∈N‖ := sup
n∈N

‖xn‖,

c(X) := c(N, X) :=
{

(xn)n∈N ⊂ X : lim
n→∞

xn exists
}
⊂ `∞(X),

c0(X) = c0(N, X) :=
{

(xn)n∈N ⊂ X : lim
n→∞

xn = 0
}
⊂ c(X),

`∞ := `∞(N) := `∞(N,C), c := c(N) := c(N,C), c0 := c0(N) := c0(N,C),

510
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`p := `p(N) := `p(N,C) :=
{

(xn)n∈N ⊂ C :
∑
n∈N

|xn|p <∞
}
, p ∈ [1,∞),

‖(xn)n∈N‖ :=
(∑

n∈N
|xn|p

)1/p

,

C(Ω) := {f : Ω → K | f is continuous},
‖f‖∞ := sup

s∈Ω
|f(s)| (if Ω is compact),

C0(Ω) := {f ∈ C(Ω) : f vanishes at infinity}; cf. p. 25,

Cb(Ω) := {f ∈ C(Ω) : f is bounded},
Cc(Ω) := {f ∈ C(Ω) : f has compact support}; cf. p. 25,

Cub(Ω) := {f ∈ C(Ω) : f is bounded and uniformly continuous},
AC(J) := {f : J → K | f is absolutely continuous}; cf. p. 64,

Ck(J) := {f ∈ C(J) : f is k-times continuously differentiable},
Cα(J) := {f ∈ C(J) : f is Hölder continuous of order α}; cf. p. 136,

C∞(J) := {f ∈ C(J) : f is infinitely many times differentiable},
Lipu(J) := {f ∈ Cub(Ω) : f is Lipschitz continuous},

‖f‖Lip := |f(0)|+ sup
r 6=s

∣∣∣f(r)− f(s)
r − s

∣∣∣,
Lp(Ω, µ) := {f : Ω → K | f is p-integrable on Ω},

‖f‖p :=
(∫

Ω

|f |p(s) dµ(s)
)1/p

,

L∞(Ω, µ) := {f : Ω → K | f is measurable and µ-essentially bounded},
‖f‖∞ := ess sup |f |; cf. p. 32 and p. 525,

L∞(J,X) := {f : J → X | f is measurable and essentially bounded};
cf. p. 525,

Lp(J,X) := {f : J → X | f is p-Bochner integrable on J}; cf. p. 525,

Mb(R) := {µ : µ is a regular (signed or complex) Borel measure},

‖µ‖ := sup
{ ∞∑

k=1

|µ(Ωk)| : (Ωk)k∈N is a partition of Ω
}

;

cf. [Rud86, Chap. 6],

Wk,p(Ω) :=
{
f ∈ Lp(Ω) :

f is k-times distributionally differentiable,
with f (k) ∈ Lp(Ω)

}
,

Wk,p(J,X) := Sobolev space of Bochner integrable functions; cf. p. 526,

hα(J) := little Hölder space of order α; cf. p. 137,

Hk(Ω) := Wk,2(Ω); cf. p. 408,

Hk
0(J) := {f ∈ Hk(J) : f(s) = 0 for s ∈ ∂J},
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S (Rn) := Schwartz space of rapidly decreasing functions; cf. p. 406,

UBV(R) := {f ∈ L1(R) : f is of uniformly bounded variation},

‖f‖ := sup
{ n∑

k=1

|f(sk)− f(sk−1)| :
− b = s0 < s1 < · · · < sn = b,

for b > 0, n ∈ N

}
.

Clearly, we may combine the various sub- and superscripts for the spaces
of continuous functions and obtain, e.g., C1

c(J) = C1(J) ∩ Cc(J).
Moreover, we will use the following notations. If Xn is a Hilbert space,

then

(A.1) X :=
⊕
n∈N

2
Xn :=

{
(xn)n∈N : xn ∈ Xn and

∑
n∈N

‖xn‖2 <∞
}
,

equipped with the inner product(
(xn) | (yn)

)
:=
∑
n∈N

(xn | yn),

again is a Hilbert space, called the Hilbert direct sum of the spaces Xn.
For an abstract complex Banach space X we denote its dual by X ′ and

the canonical bilinear form by

〈x, x′〉 for x ∈ X, x′ ∈ X ′.

As usual, we also write x′(x) for 〈x, x′〉 and denote by σ(X,X ′) the weak
topology on X and by σ(X ′, X) the weak∗ topology on X ′. Then the fol-
lowing properties hold.

A.1 Proposition.
(i) For convex sets in X (in particular, for subspaces) the weak and

norm closure coincide.

(ii) The closed, convex hull coK of a weakly compact set K in X is
weakly compact (Krěın’s theorem).

(iii) The dual unit ball U0 := {x′ ∈ X ′ : ‖x′‖ ≤ 1} is weak∗ compact
(Banach–Alaoglu’s theorem).

The space of all bounded, linear operators on X will be denoted1 by
L(X)and becomes a Banach space for the norm

‖T‖ := sup{‖Tx‖ : ‖x‖ ≤ 1}, T ∈ L(X).

1 For the space of all bounded, linear operators between two normed spaces X and Y
we use the notation L(X, Y ).



Appendix A. A Reminder of Some Functional Analysis 513

The operators T ∈ L(X) satisfying

‖Tx‖ ≤ ‖x‖ for all x ∈ X

are called contractions, while isometries are defined by

‖Tx‖ = ‖x‖ for all x ∈ X.

Besides the uniform operator topology on L(X), which is the one induced
by the above operator norm, we frequently consider two more topologies
on L(X).

We write Ls(X) if we endow L(X) with the strong operator topology ,
which is the topology of pointwise convergence on (X, ‖·‖).

Finally, Lσ(X) denotes L(X) with the weak operator topology , which is
the topology of pointwise convergence on

(
X,σ(X,X ′)

)
.

A net (Tα)α∈A ⊂ L(X) converges to T ∈ L(X) if and only if

‖Tα − T‖ → 0 (uniform operator topology),(A.2)
‖Tαx− Tx‖ → 0 ∀ x ∈ X (strong operator topology),(A.3)
| 〈Tαx− Tx, x′〉 | → 0 ∀ x ∈ X, x′ ∈ X ′ (weak operator topology).(A.4)

With these notions, the principle of uniform boundedness can be stated as
follows.

A.2 Proposition. For a subset K ⊂ L(X) the following properties are
equivalent.

(a) K is bounded for the weak operator topology.

(b) K is bounded for the strong operator topology.

(c) K is uniformly bounded, i.e., ‖T‖ ≤ c for all T ∈ K.

Continuity with respect to the strong operator topology will be shown
frequently by using the following property (b) (see [Sch80, Sec. III.4.5]).

A.3 Proposition. On bounded subsets of L(X), the following topologies
coincide.

(a) The strong operator topology.

(b) The topology of pointwise convergence on a dense subset of X.

(c) The topology of uniform convergence on relatively compact subsets
of X.

The advantage of using the strong or weak operator topology instead of
the norm topology on L(X) is that the former yield more continuity and
more compactness. This becomes evident already from the definition of a
strongly continuous semigroup in Section I.5. Another example is provided
by our discussion of asymptotic properties of semigroups in Section V.2.
There, we use compactness in Ls(X) and Lσ(X), which can be character-
ized by the following two results.



514 Appendix A. A Reminder of Some Functional Analysis

A.4 Proposition. Let K ⊂ L(X) be a bounded set of operators and
consider

Kx := {Tx : T ∈ K} for x ∈ X.

Then the subspaces

Xs :=
{
x ∈ X : Kx is relatively (norm) compact

}
and

Xσ :=
{
x ∈ X : Kx is relatively weakly compact

}
are closed in X.

Proof. The assertion for Xs follows by a standard diagonal procedure,
while the argument for Xσ is more complicated.

Let (xn)n∈N be a sequence in Xσ converging to x ∈ X. By Eberlein’s the-
orem ([Sch80, Sec. IV.11.2]) it suffices to show that every sequence (Tkx)k∈N
with Tk ∈ K has a weakly converging subsequence. Since x1 ∈ Xσ, there is
a subsequence (Tk(i1)x1) converging weakly to some y1 ∈ X. Similarly, for
x2 ∈ Xσ there exists a subsequence (Tk(i2)) of (Tk(i1)) such that (Tk(i2)x2)
converges weakly to y2 ∈ X, and so on. Applying a diagonal procedure we
find a subsequence (Tk(i))i∈N of (Tk)k∈N such that

Tk(i)xn
weakly−→ yn for every n ∈ N.

From

‖yn − ym‖ = sup
{
〈yn − ym, x

′〉 : ‖x′‖ ≤ 1
}

= sup
{

lim
i→∞

∣∣〈Tk(i)xn − Tk(i)xm, x
′〉∣∣ : ‖x′‖ ≤ 1

}
≤
∥∥Tk(i)

∥∥ · ‖xn − xm‖,

it follows that (yn)n∈N is a Cauchy sequence with limit y ∈ X. A standard
3ε-argument shows

y = σ(X,X ′) - lim
i→∞

Tk(i)x.
�

An important consequence is the following characterization of (relatively)
compact sets of operators.

A.5 Corollary. For a bounded subset K ⊂ L(X), the following assertions
are equivalent.

(a) K is relatively compact for the strong (weak) operator topology.

(b) Kx is relatively strongly (weakly) compact for every x ∈ X.

(c) Kx is relatively strongly (weakly) compact for every x in a dense
subset of X.
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Proof. The implication (a) ⇒ (b) follows by the continuity of the map
T 7→ Tx, while the converse is, in some sense, a consequence of Tychonoff’s
theorem on products of compact spaces (see [Dug66, Chap. XI, Thm. 1.4.(4)]).
The equivalence (b) ⇐⇒ (c) follows from Proposition A.4. �

The vector space L(X) is an algebra for the operator multiplication. We
state the continuity properties of this multiplication with respect to the
three operator topologies.

A.6 Proposition. The multiplication

(S, T ) 7→ S · T

on L(X) is

(i) jointly continuous for the norm topology,

(ii) separately continuous for the strong and for the weak operator topolo-
gies, and

(iii) jointly continuous on bounded sets for the strong operator topology.

As an example for the functional-analytic constructions made throughout
the text, we consider the following setting.

Let Xt0 := C
(
[0, t0],Ls(X)

)
be the space of all functions on [0, t0] into

L(X) that are continuous for the strong operator topology. For each F ∈
Xt0 and x ∈ X, the functions t 7→ F (t)x are continuous, hence bounded,
on [0, t0]. The uniform boundedness principle then implies

‖F‖∞ := sup
s∈[0,t0]

‖F (s)‖ <∞.

Clearly, this defines a norm making Xt0 a complete space.

A.7 Proposition. The space

Xt0 :=
(
C
(
[0, t0],Ls(X)

)
, ‖ · ‖∞

)
is a Banach space.

Proof. Let (Fn)n∈N be a Cauchy sequence in Xt0 . Then, by the definition
of the norm in Xt0 ,

(
(Fn(·)x

)
n∈N is a Cauchy sequence in C([0, t0], X) for all

x ∈ X. Since C([0, t0], X) is complete, the limit limn→∞ Fn(·)x =: F (·)x ∈
C([0, t0], X) exists, and we obtain limn→∞ Fn = F in Xt0 . �



Appendix B

A Reminder of Some
Operator Theory

Familiarity with linear operators, in particular unbounded operators, is
essential for an understanding of our semigroups and their generators.
The best introduction is still Kato’s monograph [Kat80] (see also [DS58],
[GGK90], [Gol66], [TL80], [Wei80]), but we briefly restate some of the basic
definitions and properties.1

B.1 Definition. A linear operator A with domain D(A) in a Banach space
X, i.e., D(A) ⊂ X → X, is closed if it satisfies one of the following equiv-
alent properties.

(a) If for the sequence (xn)n∈N ⊂ D(A) the limits limn→∞ xn = x ∈ X
and limn→∞Axn = y ∈ X exist, then x ∈ D(A) and Ax = y.

(b) The graph G(A) := {(x,Ax) : x ∈ D(A)} is closed in X ×X.

(c) X1 :=
(
D(A), ‖ · ‖A

)
is a Banach space2 for the graph norm

‖x‖A := ‖x‖+ ‖Ax‖, x ∈ D(A).

(d) A is weakly closed , i.e., property (a) (or property (b)) holds for the
σ(X,X ′)-topology on X.

1 Most of the following concepts also make sense for operators acting between different
Banach spaces. However, for simplicity we state them for a single Banach space only
and leave the straightforward generalization to the reader.
2 This definition of X1 also makes sense if A has empty resolvent set. Since if ρ(A) 6= ∅,

the graph norm and the norms ‖ · ‖1,λ from Exercise II.5.9.(1) are all equivalent, this

definition of X1 will not conflict with Definition II.5.1 for n = 1.

516
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If λ − A is injective for some λ ∈ C, then the above properties are also
equivalent to

(e) (λ−A)−1 is closed.

While the additive perturbation of A by a bounded operator B ∈ L(X)
yields again a closed operator, the situation is slightly more complicated
for multiplicative perturbations.

B.2 Proposition. Let
(
A,D(A)

)
be a closed operator and take B ∈ L(X).

Then the following holds.

(i) AB with domain D(AB) := {x ∈ X : Bx ∈ D(A)} is closed.

(ii) BA with domain D(BA) := D(A) is closed if B−1 ∈ L(X).

Proof. (i) is easy to check and implies (ii) after the similarity transfor-
mation BA = B(AB)B−1. �

It will be important to find closed extensions of not necessarily closed
operators. Here are the relevant notions.

B.3 Definition. An operator
(
B,D(B)

)
is an extension of

(
A,D(A)

)
, in

symbols A ⊂ B, if D(A) ⊂ D(B) and Bx = Ax for x ∈ D(A). The smallest
closed extension of A, if it exists, is called the closure of A and is denoted
by A. Operators having a closure are called closable.

B.4 Proposition. An operator
(
A,D(A)

)
is closable if and only if for

every sequence (xn)n∈N ⊂ D(A) with xn → 0 and Axn → z one has z = 0.
In that case, the graph of the closure is given by

G(A) = G(A).

A simple operator that is not closable is

Af := f ′(0) · 1 with domain D(A) := C1[0, 1]

in the Banach space X := C[0, 1]. This follows, e.g., from the following
characterization of bounded linear forms and the fact that the kernel of a
closed operator is always closed.3

B.5 Proposition. Let X be a normed vector space and take a linear
functional x′ : X → C. Then x′ is bounded if and only if its kernel kerx′

is closed in X. Hence, x′ is unbounded if and only if kerx′ is dense in X.

3 Here, for a linear map Φ : X → Y between two vector spaces X and Y its kernel is
defined by kerΦ := {x ∈ X : Φx = 0}.
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Proof. If x′ is bounded, then clearly ker(x′) is closed. On the other hand,
if kerx′ is closed, then the quotient X/ker x′ is a normed vector space of
dimension 1. Moreover, we can decompose x′ = i x̂′ by the canonical maps
i : X/ker x′ → C and x̂′ : X → X/ker x′ . Since ‖x̂′‖ ≤ 1, this proves that
x′ is bounded. The remaining assertions follow from the fact that for each
linear form x′ 6= 0 the codimension of kerx′ in X is 1. �

A subspace D of D(A) that is dense in D(A) for the graph norm is called
a core for A. If

(
A,D(A)

)
is closed, one can recover A from its restriction to

a core D, i.e., the closure of (A,D) becomes
(
A,D(A)

)
; see Exercise II.1.15.

(2).
The closed graph theorem states that everywhere defined closed opera-

tors are already bounded. It can be phrased as follows.

B.6 Theorem. For a closed operator A : D(A) ⊂ X → X the following
properties are equivalent.

(a)
(
A,D(A)

)
is a bounded operator, i.e., there exists c ≥ 0 such that

‖Ax‖ ≤ c ‖x‖ for all x ∈ D(A).

(b) D(A) is a closed subspace of X.

By the closed graph theorem, one obtains the following surprising result.

B.7 Corollary. Let A : D(A) ⊂ X → X be closed and assume that
a Banach space Y is continuously embedded in X such that the range
rgA := A

(
D(A)

)
is contained in Y . Then A is bounded from (D(A), ‖·‖A)

into Y .

If an operator A has dense domain D(A) in X, we can define its adjoint
operator on the dual space X ′.4

B.8 Definition. For a densely defined operator
(
A,D(A)

)
on X, we define

the adjoint operator
(
A′, D(A′)

)
on X ′ by

D(A′) : =
{
x′ ∈ X ′ : ∃ y′ ∈ X ′ such that 〈Ax, x′〉 = 〈x, y′〉 ∀ x ∈ D(A)

}
,

A′x′ : = y′ for x ∈ D(A).

B.9 Example. Take Ap := d/ds on Xp := Lp(R), 1 ≤ p <∞, with domain
D(Ap) := W1,p(R) := {f ∈ Xp : f absolutely continuous, f ′ ∈ Xp}. Then
Ap

′ = −Aq onXq, where 1/p+ 1/q = 1. For a proof and many more examples
we refer to [Gol66, Sec. II.2 & Chap. VI] and [Kat80, Sec. III.5]. Compare
also Exercise II.4.12.(12).

While the adjoint operator is always closed, it may happen that D(A′) =
{0} (e.g., take the nonclosable operator following Proposition B.4).

4 Similarly, one can define the Hilbert space adjoint A∗ by replacing the canonical
bilinear form 〈 · , · 〉 by the inner product ( · | · ).
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On reflexive Banach spaces there is a nice duality between densely defined
and closable operators.

B.10 Proposition. Let
(
A,D(A)

)
be a densely defined operator on a

reflexive Banach space X. Then the adjoint A′ is densely defined if and
only if A is closable. In that case, one has

(A′)′ = A.

We now prove a close relationship between inverses and adjoints.

B.11 Proposition. Let
(
A,D(A)

)
be a densely defined closed operator on

X. Then the inverse A−1 ∈ L(X) exists if and only if the inverse (A′)−1 ∈
L(X ′) exists. In that case, one has

(A′)−1 = (A−1)′.

Proof. Assume A−1 ∈ L(X). Since (A−1)′ ∈ L(X ′), one has〈
x, (A−1)′A′x′

〉
=
〈
A−1x,A′x′

〉
=
〈
AA−1x, x′

〉
= 〈x, x′〉

for all x ∈ X, x′ ∈ D(A′), i.e., A′ has a left inverse. Similarly,〈
Ax, (A−1)′x′

〉
=
〈
A−1Ax, x′

〉
= 〈x, x′〉

holds for all x ∈ D(A), x′ ∈ X ′, i.e., (A−1)′x′ ∈ D(A′) and A′(A−1)′x′ = x′.
On the other hand, assume (A′)−1 ∈ L(X ′). Then〈

Ax, (A′)−1x′
〉

=
〈
x,A′(A′)−1x′

〉
= 〈x, x′〉

for all x ∈ D(A) and x′ ∈ X ′. For every x ∈ D(A), choose x′ ∈ X ′ such
that ‖x′‖ = 1 and | 〈x, x′〉 | = ‖x‖ and obtain

‖x‖ = |
〈
Ax, (A′)−1x′

〉
| ≤ ‖Ax‖ ·

∥∥(A′)−1
∥∥.

This shows that A is injective and its inverse satisfies∥∥A−1
∥∥ ≤ ∥∥(A′)−1

∥∥,
hence is bounded. By Theorem B.6, D(A−1) = rgA must be closed. A
simple Hahn–Banach argument shows that rgA = X, hence A−1 ∈ L(X).

�

B.12 Corollary. For a densely defined closed operator
(
A,D(A)

)
the spec-

tra of A and of A′ coincide, i.e.,

σ(A) = σ(A′)

and R(λ,A)′ = R(λ,A′) for all λ ∈ ρ(A).
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The next result shows that adjoints are also very useful in relating the
ranges of two operators. We will use this fact in Section VI.8 to characterize
various controllability concepts. For a proof we refer to [CP78, Chap. 3, Cor. 3.5 and Thm. 3.6]
or [Zab92, Part IV, Sec. 2.1].

B.13 Lemma. Let V , W , Z be Banach spaces and let S ∈ L(V,Z) and
T ∈ L(W,Z).

(i) The following conditions are equivalent.

(a) rgS ⊂ rg T .

(b) kerS′ ⊃ kerT ′.
(ii) If, in addition, the spaces V , W , and Z are reflexive, then the fol-

lowing conditions are equivalent.

(a) rgS ⊂ rg T .

(b) There exists γ > 0 such that ‖S′z′‖ ≤ γ ‖T ′z′‖ for all z′ ∈ Z ′.

Now we turn again to the unbounded situation and define iterates of
unbounded operators.

B.14 Definition. The nth power An of an operator A : D(A) ⊂ X → X
is defined successively as

Anx : = A(An−1x),

D(An) : =
{
x ∈ D(A) : An−1x ∈ D(A)

}
.

In general, it may happen that D(A2) = {0} even if A is densely defined
and closed. However, if A−1 ∈ L(X) exists (or if ρ(A) 6= ∅), the infinite
intersection

D(A∞) :=
∞⋂

n=1

D(An)

is still dense. This is proved in Proposition II.1.8 for semigroup generators
and in [Len94] or [AEMK94, Prop. 6.2] for the general case.

Next, we give some results concerning the continuity and differentiability
of products of operator-valued functions.

B.15 Lemma. Let J be some real interval and P , Q : I → L(X) be
two strongly continuous operator-valued functions defined on J . Then the
product (PQ)(·) : J → L(X), defined by (PQ)(t) := P (t)Q(t), is strongly
continuous as well.

Proof. We fix x ∈ X and t ∈ J and take a sequence (tn)n∈N ⊂ J
with limn→∞ tn = t. Then, by the uniform boundedness principle, the
set {P (tn) : n ∈ N} ⊂ L(X) is bounded, and therefore

‖P (tn)Q(tn)x− P (t)Q(t)x‖ ≤ ‖P (tn)‖ · ‖Q(tn)x−Q(t)x‖
+ ‖
(
P (tn)− P (t)

)
Q(t)x‖,

where the right-hand side converges to zero as n→∞. �
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B.16 Lemma. Let J be some real interval and P , Q : J → L(X) be
two strongly continuous operator-valued functions defined on J . Moreover,
assume that P (·)x : J → X and Q(·)x : J → X are differentiable for
all x ∈ D for some subspace D of X, which is invariant under Q. Then
(PQ)(·)x : J → X, defined by (PQ)(t)x := P (t)Q(t)x, is differentiable for
every x ∈ D and

d
dt

(
P (·)Q(·)x

)
(t0) = d

dt

(
P (·)Q(t0)x

)
(t0) + P (t0)

(
d
dtQ(·)x

)
(t0).

Proof. Let t0 ∈ J and (hn)n∈N ⊂ R be a sequence such that limn→∞ hn =
0 and t0 + hn ∈ J for all n ∈ N. Then, for x ∈ D, we have

P (t0 + hn)Q(t0 + hn)x− P (t0)Q(t0)x
hn

= P (t0 + hn)
Q(t0 + hn)x−Q(t0)x

hn
+
P (t0 + hn)− P (t0)

hn
Q(t0)x

=: L1(n, x) + L2(n, x).

Clearly, the sequence
(
L2(n, x)

)
n∈N converges for all x ∈ D and its limit

is limn→∞ L2(n, x) = P ′(t0)Q(t0)x. In order to show that
(
L1(n, x)

)
n∈N

converges for x ∈ D, note that{
Q(t0 + hn)x−Q(t0)x

hn
: n ∈ N

}
is relatively compact in X and that {P (t0 + hn) : n ∈ N} is bounded.
Since by Proposition A.3 the topologies of pointwise convergence and of
uniform convergence on relatively compact sets coincide, we conclude that(
L1(n, x)

)
n∈N converges for x ∈ D and

lim
n→∞

L1(n, x) = P (t0)Q′(t0)x.

This completes the proof. �

In the context of operators on spaces of vector-valued functions it is
convenient to use the following tensor product notation.

Assume that X, Y are Banach spaces, F(J, Y ) is a Banach space of Y -
valued functions defined on an interval J ⊆ R, T ∈ L(X,Y ) is a bounded
linear operator, and f : J → C is a complex-valued function. If the map
f ⊗ y : J 3 s 7→ f(s) · y ∈ Y belongs to F(J, Y ) for all y ∈ Y , then we
define the linear operator f ⊗ T : X → F(J, Y ) by(

(f ⊗ T )x
)
(s) := (f ⊗ Tx)(s) = f(s) · Tx

for all x ∈ X, s ∈ J .



522 Appendix B. A Reminder of Some Operator Theory

Independently, for a Banach space X and elements x ∈ X, x′ ∈ X ′, we
frequently use the tensor product notation x⊗x′ for the rank-one operator
on X defined by

(x⊗ x′) v := x′(v) · x, v ∈ X.

We close this appendix with a classical theorem to be used in the proof
of Theorem V.2.21.

B.17 Gelfand’s T=I Theorem. Let T ∈ L(X) satisfy σ(T ) = {1}. If
supn∈Z ‖Tn‖ <∞, then T = I.

Proof (see [AR89]). Since z 7→ log z is analytic in a neighborhood of
z0 = 1, we can, by the usual functional calculus, define S := −i log T . This
operator satisfies T = eiS , and by the spectral mapping theorem, σ(mS) =
{0} for all m ∈ N. Now take the operators sin(mS) := 1/2i(eimS−e−imS) =
1/2i(Tm − T−m) and observe that

and

σ
(
sin(mS)

)
= sin

(
σ(mS)

)
= {0}∥∥[sin(mS)

]
n
∥∥ =

∥∥∥∥(Tm − T−m

2i

)n∥∥∥∥ ≤ sup
n∈Z

‖Tn‖.

The principal branch of arcsin admits a Taylor series
∑∞

n=0 cnz
n at z0 = 0

such that cn ≥ 0 for all n ∈ N and
∑∞

n=0 cn = arcsin(1) = π/2. This implies
the estimate

‖mS‖ =
∥∥arcsin

(
sin(mS)

)∥∥
≤

∞∑
n=0

cn
∥∥[sin(mS)]n

∥∥
≤ π

2
sup
n∈N

‖Tn‖.

Since this holds for all m ∈ N, we obtain S = 0 and T = eiS = I. �
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Vector-Valued Integration

a. The Bochner Integral

In the first part of this appendix we give a brief introduction to the so-called
Bochner integration of vector-valued functions. For a detailed treatment we
refer to [DS58, Chap. III], [DU77] and [HP57, Sec. III.1].

To start with, we take a Banach space X and consider a function

f : J → X

defined on some interval J ⊂ R. If f is continuous, we can, as in the scalar
case, define the integral

∫
J
f(s) ds as the limit of Riemann sums. However,

in many situations (e.g. in Section III.3, Section IV.3.c, Section VI.7, or
Section VI.8) this is too restrictive, and one has to extend Lebesgue’s in-
tegration theory to vector-valued functions. To this end we first introduce
the following notation.

C.1 Definition. Let f : J ⊂ R → X be a vector-valued function.

(a) The function f is called simple if it can be represented as1

(C.1) f =
n∑

k=1

xk · 1 Jk

for elements xk ∈ X and measurable subsets Jk ⊂ J .

1 Here, as usual, 1 Jk
denotes the characteristic function of the set Jk.
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For a simple function f we define its integral by∫
J

f(s) ds :=
n∑

k=1

xkλ(Jk),

which is independent of the special representation in (C.1) and where
λ denotes the Lebesgue measure on R.

(b) If f can be approximated pointwise by simple functions, i.e., if there
exists a sequence (fn)n∈N of simple functions on J such that

(C.2) lim
n→∞

‖f(s)− fn(s)‖ = 0 a.e.,

then we call f (strongly) measurable.

(c) If f is measurable and there exists a sequence (fn)n∈N of simple
functions on J such that

(C.3) lim
n→∞

∫
J

‖f(s)− fn(s)‖ ds = 0,

then we call f (Bochner) integrable. For an integrable function f we
define its integral by∫

J

f(s) ds := lim
n→∞

∫
J

fn(s) ds,

which is independent of the special choice of the approximating se-
quence (fn)n∈N.

It is now easy to verify that the set of measurable or integrable functions
f : J → X, respectively, form a vector space. We list some elementary
properties of measurable functions, cf. [HP57, Cor. 1 after Thm. 3.5.3] and
[DU77, Chap. II].

C.2 Proposition. Let f : J ⊂ R → X be a vector-valued function.

(i) If (fn)n∈N is a sequence of measurable functions on J converging to
f in the sense of (C.2), then f is measurable as well.

(ii) If f is measurable and F : J → L(X) is strongly continuous, then
the composition F ◦ f : J → X is measurable as well.

Integrable functions can be characterized in the following way cf. [HP57, Thm. 3.7.4]
and [DU77, Chap. II, Thm. 2].

C.3 Proposition. For a measurable function f : J ⊂ R → X the following
conditions are equivalent.

(a) f is integrable.

(b)
∫

J
‖f(s)‖ ds <∞.
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As an immediate consequence of Proposition C.2.(ii) and Proposition C.3
we remark that the composition F ◦ f : J → X of an integrable function
f : J → X and a strongly continuous function F : J → L(X) is again
integrable. Moreover, we note that for the Bochner integral the
• triangle inequality

∥∥∫
J
f(s) ds

∥∥ ≤ ∫
J
‖f(s)‖ ds (cf. [HP57, Thm. 3.7.6]

and [DU77, Chap. II, Thm. 4]),
• Fubini’s theorem (cf. [HP57, 3.7.13]), and
• Lebesgue’s dominated convergence theorem (cf. [HP57, Thm. 3.7.9] and

[DU77, Chap. II, Thm. 3])
prevail. Furthermore, we have the following result on interchanging inte-
gration with the application of closed operators, cf. [HP57, Thm. 3.7.12]
and [DU77, Chap. II, Thm. 6].

C.4 Proposition. Let A : D(A) ⊆ X → Y be a closed operator acting
between two Banach spaces X and Y . If f : J → X is an integrable
function with f(s) ∈ D(A) for almost all s ∈ J and if Af : J → Y given
by (Af)(s) := Af(s) is integrable, then

∫
J
f(s) ds ∈ D(A) and

A
(∫

J

f(s) ds
)

=
∫

J

Af(s) ds.

Next, we introduce Lp-spaces of vector-valued functions.

C.5 Definition. If we identify functions f : J → X that differ only on sets
with Lebesgue measure zero, then the spaces

(
Lp(J,X), ‖ · ‖p

)
defined by

Lp(J,X) : =
{
f : J → X :

f is measurable and∫
J
‖f(s)‖p ds =: ‖f‖p

p <∞

}
if 1 ≤ p <∞,

L∞(J,X) : =
{
f : J → X :

f is measurable and
ess sup ‖f‖ =: ‖f‖∞ <∞

}
are Banach spaces (see [DS58, Thm. III.6.6]).

Here the essential supremum of a function q : J → R is

ess sup q := sup qess(J),

where

qess(J) :=
{
r ∈ R : λ

(
{s ∈ J : |q(s)− r| < ε}

)
6= 0 for all ε > 0

}
is its essential range (cf. I.4.9). If ess sup q <∞, then we call q essentially
bounded .

One can show that the subspace of simple functions and even the sub-
space of step functions is dense in Lp(J,X) for all 1 ≤ p <∞. Moreover, if J
is bounded, it follows that Lp2(J,X) ⊂ Lp1(J,X) for all 1 ≤ p1 < p2 ≤ ∞.
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Using the above Lp-spaces, we introduce vector-valued Sobolev spaces.

C.6 Definition. For 1 ≤ p ≤ ∞ we define the Sobolev space W1,p(J,X)
by

(C.4) f ∈ W1,p(J,X) : ⇐⇒


f ∈ Lp(J,X) and

f(s) = f(s0) +
∫ s

s0
g(s) ds

for some s0 ∈ J and g ∈ Lp(J,X).

Again, the spaces W1,p(J,X) endowed with the norms

‖f‖W1,p(J,X) := ‖f‖p + ‖g‖p,

where g satisfies (C.4), become Banach spaces for all 1 ≤ p ≤ ∞ and are
contained in the space C(J,X) of all continuous functions from J to X, cf.
[Ama95, Sec. III.1.1].

We close this subsection with Voigt’s convex compactness property for
the strong operator topology (see [Voi92]). It is used in Lemma III.1.13,
Proposition IV.2.12, and Lemma IV.4.6.

C.7 Theorem. LetK : [a, b] → L(X,Y ) be a strongly continuous function.

If K(t) is a compact operator for each t ∈ (a, b), then
∫ b

a
K(t) dt is compact

as well.

Proof. Since K(X,Y ) is norm closed in L(X,Y ) and
∫ β

α
K(s) ds converges

for α ↓ a and β ↑ b in norm to
∫ b

a
K(s) ds, we can assume without loss of

generality that K(s) is compact for all s ∈ [a, b].
Now, an operator is compact if and only if any restriction to a separa-

ble subspace is compact. Hence, we can without loss of generality assume
that X is separable. Moreover, we may also assume that Y is separable,
otherwise we replace Y by the separable space

lin{K(t)x : x ∈ X, t ∈ [a, b]}.

Since by [Ban32, Chap. XI, §8, Thm. 9] every separable Banach space can
be embedded isomorphically into C[0, 1], we can further assume that Y =
C[0, 1]. In particular, this implies that there exists a sequence (Pn)n∈N ⊂
K(Y ) of compact operators converging strongly to the identity operator I
(e.g., the Bernstein operators from Paragraph III.5.7).

For this sequence (Pn)n∈N, an operator K ∈ L(X,Y ) is compact if and
only if limn→∞ ‖(I − Pn)K‖ = 0.

In fact, if K is compact, then KU (with U the unit ball in X) is rela-
tively compact. Hence, by Proposition A.3, the sequence

(
(I − Pn)K

)
n∈N

converges uniformly on U to 0, i.e., limn→∞ ‖(I − Pn)K‖ = 0.



Appendix C. Vector-Valued Integration 527

Conversely, if limn→∞ ‖(I −Pn)K‖ = 0, then the sequence (PnK)n∈N ⊂
K(X,Y ) converges in norm to K; hence K is compact as the norm limit of
compact operators.

Using this criterion we now conclude the proof, observing that∥∥∥∥(I − Pn)
∫ b

a

K(t) dt
∥∥∥∥ =

∥∥∥∥∫ b

a

(I − Pn)K(t) dt
∥∥∥∥ ≤ ∫ b

a

‖(I − Pn)K(t)‖ dt.

By the uniform boundedness principle the integrand is bounded and con-
verges pointwise to 0. Lebesgue’s dominated convergence theorem then
implies that

∫ b

a
‖(I − Pn)K(t)‖ dt converges to zero, and the assertion fol-

lows. �

b. The Fourier Transform

In this book we encounter the Fourier transform F in basically two different
situations. In the context of partial differential operators in Section VI.5
we consider it as a map acting on functions from RN to R. On the other
hand, we use it in the context of harmonic analysis (e.g., in the proofs of
Theorem II.4.20, Theorem V.1.11, or in Section IV.3.c) as a map defined
on L1(R) or, more generally, on L1(R, X) for a Banach space X. While the
results for the first case are collected in Section VI.5.a, we now give a brief
account for the second one. Moreover, we consider the analogous notion on
the convolution algebra

(
`1(Z), ∗

)
.

To this end, we assume that X is a Banach space. For a function f ∈
L1(R, X) we define its Fourier transform Ff := f̂ by

f̂(s) :=
∫ ∞

−∞
f(t) e−ist dt

for all s ∈ R.
The definition of the Fourier transform is not uniform in the literature. In

fact, when considering it on L2-spaces it is more common to use the factor
(2π)−1/2 (or (2π)−N/2 in the N -dimensional case; cf. Section VI.5.a) in front
of the integral, making it an isometry on L2 by Plancherel’s theorem. On
the other hand, considered as a map on L1-spaces and in the context of
harmonic analysis, the Fourier transform (defined as above) is just the
Gelfand transformation. In particular, it maps convolutions into products
(see Lemma C.12.(i) below), a property that gets lost otherwise.

As in Lemma VI.5.5, the Fourier transforms of vector-valued L1-functions
vanish at infinity.

C.8 Riemann–Lebesgue Lemma. If f ∈ L1(R, X), then f̂ ∈ C0(R, X),
i.e., we have lims→±∞ f̂(s) = 0.

For the proof it suffices to consider step functions, for which, as in the
scalar case, the assertion follows by integration by parts.



528 Appendix C. Vector-Valued Integration

The next results are needed in the proof of the weak spectral mapping
theorem in Section IV.3.c.

C.9 Inversion Theorem. If the Fourier transform of f ∈ L1(R) satisfies

f̂ ∈ L1(R), then

f(t) =
1
2π

∫ ∞

−∞
f̂(s) eist ds

for almost all t ∈ R.

We now consider the analogous concepts on the algebra
(
`1(Z), ∗

)
. To

this end we define

f̂(z) :=
∑
n∈Z

anz
n for z ∈ Γ and f := (an)n∈Z ∈ `1(Z).

It is then clear that

an =
1

2πi

∫
Γ

f̂(z)z−(n+1) dz, n ∈ Z.

Moreover, we have the following result.

C.10 Uniqueness Theorem. If h ∈ C(Γ) such that
∫
Γ
h(z)z−(n+1) dz = 0

for all n ∈ Z, then h = 0.

Next, we introduce the convolution product on L1(R) and `1(Z).

C.11 Definition. For f, g ∈ L1(R) we define the convolution by

(f ∗ g)(t) :=
∫ ∞

−∞
f(s)g(s− t) ds, t ∈ R.

For f := (an)n∈Z, g := (bn)n∈Z ∈ `1(Z) its convolution f ∗ g = (cn)n∈Z is
given by

cn :=
∑
m∈Z

ambn−m, n ∈ Z.

We refer to [SW71] for a complete treatment of these notions. Here we
only discuss some properties of the algebras

(
L1(R), ∗

)
and

(
`1(Z), ∗

)
that

are needed to prove the weak spectral mapping theorem for bounded groups
in Section IV.3.c.
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C.12 Lemma. The space
(
L1(R), ∗

)
is a commutative Banach algebra

having the following properties.

(i) f̂ ∗ g = f̂ · ĝ for all f, g ∈ L1(R).
(ii) Let K ⊂ R be closed, and s0 ∈ R \K. Then there exists a function

f ∈ L1(R) such that f̂ has compact support and f̂(s0) 6= 0 and f̂ ≡ 0
in a neighborhood of K.

(iii) The subspace

(C.5) K :=
{
f ∈ L1(R) : f̂ has compact support

}
is norm dense in L1(R).

Proof. The fact that
(
L1(R), ∗

)
is a commutative Banach algebra can be

found in [Rud62, Thm. 1.1.7]. For (i) we refer to [Rud62, Thm. 1.2.4].
To prove (ii), let h be a C2-function on R such that h(−s0) 6= 0 and

h|−V = 0 for some neighborhood V of the set K having bounded comple-
ment R \ V . Then for f := ĥ and 0 6= s ∈ R we obtain from integration by
parts that

f(s) = ĥ(s) =
∫ ∞

−∞
h(t) e−ist dt

=
1
is

∫ ∞

−∞
h′(t) e−ist dt

= − 1
s2

∫ ∞

−∞
h′′(t) e−ist dt.

It follows that f ∈ L1(R) and thus, by the inversion formula,

h(t) =
1
2π

∫ ∞

−∞
f(s) eist ds =

1
2π
f̂(−t),

where, since h and f̂ are both continuous, this equality holds for all t ∈ R.
Hence f̂(s0) = h(−s0) 6= 0 and f̂ ≡ 0 in V , proving (ii).

To prove (iii), we note that K is invariant under translations and multi-
plication by functions t 7→ eiλt for all λ ∈ R. Hence, if g ∈ L1(R)′ = L∞(R)
vanishes on K, then ∫ ∞

−∞
eiλtf(s+ t)g(t) dt = 0

for all f ∈ K, s, λ ∈ R. Now fix f ∈ K and s ∈ R. Then the function
f(s + ·)g(·) is in L1(R), and its Fourier transform is identical to zero. It
follows from the uniqueness theorem that f(s + t)g(t) = 0 for all f ∈ K,
s ∈ R, and almost all t ∈ R. However, by (ii) we know that K 6= {0} and
therefore g = 0. Hence, K is norm dense in L1(R) by the Hahn–Banach
theorem. �
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Next, we consider the analogous statements for `1(Z).

C.13 Lemma. The space
(
`1(Z), ∗

)
is a commutative Banach algebra with

the following properties.

(i) f̂ ∗ g = f̂ · ĝ for all f, g ∈ `1(Z).

(ii) Let K ⊂ Γ be closed and z0 ∈ Γ \K. Then there exists a sequence

f ∈ `1(Z) such that f̂(z0) 6= 0 and f̂ ≡ 0 in a neighborhood of K.

Proof. For the fact that
(
`1(Z), ∗

)
forms a commutative Banach algebra

we again refer to [Rud62], while assertion (i) is clear by the Cauchy product
formula for series.

To prove (ii), let h be a C2-function on Γ such that h(z0) 6= 0 and h ≡ 0
in a neighborhood of K. Consider f := (an)n∈Z, where

an :=
1

2πi

∫
Γ

h(z)z−(n+1) dz.

Then, using integration by parts, we obtain

an =
1

n(n− 1)
· 1
2πi

∫
Γ

h′′(z)z−n+1 dz

and thus

|an| ≤
1

|n(n− 1)|
· sup
|z|=1

|h′′(z)| for n 6= 0, 1.

Therefore, f ∈ `1(Z), and since by the uniqueness theorem f̂ = h, the
sequence f has all desired properties. �

We close this subsection by the following Hilbert-space-valued analogue
of Plancherel’s equation. Here, as in Section VI.5.a, we have to extend F

to L2 and then obtain a map with the following property.

C.14 Plancherel’s Theorem. If f ∈ L2(R,H) for a Hilbert space H,
then

‖Ff‖2 =
√

2π ‖f‖2,

i.e., 1/√2π F is an isometry.

For a proof we refer to [GN83, Lem. 2]. The fact that this result holds
only for Hilbert-space-valued functions is the reason for many fundamental
differences between the semigroup theory on Hilbert spaces and that on
Banach spaces (see, e.g., Theorem II.4.20 and Theorem V.1.11).
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c. The Laplace Transform

As can be seen from identity (1.13) in Chapter II, the resolvent of a gen-
erator can be interpreted as the Laplace transform of the corresponding
strongly continuous semigroup. While this connection is the leitmotif of
the monograph [ABHN99], we use this fact only occasionally. For this rea-
son we state only the following results and refer to [Are87b], [ABHN99],
[deL94], [Doe74], [HP57, Sec. 6.2] and [Wid46] for a more detailed study.

C.15 Definition. Let X be a Banach space and assume that f : R+ → X
is a measurable, exponentially bounded function of exponent w ∈ R, i.e.,
‖f(t)‖ ≤Mewt for all t ≥ 0 and some constant M > 0. Then, we define its
Laplace transform L f : {λ ∈ C : Reλ > w} → X by

(L f)(λ) :=
∫ ∞

0

e−λtf(t) dt.

For the Laplace transform the following analogue to Theorem C.10 holds.

C.16 Uniqueness Theorem. Assume that f, g ∈ C(R+, X) are expo-
nentially bounded. If (L f)(λ) = (L g)(λ) for Reλ sufficiently large, then
f = g.

By extending two operator-valued functions F, G ∈ L1(R+,L(X)) by
zero onto the negative real line, we can, as in Definition C.11, define their
convolution F ∗G by

(F ∗G)(t) :=
∫ ∞

0

F (s)G(t− s) ds, t ≥ 0.

Then the analogue to Lemma C.12.(i) holds.

C.17 Convolution Theorem. Let F, G : R+ → L(X) be strongly contin-
uous and exponentially bounded functions of exponent w ∈ R. Then their
convolution F ∗G is exponentially bounded of exponent w and[

L(F ∗G)
]
(λ) = (LF )(λ) · (LG)(λ)

for all λ ∈ C satisfying Reλ > w.



Epilogue

Determinism:
Scenes from the Interplay Between
Metaphysics and Mathematics
(by Gregor Nickel∗)

The subject of this book is evolution equations, that is, a mathematical
treatment of motion in time. In this epilogue we will thus review some
scenes from the history of the attempts to describe motion by mathe-
matical means. However, we will begin with the more general question
concerning a relation of “mathematics” and “reality,” which we will try
to exemplify by discussing the problem of motion and its determinism.
In the first section we recall the mathematical framework of almost all
contemporary scientific theory concerned with temporally changing sys-
tems. Section 2 shows that to a large extent, modern science fits into
this framework. In Section 3 we will draw a historical line through the
discussion on determinism extending from Isaac Newton to Albert
Einstein. In Section 4 this discussion will be continued on philosophi-
cal grounds. Finally, in Section 5 there will be an attempt to illuminate
a more encompassing dimension of the problem.

∗ Many stimulating and also critical remarks during the preparation of this essay con-
siderably helped to improve its content. For these it is my pleasant duty to thank
Markus Haase, Laura Martignon, Frank Neubrander, Anthony O’Farrell, Ulf Schlot-
terbeck, Roland Schnaubelt, Andrea Schwäbisch, Jürgen Voigt, Matthias Wächter, and
many others. A careful translation including many helpful remarks concerning style
and philosophical content was done by Michael McGettigan. This work was supported
financially by the Wilhelm-Schuler-Stiftung, Tübingen.
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As far as the propositions of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.

Albert Einstein [11, p. 233]

This well-known, ironically resigned remark by Albert Einstein (1879–
1955) completely separates the spheres of “mathematical certainty” and
“reference to reality.” Thereby it not only prevents from the outset a po-
tential conflict between them, but also defeats any possible constructive
contact between mathematics and reality.

In its content the remark is indeed beyond reproach, which explains why
it, in one form or another, constitutes the last line of defense for (natural)
scientists confronted with the discomforting question, “What does your
work tell us about reality?” At least unconsciously, however, the scientist
often assumes that the world (or relevant properties thereof) in fact cor-
responds to its mathematical description (cf., e.g., [5], [13], and [33]). If
such a naive realism is probed more deeply, then the scientist can do no
better than offer the triumphs of technology as evidence of such a corre-
spondence, while the theoretician and in particular the mathematician take
cover in the complacent view that he is concerned “only with models,” and
the question of their relation and “application” to reality falls beyond the
bounds of his accountability. Such a strict distinction makes the question
of interpreting mathematics with respect to reality easy to dismiss.

However, an opposing standpoint need not directly question Einstein’s
remark but instead merely note—and this will be the guiding principle
in what follows—that mathematicians and natural scientists have always
held, and will continue to hold, that mathematical propositions refer to
reality.1 And it is almost impossible to understand, let alone stimulate, the
ongoing of science without reference to that connection.

The interplay of mathematics and metaphysics will be examined here
with regard to the problem of determinism, the conflict between freedom2

and universal determination. The focus is on the philosophical question of
whether and to what extent the course of natural events is predetermined.
Inextricably bound up with this is the question of human freedom. While
this is certainly true from a historical perspective, in so far as the various
historical positions are to be understood in terms of their motives and in-
ner justifications, it is also true from a systematic perspective, in so far as
being human is to be understood as the ambivalent state of being simulta-
neously natural and rational. Determinism is of paradigmatic significance
to us here not only because this book deals with one-parameter semigroups,

1 It is often not a matter of how the position is explicitly formulated; for example,
even in Einstein’s work the connection between mathematical-scientific theory and the
world view he personally favored shows up clearly (cf. Section 3).
2 The question of freedom as such, however, will not be discussed deeply; at this

point it is sufficient to note that freedom is not to be confused with “indeterminism” or
“chance.”
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which—as will be shown in Section 1—can be seen as the mathematical for-
mulation of autonomous, deterministic motion,3 but also because it is one
of the fundamental problems that have been repeatedly discussed and re-
formulated.4 It lies at the core of the long-lasting debate on representing
nature by mathematical terms.5

1. The Mathematical Structure

A large part of contemporary natural science is concerned with investi-
gating the motion of systems. “Motion” will designate, here and in what
follows, all forms of temporal change, and is thus a much more general
term than mere change of location. The mathematical framework for this
investigation can be outlined as follows:6

(1) The object of inquiry is the motion of a system in time.
(2) Time is represented by the additive group of real numbers R (or the

additive semigroup R+). We thus use a one-dimensional, homoge-
neous continuum consisting of single points.7

(3) The system under consideration is characterized by a set Z—the
state space—of distinct states z ∈ Z whose temporal change is to

3 An attempt to look at determinism from the point of view of mathematics can be
found in the monograph [10, Sec. XV.13] by N. Dunford and J.T. Schwartz.
4 So Gottfried Wilhelm Leibniz remarks in the preface to his well-known theodicy:

There are two famous labyrinths where our reason very often goes astray: one concerns
the great question of the Free and the Necessary (. . .) the other consists in the dis-
cussion of continuity and of the indivisibles which appear to be the elements thereof,
and where the consideration of the infinite must enter in. The first perplexes almost
all the human race, the other exercises philosophers only [26, p. 53].

5 Today, however, the position is often held that determinism is a concept now out
of style. At this point it suffices to remark that most of today’s science deals with
deterministic motion in our sense (see Section 1 below). Though there may exist many
objections against a strict determinism, modern science has not (yet?) overcome this
concept. A concise discussion and critique of scientific determinism may be found in [34].
The two building blocks of science, experiment and mathematical theory, are shown to be
grounded on the one hand on the freedom of the scientist to choose his or her experiment
or description, yet on the other hand on strict determinism of nature and its accordance
with the logical laws of thought. Thus, science is a paradoxical enterprise based on
extracting the human observer from the natural world.
6 It should be emphasized that none of the following assumptions are evident; every

one could be criticized; see, e.g., the next footnote. Of course, also in mathematics there
are various concepts for modeling motion. We concentrate here on the case of (reversible)
motion with continuous time and global existence and assume a certain time regularity.
However, more complicated behavior also can be discussed in a similar setting. For
instance, stochastic time evolutions in some original state space Z may fit into this
scheme by taking the space of probability densities L1(Z) as a new state space.
7 This identification is not so innocent as it might appear. While many criticisms of

the definition could be cited here, one from David Hume will suffice:
An infinite number of real parts of time, passing in succession, and exhausted one
after the other, appears so evident a contradiction, that no man, one should think,
whose judgement is not corrupted, instead of being improved, by the sciences, would
ever be able to admit of it [18, p. 424].
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be determined. The set of all possible states of the system is thus
fixed from the outset. For example, the state space of a “planetary
system” may be taken as the positions and velocities (or momenta)
of all planets, or the state space of an “ecosystem” can be chosen as
the number of individuals belonging to each relevant species.

(4) The motion of the system is represented by the temporal change of
states or, in mathematical terms, by a function R 3 t 7→ z(t) ∈ Z

that maps each instant t ∈ R to a unique state z(t) ∈ Z.
Up to now we have described a single motion by means of a function

z(·).8 In this sense, the motion can already be called deterministic. This
perspective develops its full force if all possible motions are taken into
account.

(5) For every instant t0 ∈ R and every initial state z0 ∈ Z there exists a
unique motion zt0,z0 : R → Z satisfying zt0,z0(t0) = z0.

We point out that now the role of the observer has changed essentially.
Rather than just “describing” what happens, the observer requires that
the system can be restarted with any prescribed initial data. In this way,
the observer becomes an experimenter, which is constitutive for modern
natural science. Due to assumption 5, we can vary the initial value z0 ∈ Z

at time t0 and obtain a uniquely determined state zt0,z0(t1) of the system
at a target time t1. This defines a mapping

Φt1,t0 : Z → Z, Φt1,t0(z0) := zt0,z0(t1).

In the next step, we take z1 = Φt1,t0(z0) as a new initial state and t1 as
a new initial time. Again by assumption 5, we obtain at time t a unique
state given by Φt,t1(z1) = Φt,t1

(
Φt1,t0(z0)

)
. This state must coincide with

the state achieved at time t by the original motion zt0,z0(·), which also
passes through z1 at time t1, that is,

Φt,t1

(
Φt1,t0(z0)

)
= Φt,t0(z0)

holds for all z0 ∈ Z and t, t1, t0 ∈ R.9 For the family of mappings {Φt,s :
t, s ∈ R} this means

(1.1) Φt,s ◦ Φs,r = Φt,r

8 The observer outside the system can (at least theoretically) consider this motion as
a whole by regarding the function z(·). The system itself has at no time another option
to “choose” than that prescribed.
9 Here we adopt the—apparently self-evident—view that we can evaluate the motion

at any intermediate time. However, the discussion of the implications of dissecting a
motion to individual steps goes back at least to Aristotle (384–322). In his lecture on
nature, he sharply distinguishes between an actual interruption of movement (that of a
“mobile,” i.e., a moving object, along a line) and its mere possibility:

(. . .) whereas any point between the extremities may be made to function dually in the
sense explained [as beginning and as end, G.N.], it does not actually function unless
the mobile actually divides the line by stopping and beginning to move again. Else
there were one movement, not two, for it is just this that erects the “point between”
into a beginning and an end (. . .) [2, p. 373].
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and, trivially,

(1.2) Φt,t = I

for all t, s, r ∈ R and the identity I : z 7→ z. We call such a system consisting
of the state space Z, the time space R (or R+), and a family of mappings
Φt,s : Z → Z satisfying (1.1) and (1.2) a deterministic system.

In many situations, e.g., if the governing physical laws do not change in
the course of time and no external force acts on the system, it is reasonable
to make the following assumption.

(6) The state z1 = Φt,s(z0) at time t depends only on the initial state z0
at time s and the time difference τ = t− s.

Such systems will be called autonomous.10 For the mappings Φt,s this
means Φt,s = Φr,u whenever t− s = r − u. We can now write

T (t) := Φr,r−t

and obtain a one-parameter family {T (t) : t ∈ R} of mappings on the state
space Z satisfying

(1.3) T (s)T (t) = T (t+ s) and T (0) = I

for all t, s ∈ R. A family of mappings fulfilling equation (1.3) is called a
one-parameter group (or a one-parameter semigroup if t ∈ R+). It is our
mathematical model of autonomous, deterministic motion of a system in
time.11

If a continual motion occurs, then there is no justification for saying the object is in the
middle position (during a given period of time):

But if anyone should say that it [the mobile A, G.N.] has “arrived” at every potential
division in succession and “departed” from it, he will have to assert that as it moved
it was continually coming to a stand. For it cannot “have arrived” at a point [B, G.N.]
(which implies that it is there) and “have departed” from it (which implies that it is
not there) at the same point in time. So there are two points of time concerned, with a
period of time between them; and consequently A will be at rest at B (. . .) [2, p. 375].

From this quite consistent perspective, the deduction of a relation as given in (1.1)
certainly seems problematic. We will return to this question when considering quantum
mechanics in Section 2.
10 Every system whatsoever can be embedded in a larger autonomous system by inte-
grating the changing environment into the system until external change is eliminated.
For a corresponding mathematical procedure for associating an autonomous system, see
[31] or Section VI.9.
11 The explicit use of the semigroup equation (1.3) seems to have occurred rather late
in the literature of mathematical physics. Carl Einar Hille (1894–1980), one of the
founders of modern semigroup theory, writes:

Like Monsieur Jourdain in Le Bourgeois Gentilhomme, who found to his great surprise
that he had spoken prose all his life, mathematicians are becoming aware of the fact
that they have used semi-groups extensively even if not always consciously. (. . .). The
concept was formulated as recently as 1904, and it is such a primitive notion that one
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We add a final word on the choice of the state space Z. The state space
should describe those properties essential for the observer, and a given state
at a specific time should determine any further motion. These (scientific,
not objective!) requirements necessitate a careful balancing; the history of
physics shows numerous examples of how a state space was chosen, but
then later was altered—usually enlarged—with the goal of “saving” a de-
terministic motion, or the semigroup property. The “correct” state space
is precisely that which, on the one hand, contains all relevant properties,
and on the other hand guarantees deterministic motion.

This can be illustrated nicely by the examples mentioned in assump-
tion 3. The future behavior of the planetary system is not determined
solely by the positions of the planets at a given time but only if we take
into account positions and momenta. In a second example, we may describe
the size of a population at time t by the real number x(t). If we assume
that the number of newborns depends on the size x(s) of the population
during the time interval t − τ ≤ s ≤ t, then the correct state space is not
R but a space of functions f : [−τ, 0] → R. We refer to Section VI.6 for
a systematic treatment of such situations and also to [19] for a look at
historic discussions concerning state spaces.

2. Are Relativity, Quantum Mechanics,
and Chaos Deterministic?

It is a frequently voiced opinion that twentieth century scientific theory
has revolutionized philosophy’s view on determinism. In particular, one
refers to relativity , quantum mechanics, and chaos theory in this context.
In this section we intend to show that these three more or less closed and
mathematically codified theories can be integrated into the scheme sketched
in Section 1.

First, Einstein’s theory of relativity elaborates in its special relativis-
tic part indeed a new structure of space-time compared with Newtonian

may well be in doubt of its value and possible implications [17].
One of the first scientists to have used the concept of semigroups to formulate a mathe-
matical concept of determinism appears to be Jacques Hadamard (1865–1963) in his
lectures on differential equations [Had23, p. 53]. With reference to Christian Huygens’
(1629–1695) treatment of light diffusion, Hadamard discusses Huygens’ “principle” in
the form of a syllogism, whose major premise implicitly contains the semigroup law:
“(major premise). The action of phenomena produced at the instant t = 0 on the state
of matter at the instant t = t0 takes place by the mediation of every intermediate in-
stant t = t′, i.e. (assuming 0 < t′ < t0), in order to find out what takes place for
t = t0, we can deduce from the state at t = 0 the state at t = t′ and, from the latter,
the required state at t = t0”. The premise is designated as a “law of thought” or as a
“truism,” which nevertheless has interesting consequences. For it corresponds “to the
fact that the integration of partial differential equations defines certain groups of func-
tional operations; and this for instance leads to quite remarkable identities (. . .).” See
also [Hil48, Sec. 20.2] and Section II.6.
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mechanics. However, the causal structure is neither globally nor locally
very different. To obtain accord with the picture of Section 1 you have
only to consider the Eigenzeit for every body or every observer. In cosmol-
ogy, the standard model uses a global, absolute “cosmologic” time within
which matter evolves deterministically.12 Finally, some of the most famous
researchers in the field of relativity and cosmology are very fond of the idea
of strict determinism; compare, for example, [14] and, of course, Einstein
himself.

Second, quantum mechanics offers a more complex picture. A thorough
examination of its various interpretations would lead far beyond the limits
of this epilogue (for a deeper study see [20], [32], [36]). In particular, we
concentrate on the closed theory of ca. 1930. With respect to the question of
determinism one has to distinguish between, roughly speaking, two differ-
ent time evolutions in quantum mechanics. There is first the unitary time
evolution of the individual state (Ψ-function) following Schrödinger’s
equation

Ψ̇(t) =
−i
~
HΨ(t)

with Hamiltonian H. Indeed, this is no better example of an abstract
Cauchy problem solved by a group (e−i/~Ht)t∈R. The state of a quantum
system thus evolves deterministically in the sense of Section 1 as long as
no measurement process takes place.

The measurement process represents the second form of time evolution in
quantum mechanics, and there has been a long-lasting discussion about the
“primary” probabilities occurring with the measurement process.13 Mea-
suring a quantum system—also called “reduction of the wave packet” or
“projection”—is codified by stochastic time evolution, where the (abso-
lute square of the) state Ψ(t) can be interpreted as a probability den-
sity (Born’s interpretation). Whether these primary probabilities (thus a
weak form of indeterminism) will give way to a more fundamental (crypto)-
deterministic description is a problem of current research (see [36, p. 120]).

Thus, in quantum mechanics a new state space has been introduced that
allows a deterministic theory. Indeed, the fundamental scientific paradigm
shift in the wake of quantum mechanics does not concern determinism, but
raises the question of the reducibility of the (material) world into single,
trivially combined elements, as well as the related question of the observer’s
perspective. This question, only loosely connected to the problem of de-
terminism, is given a negative answer within the framework of quantum

12 The space-time metric is taken to be separated with respect to space and time, and
it is possible to define an absolute time coordinate given by the Eigenzeit in the inertial
system of the “freely falling” cosmological substrate.
13 It is remarkable that the real dissection of the motion due to measurement causes
these troubles. As in Aristotle’s description (see footnote 9) it changes the course
of time evolution and is to be discussed as distinct from a mere potential dissection.
Interestingly enough, in contrast to Kant, the perspective of the observer might here
be the reason for a certain indeterminism (see Section 4).
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mechanics; each (elementary or nonelementary) quantum-mechanical sys-
tem is typically a unit that is not to be regarded as consisting of building
blocks. In the transition from classical to quantum mechanics, this new
concept of the object is much more essential than any change in the notion
of causality.14

Third, the so-called chaos paradigm, from which quite often far-reaching
“philosophical conclusions” are derived, appears (with a few possible ex-
ceptions, e.g., [37]) as a disheartened return to classical physics, since an
interpretation of or reconciliation with quantum mechanics has proved to
be too difficult. This paradigm (apparently) once again refers to objects
in nature as if they behaved like billiard balls. On the level of the objects
there holds thus a strict determinism. The only new development is an
improvement of the mathematical rigor in discussing the (epistemic) prob-
lem that knowledge of the initial state with finite accuracy gives rise to a
(dramatically) reduced possibility of forecast. Yet this sensitive dependence
on the initial conditions, today’s completely “new” insight, can already be
found in historical examples. Leibniz, for instance, had already described
the “butterfly effect” in his small essay “On Destiny”:

And often, such small things can cause very important changes. I used
to say a fly can change the whole state, in case it should buzz around a
great king’s head while he is weighing important counsels of state (. . .).
And even this effect of small things causes those who do not consider
things correctly to imagine some things happen accidently and are not
determined by destiny, for this distinction arises not in the facts but in
our understanding [25, pp. 571–72].

3. Determinism in Mathematical Science
from Newton to Einstein

The dominant role mathematics plays in the interpretation of nature is
not obvious, but it is the result of a scientific revolution whose essence
is well captured in Galileo Galilei’s (1564–1642) statement “the book
of nature is written in mathematical language” and that culminates in

14 This is, in summary version, an exemplification of the claim of Ernst Cassirer
(1874–1945) presented in his book Determinism and Indeterminism in Modern Physics,
which he published in 1936. This work’s systematic hypothesis states:

The answer that an epistemology of science gives to the problem of causality never
stands alone but always depends on a certain assumption as to the nature of the
object in science. These two are intimately connected and mutually determine each
other [9, p. 6].

That is, one cannot assume that the object to be investigated is completely given in all
its possible facets, in order then to examine its causal interactions. Rather, the reverse
is true: The inquiry into a particular kind of causality determines what kind of objects
will be perceived by the observer.
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Isaac Newton’s (1643–1727) magnum opus Philosophiae Naturalis Prin-
cipia Mathematica. With Newton’s equations of motion, the behavior of
a mechanical system could be calculated for the first time, and this made
determinism, in the formal sense as described in Section 1, for the first time
thinkable.

It is interesting to note that Newton himself explicitly ruled out the
possibility of a complete determinism for all events in the universe. After
establishing in the first book of his Principia the principles of motion, the
structure of space and time, and then the relationship of Kepler’s laws of
planetary motion to his own law of gravity, Newton proceeds to investi-
gate in the third book the well-known data concerning planets, moons and
comets. He singles out for emphasis the regularity of the concentric motion
of all planets and their moons in the same plane and in the same direction,
and concludes that

it is not to be conceived that mere mechanical causes could give birth
to so many regular motions (. . .). This most beautiful system of the sun,
planets, and comets, could only proceed from the counsel and dominion
of an intelligent and powerful Being (. . .) and lest the system of fixed
stars should, by their gravity, fall onto each other, he hath placed those
systems at immense distances from one another [30, p. 544].

The regular harmony of the solar system and the stable order of the fixed
stars, which Newton claimed could not have arisen by mechanical laws
alone, suggest the hand of a Creator. This view is expressed more precisely
in the following opposition between metaphysical necessity and the God of
creation:

Blind metaphysical necessity, which is certainly the same always and
everywhere, could produce no variety of things. All that diversity of
natural things which we find suited to different times and places could
arise from nothing but the ideas and will of a Being necessarily existing
(. . .) [30, p. 544].

According to Newton, God not only has to create an ordered planetary
system, but he must also incessantly intercede. He gives two reasons for
this: First, matter in motion continuously loses kinetic energy so that an
external impulse is necessary to keep the system in motion; second, New-
ton was unable to demonstrate the entire system’s stability. Here, God’s
intervention came to his aid.

Newton’s contemporary Gottfried Wilhelm Leibniz (1646–1716)
formulated an incisive critique of these views. For both metaphysical as well
as scientific reasons, Leibniz found Newton’s image of God unaccept-
able. The mathematical difference can be expressed in modern terminology
in the following way: Newton’s thought was dominated by the causal
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structure of a differential equation, or more precisely, an initial value prob-
lem that repeatedly arises at different instants, whereas Leibniz’s thought
was structured by a conservation law and a (temporally) global variational
principle of least action subject to a more teleological interpretation. In
this case, real motion results as the minimum of an integral of action de-
fined for all possible motions.15 Only later did it become clear that both
approaches, the principle of least action and the initial value problem, are
mathematically equivalent (for a modern account, see [3, p. 55]).

Leibniz opens the debate with Newton in a letter to the princess of
Wales—which was of course intended to be aired in public—in which he
writes:

Sir Isaac Newton, and his followers, have also a very odd opinion con-
cerning the work of God. According to their doctrine, God Almighty
wants to wind up his watch from time to time: otherwise it would cease
to move. He had not, it seems, sufficient foresight to make it a perpetual
motion (. . .). According to my opinion, the same force and vigor remains
always in the world, and only passes from one part of matter to another,
agreeably to the laws of nature, and the beautiful pre-established order
[27, pp. 11–12].

Newton did not personally reply to the charge; he had his student and
associate Samuel Clarke (1675–1729) respond. However, that the re-
sponses largely grew out of Newton’s direct intervention can be shown
from scattered notes in his handwriting. So began a correspondence, con-
sisting of five increasingly long letters from each, that was one of the most
intriguing controversies of the age. Clarke wrote in his first response:

15 A vehement controversy arose as early as the eighteenth century concerning the
question of priority in the discovery of the principle of least action. One of the first
versions stems from Maupertuis (1698–1759), which was then given its precise formu-
lation by Leonhard Euler (1707–1783) (a description of this controversy is offered
in [38]). Leibniz can be regarded only as predecessor of this discovery, although in his
philosophical writing it appears with all desirable clarity.

He describes this universal principle at the conclusion of his theodicy, and it is no
accident that his account is cloaked in mythical guise. Moreover, it is remarkable that
the description is closely connected with the problem of strict determinism. Theodorus,
a priest of Jupiter, is witness to a terrible fate foretold by the god to a man seeking his
advice, a fate the latter cannot avoid. In response to Theodorus’s question whether God
could not have created the world differently so as to prevent such a terrible fate, Pallas
Athena appears to him in a dream and shows him the splendor of the divine (actually
Leibniz’s) universal order. They come to a place whose every chamber represents a
possible course of events:

The chambers were ordered in the shape of a pyramid: the closer one came to the
apex, the more beautiful they and the worlds they represented became. Finally one
arrives at the highest chamber, which crowns the pyramid, and this was the most
beautiful of all. For the pyramid had indeed a beginning, but its end could not be
seen; it had a top, but no base: it continued on into infinity. This is because (. . .) in
an infinity of possible worlds one of them is the best, for otherwise God would have
had no reason to create even one of them. But there is no world under which a less
perfect one could not be found: that is why the pyramid continually descends into
infinity [28, p. 408] (author’s translation).
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The notion of the world’s being a great machine, going on without the
interposition of God (. . .) is the notion of materialism and fate, and tends
(under pretence of making God a supra-mundane intelligence), to exclude
providence and God’s government in reality out of the world. And by the
same reason that a philosopher can represent all things going on from
the beginning of the creation, without any government or interposition
of providence; a skeptic will easily argue still farther backwards, and
suppose that things have from eternity gone on (as they do now) without
any true creation or original author at all, but only what such arguers
call all-wise and eternal nature [27, p. 14].

Clarke points out the loss of kinetic energy that results from inelastic
impacts, which makes an intervention by God necessary to maintain the
system. Leibniz answers this by referring to a principle of conservation
that is consonant with the perfection of divine creation:

If active force should diminish in the universe, by the natural laws which
God has established; so that there should be need of him to give a new
impression in order to restore that force (. . .) the disorder would not only
be with respect to us but to God himself. He might have prevented it
(. . .) and therefore, indeed, he has actually done it [27, p. 29].

Clarke then poses the question of human freedom in a universe gov-
erned by Leibniz’s principle of conservation:

To suppose that in spontaneous animal-motion, the soul gives no new
motion or impression to matter; but that all spontaneous animal-motion
is performed by mechanical impulse of matter; is reducing all things to
mere fate and necessity [27, p. 51].

Leibniz’s reply refers to his system of preestablished harmony, which he
claims permits him simultaneously and without contradiction to pair hu-
man freedom with a determinism of the human body (see [27, pp. 95 and 99]).

The respective positions in this controversy can be briefly characterized
in the simple antithesis that Leibniz accuses Newton of constructing
a theory of the heavens founded on the capriciousness of God, whereas
Newton (or in his stead, Clarke) accuses Leibniz of deism or fatalism.
Newton’s God does too much, Leibniz’s too little.

The critique of Newton’s concept of a God who indulgently intervenes
time and again in the system of nature, which Leibniz developed from
(essentially) metaphysical grounds, was taken up again nearly a century
later by Pierre Simon de Laplace (1749–1827). In his case, however,
it is supported by further developments in mathematical physics. He was
able to analyze the equations for the motion of the planetary system more
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precisely in order to answer (as he thought) the question of stability.16 In
addition, Laplace17 attempted to derive from just these equations the
laws ruling the origin of the planetary system, whose orderliness Newton
found wonderful yet inexplicable.

In his treatise on the origin of the planetary system Laplace wrote:

I cannot leave off remarking how much Newton, in this matter, departed
from the method he otherwise applied so skillfully (. . .). He would con-
sider the point all the more substantiated, if he had known what we have
proved, namely, that the conditions for the order of the planets and their
satellites are precisely the same as those which guarantee their stability
(. . .). But cannot this very order of the planets itself be a result of the
laws of motion? [23, p. 474].

His contributions to the development and application of classical me-
chanics to astronomical problems led therefore in a twofold way to impor-
tant results: First, an “explanation” of the stability of the solar system
and, second, a purely mechanical model for its coming into being. In the
introduction to his essay on the theory of probability (1814), Laplace ex-
tended this paradigm constituted by classical mechanics to the motion of
the entirety of the universe:

All events, even those which on account of their insignificance do not
seem to follow the great laws of nature, are as a result of [them] just as
necessary as the revolutions of the sun [24, p. 3].

16 Laplace discussed a perturbation problem considering the elliptic orbit of some
planet perturbed by gravitation due to the other planets in terms of a series expansion.
He was able to show that the first few terms of this expansion are only of the form
(a cos ωt), thus “harmless” periodic deviations; no “dangerous” “secular” term of the
form (at) or “mixed term” of the form (at cos ωt) appeared. He thus concluded that under
the condition of elliptic motion in the same plane and direction the planetary system is
stable. Without these conditions it was clear that no stability was to be expected, e.g.,
if the moon would circulate perpendicular to the ecliptic, it would fall onto the earth
within four years due to the influence of the sun. However, even though one could show
that all terms of this expansion are only of periodic form, the convergence of the whole
series is not guaranteed. Laplace’s stability is thus valid only on a sufficiently small
time interval. For the mathematical content see [4, p. 69].
17 Earlier even than Laplace, the young Immanuel Kant had already undertaken
to explain the form of the planetary system on the basis of Newton’s mechanics. He
describes the formation of material whirlpools that arise from an initially homogeneous
distribution of matter due to the effects of gravitational forces and eventually form the
milky way and the planetary systems. In this, Kant takes up Leibniz’s argumentation.
The perfect Creator designs the universe from the very beginning so that the currently
visible order is necessarily generated according to deterministic laws:

Matter (. . .) is thus tied to certain laws, and will necessarily bring forth beautiful
combinations if it freely follows their lead. It has not the freedom to stray from
this plan of perfection (. . .) and there is a God precisely because nature, even in
utter chaos, cannot proceed otherwise than orderly and in accordance with rules
[21, A XXVIII, pp. 234–35].
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Only ignorance of the causes of a particular motion could lead to adopting
contingency or final purposes as an explanation. Slowly but surely, all true
causes unveil themselves to the inquiring mind. In this context appears the
famous reference to the comprehensive determination and the potential
calculability of the universe. Revealingly enough, and despite his previous
reference to Leibniz, he does not mention a metaphysical God as the unique
example of omniscient, absolute spirit:

We ought then to regard the present state of the universe as the effect
of its anterior state and as the cause of the one which is to follow. Given
for one instant an intelligence which could comprehend all the forces
by which nature is animated and the respective situation of the beings
who compose it—an intelligence sufficiently vast to submit these data
to analysis—it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest atom; for it,
nothing would be uncertain and the future, as the past, would be present
to its eyes. The human mind offers, in the perfection which it has been
able to give to astronomy, a feeble idea of this intelligence [24, p. 4].

Laplace’s daemon, the notion of an entity overseeing the entire uni-
verse in all its details, reappears in 1872 in the famous speech “On the
Limits of Our Knowledge of Nature” delivered by the biologist, physiolo-
gist, and philosopher Emil du Bois-Reymond (1818–1896). Just before
the upcoming crisis initiated by the rise of quantum mechanics, the clas-
sical physical paradigm found a particularly clear expression in du Bois-
Reymond. Within the framework of this scientific description of nature
there emerges a suggestion of a universal formula that would guarantee
complete transparency:

It is even conceivable that our scientific knowledge will reach a point
which would allow the workings of the entire universe to be represented
by One mathematical formula, by One immeasurable system of simul-
taneous differential equations, from which the position, the direction of
motion, and the speed of every atom in the universe could be calculated
at any time [7, p. 443] (author’s translation).

At the same time, however, du Bois-Reymond sets up a strict limit to
knowledge: First, the atomic matter presupposed by mechanics is nothing
more than a useful fiction; a “philosophical atom” conceived as existing be-
yond this pragmatic construction is “on closer examination an absurdity”
[7, p. 447]. Second, not only consciousness, but even the most simple qual-
itative sensations, are irremediably out of reach for the natural scientist.
Even a complete and “astronomically exact” knowledge of all material sys-
tems including the human brain, which is in principle attainable, leaves the
question of the nature of consciousness untouched, and natural scientists
will always have to answer the question with the reply “Ignorabimus.” This
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claim is substantiated by the unbridgeable gulf separating the quality-less
descriptions of mechanics and the qualities of perception as well as inten-
tionality:

Astronomical knowledge of the brain (. . .) reveals it to be nothing but
matter in motion (. . .). What conceivable connection is there between
certain movements of certain atoms in my brain, on the one side, and on
the other, the facts which are for me primary, undefinable, indisputable:
“I feel pain, I feel pleasure; I taste something sweet, smell the scent of
roses, hear the piping of the organ, see red” (. . .). It is quite incompre-
hensible, and shall remain so forevermore, that for a number of carbon,
hydrogen, nitrogen, and oxygen atoms it is not a matter of complete
indifference where they are and where they are going, where they were
and where they went, where they will be and where they will be going
(. . .) [7, p. 457].

Du Bois-Reymond accords great importance to the question of the
“irreconcilable contradiction” between the “world-view established by me-
chanical physics” and “freedom of the will.” However, this question is held
to be logically subordinate to the above problem of sensory qualities. Du
Bois-Reymond’s own position in this matter is peculiarly vague. After
having curtly brushed aside as “most dark and self-inflicted aberrations”
the various historical efforts18 at grappling with the problem of free will,
he formulates his “monistic view” as the result of a consequent application
of the law of conservation of energy:

Conservation of energy means that force is created or destroyed just as
little as matter (. . .). The molecules of the brain can only ever fall in a
certain way, just as ineluctably as dice after leaving the tumbler (. . .).
Now if, as monism conceives it, our thoughts and inclinations, and this
includes our acts of volition, are incomprehensible yet necessary side
effects of the stirrings and fluctuations of our brain molecules, then it
makes sense to say there is no freedom of the will. For monism, the
world is a single mechanism, and in a mechanism, there is no room for
freedom of the will [8, p. 82].

Yet in the end, du Bois-Reymond considerably qualifies his position
in view of the exigencies of practical life. Even the “most resolute monist”
could hardly maintain that each and every action is already predetermined
by mechanical necessity.

18 He refers, albeit negatively, to the efforts of contemporary French mathematicians
to make room for free will within the framework of a theory of solutions for differential
equations. According to these attempts, free will could be integrated into the sphere of
mechanical descriptions by means of the phenomenon of bifurcation, which refers to a
breakdown of uniqueness of the solutions of differential equations (see [19]).
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For du Bois-Reymond, there remained only the fundamental and not
rationally decidable alternative of strictly denying free will or of assert-
ing such freedom but at the cost of conceding a “mystery” unable to be
solved. Thus in du Bois-Reymond’s own account, the problem finds not
a solution but a new formulation:

The writings of the metaphysicians offer a long series of attempts at
reconciling freedom of the will and moral law with a mechanical order
of the universe. If anyone, Kant for example, had achieved this squaring
of the circle, then this series would reach its end. Only inconquerable
problems are in the habit of being so immortal [8, p. 87].

In view of the fact that he is the last great determinist of the twentieth
century, this account cannot overlook Albert Einstein. His debate with
Niels Bohr (1885–1962) on the interpretation of quantum mechanics—a
discussion nearly as complex and far-reaching as the one between Leibniz
and Clarke—cannot be treated here in full detail. With respect to the
question of determinism it exhibits considerable similarities to the Leibniz–
Clarke debate. It can more or less even be read as its repetition under
altered historical conditions: Einstein (Leibniz) insists on causal deter-
minacy; Bohr (Newton) refuses such a metaphysical commitment.19 On
the one hand there is the pragmatic position of Bohr, who claims that the
results of quantum mechanics

(. . .) led us to recognize that the adequacy of our whole customary atti-
tude, which is characterized by the demand for causality, depends solely
upon the smallness of the quantum of action in comparison with the
actions with which we are concerned in ordinary phenomena [6, p. 116],

and for whom the question of determinism versus freedom of the will cannot
be answered in terms of either-or. Rather, there is a

(. . .) parallelism between the renewed discussion of the validity of the
principle of causality and the discussion of a free will which has persisted
from earliest times. Just as the freedom of the will is an experiential
category of our psychic life, causality may be considered as a mode of
perception by which we reduce our sense impressions to order. At the
same time, however, we are concerned in both cases with idealizations
(. . .) which depend upon one another in the sense that the feeling of
volition and the demand for causality are equally indispensable elements

19 However, there are also differences in style and content. For example, while Bohr and
Einstein are discussing their subject in terms of a much more advanced theory (quan-
tum mechanics and relativity) and they are talking about boxes with clocks, weights,
and small machines, most of the debate between Leibniz and Clarke—almost com-
pletely omitting technical jargon—is concerned with the question of freedom, God, and
metaphysical concepts of this type. For a detailed account of the Bohr–Einstein debate
see [20].
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in the relation between subject and object which forms the core of the
problem of knowledge [6, p. 116].

On the other hand there is Einstein’s position of “metaphysical math-
ematicism:”

But the scientist is possessed by the sense of universal causation. The
future, to him, is every whit as necessary and determined as the past
(. . .). His religious feeling takes the form of a rapturous amazement at the
harmony of natural law, which reveals an intelligence of such superiority
that, compared with it, all systematic thinking and acting of human
beings is an utterly insignificant reflection [11, p. 40].

Such a position can consequently lead to a rejection of the belief in
freedom:

I do not at all believe in human freedom in the philosophical sense. Ev-
erybody acts not only under external compulsion, but also in accordance
with inner necessity [11, p. 8].

Einstein’s cosmological religion repeats almost literally the vision ar-
ticulated by Leibniz; it reveals the same reverent wonder at a universe ex-
perienced in perfect harmony. And in the mathematical background there
lies a correspondence between the field equations of general relativity and
the universal principle of least action.

Despite not providing an ultimate answer to the question of determinism,
the debate between Leibniz and Newton, the contributions of Laplace
and du Bois-Reymond, and the controversy of Einstein and Bohr have
shown that this question was an important motivating force for the de-
velopment of natural science although answered in quite divergent ways
(even at the same time). Metaphysics remains entangled with natural sci-
ence: “Not worrying about philosophical questions in science is too cheap a
solution” [36, p. 251].

4. Developments in the Concept of Object
from Leibniz to Kant

We will try to give in this section a concise summary of the philosophical
reflections on determinism that followed the rise of modern science, and
which were best expressed in the works of Leibniz, Hume, and Kant.
Especially the changes in the concepts of object and observer and their
relationship will be emphasized here.

As early as in Leibniz’s work there can be found an omniscient “world-
spirit.” He claims
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that everything proceeds mathematically, that is, infallibly in the whole
wide universe, to the extent that if someone were to have sufficient in-
sight into the inner workings of things, and had enough memory and
intelligence to take on and account for all circumstances, he would be a
prophet, and see the future in the present, as if in a mirror [25, p. 571].

The basis of this “picture” is the unique, universal perspective of a
metaphysical God detached from the world but omnisciently observing the
whole.

Soon after his controversy with Clarke, Leibniz’s harmonically or-
dered universe, in which knowledge and being, concept and object, enjoy a
preestablished agreement, was shaken to its foundations under the weight
of David Hume’s (1711–1776) radical skepticism. In his An Enquiry Con-
cerning Human Understanding, Hume repeatedly warns against extending
philosophical investigation to questions “that lie entirely out of the sphere
of experience” [18, p. 358]. While treating the question of causal connec-
tion, Hume makes a preliminary decision: He rejects Leibniz’s assumption
of a preexisting world of simple substances persisting independently of per-
ception. For Hume reality consists of “perceptions” and experience, which
is the recollection of past perception. It is thus the individual perspective of
any observer that provides the starting point for all further considerations.
Under these conditions, there is no logical argument for any kind of causal
connection between perceptions:

That the sun will not rise tomorrow is no less intelligible a proposition,
and implies no more contradiction than the affirmation, that it will rise
[18, p. 322].

Accordingly, one cannot differentiate between an expectation supported
by natural causality and one stemming from human acts:

A man who at noon leaves his purse full of gold on the pavement at
Charing Cross, may as well expect that it will fly away like a feather, as
that he will find it untouched an hour after [18, p. 372].

At the end of this analysis remains the useful belief, generated by the
power of custom, in the causal connection of events. Such belief cannot be
rationally justified but is based on mere feeling. Consequently, mathematics
is denied the power to found causal relations between facts. According to
Hume, the certainty of mathematical deduction cannot be transferred to
the sphere of perception:

Nor is geometry, when taken into the assistance of natural philosophy,
ever able to (. . .) lead us into the knowledge of ultimate causes (. . .).
Every part of mixed mathematics proceeds upon the supposition that
certain laws are established by nature in her operations (. . .) but still
the discovery of the law itself is owing merely to experience, and all the
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abstract reasonings in the world could never lead us one step towards
the knowledge of it [18, p. 327].

With his skeptical analysis of philosophical reason, Hume had set a stan-
dard of reflection that forbade any further uncritical use of metaphysical
ideas—even the apparently clear and fundamental concept of causality.
But a rigorous application of his skeptical results made completely in-
comprehensible the far-reaching success of the mathematical description
of physical processes given by Newton’s mechanical physics. Moreover,
and characteristically enough, the phenomenon of human freedom was also
left underdeveloped in Hume’s writings.

At this point Kant’s critical revolution sets in. On the one hand, Kant
not only confirms Hume’s skeptical analysis in its full extent but he takes
the argument still further. There is simply no possibility whatsoever for
reason to make grounded claims concerning the causality of objects. On
the other hand, if reason is not to fall prey to a blanket skepticism and
if one wants to understand the successes of a mathematical approach to
nature, then the focus of philosophical inquiry must be altered. Thus, “the
critical question is to be addressed not immediately to things, but rather
to knowledge” [9, p. 17]. The principle of causality now expresses nothing
more than a mode of relation between objects and the perceiving subject.
Kant’s “critical determinism” is a “principle for the formation of empir-
ical concepts, an assertion and a prescription as to how we should grasp
and form our empirical concepts in order that they may discharge their
task—the task of the ‘reification’ [Objektivierung] of phenomena” [9, p. 19].
This, however, poses the question of freedom in a completely new way. Hu-
man action can now be regarded from two different perspectives rigorously
founded in an analysis of knowledge. As Kant states, a rational being can
regard him or herself from two standpoints: In the first sense it is like ev-
erything an empirical object and as such subject to universal determinism.
In the second sense human beings may be accepted as things in themselves
and therefore as free. Based on this picture Ernst Cassirer comes to the
following conclusion:

By virtue of this doctrine Kant can remain a strict empirical determinist
and can nevertheless assert that precisely this empirical determination
leaves the way open for another determination, different in principle,
which he calls the determination through the moral law or the pure
autonomy of the will. The two are not mutually exclusive in the Kantian
system, but rather require and condition each other (. . .) [9, p. 202].

The object investigated by natural science is thereby fundamentally al-
tered, which Kant acknowledges in approaching the historical fact of nat-
ural science in terms of mathematics and experiment.
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They [all students of nature] learned that reason has insight only into
that which it produces after a plan of its own (. . .). Reason, holding in one
hand its principles, according to which alone concordant appearances can
be admitted as equivalent to laws, and in the other hand the experiment
which it has devised in conformity with these principles, must approach
nature in order to be taught by it. It must not, however, do so in the
character of a pupil who listens to everything that the teacher chooses
to say, but of an appointed judge who compels the witnesses to answer
questions which he has himself formulated [22, B XIIIf, p. 20].

The debate on determinism goes on, unfortunately often below the level
of Leibniz and Clarke or Bohr and Einstein. One major point is of-
ten neglected, although it had already been clarified by Kant’s analysis:
The observer and his perspective have to be taken into account. Cassirer
expresses it well by saying

that after the decisive advance attained through Hume and Kant in the
analysis of the causal problem, it is no longer possible to regard the causal
relation as a simple connection between things, or to prove or disprove
it in this sense [9, p. 20].

5. Back to Some Roots of Our Problem:
Motion in History

It does not seem to be mere chance that determinism is such an perennial.
Indeed, the problem of describing motion can be traced as far back as the
beginning of ancient Greek philosophy.20

In this section we will look at some of the oldest formulations of this prob-
lem as well as two types of solution—Platonism and atomism—which are
two of the main paradigms for all subsequent Western natural philosophy
and science.

Into the same river we step How could What Is be something of the future?

and do not step; How could it come-to-be?

we are it, For if it were coming-to-be,

and we are not. or if it were going to be in the future,

Heraclitus of Ephesus in either case there would be a time when it is not.

[1, p. 78] Thus coming-to-be is quenched,

and destruction is unthinkable.

Parmenides of Elea [1, p. 98]

20 The subsequent analysis will follow the historical reconstruction offered by Georg
Picht (see [34], but also [15, Chap. IV]).
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The question concerning the nature of motion was deemed important as
early as the fifth century b.c. in the reflections handed down from the pre-
Socratic philosophers. Two fundamental experiences found expression in
the opposing views of Parmenides of Elea (ca. 540–480) and Heracli-
tus of Ephesus (ca. 550–480). According to Heraclitus, all things are in
a continual flux, nothing remains the same, and every moment has already
slipped into the past. Just the opposite position is taken by Parmenides.
He denies change of any kind. True being is unchanged and immutable
for the simple argument that “being is and nonbeing is not.” Hence the
pre-Socratic experience of the world was caught in a contradiction: Either
motion is universal or it is nothing at all. This dilemma seems to have been
a motivating force for creative thought throughout Western history. Every
concept of motion is compelled to come to terms with this fundamental
contradiction, since motion means change of something that is.

As early as in Plato’s (427–348) dialogue Timaeus, the main problem
was portrayed in precisely these terms:

(. . .) in my judgement, we must make a distinction and ask, what is that
which always is and has no becoming, and what is that which is always
becoming and never is? That which is apprehended by intelligence and
reason is always in the same state, but that which is conceived by opinion
with the help of sensation and without reason is always in a process of
becoming and perishing and never really is [35, 27d-28a, p. 1161].

The (ontological) separation of “that which is becoming” from “that which
is” corresponds to Plato’s (epistemological) distinction between opin-
ion and knowledge. Opinion or probability is the highest status attainable
with regard to that which is becoming, whereas we can attain true knowl-
edge only of that which is. This incipient value hierarchy is also apparent
in Socrates’ ironic remark that the ancients became so dizzy in their
researches that they held all things to be in flux (cf. Plato’s dialogue
Cratylus, 411b-c). Despite such ironic asides, Plato saw it as his task to
mediate the realm of becoming perceived by the senses with the realm of
the eternal being grasped in thought. One result of this effort is presented
in Plato’s myth of creation. The visible, mutable world is created by a
mythical demiurge as a likeness of the unchangeable ideas that lie beyond
the reach of sensible experience:

Everyone will see that he must have looked to the eternal, for the world
is the fairest of creations (. . .). And having been created in this way, the
world has been framed in the likeness of that which is apprehended by
reason and mind and is unchangeable [35, 28c–29a, pp. 1161–62].

Here, too, an implicit value hierarchy structures the argument: Because
the world is perceived as a “fair” and well-ordered cosmos, it can only have
been created in view of the eternal and not in view of the impermanent.
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While reason can at least apprehend the original of the world, every rep-
resentation of the original’s image—the sensible world of change—will be
but a probable approximation of the truth grasped by reason. This is why
Plato is merely being consistent in framing his account as myth and not
as theory.

His narrative on the causes of the world of becoming distinguishes be-
tween rational and necessary causes:

(. . .) the creation of this world is the combined work of necessity and
mind. Mind, the ruling power, persuaded necessity to bring the greater
part of created things to perfection (. . .). But if a person will truly tell
of the way in which the work was accomplished, he must include the
variable cause as well [35, 47e–48a, p. 1175].

Accordingly, Plato furnishes two different causal accounts, the second
of which, based on blind necessity , ushers in a theory of elementary par-
ticles. He analytically reduces the manifold of sensible phenomena to the
(spatial) motion of elementary, symmetrical, and mathematically describ-
able entities (elementary triangles) and then attempts to construct the
same phenomena by resynthesizing them out of particle motion. Plato’s
first account, based on reason, utilizes the original-image theory to bridge
the gap between being and becoming. The far-reaching consequences of
Plato’s theory cannot be overestimated in their importance for the en-
tire European metaphysical tradition, including the notion of mathematical
ideas providing the original template for the phenomenal world.

Yet another, so-to-speak naturalized, variant of the problem originated
in pre-Socratic philosophy and has had an effect, as transmitted by the Ro-
man author Lucretius (ca. 96–55), on the development of modern physics.
This version is known as atomism. It assumes indestructible, eternal mate-
rial particles—atoms—whose continual motion is the reason for the variety
of changes in the material world as perceived by the senses. Building on
the ideas of Democritus (ca. 470–380) and Epicurus (341–270), Lu-
cretius presented this atomistic view in his didactic poem On the Na-
ture of Things. After adopting the Parmenidean conclusion that “things
cannot be born from nothing, cannot when begotten be brought back from
nothing” [29, p. 4], he postulates basic indestructible elements and empty
space in which these elements combine in various formations. Birth and
decay are thus but appearances of the fundamental process that unites and
dissolves the combination of atoms. The question of how lasting structures
are formed—a question that will be taken up much later by Newton and
Laplace—is answered by Lucretius with the notion of atoms that devi-
ate from their paths, causing collisions and subsequently a dense fabric of
structure and motion.

For verily not by design (. . .) but because many in number and shift-
ing about in many ways throughout the universe they are driven and
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tormented by blows during infinite time past, after trying motions and
unions of every kind at length they fall into arrangements such as those
out of which this our sum of things has been formed, and by which too
it is preserved [29, p. 13].

In this context, the question of the freedom of the will presents itself to
Lucretius. Since his work treats mainly ethical issues, this question will
play a fundamental role through most of the poem, especially because it
cannot be answered with reference to either arbitrary motion or to motion
guided by the force of gravitation. Consequently, Lucretius pursues a
course that will “naturalize” free will:

besides blows and weights there is another cause of motions, from which
this power of free action has been begotten in us, since we see that
nothing can come from nothing. (. . .) the mind itself does not feel an
internal necessity in all its actions and is not as it were overmastered
and compelled to bear and put up with this, is caused by a minute
swerving of first-beginnings [atoms G.N.] at no fixed part of space and
no fixed time [29, p. 18].

In looking back at the accounts given in the third and fourth sections
of this epilogue, it will be noticed how each position achieves some bal-
ance between the two poles represented by Parmenides and Heraclitus.
Newton, for instance, utilizes atomism by letting his Creator create inde-
structible, eternal corpuscles (see I. Newton Opticks, Quaery 31), which,
alongside the mathematical laws, explain the permanence of what lies be-
hind the phenomenal world. At the same time, however, he is compelled to
postulate a ceaseless intervention of God in the workings of the universe.
The efforts of Leibniz and Einstein can be seen as extensive reformula-
tions of Parmenides’ unchanging One. Hume’s work may be regarded as
the attempt to balance the flux of sense impressions with the constancy
of habit. Finally, in Kant’s work the role of the unchanging unity of the
subject can be described as ensuring an identity-preserving fixed point in
the face of the flux characteristic of all perceptual impressions.

Similarly, a consequent determinism in science represents manifest change
in the context of immutable being: Although something is in motion, the
motion itself is fixed according to deterministic laws. When viewed from
a nontemporal perspective, such motion does not take place at all, and
we end up with the Parmenidean denial of motion per se. Every math-
ematical depiction of motion attempts to reduce motion in this way. It is
accepted as real on the one hand, but on the other hand it is represented in
a medium (i.e., mathematics) that is itself considered incapable of motion.

Let us return to our original question, the question of the relationship
between mathematics and reality as it was described by Einstein. By
giving the question a slightly different twist, our focus became less the
precarious relationship itself than the historical dynamic underlying it: The



554 Epilogue

bond linking mathematics and reality has repeatedly required reforging,
and the result has in each case taken a different form from all previous
linkages. It has become clear, at least in its rudiments, that with respect
to this question mathematics and metaphysics have developed in mutual
dependence, but neither has dominated over the other. Both attempts refer
to each other and both will continue to rely on each other.

It is thus not so much the relation of mathematics to reality that is ulti-
mately of importance; what is astonishing and always worthy of discussion
is that such a relation is attempted, and that it, in a sense that again and
again needs to be redefined and justified, can be successful at all.
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équations différentielles opérationelles, J. Math. Pures Appl. 54
(1975), 305–387.

[DPG79] G. Da Prato and P. Grisvard, Equations d’évolutions abstraites non
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[Hua97] S.-Z. Huang, On energy decay rate of linear damped elastic systems,
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[Kis72] J. Kisyński, On cosine operator functions and one-parameter groups
of operators, Studia Math. 44 (1972), 93–105.

[KLH82] H.G. Kaper, C.G. Lekkerkerker, and J. Heijtmanek, Spectral Meth-
ods in Linear Transport Theory, Birkhäuser Verlag, 1982.
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[Nev58] J. Neveu, Théorie des semi-groupes de Markov, Univ. Calif. Publ.
Statistics 2 (1958), 319–394.

[NH94] R. Nagel and S.-Z. Huang, Spectral mapping theorems for C0-groups
satisfying non-quasianalytic growth conditions, Math. Nachr. 169
(1994), 207–218.

[Nic96] G. Nickel, On Evolution Semigroups and Wellposedness of Nonau-
tonomous Cauchy Problems, Ph.D. thesis, Universität Tübingen,
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hα(J) classical little Hölder space of order α . . . . . . . . . . . . . . . 137, 383

Hk(Ω) classical Sobolev space of order (k, 2) . . . . . . . . . . . . . . . . 278, 383

Hk
0(J) classical Sobolev space of order (k, 2) . . . . . . . . . . . . . . . . . . . . . . 383

J(x) duality set for x ∈ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
ker(Φ) kernel of Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
K(X) space of all compact linear operators on X . . . . . . . . . . . . . . . . 168
L Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
`∞, `∞(X) space of bounded sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
`p space of p-summable sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Lipu(J) space of uniformly Lipschitz continuous functions . . . . . . . . 383
L∞(J, X) space of X-valued measurable, essentially bounded

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Lp(J, X) space of X-valued p-Bochner integrable functions . . . . . . . . 383
L∞(Ω, µ) space of measurable, essentially bounded functions . . . . . . . 383
Lp(Ω, µ) space of p-integrable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
L(X), L(X, Y ) space of bounded linear operators . . . . . . . . . . . . . . . . . . . . 384, 390
Mb(R) space of regular (signed or complex) Borel measures . . . . . 383
Mq multiplication operator associated to q . . . . . . . . . . . . . . . . . . . . . 25
N0 nonnegative natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
ω0(U) growth bound of the evolution family (U(t, s))t≥s . . . . . . . . 351
ω0(T) growth bound of the semigroup T . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ωess(T) essential growth bound of the semigroup T . . . . . . . . . . . . . . . . 178
Pσ(A) point spectrum of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



580 Symbols and Abbreviations

qess(Ω) essential range of the function q . . . . . . . . . . . . . . . . . . . . . . . . 31, 397
r(A) spectral radius of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
ress(T ) essential spectral radius of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
R(λ, A) resolvent of A in λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Rσ(A) residual spectrum of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
rg(A) range of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
ρ(A) resolvent set of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
ρF(T ) Fredholm domain of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
S (RN ) Schwartz space of rapidly decreasing functions . . . . . . 276, 384
s(A) spectral bound of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57, 170
Σδ sector in C of angle δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
σ(A) spectrum of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Σ(A, B, C) control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
σess(T ) essential spectrum of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
σ(X, X ′) weak topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
σ(X ′, X) weak∗ topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
σ+(A) boundary spectrum of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Sp(T) Arveson spectrum of the group T . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Sp(U) Arveson spectrum of the operator U . . . . . . . . . . . . . . . . . . . . . . . 207
supp f support of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
(T (t))t≥0 one-parameter semigroup of linear operators . . . . . . . . . . . . . . . 14
(T (t))t∈R one-parameter group of linear operators . . . . . . . . . . . . . . . . . . . . 14(
T (t)/Y

)
t≥0

quotient semigroup of (T (t))t≥0 in X/Y . . . . . . . . . . . . . . . . . . . . . 61(
T (t)|Y

)
t≥0

subspace semigroup of (T (t))t≥0 in Y . . . . . . . . . . . . . . . . . . . . . . . 60

(T (t)�) sun dual semigroup of (T (t))t≥0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
(Tn(t))t≥0 restricted/extrapolated semigroup of (T (t))t≥0 in Xn 124, 126
(Tl(t))t≥0 left translation semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
(Tr(t))t≥0 right translation semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
(T (z))z∈Σδ∪{0} analytic semigroup of angle δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
UBV(R) space of functions with uniformly bounded variation . . . . . 384
(U(t, s))t≥s evolution family of linear operators . . . . . . . . . . . . . . . . . . . . . . . . 350
W1,p(J, X) Sobolev space of order (1, p) of Bochner p-integrable

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Wk,p(Ω, µ) classical Sobolev space of order (k, p) . . . . . . . . . . . . . . . . 284, 383
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