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Preface

As a mathematical discipline, ergodic theory is only about fifty

years old and its origin in statistical mechanics is still visible.

Cn the other hand, it has grown rapidly and developped extensive
ramifications into many well-established fields of modern mathematics.
Mathematicians with quite different backgrounds and different aims
have therefore become interested in ergodic theory. For a long time
the best approach for a beginner was through P.R. Halmos? "Iectures

on Ergodic Theory" published in 1956. 3ince then ergodic theory has
made considerable progress, of which Peter Walters (1982) has recently
given a fairly comprehensive account.

In the present boock we develop the most important and basic results

of modern ergodic theory wthin the more comprehensive framework of
functional analysis. Methods of functional analysis often make it
possible to formulate more general results, which elucidate structural

similarities of problems arising in different branches of ergodic
theory. The 13 Lectures together with the Discussions (and the
Introductory Appendices if necessary) should provide a compact intro-
duction into modern ergodic theory for the newcomer. The book will be,

however, much easier to comprehend for students with a solid back-
ground in functional analysis.

These Tectures are an introduction to ergodic theory, not a monograph
on the subject. Therefore, they contain, first of all, those defini-
tions and theorems constituting the core of today’s ergodic theory. -
In addition, one might expect some brief excursions into more special-

ized topliecs, especlally where applications of more general functional

analytic concepts are concerned. We hope to fulfill these promises,
even if we sometimes (e.g. in Lecture VII on the theory of compact
operator semigroups) seem to go beyond the preassigned limits. The
reason 1s our appreciation of functional-analytic methods and our
belief that large parts of ergodic theory, in particular the ergodic
and mixing theorems, can be simplified and unified by these methods,
Another consequence of this belief is our joint treatment of topologi-

cal and measure-~theoretical ergodic theory. We emphasize the methods
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common to both cases, and we hope that even our basic Lectures may
thus occasionally be interesting to a specialist (e.g. Lecture IV.,
VIII. or XI.). Certainly, some important topiecs are missing: we do

not give a proof of Ornstein’s isomorphism theorem for Bernoulli
shifts, for example, and do not touch on 3Iinai’s work on the ergodici-
ty of the billiard flow. In fact, the vast theory of dynamical systems

on differentiable manifolds is completely absent.

The present book originated from lectures delivered by R.N. at the

University of Tilbingen (1977/78), at the 3cuocla Normale Superiore at
Pisa (1978) and at a summer school at Cortona (1979). We have tried
to give this book an organization which reflects the typical process

of learning in advanced mathematics courses:

The core of the book consists of the 13 Lectures.

As a prerequisite to these Lectures, the reader should be familiar
with topology, measure theory and functional analysis. When some of
thigé knowledge is missing, it can be looked up in the Introductory

Appendices.

We hope that the Discussion section following each Lecture helps the
student to a better understanding of the concepts and problems that
are sometimes only touched upon in the lecture itself. Ihe Discussions

also point to some relations of the lectures to other areas of mathe-

matics.

For the specialist or the advanced student the Supplementary Appendices
present in a concise fashion some more special topics, each of which

could be the subject of a seminar.
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I. What is Ergodic Theory 7

The notion "ergodic" is an artificial creation, and the newcomer to
"ergodic theory” will have no intuitive understanding of its content:
"elementyra ergodic theory" neither is part of high school- or college-
mathematics (as does "algebra") nor does its name explain its subject
(as does "number theory"). Therefore it might be useful first to ex-
plain the name and the subject of "ergodic theory".

Tet us begin with the quotation of the first sentence of P. Walters’
introductory lectures ( 1975 , p.1):

"Generally speaking, ergodic theory 1s the study of transformations
and flows from the point of view of recurrence properties, mixing
properties, and other global, dynamical properties connected with
asymptotic behavior."

Certainly, this definition is very systematic and complete (compare
the beginning of our T ectures III. and IV.),

Still we will try to add a few more answers to the question: "what is

Ergodic Theory 7"

Naive answer:
A container is divided into two parts with one part empty and the

other filled with gas. #rgodic theory predicts what happens in the

long run after we remove the dividing wall.

Mrst etymological answer:

»

iZS;F-Oé?G’; difficult.

Historical answer:

1880 - Boltzmann, Maxwell - ergodic hypothesis

1900 - Poincare - reeurrence theorem

19%1 = v. Neumann - mean ergodic theorem

19%1 - Birkhoff - individual ergodic theorem

1958 - Xolmogorov - entropy as an invariant

1963 — Sinai - billiard flow is ergodic

1970 - Ornstein - entropy classifies Bernculli shifts
1975 - Akcoglu - individual LP-ergodic theorem .
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Naive answer of a physicist:

Ergodic theory proves that time mean equals space mean.,

1.5, Fargghar’s_g96ﬂ angwer !

" Epgodic theory originated as an offshot of the work of Boltzmann
and of Maxwell in the kinetic theory of gases. The impetus provided
by the physical problem led later to the development by pure mathe-
maticians of ergodic theory as a branche of measure theory, and, as
is to be expected, the scope of this mathematical theory extends now
far beyond the initial field of interest. However, the chief physical
problems to which ergodic theory has relevance, namely, the justifi-
cation of the methods of statistical mechanics and the relation
between reversibility and irreversibility have been by no means satis-
factorily solved, and the question arises of how far the mathematical
theory contributes to the elucidation of these physical problems."



Physicist?s answer:

Feality

t Physical model

Mathematical conseguences

A gas with n
particles at
time t = 0 is
given.

The "state of the gas is a
point x in the "state

space! X=lR6n.

Time changes

Time change is described
by the Hamiltonian differ-
Their
solutions yield a mapping
¥Y: £ X, such that the

C be-

Plx)

ential equations.

state xo at time T =

i

comes the state x1
at time t = 1e

Theorem of Tiouville?

‘f’ preserves the
(normalized)
measure/}L on X.

Lebesgue

fhe long run
behavior is
observed.

Definition: An observable

where £(x) can be regarded

is a function [ :

as the outcome of a mea-
surement, when thegs 1is
in the state x&X.

Problem: 7ind lim f(fn&jﬁ
1st objection: Modified problem:

Time change is
much fasgster than
our ohservations.

2nd objection:

In practice, it
is impossible to
determine the

state x.

Find the time mea
M, f(x) := lim l”ﬁnf(fi(x))s
t nio

Additional hypothesis

(ergodic hypothesis):
Zach particular motion
will pass through every
state consistent with its
energy (see P.u.T.

rhrenfest 1911 ).

"Theorem" 1: If the ergo-
dic hypothesis is satis- :

Mtf(x)

fied, we have
=Sf(yk—_-
pwhich is independent of
the state x.

"Theorem" 2: The ergedic

space mean,

hypothesis is "never"®
satisfied.

Ergodic theory looks for better ergodic hypothesis and better "ergodic

theéeorems",
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Commonly accepted etymological answer:

ﬁsyoy

energey

—oN o5 path (P. u. I'. Ehrenfest 1911 ,p.30).

"Correet" estymologlical angwer:

il

S¢C
ESYOVY energy

-11ike (Roltzmann 1884/85 ,see also IL )

!i:

K. Jacobs?® [1965) answer:

" e.. 8lg Einfithrung fiir solche Teser gedacht, die gern eimmal er-
fahren méchten, womit sich diese Theorie mit dem seltsamen, aus den
griechischen Wortern €YY (Arbeit) und o¥0§ (Weg) zusammengesetzten
Namen eigentlich beschiftigt. Die Probleme der Brgodentheorie kreisen

um einen Begriff, der einerseits so viele reizvolle Spezialfdlle um-
faBt, daB sowohl der Polyhistor als auch der stille GenieBer auf ihre
Kosten kommen, andererseits so einfach ist, daB sich die zentralen
Ergebnisse und Probleme der srgodentheorie leicht darstellen lassen;
diese einfach zu formulierenden Fragestellungen erfordern jedoch beil
niherer Untersuchung oft derartige Anstrengungen, daB harte Arbeiter

hier ihr rechtes Vergniigen finden werden."

J. Dieudonne’s ﬁ97?3 answer?®
"Te point de départ de la théorie ergodique provient du developpement

de la mécanique statistique et de la théorie cinétique des gaz, ou
1’expérience suggere und tendence a 1’"uniformité": si 1’on considére
8 un instant donné un mélange heterogene de plusieurs gaz, 1’&volutiom

du melange au cours du temps tend a le rendre homogéne.“ =

W. Parry’s [19813 answer:
"Ergodic Theory is difficult to characterize, as it stands at the

junction of so many areas, drawing on the technigques and examples of
probability theory, vector fields on manifolds, group actions on
homogeneous spaces, number theory, statistical mechanics, etc. "
(esg. functional analysis; added by the autors).



Elementary mathematical answer:

Let X be a set, 1’2 X =2X a mapping. The induced operator ?f maps
functions # : X-DR into T? £ = fef . Ergodic theory investigates
the asymptotic behavior of rn and 1’? forn el .

Qur answer:

More structure is needed on the set X, usually at least a topologilcal
or a measure theoretical structure. In both cases we can study the
asymptotic behavior of the powers ™ of the linear operator T = Tf’ R
defined either on the Banach space C(X) of all continuous functions
on X or on the Banach space L1(X,Z' ,/«) of all /\—integrable functions

on X.

N

R



IT. Dynamical Systems

Many of the answers presented in lecture I indicate that ergodic theory
deals with pairs (X;¢ ) where £ is a set whose points represent the
"states" of & physical system while ¢ is a mapping from X into X de-
scribing the change of states after one time unit. The first step
towards a mathematical theory consists in finding out which abstract
properties of the physical state spaces will be essential. It is
evident that sn "ergodic theory" based only on set-theoretical assump-
tions is of little interest. Therefore we present three different
mathematical structures which can be imposed on the state space X and
the mapping ¢ in order to yield "dynamical systems" that are inter-
esting from the mathematical point of view.

The parallel development of the corresponding three "ergodic theories™"
and the investigation of their mutual interaction will be one of the
characteristics of the following lectures.

IT. 1 Definition:

(1) (X, £, m3 ¢) is a measure-theoretical dynamical system (briefly:
MDS) if (X,Z , m) is a probability space and « : X ~»X is a
bi-measure-preserving transformation.

(ii) (X3 y¢) is = topological dynamical system (TDS) if X is a compact
space and ¢ : X —>» X is a homeomorphism.

(iii) (B;T) is a functional-asnalytic dynamical system (¥DS) if E is a
Banach space and T ¢ E =» E is a bounded linear operator. 3

Remarks:

1. The term "bi-measure-preserving" for the transformation ¢: X~»X
in (i) is to be understood in the following sence: There exists a
subset X of X with p(X,) = 1 such that the restriction
Py ¢ X°4>X° of ¢ is bijective, and both: @, and its inverse are

measurable and measure-preserving for the induced g-algebra
T, ={AnK AeZY.



2. If ¢ is bi-measure-preserving with respect to p, we call u a
y -invariant measure.

%, As we shall see in (II.4) every MDS and TDS leads to an FDS in a
canonical way. Thus a theory of FD3s can be regarded as a joint
generalization of the topological theory of TDSs and the probabi-
listic theory of MDSs. In most of the following chaplters we will
either start from or aim for a formulation of the main theorem(s)
in the language :of FDSs.

4, DDSs ("differentisble dynamical gystems") will not be investigated
in these lectures (see Bowen [1975], Smale [19671, [19801]).

Before proving any results we present in this lecture the fundamental
(types of) examples of dynamical systems which will frequently re-

appear in the ensuing text. The reader is invited to apply systemati-
cally every definition and result to at least some of these examples.

IT. 2 Rotations:

(i) Let P=4ze € |z2] = 1} be the unit circle, ¥ its Borel
algebra, and m the normaelized Lebesgue measure on ',
Choose a € P and define

- P (2) = a-z for all ze ¥ .

Clearly, (I*; $y) is & TDS, end (PP ,W®,m; ¢ ) is an MDS.

(ii) A more abstract version of the above example is the following:
Take a compact group G with Borel algebra ® and normalized Haar
measure nm.

Choose h € G and define the (left)rotation
t?h(g) t= heg for 211 g e G.
Again, (G; ¢p) is a TDS, and (G,B,m ;tph) an MDS.

IT. % Shifts:
(i) "Dough-kneading' leads to the following bi-measure-preserving
transformation

pe
S3= <=4

or in a more precise form:

A 4
A 4




if X 2= [0,1]2, ® the Borel algebra on X, m the Lebesgue
measure, and
(2x, Y/,) 0¢x<'/,
v.p(x,y) i= for s
(2x ~ 1, (F*1)y,) 1/, x41
we obtain an MDS, but no TDS for the natural topology on X.

(ii) v"Coin-throwing" may also be described in the language of dynamical
gystems: Assume that somebody throws a dime once a day from
eternity to eternity. An adequate mathematical description of such
an "experiment" is a point

x = (x) nezZ

in the space }? =40, 1}2 which is compact for the product

topology.
TOIIIOPI’OW, the POint (ﬁ) = (o sav e X_1 ’ Xo, X.I ) X2, s e 00 )
Will be (Xrl+1) - (..X_.I, Xo, x.l, xz’ loo‘lo.o..) ’

where the arrow points to the current outcome of the dime-
throwing experiment. Therefore, time evolution corresponds to the
mapping
r Y M
T X =X
(xn)ne}z ? (xn-m Qne}z ¢

A A
(X351T) is & TDS, and T is called the (left)shift on X.

Let us now introduce a probability measure a on X telling which
events are probable and which not. If we assume

firstly, that this measure should be determined by its wvalues on
the (measurable) rectangles in b {(see A.17), and

secondly, that the probability of the outcome ghould not change
with time, we obtain that,‘ is a shlft 1nvar1ant probablllty
measure on the product § -algebra ‘Z on X and that (X, z ,). 3 T)
is an MDS.

on X there are many T-inveriant probability measures, but in our
concrete case, it is reasonable to assume further that today’s
outcome is independent of all the previous results, and that the
two possible results of "coin throwing" have equal probabilities
p(0) = p(1) = E' Then (X z ,};,) is the product space

(30,7 , 0,1 , )& (see A.1T).

Exercise: Show that (i) and (ii) are the “same" ! (Hint: see (VI.D.2))

_10_
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(iii) Again we present an abstract version of the previous examples:
let (X, %, p) be a probability space, where X = §0,...,k=-1}, k>1,
is finite, Z the power set of X and p = (po,...,pk_1) a probabili-
ty measure on X.
Take 5'{ LES Xz, the product g-algebra é on i, the product measure
jiand the shift © on X, Then we obtain an MDS ()?.,% JPIT),
called the Bernoculli shift with distribution p and denoted by

B(po’...’ pk—1) .

IT. 4 Induced operators:
Very important examples of FDSs arise from TDSs and MDSs as follows:
(1) Let (X; @) be a TDS and let C(X) be the Banach space of all (real-

or complexvelued) continuous functions on X (see B.18).
Define the "induced operator"

Tyt £ +=> foup for f e C(X).

It is easy to see that Ty is an isometric linear operator on C(X),
and hence (C(X)3T¢ ) is an FDS.
Moreover, we observe that T, is a lattice isomorphism (see C.5) and
thus a positive operator on the Banach lattice €{X) (see C.1 and C.2).
On the other hand, if we consider the complex space C(X) as a o¥-
algebra (see C.6 and C.7) it is clear that Tp is a ¥-algebra iso-

morphism (see C.8).

(2) Iet (X,E£,p3q) be an MDS and consider the function spaces

IP(X,Z,).\), 1<psw, (See B.20).
Define

T‘fzft--a.fbtf forfelfp(x,i,};.),

or more precisely: Tg ¥ e f\::g where f denotes the equivalence class
in IP(x, T » p ) corresponding to the function f.
Again, the "induced operator" Ty, is an isometric (resp. unitary) linear
operator on IP(X, X% ,}..) (resp. on LZ(P')) since ¢ is measure-preserving,
and hence (IP(X,Z, p); Ty ) is an FDS. As above, Ty is a lattice iso-
morpbism if we consider va(X,Z ,}s) as a Banach lattice {(see C.1 and
Ce2).
Finally, the space L™ (X,E ,/.;) is & commutative C¥-algebra and the
induced operator T, on 1¥ (X, ,,u) is a¥* —algebra isomorphism.

Remark:
Via the representation theorem of Gelfand-Neumark the case (T f.);T,’,)

i -11-




in (2) may be reduced to the situation of (1) above (see VI.S.3).
Therefore we are able to switch from measure-theoretical to functio-
nal-gnalytic or to topological dynamical systems. This flexibility

is important in order to tackle a given problem with the most adequate
methods.

IT. 5 Stochastic matrices:

An FDS thet is not induced by a TDS or an MDS can be found easily:
Teke (E;T), where E is BE = C{30,444,k=-1%) and T is any kxk-matrix.
We single out a particular case or speciel interest in probability
theory: Let T be stochastic, i.e.k

-A
T = (airj) such that 0O<a;j and sZ‘oaiJ' =1 for i =0, 15¢eeey k=1,

Then (E;T) is an FDS and T = 1t where Nl = (1,:0051).
The matrix T has the following interpretstion in probability theory.

We consider X = §10,1,...,k-1} as the "state space" of a certain system,
and T as a description of time evolution of the states in the follow-

ing sense: 8i3 denotes the probability that the system moves from

state i to state j in one time step and is called the "transition
probability" from i to j. Thus T (resp. (E;T)) can be regarded as a
"gtochastic! version of & dynamical system. Indeed, if every row and
every column of T contains a4(and therefore only zeros in the other
places), then the system is "deterministic" in the sense that T is
induced by & mapping (permutation) ¢ ¢ X —=> X (resp. (E;T) is in-
duced by a TDS (X; ¢)).

‘I1., 6 Markov shifts:
Let T : R RE
be & stochastic matrix (aij) as in (II.5).
Po
Let M= (ék-1) be an invariant probability vector, i.e.

K-
P; 20, Z p; =1
=0

®-4
and m is invariant under the adjoint of T, i.e. i:a..p. = p. for all j
i«0 i1 J

(it is well known and also follows from (IV.5) and (IV.4.e) that there
are such non-trivial invariant vectors).

We call m the probability‘distribution at time 0, and the probabilistic
interpretation of the entries aij(see II.5) gives us a natural way of
defining probabilities on

-12=-
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S Zz
X 3= §0,15000y k1) = $(x;)5, 7 ¢ %y €§0,000,k-11 ]

F

with the product g -algebra X .
N
For 0<1s k-1 pr [xo=1] denotes the probability that xe X is in the
state 1 at time 0. We define
pr [x°=1] = Dy »
pr [x =1, x;=m] ¢= p; 2,

pr [Xo=l,s Xq=lqy esey Xp=1lg d 2= Dy & a ceo 8 .
o=los X4=l9s «sey Xg=lg 1, %11 %11, 1, 41,

Moreover, since F: is invariant,
k-4 k-4
prix;=13= Z prlx=i, x=1] = Z pja;; = p; = prx-1],

pr [ x¢=1] =

pr[x=1], and finally

pr [J:o:lo, Xi=Lyavese, Xp=1lg ] for any cho:.ce of se Z, telN, and

l LA L ] 1t€io’...’k-1} L

o’
The equation ( #) glves a2 probability measure on each algebra

¥ {Ae% : ﬂ [x e 4,1, 4;¢ x}. By (A.17) this determlnes eX-

{=-m
actly one probability measure p on the product § -algebra i on X. This
mesasure ;; is obwiously invariasnt unter the shift

T ¢ (xn) - (z,.4)
on X. Therefore (X, ,p- s T) is an MDS, called the Markov shift with
invariant distribution P and trensition matrix T.

Note that the examples (II.5 and II.6), although they describe the same
stochastic process, are quite different, because the operator T of
(II.5) is not induced by.a transformation of the state space
§0515+4.,k-1} , whereas in (II.6) the snift T is defined on the state
space i(),1,...,k-1}z . We have refined (i.e. enlarged) the state space
of (I1.5) to make the model "deterministic".

An analogous construction can be earried out in the infinite-dimensional
case for so-called Markov-operators (see App. U and X), or for
transition probabilities (see Bauer

This construction is well-known in the theory of Markov processes;

its functional-analytic counterpart, the so-called Dilation, will be
presented in App. U.

Exercise: The Bernoulli shift B(po"”’Pk-1) is a Markov shift.
What is its invariant distribution and its trensition matrix ¢

EY
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II. D Discussion .

II.D.1 Kon-bijective dynamical systems:

It is clear, that the Definitions (II.1.i,ii) make sense not only for
bijective but also for arbitrary measure-preserving, resp. contimuous
transformations, but we prefer to sacrifice this greater generality
for the sake of simplicity. Such ném-bijective transformations also in-
duce FDSs by a procedure similar to that in (II.4).

Examples are the mappings

@ :1[0,1] >[0,1] defined by
1

2t for Oéts-é-
t) 3=
€v) {2-21: for ;--:.1;51 ?
or @(t) == 4t (1 -¢t) .

II.D.2 Banach algebras vs. Banach lattices:
The function spaces used in ergodic theory, i.e. C(X) and Lp(x,z ,).L),

are Banach lattices and the induced operators Ty are lattice iso-
morphisms (see Il.4 and App. C). Therefore, the vector lattice struc-
ture seems to be adequate for a simultaneous treatment of topological
and measure-theoretical dynamical systems. If you prefer Banach
algebras and algebra isomorphisms, you have to consider the operators
Ttp on the spaces C(X) and L® (X, = ,}n).

II. Ds3 Real vs. complex Banach spaces:

Since order structure and positivity makes sense only for real Banach
spaces, one could be inclined to study only spaces of real valued func-
tions. But methods from spectral theory play a central role in ergodic
theory and require complex Banach spaces. However, no real trouble is
caused, since the complex Banach spaces €(X) and IP(X,E s ») decompose
canonically into real and imaginary parts, and we restrict our attention
to the real part whenever we use the order relation. Moreover, the in-
duced operator Tg (1ike any positive linear operator) is uniquely de-
termined by its restriction to this real part.

-14-




II. D.4 Bull sets in (X, % ,m):
In the measure-theoretical case some technical problems may be caused

by the sets AeZ with m(A) = o. But in ergodic theory, it is customary
(and reasonable, as can be understood from the physicist’s answer in
Iecture It A is a set of "states" having probability o) to identify
measurable sets which differ only by such & null set. From now on, this
will be done without explicit statement. For example, we will say that
a measurable function f is constant if

f(x) = ¢
for all xe XvA, m(A) = o.
The reader familiar with the "function" spaces LP(X,E.,};) realizes that
we identify the function with its equivalence class in IP(}u), but still
keep the terminology of functions. These subtleties should not disturb
the beginner since no serious mistakes can be made (see A.7 and B.20).

II. D.5 Which FDSs are TDSs ?

We have seen in (II.4) that to every TDS (X;‘p) canonically eorresponds
the FDS (C(X);T? )+ Since this correspondence occurs frequently in our

operator-theoretical approach to ergodic theory, it is important to
know which FDSs arise in this way. More precisely:

Which operators T ¢ C(X) =-—>» C(X)
are induced by a homeomorphism '

¢ X =X
in the sense that T=Te¢ 7

A complete answer is given a&s follows.

Theorem: Consider the real Banach space C(X) and T & £(C(X}). Then the
following assertions are equivslent:

(i) T is & lattice isomorphism satisfying T 1 = 1% .

(ii) T is an algebra isomorphism.

(iii)T = T, for a (unique) homeomorphism ¢ on X.

Proof:

Clearly, (iii) implies (i) and (ii).

(ii) => (iii)s Let D := in : xeX} be the weak ¥ compact set of all
Dirasc measures on X. This coincides with the set of 2ll normalized mul-
tiplicative linear forms on C(X), and from (C.9) it follows thet X is
homeomorphic to D. Since T is an algebra isomorphism its adjoint T'

-~15—




maps D on D. The restriction of T' to D defines a homeomorphism ¢ on X
having the desired properties.

(i) = (iii): The proof requires some familarity with Banach lattices.
We refer to Schaefer 1974 , 1I11.9.1 for the details as well as for
the "complex" case of the theorem.

II. D.6 Which FDSs are MDSs ?
Due to the existence of null sets (and null funetions) the analogous
problem in the measure-theoretical context is more difficult:

Which operators

T:Lp()(,i,}x.) —_> Lp(X,i,);)
are induced by a bi-measure-preserving transformation

¢ 3 X -—> Xg
in the sense that T = Ty ?
Essentially, it turns out that the appropriate operators are again the
Banach lattice isomorphisms, but we will return to this problem in
ILecture VI.

II. D.7 Discrete vs. continuous time:

Applying ¢ (or T) in a dynamical system may be interpreted as move-
ment from the state x at time t to the state @(x) at time t+at.

Therefore, repeated application of ¢ means advancing in time with a
discrete time scale in steps of at. Intuitively it is more realistic
to consider a continuous time scale, and in our mathematical model the
transformation ¢ and the group homomorphism
n — ¢°
defined on & should be replaced by a continuous group of transforma-
tions, i.e. 2 group homomorphism
t —r @,
from R into an appropriate set of transformations on X. Observe that
the "composition rule®
"Pn+m = "Pn" ‘fm ] n,me_Z s
in the discrete model is replaced by
‘Pt+s = @iy s thse R
Adding some continuity or measurability assumptions one obtains

"continuous dynamical systems" (e.g. Rohlin {1966],chapt. II.).
We prefer the simpler discrete model, since we are mainly interested
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in the asymptotic behaviour of the system as t tends to infinity.

II. D.8 From a differential equation to a dynamical system:

In (II.D.7) we briefly discussed the problem "discretes vs.continuous
time". Clearly, a "continuous dynamical system" (X;(¢ t)telﬁ) gives
rise to many "discrete dynamical systems" (X; ¢ ) by setting ¢@:=¢; for
any teR. We present here a short introduction into the so-called "clas-

sical dynamical systems" which arise from differential squations and
yield continuous dynamical systems, also called "flows".

et £e B be a compact smooth manifold and f(x) a 01-vector field on
X: We consider the autonomous ordinary differential equation

dx
() X=3F = £(x)

i = fi(x‘l’...’ﬁl)’ i = 1,...,1‘1)-

It is known that for every x € X the equation ( # ) has a unique solution

- - a4
(or in coordinates: x

ipt(x) that satisfies (po(x) = X. The uniqueness of the solution implies
the group property q’t-:—s = “Pt 0 (ps for all t, seR, and, in addition,

the mapping
é 1t Xz R=>X
(x,t) +=> CPt(x)
is continuous (see Nemyckii-gtepanov [1960]). Therefore, (X;( ¢ )i )
is a continuous topological dynemical system.

Examples:

2
(i) Tet Pz = lR/IQ be the 2-dimensional torus and let

= 1
= o
with o # 0., The flow (Lpt) on Fzzis given by

X (x + t) mod 1
qt((y)) = ((y +dt) mod 14 °
re as in (i) and define

=7 ((3)
7= a7 C(1)2

-function which is 1-periodic in each variable.

s p4e

H

(ii) Take the space X

}1.

]

where F is a G1

Assume that F is strictly positive on X. The solution curves of this
motion agree with those of (i), but the "speed" is chenged.




For applications the above definition of a "continuous topological
dynemical system" has three disadvantages: first, the manifold X {the
"state" space) is not always compact, second, if X is not compact, in
general not every.solution of (%) can be continued for all times t
(e.g. the scalar equation x = xz), end finally, it is often necessary
to consider nonautonomous differential equations, i.e. the C1-vector
field £ is defined on X xR where X is a menifold. All of these diffi-
culties can be overcome by generalizing the above definition (see

Se1l [19711).

Next, we want to consider #classical measure-theoretical dynamical
systems". The problem of finding a ¢ -invariant measure, defined by &
continuous density, is solved by the Liouville theorem (see Nemyckii-
Stepanov [1960]). We only present a special case.

Many equations of classical mechanics can be written as a Hamiltonian

system of differential equations.
Let q = (q1,...,qn) (coordinates) end p = (p1"°°’Pn) (moments) be a

coordinate system in .an and H(p,q) = Cz-function which does not de-
pend on time explicitly.
The equations

- aH

q = mm—

Ip

xx 3P
= aq

define a flow on RZ™ called the "Hamiltonian flow".

The divergence® of the vector field (# ¥ ) vanishes:

2 iﬁ) 9 ( _»2H _
3q (ap * 3p 2/ = 9

Therefore, the measure dq1...dqn. dp1...dpn is inveriant under the
induced flow. But the considered state space is not compact and the in-
variant measure is not finite.

To avoid this difficulty we observe that 1

GH _QE .  2H . QH 9B  JH( 9H) _
dat "9 T 3 P="4q2p top ( 2q/ = 0 5

i.e. H is a first integral of (# ¥) (conserwation of energy!).
This means that X; i= $ (q,p) € RD H(psq) = E} for every EelR is

invariant under the flow. X_ turns out to be a compact smooth manifold

for typical wvalues of the cgnstant E, and we obtain on it an "induced"
measure by a method similegr to the construction of the 1-dimendional
Lebesgue measure from the 2-dimendional Iebesgue measure. This induced
measure is ((pt)-invariant and finite, and we obtain "continuous

measure-theoretical dynamical systems".

Y
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Example (linear harmonic oscillator) :

Iet X = ]R2 and let (g) be the canonical coordinates on X.

For simplicity, we suppose that the constants of the oseillator are
all 1. The Hamiltonian function is the sum of the kinetic and the

potential energy and therefops

_ _ 1.2 1 .2
H(p,q) = Iﬁ&in(p) + Hpot(q) =3P + 3z a .

The system (¥ *) becomes

= P

= =q

and the solution with initial value (g) is

_ { Vp®+d® sin(t+P)
qt((g)) B (Viziqé coIsl(t:[’))) ~

where fAe€[0,2) is defined by Vp2+q2 . 3inf® = g and Vp2+q2 305{5 = p.

Now, let us consider the surface H(p,q) = :lz-p2 + % q2=: E = constant.

e Oe

Obviously, E must be positive.

For E = 0 we have the (invariant) trivial manifold §(8)} .
For E » 0 the (¢,), , p-invariant manifold

XE = §(g)e R® : H(p,q) = E} is the circle about 0 with

radius VZE' , and therefore compact. The "induced" invariant measure
on X'E is the 1-dimensional Lebesgue measure, and the induced flow
agrees with a flow of rotations on this circle.

II, D.9 Dilating an ¥DS to an MDS:
We have indicated in (II.D.6) that rather few FDSs on Banach spaces

L1(p.) are induced by MDSs. But in (I1.6) we presented an ingenious
way of reducing the study of certain FDSs to the study of MD3Ss. These
constructions are solutions of the following problem:

Let T be a bounded linear operator on E = ! (X,Z ,}:.), }}.(X) = 1.

A A
Cen we find an MDS (X, T ,ﬁ; ¢ ) and operators J and Q, such that the
diagram
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tNx,z, ) — tlx,2, )
Ny ]
1 A A A “~ 1 A A A
LUK, 2, p) = > L(X,Z,}»)
Te

commutes for all n = 0, 1, 2, seee ?

If we want the MDS (ﬁ,g ,;u ;(.p) to reflect somehow the Yergodic" be-
haviour of the FDS (L1(x,z s )3T), it is clear that the operators

J and Q must preserve the order structure of the L1-spaces (see 1I.4).
Therefore, we call (t! (f(,li ,;} );@,f )s TESPe (i,% ,fo. 3¢), a lattice
dilation of (L1 (X,Z ,p);3T) if - in the diagram above - J is an iso-

o
metric lattice homomorphism (with J 1 = 4 ), and Q is a positive
contraction. From these requirements it follows that T has to be
positive with T4 = 14 and ' = 14 . In App. U' we show that

these conditions are even sufficient.
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ITI. Recurrent, Ergodic and Minimal Dynamical Systems

"Ergodic theory is the study of transformations from the point of view

of precurrence properties" (Walters [19751, p.1). Sometimes, you meet
such properties in daily life: If you walk in a park just after it has
snowed, you will have to step into your own footprints after a finite
number of steps. The more difficult problem of the reappearance of

certain celestial phenomena led Poincarée to the first important result
of ergodic theory at the end of the last century.

III. 1 Definition:
et (X,Z sp 3 @) be an MDS and take AeZ .,
A point x € A is called recurrent to A if there exists nelN such

that (Pn(x) e A,

I1II. 2 Theorem (Poincare, 1890):
Let (X,Z,p; @) be an MDS and take AeZ .

Almost every point of A is (infinitely often) recurrent to A.

Proof:

For A¢Z , ¢ ™4 is the set of all points that will be in A at time n
s 2 . -1 -2 :

(i.e. ¢ (x) € A). Therefore, Arec'_ An(y A w @ “Av sese) is the
set of all points of A which are recurrent to A.

If B i= Av ¢”'au ¢4 v ... we obtain Y 'BeB and A~A_ - B~ B.
Since ¢ is measure-preserving and m finite, we conclude
plANA, ) = p(B) - p(g7'B) =0,

and thus the non-recurrent points of A form a null set. For the state-
ment in brackets, we notice that (X, % s M3 cpk) is' an MDS for every kelN.
The above results implies

plh) =0 for & :={xeh: (@)% (x) ¢ A for neT} .
Henee, A, = VU A, is a null set, and the points of A~A_, are in-

K=t
finitely often recurrent to A. n
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We explained in the physicist’s answer in ILecture I that the dynamics

can be described by the MDS (X,Z, u; ) on the state space
X := jcoordinates of the possible locations and impulses of the
1000 molecules in the box} c {6000 .

As the set A to which recurrence is expected we choose
A := 3$xeX: all 1000 molecules are located on the left hand side}.

Since !.I(A) > 0 we obtain from Poincare’s recurrence theorem a sur-

prising conclusion contradicting somehow our daily life experience.

gas container
1866 ¢ O ~ 500 ¢ 500 1000 : O

T, - . . % n LR 1
o everybody AR Poincare

> LN - T e '—-""-———"',
- I d . " .- L

knows . tells .

state space

X X
Q .
"Ergodic theory is the study of transformations from the point of view
of mixing properties" (Walters [1975], p.1), where ™mixing® can even
be understood literally (see Lecture IX). In a sense, ergodicity and
minimality are the weakest possible "mixing properties" of dynamical

systems., Another, purely mathematical motivation for the concepts to
be introduced below is the aim of defining (and then classifying) the

"indecomposable" objects, e.g. simple groups, factor v.Neumann algebras,

irreducible polynomielsd :, prime numbers, etc..
Prom these points of view the following basic properties (III.3) and
(1II.6) appear quite naturally.

ITI. 3 Defiinition:
An MDS (X,Z , u3 ) is called ergodic if there are no non-
trivial ¢ -invariant sets AeZ , i.e. w(A) = A implies m(A) = O
or }.\(A) =1,
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It is obvious that an MDS which is not ergodic is "reducible® in the
sense that it cen be decomposed into the "sum' of two MDSs. Therefore
the name "irreducible" instead of "ergodic" would be more intuitive

and more systematic. Still, the use of the word "ergodic" may be justi-

fied by the fayt that ergodicity in the above sense implies the
validity of the classical %ergodic hypothesis%:

time mean equal space mean
(see 1I1.D.6), and therefore gave rise to "ergodic theory! as a mathe-

matical theory.

Cur first proposition contains a very useful criterion for ergodicity
eand shows for the first time the announced duslity between properties
of the transformation ¢ : X —»X and the induced operator

Ty ¢ IF(p) —> Lp()n).

I1II. 4 Proposition: For an MDS (X,Z , ;¢ ) the following statements
are equivalent:
(a) (X, Z,pn;¢) is ergodic.
(b) The fixed space F := {feIP(X,Z,m) t Tyf = £} of Ty is one-
dimensional, or: 1 is a simple eigenvalue of T, in Lp(}.u) for

1¢ps = .

Proof'?
We observe, first, that the constant functions are always contained in

F, hence 1 is an eigenvalue of T, . Moreover, we shall see that the
proof does not depend on the choice of p.
(b) > (a): If AeZ , 0 < p(&) < 1, is -invariant, then 1IA e F and

dim F = 2.
(a) = (b): For any Fe F and any ceR the set

[f>c]l:=§xeX: f(x)>c}

is ¢ -invariant, and hence trivial.
Let ¢ 3= sup fceR: plf>c] = 1% . Then for c< c  we haveulf ¢ c}
and therefore plf< e = 0. For c>c_ we have plf>cl # 1, hence
plf>cl = 0, and therefore plf >c 1 = 0, too. This itplies £ = ¢ a.e..

]
(=]
-

ITY. 5 Examples:

(i) The potation (I ,¥,m; ) is ergodic iff ael is not a root of
unity:
If = ° . 1 for some n,e N, then 1 and f: z -&zno are in F, and so

D3
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¢, is not ergodic. On the other hand, if aP#1 for all ne¥, as-
sume T.(af = f for some fe L (m). Since the functions f ,neZ, with

fn(z) form an orthonormal bas:.s in L (m) we obta:.n
-ty
be and T, f = ZbT =§:banf.
- n'n ¥g - n ~%» n n

The comparison of the coefficients ylelds bn(an - 1) = 0 for all
neZ, hence b =0 for all n # 0, i.e. £ is constant.

(ii) The Berpoulli shift B(p 0?9 Py 1) is ergodic:
Iet A eZ be ‘i:’-:tnvarlant with O 4};(A) and let & >0.
By definition of the product & -algebra, there exists Be Z depend-
ing only on a finite number of coordinates such that ,u(AaB)c. €, and
therefore iﬁ(A) - i(B)| < ¢ . Choose nelN large enough such that
C := T3 depends on different coordinates than B. Since J is the
product measure, we obtainﬁ(Bnc) = ﬁ(B)- ﬁ(c) =)3,(B)2, and
t(A) = A gives #(AaB) = B(T™(aaB)) = 4 (aa0).
We have A a(BaC) ¢ (AaB) v (AaC) and therefore a(Aa(BaC)) < 28 .
This implies

LAR) - B2

S

[a(a) - p(BacC) + l,n(Ber) - p(A) |
p(A..(BnC)) + A (B2 - R)?]
Alaa(Ba0)) + l)ﬁ (B) - Al 1u(®) +a(a)]

‘l’i s which proves }.I(A) = jl(A)

n oA

A

In the last third of this lecture we introduce the concept of "ir-
reducible" TDSs. Formally, this will be done in complete analogy to
(I11.3), but due to the fact that in general the complement of a closed

i -invariant set is not closed, the result will be quite different.

"IIT. 6 Definition:
A TDS (X; @) is called minimal, if there are no non-trivial ¢ -invari-
ant closed sets AecX, i.e. LP(A) = A, A closed, implies

=@ or A =X.
Again, "irreducible" seems to be the more adequate term (see III.D.11)
but "minimal® is the term used by the topological dynamics specialists.
It is motivated by property (ii) in the following proposition.

ITII. 7 Proposition:
(1) If (X; ¢) is minimal, then the fixed space 7 3= §feC(X): Tof = £}
is one-dimensional.

g
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(ii) If (X; ¢) is a TIDS, then there exists a non-empty ¢-invariant,
closed subset ¥ of X such that (¥; (HY) is minimal.

Froof:
We obgerve that the orbit fc.pn(x): ned} or any point x e¢X and also its
closure are (@ -invariant sets. Therefore, (X; ¢) is minimal iff the
orbit of every point x¢ X is dense in X.
(i) For feF we obtain £(x) = f(@™(x)) for all xeX and neZ . If

(X; ¢ ) is minimal, the continuity of f implies I = const..
(ii) The proof of this assertion is a nice, but standard application of

Zorn’s lerma and the finite intersection property of compact spaces.
»

I1T., 8 Examples:

(i) Take X = [0,1] and @(x) = x2, Then (X; ) is not minimal (since
@ (0) = 0) but dim F = 1.

(ii) A property snalogous to (IXIXI.7.ii) is not valid for MDSs:
in (0,11 , B,m;id) there exists no "minimal" invariant subset
with positive measure.

(11i) The %Q.P_EE?:-_Q_E (f3¢,) is minimal iff ael® is not a root of unity:
If & °= 1 for some n eIN, then fzelt: 20 - 1t is closed and
¢ o-inveriant. For the other implication, we show that the orbit
of every point in {' is dense. To do this we need only prove that
§1, 8, %2,...} is dense in [V . Choose €¢>0. Since by assumption

29 there exists 1 < ke¢lN such that !a -ak!-:E .

- o¥{ = 1 - Ll la(k-l)n - a(k-l)(n+1)l‘ € rfor all

;éazforn £ n

But la
neN. Since the set of "segments™ i(a‘k"l)n . a(k'l)(n+1)) tneli}
covers [l , we proved that there is at least one power of a in
every g -segment of [*.

(iv) The shift ¥ on $0,1,+., k-1 } is not minimal, since T(x) =
FOr X = (eee30,0,0,004)

We state once more that ergodicity and minimality are the most funda-
mental properties of our measure-theoretical or topological dynamical
systems. On the other hand they gave us the first opportunity to de-
monstrate how dynamical properties of a map ¢ : X —> X are reflected
by (spectral) properties of the induced linear operator Tgy (see III.4
and II1.7.i). In particular, it can be expected that the set P& (T¢y )
of a1l eigenvalues of T‘, has great significance in ergodic theory
(see Lectures VIII and IX). Here we show only the effect of ergodicity

kS
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or minimality on the structure of the point spectrum Py (T? ).

III. 9 Proposition: Let (X; ¢ ) be & minimal TDS (resp.(X,Z,u ;¢) an
ergodic MDS).

Then the point spectrum Pa (Tq, ) of the induced operator Ty on c(X)

(resp. LP(X,'Z ,)a), 1<p =) is a subgroup of ', and each eigenvalue

is simple.

Proof':
since T, is a bijective isometry the spectrum of Ty is contained in .

Let Ty f=Af, Ifli=1= 1|kl . Since T is & lattice homomorphism we
conclude

Ty lol = [Tyl = 122} = 1A 12l = £l
and hence |f| = 1 by (III.7.i), resp.(I1I.4), i.e. every normalized
eigenfunction is unimodular and the product of two such eigenfunctions

is non-zero.
Since Ty 1is also an algebra homomorphism we conclude from

Tef = A,f #0 and Tgg = A,g # O that
- - -1 -
Ty (£:87") = (Tyf)e (Tye) ™' = 1 271 (£0g™) 4 0
which shows that Pg ('I‘? ) is a subgroup of I .
Ir 11 = 12, it follows Ty Cf.g‘1) = f-g‘1 and, again by the one-
dimensionality of the fixed space, f-g_1 = ¢+« or £ = ¢c+g, i.e. each

eigenvalue is simple. [

IITX. D Discussion

III. D.1 The 'original" Pgincarée theorem:
Henri Poincare ({1890], p.69) formulated what later on was called the

recurrence theorem:
"Théoreme I. Supposons que le point P reste a distance finie, et
que le volume de1dx2dx3 soit un invariant integral; si 1’on con-
sidere un# region r, quelconque, quelqe petite que soit cette
region, il y aura des trajectoires qui la traverseront une infinite
de fois.®

In the corollary to this theorem he mentioned some kind of probability

distribution for the trajectories:

| e L e,

"Corollaire. Il resulte de ce qui precede qu’il existe une infinite -

de trajectoires qui traversent ume infinite de fois la régilon r.;
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maeis 11 peut en exister d’autres qui ne traversent cette region
qu’un nombre fini de fois. Je me propose maintenant d’expliquer
pourquoi ces dernieres trajectoires peuvent 8tre regardées comme
exceptionnelles."

I1I. D.2 Recurrence and the second law of thermodynamics:

As we explained in ILecture I the time evolution of physical "states"

is adequately described in the language of MDS and therefore "states™
are "recurrent". This (and the picture following (III.2)) seems to be
in contradiction with the second law of thermodynemics which says that
entropy can only increase, if it changes at all, and thus we can never
come back to a state of entropy h, once we have reached a state of
entropy higher than h.

One explanation lies in the fact that the second law is an empirical
law concerning a quantity, called entropy, that can only be determined
through measurements that require time averaging (in the range from
milliseconds to seconds). In mathematical models of "micro"-dynamics,
which were the starting point of ergodic theory, such time averages
should be roughly constant (and equal to the space mean by the ergodic
hypothesis). Therefore entropy should be constant for dynasmical systems
(1ike the constant defined in Lecture XII, although at least to us it is
unclear whether the two numbers, the Kolmogoroff-Sinai entropy and the
phys;cal entropy can be identified or compared in such a model). In this

case there is no contradiction to Poincare?s theorem, because entropy

does not really depend on the ("micro"-)state x.

The second law of thermodynamics applies to changes in the underlying
physical "micro'-dynamics, i.e. in the dynamical system or in the map-
ping ¢ . Such changes can occur for example if boundary conditions are
changed by the experimenter or engineer; they are described on a much
coarser time scale, and as a matter of fact, they can only lead in a
certain direction, namely toward higher entropy.

g

Another way of turning this argument is the following:

The thermodynamical (equilibrium) entropy is a quantity that is based
on thermodynamical measurements, which always measure time averages in
the range from milliseconds to seconds. In particular, such an unusual
momentary state as in the picture following (III.2) cannot be measured

thermodynamically, in fact the ergodic hypothesis states that we shall

27 -




usually measure a time average which is close to the '“space mean'.
Therefore a thermodynamical measurement of the number of atoms (i.e.
the "pressure") in the left chamber will almost always give a result
close to 500.

In some branches of thermodynamics ("non-equilibrium" thermodynamics),
however, a variable e(x) is associated with micro states xe¢ X, which is
also interpreted a€ the Ventropy" of x; but is not constant on X. In
this case Poincare’s theorem shows that the second law for this variable

e cannot be strictly true, but still it is argued that a big decrease
of e is very improbable.

For example, we can try to capture the momentary state of the gas in
the box, by quickly inserting a separating wall into the box at some
arbitrary moment (chosen at random). Then the thermodynamical calcula-
tiong of the invariant measure on the state space tell us, that we have

a chance of 2~1000 of catching the gas in a position with all 1000
atoms in the left half of the box (low "entropy"), and a chance of
27.2 % of having 495 to 505 atoms in the left half of the box (high

"entropy") .

IT1I. D.% Counterexamples: The recurrence theorem (III.2) is not valid
without the assumption of finite measure spaces or measure-

preserving transformations:
(i) Take X = B and the Lebesgue measure m. Then the shift
T X2 x+ 1
on X is bi-measure-preserving, but no point of 4 := L0, 1) is
recurrent to A.
(ii) The transformation
@:x»xz
on X = [0, 1] is bi-measurable, but not measure-preserving for the
Iebesgue measure m. Clearly, no point of 4 i= [%3 %] is recurrent
to A.

III. D.4 Recurrence in random literature:
A usual typewriter has about 90 keys. If these keys are typed at
random, what is the probability to type for example this book?

Tet us say, this book has N letters including blanks. Then the pro-
bability of typing it with N random letters is p = 90™N, The Bernoulli
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_ " A
shift B(-g-g-,....,-é%) is an MDS (X,Z ,;;;1,') whose state space consists

of sequences (xk)keE which éan be regarded as the result of infinite
random typing.

What is the probability, that such a sequence contains this book,

i.e. the sequence Rl,....,HN of letters?

From

A .

J Lthez;e exists k € Z such that Xep1 = BqsooesZp y = RN]

= 1 - plfor every k ¢ Z there exists i e ¥,...,N} such that x, ; # R;]

2 1 =T fthere exists ie€§l,...,N} such that x, s # R, I
¥zq

= 1 =(1 - p)n for every nel
we conclude that this probability is 1.
Now consider A := [x1=R1,...,xN=RN,] having ﬁ(A) = p>» 0. We have just

shown that for almost every xe )? there is & number k such that ‘ck(x)eA
for the shift ¥ . Poincare’s theorem implies that there are even in-
finitely many such numbers, i.e. almost every sequence contains this
book infinitely often!

By Kac’s theorem (Kac [1947], Petersen [1983]) and the ergodicity of
B('gio""’9_g) the average distance between two occurrences of this book
in random text is J% = 90N§igita'1'he fact that this number is very large,
may help to understand the strange phenomenon depicted in (III.2).

IT1I. D.5 Invariant sets:
The transformations P X ->X which we are considering in these lec-
tures are bijective. Therefore it is natural to call a subset

AeX p-invarient if @(A)c A an d «.p‘1 (A) ¢ A, i.e. (,P(A) = A.
With this definition, & closed ¢ -invariant set A< X in a TD3S (X;(p)
always leads to the restricted TDS (A; @[,), while ([0, 1];¢), p(x) :=x2,

and A = [0, %]gives an example such that tp(A) < A but ‘P,A is not a
homeomorphism of A. ‘

For MDSs(X, T, m; ¢¢) the situation is even simpler:

¢(A) ¢ A implies Acq—"(A) and M(A) = M (cp'1 (A)) since ¢ 1is measure~
preserving. Therefore A = ({:-1(A) and @(A) = A p- 8.e..

In agreement with the definition above we define the orbit of a point
xeX as §¢¥(x) : xeZl .

If (X;¢) is a TD3, the smallest closed invariant set containing a

point- xeX is clearly the "closed orbit" {tpk(x): ksZ} . However, the

closed orbit is, in general, not a minimal set: For example consider
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the one point compactification of Z
X 2= Z v Sao}
x> x ifxel

oo r» o

and the shift

Then §T¥(0): keZt = X is not minimal since T (w) = = .
In many cases, however, the closed orbit is minimal as can be seen in
the following.

lemma: Iet (X; @) be a TDS, where X is a metric space (with metric 4)

; TS50 =« a-FT
and assume that X = {¢“a : se¢Z} for some ae¢X. If for every

£>» 0 there exists kell with

dfa, tpksa) < ¢ for all sel ,
then (X; ¢ ) is minimal.

Proof':

It suffices to show that a ¢ {¢5x : seZ } for every x e X.
Iet be xeX, & > 0, and choose keIl such that

(1) d(a, qksa) < & for all seZ .

Since the family of mappings ftpo, q)1,...., q:k} is equicontinuous
at x there is J > 0 such that
s s t
(11) ale®x, ¢%y) < &
i1f t € § 0,000, ¥} and d(x,y)< d .
Te orbit of a is dense in X. Therefore, we find reZ with

(111) alx, ¢7a) < d
and by (i) a suitable t ¢ §0,..., ¥k} with
(iv) a(@®Ta,a) < & .

Combining (ii), (iii) and (iv) we coneclude that
al ¢®x,0) s al@®x, ¢¥(¢Ta)) + aly **Ta,a) s 28 .
n

Remark:
Minimality in metric spaces is equivalently characterized by a property

weaker than that given above (see Jacobs [19601, 5.1.3.) .

I1T. D.6 Ergodicity implies "time mean equal space mean":
The physicists wanted to replace the time mean

1! i
lim = 2 fe¢™ (x)
LT L « R
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of an "observable" f in the'"state" x by the space mean
)Stf d u (see Lecture 1),

i.e. the above limit hass to be equal the constant function (,Scf dp)e 1l .
Obviously the time mean is a ¢ -invariant function, and we conclude by
(IIT.4) that "time mean equal space mean" holds for every observable f
(at least: fe€ LP(}L)) if and only if (!) the dynamical system is ergodic.
In this way the original problem of ergodic theoryp.seems to be solved,
but there still remains the task for the mathematician to prove the
existence of the above limit (see Lecture IV and V). Even more impeortant
(and more difficult) is the problem of finding physical systems and
their mathematical models, which are ergodic. The statement of

Birkhoff - Xoopmann [1932] "the outstanding unsolved problem in ergodie
theory is the question of the truth or falsity of metrical transitivity
(= ergodicity) for general Hamiltonian systems" is still wvalid, even

if important contributions have been made for the so-called "billiard
gas" by Sinai £1963] and Gallavotti - Ornstein [1974] (see Gallavotti

[19751).

III. D.7 Decomposition into ergodic components:
As indicated it is a mathematical principle to decompose an object into

nirreducible" components and then to investigate these components. For
an MDS this is possible (with "ergodie" for "irreducible"). In fact,
such a decomposition is based on the geometrical principle of express-
ing & point of a (compact) convex set as a convex sum of extreme points
(see books on "Choquet theory", e.g. Phelps [1966] or alfsen {19711),
but the technical difficulties, due to the existence of null sets, are
considerable, and become apparent in the following example:

Consider the MDS (X, ® ,m ;4¢,) where X = §zeC: l2| % 1}, B the Borel
algebra, m the Lebesgue measure with m(X) = 1 and Yy the rotation

Y (2) := az
for some aed with [a]l = 1, g £ 1 for all nel. Its ergodic "components"
are the circles X, = fze€: |zl = r} for 0¢rs1 and (X, 8,m ;¢ ) is

"determined" by these ergodic components. For more information we refer
to v.Neumann [1932] or Rohlin [1966].
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IITI. D.8 One-dimensionality of the fixed space:
Ergodicity is characterized by the one-dimensionality of the fizxed

space (in the appropriate function space) while minimality is not
(ITI.4 and III.8.1i).
The fixed space of the induced operator T, in C(X) is already one-
dimensional if there is at least one point xe X having dense orbit
{qrn(x): neZ} in X (see (III.7), Proof). This property of a TDS,
called "topological transitivity" or "topologicael ergodicity", is an-
other topological analogue of ergodicity as becomes evident from the
following characterizations (see Walters [1975], p.22 and p.117):
1. For an MDS (X, Z s M3 Lp) the following are equivalent:
a. @ is ergodic.
b. For all A, BeZ , m{A) # 0 # m(B), there is ke¢Z such that
}A(CPkAn B) > 0.
2. For a TDS (X; ¢ ), X metric, the following assertions are equivalent:
8+ @ is topologically ergodic.
b. For all A, Bopen, A # @ £ B there is ke Z such that
¢%raB £ 4.
But even topological transitivity, although weaker than minimality, is
not characterized by the fact that the fixed space is one-dimensional
in C(X), see (III.8.i). The reason is that Te in C{(X) lacks a certain
convergence property which is automatically satisfied in LP(X, E,m),
1¢p<ee, (see IV.7) and (IV.8); for more information see (IX.D.7)).

IIT. D.9 Ergodic and minimal rotations on the n-torus:

¢ 4 3 )

on the n-dimensional torus f‘nwith a = (a1,...,an) e M R s ergodic
(minimal) if and only if ia,l,...,an} are linearly independent in the
Z-module ' .

Proof':

(i) In the measure-theoretical case use the n-dimensional Fourier ex-
pansion and argue as in (III.5.i).

(ii) In the topological case we argue as in (III.8.iii) observing that
for a = (a45+.0,8.) € M™ the set iazt ze 2} is dense in I'"
iff {a_l,...,an} is linearly independent in the Z -module [® (see

D.8). s
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ITI. D.10 Ergodic vs. minimal:

Let (X3 @) be a TDS and au a @-invariant probability measure on X (see
alsb AppS). Then (X,®,m; @) is an MDS for the Borel algebra B , In
this situation, is it possible that ¢ 1is ergodic but not minimal, or

vice versa? )
The positive answer to the first part or our question is given by the
Bernoulli shift, see (III.5.ii) and (III.8.iv).

The construction of & dynamical system which is minimal but not ergodic
is much mor difficult and needs results of Lecture IV. We come back to
this problem in (IV.D.9).

ITI. D.11 Irreducible operstors on Bsnach lattices:
Let T be a positive operator on some Banach lattice E. It is ealled

irreducible if it leave® no non-trivial closed lattice ideal invari-

ant.
If E = C(X), resp. E = 1.1(X,s » )5 every closed lattice ideal is of
the form

I, == { feE: £(A)c§oi}
where Ac X is closed, resp. measurable, ( Schaefer [1974] p.157).
Therefore, 1t is not difficult to see that an induced operator Ty on
¢{X), resp. ! (X,2 , »), is irreducible if and only if (X; @) is
minimal, resp. if (X,% ,m; ¢ ) is ergodic.
In contrast to minimal TDSs the ergodicity of an MDS (X,ZT ,m ;¢ ) is
characterized by the one-dimensionality of the T¢ -fixed space in
LP(X,S s R)s 1§ p< oo, (see III1.4). The reason for this is the fact
that the induced operators are mean ergodic on Lp(p) but not on C(X)
(see Lecture IV). More generally, the following holds (see Sdhaefer
[1974],11I.8.5).

Proposition: let T be a positive operator on a Banach lattice E and

assume that T is mean ergodic with non-trivial fixed
space F. The following are equivalent:
(a) T is irreducible.
(b) F=<u> and F' = < m> for some quas:.-:.ntemor point ue E, and
a strictly positive linear form me E .

If E is finite-dimensional, we obtain the classicel concept of ir-
reducible (= indecomposable) matrices (see IV.D.7 and
Schaefer [19741,I1.6).
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Exeamplet: The matrix
po LR B S K BN B N N K pk-1

po ® 0 sas s bas pk—1

of (II.6), Exercise is irreducible whereas the Bernoulli shift
B(po,...,pk_1) is ergodic (see III.5.ii). This gives the impression
that irreducibility is preserved under dilation (see App.U) at least
in this example. In fact, this turns out to be true (App.U), and in
particular in (IV.D.8) we shall show that any Markov shift is ergodic
iff the corresponding matrix is irreducible.

Frobenius discovered in 1912 that the point spectrum of irreducible
positive matrices has nice symmetries. The same is true for operators
T¢ @8 shown in (III.9). This result has been considerably generalized
to irreducible positive operators on arbitrary Banach lattices. We re-
fer to Schaefer [3974], V.5.2 for a complete treatment and quote the

following theorem.

Theorem (Lotz, 1968):

Let T be a pésitive irreducible contraction on some Banach lattice E.
Then Ps(T)rvﬁ is a subgroup of " or empty, and every eigenvalue in
" is simple.

References: LotzI19681, Schaefer [1967/68], Scheefer L1974].

III. D.12 Taeorigin of the word "Ergodic Theory!:
In the last decades of the 19th century mathematicians and physicists
endeavoured to explain thermodynamical phenomena by mechanical models
and tried to prove the laws of thermodynamics be mechanical principles
or, at least, to discover close analogies between the two. The Hun-
garian M.C. Szily [1872] wrote:
"The history of the development of modern physics speaks decided-
ly in fawvour of the view that only those theories which are based
on mechanical principles are capable of affording a satisfactory

explanation of the phenomena.'
Those efforts were undertesken particularily in connection with the
second law of thermodynamics; Szily [1876] even claimed to have de-
duced it from the first, whereas a few years earlier he had declared:

ES
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"What in thermodynamics we call the second proposition, is in
dynamics no other than Hamilton’s principle, the identical prin-
ciple which has already found manifold applications in several
branches of mathematical physics."
(see Szily [1872]; see also the subsequent discussion in Clausius
[1872] end Szily [1873].)

In developing the Mechanical Theory of Heat three fundamentally differ-
ent hypotheses were made; besides the hypothesis of the stationary or
quasi-periodic motions (of R.Clausius and Szily) and the hypothesis of
monocyeclic systems (of H. von Helmholtz, cf. Bryan-Larmor [1892]), the
latest investigations at that time concerned considerations which were
based on a very large mumber of molecules in a gas and which establish-
ed the later Kinetic Theory of Gases.
This was the statistical hypothesis of L. Boltzmann, J.C. Maxwell,
P.G. Tait and W. Thomson, and its fundamental theorem was the
equipartition theorem of Maxwell and Boltzmann:
When a system of molecules has atteined a stationary state the
time-gverage of the kinetic energy is equally distributed over
the different degrees of freedom of the system.
Based on this theorem there are some proofs of the second law of
thermodynamics (Burbury [ 18761, Boltzmann [1887]1), but which was the
exact hypothesis for the equipartition theorem itself? In Maxwell
(1879]we find the answer:
"The only assumption which is necessary for the direct proof (of
the equipartition theorem) is that the system, if left to itself
in its actual state of motion, will, sooner or later, pass through
every phase which is consistent with the equation of energy."
Boltzmann [1871], too, made use of a similar hypothesis:
"Von den zuletzt entwickelten Gleichungen kdnnen wir unter einer
Hypothese, deren Anwendbarkeit auf warme X8rper mir nicht unwahr-
scheinlich scheint, direkt zum Wirmegleichgewicht mehratomiger
Gasmoleklile, ja noch allgemeiner zum Wirmegleichgewicht eines be-

liebigen mit einer Gasmasse in Berilhrung stehenden X&rpers ge-
langen. Die groBe Unregelmi#Bigkeit der Wirmebewegung und die Man-
nigfaltigkeit der Krifte, welche von auBen auf die K&rper wirken,
macht es wahrscheinlich, daB die Atome derselben vermSge der Be-
wegung, die wir Wirme nennen, alle mdglichen mit der Gleichung
der lebendigen Kraft vereinbare Positionen und Geschwindigkeiten
durchlaufen, daB wir also die zuletzt entwickelten Gleichungen
auf die Koordinaten und die Geschwindigkeitskomponenten der Atome
w3 5._




warmer KOrper anwenden kdnnen."
Sixteen years later, Boltzmann mentioned in [1887]:
",... (Ich habe fiir derartige Inbegriffe von Systemen den Namen
Ergoden vorgeschlagen.)..."”
This may have induced P.and T.Ehrenfest to create the notion of
"Ergodic Theory" by writing in "Begriffliche Grundlagen der atatisti-
schen Auffassung" [1911]:
... haben Boltzmann und Maxwell eine Klasse von mechanischen

Systemen durch die folgende Forderung definiert:

Die einzelne ungestéPte Bewegung des Systems fiihrt bei unbegrenz-
ter Fortsetzung schlieBlich durch jeden Phasenpunkt hindurch, der
mit der mitgegebenen Totalenergie vertriglich ist. - Ein mecha-
nisches System, das diese Forderung erfiillt, nennt Boltzmann ein

ergodisches System."
The notlon tergodic" was explalned by them in a footnote:
" tQYer_ Energie, oJoS Weg : Die G - Bahn geht durch alle
Punkte der Energiefliche. Diese Bezeichnung gebraucht Boltzmann
das erste Mal in der Arbeit [15] (1886)." (here Boltzmann [1887])
But this etymological explanation seems to be incorrect as we will see
later. The hypothesis quoted above, i.e. that the gas models are er-
godic systems, they called the "Ergodic Hypothesis". In the sequel
they doubted the existence of ergodic systems, i.e. that their defini-
tion does not contradict itself. Actumslly, only few years later
A. Rosenthal and M. Plancherel proved independently the impossibility
of systems that are ergodic in this sense (ef. Brush t1971]). Thus,
"Ergodic Theory" as a theory of ergodic systems hardly survived its
definition. Neertheless, from the explication of the "Ergodic Hypothe-
sis" gnd its final negation, "Ergodic Theory" arose as a new domain
of mathematical research (cf. Brush [ 1971], Birkhoff - Koopmann [ 1932])

But, P. and T. Ehrenfest were mistaken when they thought that Boltzmann
used the notion "Ergodic" and "Ergodic Systems" in Boltzmann [1887]
for the first time., In 1884 he had already defined the notion "Ergode"
as a speciasl type of"Monode". In his article (Boltzmann [ 1885]) first

of all he wrote:
#TIch mdchte mir erlagben, Systeme, deren Bewegung in diesem Sinne
stationdr ist, als monodische oder kiirzer als Monoden zu bezeich-

nen. (Mit dem Namen stationir wurde von Herrn Clausius jede Be-

wegung bezeichnet, wobel XKoordinaten und Geschwindigkeiten immer
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zwischen endlichen Grenzen eingeschlossen bleiben). Sie sollen

dadurch charakterisiert sein, daB die in jedem Punkte derselben

herrschende Bewegung unverindert fortdauert, also nicht Funktion

der Zeit ist, solange die HuBeren Kridfte unverindert bleiben,

und daB auch in keinem Punkte und keiner Fliche derselben Masse

oder lebendige XKraft oder sonst ein Agens ein- oder austritt.n”
In s modern language a "Monode" is a system only moving in a finite
region of phase space described by a dynamic system of differential
equations; a simple example is a mathematical pendulum. From
Boltzmann’s definition we can understand the name: ‘péyos means
"unique", "Monode" probébly comes from ﬂovéJnswhich is composed of
‘pévo—ﬁéqs where the suffix -édns means "-like".

Having specified some different kinds of "Monoden" as "Orthoden" and
"Holoden", Boltzmann turned towards collections (ensembles) of systems
which were all of the same nature, totally independent of each other
and each of them fulfilling a number of equations @1 = Byseees,
Py = 8y O0f special interest to him were those collections of systems
fulfilling only one equation = a concerning the energy of all
systems in the collection.
n,.,. 80 wollen wir den Inbegriff aller N Systeme als eine Monode
bezeichnen, welche durch die Gleichungen Py = Byseee beschrinkt
ist ... Monoden, welche nur dqurch die Gleichung der lebendigen
Kraft beschrinkt sind, will ich sls Ergoden, solche, welche
aufer dieser Gleichung such noch durch andere beschrinkt sind,
als Subergoden bezeichnen. ... Filir Ergoden existiert also nur ein
¢ , welches gleich der fiir alle Systeme gleichen und wihrend der
Bewegung jedes Systems konstanten Energie eines Systems

X +y = “’—;q'l‘l ist".
(Boltzmann [1885]; X » $ mean the potential energy, v , L. the kinetic
energy of one system, of the collection of N systems, respectively.)
The last sentence of that quotation qilps us to understand the name
"Ergode" in the right way: The word ¢t¢yoy = "work, energy" is used,
but in a sense different from that presumed by the Ehrenfests who also

did not mention Boltzmann’s article [1885] in their bibliography [1911] .

Boltzmann also had knowledge of "Monoden" fulfilling the "Ergodic
Hypothesis" of the Ehrenfests. In the fourth paragraph of Boltzmann
{18851 we read in a footnote:




"Jedesmal, wenn jedes einzelne System der Monode im Verlaufe der
Zeit alle an den verschiedenen Systemen gleichzeitig nebeneinander
vorkommenden Zustinde durchliuft, kann an Stelle der Monode ein
einziges System gesetzt werden.... Flir eine solche Monode wurde
schon frither die Bezeichnung "isodisch" vorgeschlagen."

In summary an "Ergode" is a special kind of '"Monode", namely onhs

3
which is determined by " g¢g@yov " = "energy" or "work", and the word
“"Monode" stems from "Jpévos " = fone" or "unique" and the suffix
'h-ééqs" = "-like" or "-full".

Therefore a "Monode" is literally "one-like" i.e. atomary or indecom-
posable, which is just the modern meaning of ergodic. Taken literally,
however, the word “Ergode" means "energy-like" or “work-full®*, which
brings us back to our first etymological answer in Lecture I:

" gifficult " 1

References: Boltzmann [1885], [£18871, Brush {19711, Ehrenfest [1911]

P.S. The above section originated from a source study by M. Mathieu.
The Ehrenfest explanation of the word 'Tergodic' is still advocated by
A. LoBello:
The etymology of the word ergodic, in: Conference on modern
Analysis and Probability, New Haven 1982, Contempt.Math. 26,
Amer. Math. Soc. Providence R.I., 1984, p.249.

e
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IV. The Mean Ergodic Theorem

"Ergodic theory is the study of transformations from the point of view

of .... dynamical properties connected with asymptotic behavior"
(Walters [ 19751, p.1). Here, the asymptotic behavior of a transforms-

tion ¢ is described by
n

it %g&il(f s
where it isg our task first to mske precise in which sense the "lim"
has to be understood and second to prove its existence.
Motivated by the original problem "time mean equal space mean" (see
ITTI.D.6) we investigate in this lecture the existence of the limit for
n =»e not of the powers \pn but of the "Cesaro means"

1 & i
H 5 f.q? s

where £ is an "observable" (see physicist’s enswer in Lecture I) con-
tained in an appropriate function space.

With a positive answer to this question - for convergence in L2-space -
ergodic theory was born as an independent mathematical discipline,

IV. 1 Theorem (J.v.Neumann, 1931):
Let (X, % hp;(') be an MDS and denote by T, the induced (unitary)

operator on LZ(X,Z',}L). For any f € ngu) the sequence of functions
. 1 neqd
fn HE E EE Tt f » n.eﬂ',

(norm-)converges to a Te -invariasnt function e L2 (/u)-

It was soon realized that only s few of the above assumptions are real-
1y necessary, while the assertion makes sense in a much more genersal
context. Due to the importence of the concept and the elegance of the
results, an axiomatic and purely functional-analytic approach seems to

be the most appropriate.

IV, 2 Definition:
An FDS (E;T) (resp. a bounded linear operator T) is called mean ergodic,

if the sequence
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no iz

converges in f,(E) for the strong operator topology.

As above, the operators T, will be called the "Cesaro means" of the
powers T,

Moreover we call P = ﬁgg T, » if it exists, the "projection corre-
sponding to T". This language is justified by the following elementgry
properties of mean ergodic operators.

IV. 3 Proposition:
(0) (Ta -1 T, =< (Ia -7 for every ne.

If T is mean ergodic with corresponding projection P, we have

(1) TP = PT = P = P°.

(2) PE = F = §f e E: Tf = £},

(3) p~(0) = T8 < DE .

(4) The adjoints TA converge to P' in the weak ¥ operator topology of
L(E') end P'E' = F! 1= §r'eB': T'f =¢£'}.

(5) (PE)! is (as a topological vector space) isomorphic to P'E'.

Proof:
{(0) 1is obvious from the definition of Tn’

(1) Clearly, (n+1)Tn+1 - Id = nT T = nT T, holds. Dividing by n and
letting n tend to infinity we obtain P = PT = TP. From this we
infer that T P = P and thus P? = P.

(2) PE ¢ P follows from TP = P, and F < PE from P = %E T, -

(3) By the relations in (1), (Id - T)E and (by the continuity of P)
its closure is contained in P-1(0). Now take fe.P-1(O). Then

(. :

f=f -PF = f - PBF = 1i - = 1im 1§ -l
) lim (Id - Tq1f) = lin 2 ?:;4 (18 - TH)f

= 1im (Id - M1 ¥ i7.f ¢ (Td - TE .
n-3o0 n = i

(4) By the definition of the weak® operator topology, TA converges to
P! if

i
<T P> = <f,T!f'> — <f£,P'f'> =<Pf,f'> for feE and feE',

This follows from the convergence of T_ to P in the strong opera-

it
tor topology. Together with (PT) = T'P' = P' this implies the

remaining property as in (2).
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(5) This statement holds for every projection on a Banach space (see
B.7, Proposition).

Our main result contains s list of surprisingly different, but equi-
valent characterizations of mean ergodicity at leasst for operators
with bounded powers.

IV. 4 Theorem:

If (E3T) is an FDS with IT"ll £ ¢ for every neN the following assertions
are equivalent:

(a) T is mean ergodic.

(b) T, converges in the weak operator topology.

{c) T, L2 ne N} has a wesk accumulation point for all fe¢ E.

(d) ESiTift ie B} contains a T-fixed point for all fe E.

(e) The T-fixed space F separates points of the T'-fixed space ¥'.

Proof':

The implications (a) = (b) = (c) are trivial.

(c) =(d): Take fe¢E and let g be a weallc accumulation point of

§T.£: nedt, i.e. ge TET AR E ) for all noel. Certainly, g

is contained in co §T°f: ie¢WN,¥, and we shall show that g is fixed
under T: For any noemf we obtain

Sy 5
g-Tg=(Id-Tge(Ida-T) §TF:n>n} < §(Id - T)T f+ n>n_J

=4
= 5% (14 - ™ £: n:-nc} C %o(‘l + ¢)lIfll U, where U is the closed unit

ball in E - we used the fact that (Id - T) is continuous for the wesk
topology and that U is weakly closed (see B.7 and B.3).

(d) = (e): Choose f', gle ?", £l ¥ gl, and fe E with<f, g'>¥<f, £'> .
For all elements ferB' §T°f: ieW twe have <f,s f's> =<f, £'> and
<fo’ g') = 4f, g'> . Therefore the T-fixed point f1e'c':'?5§T1‘f: iellN} R

which exists by (d), satisfies <f1,f'> =<t,t'> 4<f,e'> =< 1,8
i.e. it separates £! ana gl .

(e) = (a)* Consider

G:=P @ T(Id - TE
and assume that fle E' venishes on G. Since it vanishes on (Id - T)E
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it follows immediately that f'e P'. Since it also vanishes on P, which
is supposed to separate P!, we conclude that f£' = 0, hence that G = EH.
But Tnf converges for every feF @ (Id - T)E, and the assertion fol-

lows from the equicontinuity of §T_ :neN}. ]

The standard method of applying the above theorem congists in con-
cluding mean ergodicity of an operator from the apparently "weakest!
condition (IV.4.c) and the weak compactness of certain sets in certain
Banach gpaces. This settles the convergence problem for the means

Tn as long as the operator T is defined on the right Banasch space E.

IV. 5 Corollary:
Let (E;T) be an FDS where E is & reflexive Banach space, and assume

that | T" ] & ¢ for all neN. Then T is mean ergodic.

Proof':

Bounded subsets of reflexive Banach spaces are relastively weaskly com-
pact (see B.4). Since iTnft neN} is bounded for every feE, it has
a weak accumulation point. »

Besides matrices with bounded powers on " we have the following
concrete applications:

Example 1t Let E be a Hilbert space and T ¢ £(E) be a contraction.
Then T is mean ergodic and the corresponding projection P is ortho-
gonal: By (IV.5) the Cesaro means Tn of T converge to P and the Cesaro
means ﬂ%fof the (Hilbert space) adjoint T* converge to a projection Q.
If (+1-) Qenotes the scalar product on B, we obtain from (TF|g)->(qf|g)
and (f| T g) > (f|Pg) for all f,geE that Q = P¥. The fixed space 5
F = PE of T and the fixed space FP* = P¥8 of T¥ are identical:

Take f& F. Since |T{ = | T¥| & 1, the relation (flf) = (Trlf) = (£|T¥)
implies (£|f) < [£l-T*C| < ufll2 = (fIf), hence T*f = f. The other
conclusion F*c F follows by symmetry. Finally we conclude from

P= PP = (P'P)* = P¥ that P is orthogonal.

Example 2: Let (X,Z , m; ¢) be an MDS.
The induced operator Ty on IP(X,Z s M) for 1< p< « is mean ergodic,
and the corresponding projection P is a “conditional expectation {(see

B.24): ,
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Por f,g ¢ L= and T,f = £ we obtain Ty(fg) = Tyf « Teg = £ - Tpg. The

same holds for (T?)n’ and therefore P(fg) = £ - Pg .

Both examples contain the case of the original v.Neumann theorem (IV.1)X

IV, 6 Corollary:
Let (E;T) be an FDS where E = L'(X,%Z , w), m(X)< o , and T is a

positive contraction such thet T 1 £ 1 . Then T is mean ergodic.

Proof:

The order interval [-11, 41 :={feLl(n) : -t1<r4 1} is the unit ball
of the dual L° (m) of L1(/u.) and therefore G’(L'”,L")-compact. The
topology induced by G(L1,L°°) onL-1, 1] is coarser thsn that in-
duced by & (L* ,L1) - gince L™ (M) c L1 (/IA) - but still Hsusdorff.
Therefore the two topologies coincide (see A.2) and [-, 1] is weskly
compact. By assumption, T and therefore the Cesaro means T, map

[-1 , 1] into itself, hence (IV.4.c) is satisfied for all fe L* (/u)

As shown in (B.14) the same property follows for all fe L (/a) "

Using deeper functiongl-analytic tools one can generalize the above
corollary still further: Let T be a positive contraction on L1(X Z M)
and assume that the set §T u : ne ]N}J.s relatively weakly compact for
some strictly pos:.t:.ve function ue L| (m). By Ls]l,(IT.8.8) it follows
that Uige 1! (m): 02gs Tnu} is also relatively weskly compact.

Prom O s T,f ¢ T,u for 0% fsu, (B.14) and (IV.4.c) we conclude that
T is mean ergodic (see Ito [19651, Yeadon f1980]).

Example 3: Let (X, Z,m ;@) be an MDS. The induced operator T, in
L1(X,2'. s M) is mean ergodic, and the corresponding projection is =a
conditional expectation:

The first assertion follows from (IV.6) while the second is proved as
in Example 2 sabove.

Example 4 Let B = I ({0,131, ,m ), M the Lebesgue measure, and
ks Lo, 1] -»R_ be a measurable function, such that S k(x,y) dy = 1
for all xe[O, 1] . Then the kernel operator

T: E->E £ Tf(x) &= S k(x,y)f(y) dy
is mean ergodic. e
i -43-




Even though there is still much to say about the functional-analytic
properties of mean ergodic operators, we here concentrate on their
ergodic properties as defined in ILecture III.

A particulsrly satisfactory result is obtained for MDSs, since the in-
duced operators are automatically mean ergodic on Lp(/l.), 1€p<s @

IV. 7 Proposition: Let (X, ,Mm ;@) be an MDS and E = P(x,g Z,M),1sp<ea.
Then Ty is mesn ergodic and the following properties

are equivalent:
(a)  is ergodic.
(b) The projection corresponding to T, has the form P= 1 ® 1, i.e.
Pf = <f,1t>+ 1 for all fek.

w-4
(c) Jﬁ .20 § (foq )+ g du converges to gf‘ du e gg du for all fe Lp(/.\),
g e IP(};)‘ - Lq(/‘) mth; (11 = 1 .
A
(a) % ni AAang” 1(r)) converges to /‘(A)')‘(B) for all 4, BeS .
(e) % /‘(An ¢ (A)) converges to /.l(A) for all Ae & .
Proof:

(a) = (b): Since @ is ergodic and Ty is mean ergodic, the fixed spsces
of T, and T{:, are one-dimensional (IIT.4 and IV.4.e). Since P is g
projection onto the T, -fixed space it must be of the form

f > PP =<f,f'>» 4 for some f'e E'. But

)S( f d/‘ =<&f,|» =< ¢, T:P Ap=<f, P'U>=<PF, 2=« 7T, > < T, 11 > =<££, >

shows thet P = 1 &® 1.

(b) = (c): Condition (c) just says that = Z T converges toward N® 1N

in the weak operator topology for the partlcular space Lp(/u) and its
dual LI u).

(¢) = (d): This follows if we take f = 1, end g = Uz. The implication

(d) = (e) is trivial.

n=d .
(e) =»(a): Assume that (i) = A € . Then :—; go/u(An @ -(1)) is

equal to m(A) end converges to /u(A)Z. Therefore m(A) must be equal
to 0 or 1. a
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Remark: Further equivalences in (IV.7) are easily obtained by taking
in (c¢) the functions f,g only from total subsets, resp. in (4) or (e)
the sets A,B only from a subalgebra generating 2 .

The "automatic" mean ergodicity of T, in LP();), 1< p<w, (by Ex-
ample 2 and 3) is the reason why ergodic MDSs are charascterized by the
oneé-dimensional fixed spaces (see IIT.4). In fact, mean ergodicity is
a rather weak property for operators on LP(/A), p+e , in the sense
that many operators (e.g. all contractions for p £ 1 or all positive
contractions sztisfying T 11 a1 for p = 1) are mean ergodic,

For operators on spaces C(X) the situation is quite different and
mean ergodicity of T € R(C(X)) is a very strong property. The reason
is that the sup-norm |- le is much finer than [. || _ , therefore it is
more difficult to identify weakly compact orbits (in order to apply
IV.4.c) or the dual fixed space (in order to apply IV.4.e). Even for
operators Ty on C(X) induced by a TDS one has mean ergodicity only
if one makes additional assumptions, e.g. (IV.8 below or VIII.2). This
non-convergence of the Cesaro means of Ty accounts for many of the
differences and additional complications in the topological counter-
parts to measure theoretical theorems. A first example is the charac-
terization of minimelity by one-dimensional fixed spaces.

IV. 8 Proposition: For a TDS (X; ¢) the following are equivalent:
(a) Ty is mean ergodic in C(X) and ¢ is minimsal.
(b) There exists a unique ¢ -invariant probability measure, and this

measure is strictly positive.

Proof:

(a) = (b): From (1II.7.i) and (IV.4.e) we conclude that dim P =dim Fl=1
for the fixed spaces P in C(X), resp. P! in (X)) . Since Tq, is =&
positive operator, so is P and hence P!, Every element in g(xX)! is =
difference of positive elements, the same is true for P! = PIC(X)' ang
therefore F' ig the subspace generated by 2 single probability measure
called v .

Define Y 2= niff =0]:f>»0, «f,» > =0%., Then Y # X is closed
and ¢ -invariant, and therefore Y = @#. This implies < f,»> > 0 for
every 0 < £ & C(X).




(b) = (a): Let e C(X)‘ be T' -invariant. Since T‘.P ig positive, we

€
obtain
£l = |7, £l & T, [ £
end <M, |£'1> S <, T, | £]> =< Teh, I£'1> = < 1i,if1>.
Hence <M, T I £'l - £ > =< Ten, 12> - <n,If1> =0,

therefore |f'| is Té -invariant, and the dual fixed space F' is a
vector lattice.

Consequently every element in F' is difference of positive elements
and - by assumption - F' is one-dimensional and spanned by the unique
¢ -invariant probability measure » . Apply now (IV.4.e) to conclude
thet T, is mean ergodic. Again the corresponding projection is of the
form P = » ® 1 . Assume now that Y3 X is closed end ¢ -invariant.
There exists 0< f ¢ C(X) with £(Y) € {0}, Ty £(Y) ¢ 0} and therefore

PP(Y) < 40}. Hence (£ dy) 1 (¥) & 70} and ¥ must be empty. .
X

Examgle 5: The rotation ¢¢_ induces a measn ergodic operator T,_on C(M™):
If a @ = 1 for some noeﬂ,athe operator T‘f’a is periodic (i.eq:aT?g =T18)
and therefore mesn ergodic (see IV.D.3).

In the other case, every probability messure invariant under Pq is
invariant under (fan for a1l ne N and therefore under all rotations.

By (D.5) the normalized Lebesgue measure is the unique probasbility
measure having this property, and the assertion follows by (IV.8.b).

The previous example may a2l30 be understood without reference to the
uniqueness of Haar measuret Let G be & compact group. The mapping

G - ;ES(C(G)) :h > Te, (see II.2.ii)
is continuous, hence the orbits - ag well as their convex hulls - of
any operator T‘Ph are relatively (norm)compact in C(G). Then sapply
(IVs4.c) to obtain the following result.

IV. 9 Proposition: Any rotation operator on C(G), G & compact group,
is mesn ergodic.
Exercise: The fixed space of Tupg in ¢(G), where Wg is the rotation by

g on the compasct group G, is one-dimensional if and only if ng: zeZ}

ig dense in G.
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IV. D. Discussion

IVv. D.O Proposition:
Assume that ae " is not a root of unity. The induced rotation opera-

tor Ty a is mean ergodic on the Bansach space R(M ) of all bounded
Riemenn integrable functions on [* (with sup-norm), and the (normalized)
Riemann integral is the unique rotstion invarisnt normslized positive
linear form on R(I). ’

Proof:
Pirst, we consider characteristic functions x of "segments" on ™ ana
show thast the Cesaro means

RS
Thk = g ;go Tza X
converge in sup-norm i, -

FPor ¢ >0 choose f;, g, € (M) such that
O£f, s X & g,
and 1{ (gi - f& ) dm < £, m Lebesgue measure on T .
But T (:= Ty ,) is mean ergodic (with one-dimensional fixed space) on

C r‘ i-ea
(r, i oo

T.g —> ,-f gsdm- 1
)
and Tf L Sramen
From T f, & T x & T, g; we conclude that Il li,- %{3& T, X exists

and is equal to t.s:;( dwm .

Now, let f be a bounded Riemann integrable function on I . Then for
every ¢ > 0 there exist functions 81s 85 being linear combinations of
segments Such that

g« <8 and i(gz-g1)dw\<8:

and an easy calculaetion shows that
iU~ I.:.gloo Tnf o (g‘f dm el .

Pinally, since the fixed space of T in R(['), which is equal to the
fixed space under all rotations on ¥, has dimension one, the mean
ergodicity implies the one-dimensionality of the dusl fixed space. 8

The preceeding result is surprising, has interesting espplications
(see IV.D.5) and is optimal in & certain sense:

Ty




Example 6: The rotation operator Ty g induced by @,r 8 € M not a
root of unity, is mean ergodic

neither on (i) L=(M, ®,m)

nor on (ii) B(['), the space of =all bounded Borel
measursble functions on [’ endowed with the sup-norm,

Proof:

(i) The rotation ¥ is ergodic on [ , hence the fixed space of
T(= T‘P a) in L‘| {(wi) and a fortiori in L* (W) has dimension one.
We show that the dual fixed space P' i3 a least two-dimensional:

Consider A = {a"tneZ} and I := ige L® (M) there is fe b
vanishing on some neighbourhood (depending on f) of A}. Then I

is # §0}, T-invarient and generates a closed (lattice or algebra)
ideal J in L™ (m.). From the definition follows that TJ ¢ J and

1 ¢ J. Consequently, there exists ¥ e (L™ (wa))' such that
<1, > =1, but ¥ vanishes on J. The same is true for T'y¥ and
Tr‘ly for all ne N. By the weak * compactness of the dual unit ball
the sequence {T 'y} _o - has a weak ¥ accumulation point » .
As in (IV.4, ¢ = d) we show that Y € ', Since < 1, v, >
and <f, » > =0 for feJ we conclude O # v, M.

1

H

(ii) Teke a 0 - 1-sequence (ci)ie]N which is not Cesaro summable,
i-eo 1 A °
Hn o X oo

does not exist. The characteristic function y of the set

ian:Cn-:‘I}

is & Borel function for which
T, X (a)

does not converge, hence the functions T, X do not converge in

B(M). .

IVv. D.1 "Mean ergodic" vs. "ergodic':?

The beginner should carefully distinguish these concepts. "Ergodicity"
is a mixing property of an MDS (X,E , m; @) (or a statement on the
fixed space of Ty in LP(X,Z sM)), while "mean ergodicity" is a con-
vergence property of the Cesaro means of a linear operator on a Bdnach
space. More systematically we agree on the following terminology:
"Ergodicity" of a linear operator T ¢ #£(E), E Banach space, refers to

*
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the convergence of the Cesaro means T with respect to the uniform,
strong or weak operator topology and such operators will be called
"aniformly ergodic", "strongly ergodic", resp."weakly ergodic".

For { gl neINo} bounded, it follows from Theorem (IV.4) that weakly
ergodic and strongly ergodic operators coincide. Therefore and in
order to avoid confusion with "strongly ergodic" transformations (see
IX.D.4) we choose a common and different name for such operators and
called them "mean ergodic". Here, the prefix "mean" refers to the
convergence in the Lz-mean in v.Neumasnn’s origingl ergodic theorem
(Iv.1).

"Uniform ergodicity" is a concept much stronger than "mean ergodicity"
and will be discussed in Appendix W in detail.

IV. D.2 Mean ergodic semigroups:?
Strictly speaking it is not the operator T which is mean ergodic but
the semigroup iTn: neﬂﬁ} of all powers of T. More precisely, in the

bounded case, mean ergodicity of T is equivalent by (IV.4.d4) to the
following property of the semigroup iTn: neINo} ¢! the closed convex

hull
-c_o'iTn : ne]No'&

of ETn: ne lﬁlo} in iS(E), which is still a semigroup, contains a
zero element, i.e. contains P such that

5P = PS = P

for all Se o )T ne]No} (Remark: PT = TP = P is sufficient!).
This point of view is well suited for generalizations which shall be
carried out in Appendix Y. As an gpplication of this method we show
that every root of a mean ergodic operator is mean ergodic, too.

Theorem: Let E be a Banach space and S ¢ £ (E) be a mean ergodic
operator with bounded powers. Then every root of S is mean
ergodic.

Proof:
Agsume that S =

k4, .
Define P t= (% Z% 7d) P, and observe that Pe co {le i,el%} and
3=

k4 .
TP = (%- Zb TI*T) P, = P (use ™pg = Pg). Therefore, T is mean er-
a:

7€ is mean ergodic with corresponding projection Pye

godic (see IV.4.d) and P is the projection corresponding to T.
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On the contrary, it is possible that now power of & mean ergodic

operator is mean ergodic.

Example?
Let 8¢ (x_) x ™ (x )
o

a 0 - 1-gsequence (an)neINo which is not Cesaro summable.

be the (left)shift on 1“’(nb) and take

n‘ne n+1 neINo

For kK »1 we define elements X, € 1% (W)

o
x’k,n 1= ag for n = ki (ieNo)
X, = (x‘k,n)nemoby Xeon = "8noq for n = ki+1 (ie W)
k
X n = 0 otherwise .

Consider the closed S-invariasnt subspace E generated by
islxk t ie N, k>1} in 1% (NO) and the restriction T i= S'E .

By construction we obtain || T.%, | < % for all k> 1. Consequently,
T is mean ergodic with corresponding projection P = 0., On the other

m-A wm~4
1 - (1 i -
hand the sequence (m c-.zo x‘k,ki)meIN = (m g—o a;) . 18 not con

vergent for k>1, i.e. the Cesaro means (Tk)m(xk) of the powers
le, ie¢MN, applied to %, do not converge. Therefore, no power
Tk (k>1) is mean ergodic.

Reference: Sine [1976].

IV D.3 Exemples:
(i) A linear operator T on the Banach space E = € is mean ergodic if
and only if | T|l € 1. Express this fact in a less cumbersome way!
(ii) The following operators T € £ (E), E a Banach space, are mean
ergodic with corresponding projection P: -4
1

(a) T periodic with o - Id, npe N, implies P = g ?_-o Ti .
o i=

(b) T with spectral radius r(T)< 1 (e.g. |l Tl < 1) implies P = O,

(¢) T has bounded powers and maps bounded sets into relatively wesk
compact sets.

(a) T(x1,x2,x3,...) = (O,x1,x2,...) on 1P, 1<pP< o0 &
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(e} T(x1,x2,x3,...) = (xz,x3,x4,...) on 1P, 14 p< ©
]

(f) Tf(x) = S£(y) @y for fec(lo,1]).
[¢]

(iii) The following operators are not mean ergodic:
(a) Tf(x) = x-f£(x) on C(L0,1]) o} but | T = 1 for 2ll neW.
(b) Tf(x) f(xz) on C([0,11) < 1 > but the Dirac measures
Jo, J1 are contained in F' .
(¢) T(x1,x2,x3,...) = (0,x45X5,44.) On 11 . f = {0} but
Iz (x )l = N(x)l for 0s(m)e 1 .

(a) T(x1,x2,x3,...) = (xz,xs,x4,..) on 1 : use a O-1-gequence

eS|

It
I

which is not Cesaro summable.

IV. D.4 Convex combinations of mesn ergodic opersatorst
Examples of "new!" mean ergodic operators can be obtained by convex

combinations of mean ergodic operators.
Our first lemma is due to Kekutani (see Sakail1971], 1.6.6).

Lemma 1: Let E be & Banach space. Then the identity operator Id is an
extreme point of the closed unit ball in I (E).

Proof:

Take Te (E) such that [[Id + TI< 1 and Il Ta - Tl £ 1. Then the same
is true for the adjoints: [l Ia' + T'll ¢ 1 and {[Ia' - T'll&1.

For f'e E' define f; = (1! + T')f', resp. fé i= (18! - ', and
conclude ! = % (f; + £}) and llf;ﬂ ,llféﬂ £If'l . As soon as f£' is
ean extreme point of the unit ball in E we obtain f! = £5 = fé and
hence T £! = 0. But by the Krein-Milman theorem this is sufficient to
yield T' = 0, and hence T = 0. Now assume that Id = %(R + S) for con-
tractions R, S € £(E), end define T := Id - R.

This implies Id - T= Rand Id + T=2 Id - R = 3. By the above con-
gsiderations it follows thaet T = 0, i.e. Id = R = S. 4

Lemma 2: Let R, S be two commuting operators with bounded powers on a
Banach gpace E, and consider
T t= R+ (1 -a) 8
for O< o < 1. Then the fixed spaces F(T), F(R) and P(8) of T,
R and S are related by
P(T) = P(R) n F(S).
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Proof':
Only the inclusion P(T)< P(R)n F(3) is not obvious. Endow E with an

equivalent norm [ xl, := sup $ IRz || ¢ n,meINo} s X¢ E, and observe
that R and 8 are contractive for the corresponding operator norm.
From the definition of T we obtain

and R'F(T)’ SIF(T)G 2(F(T)), since R and 3 commute.

Lemmsa 1 lmplles R'F(T) = S]F(T) = IdF(T), 1eEo F(T)C F(R) (4] F(S).

n
Now we can prove the main result.

Theorem: Let E be a Banach spasce and R, S two commuting operators on E
with IR%|l, | s®ll€c for a1l neX. If R and S are mean ergodic,
so is every convex combination

T = R + (1 -a) S, Osot & 1.

Proof:

Let 0<o < 1. By Lemma 2 we have F(T) = F(R)n F(S) and F(T') = P(R")n F(3")

and by (IV.4.e) it suffices to show that FP(R)nF(3 separates F(R')aF(S'):
For f! # g! both contained in F(R')n F(8') there is fe F(R) with
<f,f' » # <f,g'> . Since SF(R)< F(R) we have Pof € P(R) n F(3) where
Py denotes the projection corresponding to S. Consequently

<Py, fl> =< f,PLfla = < £, f' > = < £,8'> # < f,g'> =<Pf,e'> .

]
The following corollaries are immediate consequences.

CGorollary 1:
For T, R and S as above denoted by PR’ resp. Py the corresponding pro-
jections. Then the projection P corresponding to T is obtained as

Pp = PgPg = PgPg = Zim (B S,).

Corollary 2:
Let § Ri: 14i4«m} be a family of commuting mean ergodic operators

with bounded powers.

i
Then every convex combination T := 2. is mean ergodic.

2. R,
i-q %

1
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IV. D.5 Mean ergodic operators with unbounded powers:

A careful examination of the proof of (IV.4) shows that the assumption
I™1 < ¢ for all nelli,

may be replaced by the weaker requirements

%llTnI[ =06 and [T ll<c for all ne HW.

1im
nos
The following example (Sato [19771) demonstrates that such situations

may occur.
We define two sequences (an)neIN end (b ), .y P

8, =1, 8, =2- £%72 for ny o2,
and b, = ii a; = % (2 - 4n-1 + 1) for nel.
Endow X = i(n,i) : ne W, 1$i$bn}
with the power set as ®§ -algebra Z , and consider the measure y de-
fined by
1=n . .
V(i(n,i)}) o= {2 1f1$1$an
Y (§(n-1,i-e ) }) if a <igDp .

b,
Observing that % (i (n,i)} ) = 28T ye obtain a probability
measure m on Z I;y
Mg @YY =20 4™ oy (§(n,1) ).
The measurasble (not measure-preserving!) transformation
(n,i+1) for 14i<b
¢ : (n,i) >
(n+1,1) for i = b,

on X induces the desgired operator T :i= Tqp on L1(X,i.,/&).

First, it is not difficult to see that
I TNl = 2® for k = b, b +1,..., b, ,-1. This shows that
k . — 3 1 ¥ —_
sup I TNl : keW} == ana 1im AT - o.

Second, for bn + 12 k€ bn+1 we estimate the norm of the Cesaro means

T 1 bust : 2l
II k” sbn' Y(i(n+1,1)}) iz=,1 y(i(n'l"':l)}) = %(2.4n_1+ 1).2-11 ‘$ 6.

Finally, T is mean ergodic: With the above remark this follows from
(IV.4ec) s in (IV.6).
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IV. D.6 Eguidistribution mod 1 (Kronecker, 1884; Weyl, 1916):
Mean ergodicity of an operator T with respect to the supremum norm
in some function space is a strong and useful property. For example,

if T = T‘F for some @ : X -=> X and if X = 1|ﬁ is the characteristic
function of a subset A< X, then
n-=A4 n-4
.1 i L1 5 i
lim 5 E’O T x(X)—%i;{.gn iL=o X (¢ (x)) , xeX,

is the '"mean frequency of vigits of q:nx in A". Therefore, if x is
contained in some function space on which T is mean ergodic (for ll-]lw),
then this mean frequency exists (uniformly in xe¢ X). Moreover, if the
corresponding projection P is one-dimensional, hence of the form

P= u @1, the mean frequency of visits in A is equal to m(4) for
every X ¢ K.

This observations may be applied to the "irrational rotation™ “oa on

[T and to the Banach space R(T) of all bounded Riemsnn integrable
functions on |? (see IV.D.0). Thus we obtain the following classical

result on the equidistribution of sequences mod 1.

Theorem: (Weyl, 1916):
Let f ¢ Lo,1]JvQ. The sequence (gn)neIN where fn t= nf mod 1 is (uni-
formly) equidistributed in [0,1], i.e. for every interval [ul,fS]c E0,1]

holds
lim Ngﬁ»!{;!n! = [5 - d ,

na® n
where N(« ,ﬁ,n) denotes the number of elements 'giE[eL ,[ﬂ for 1< i ¢ n.

This theorem of H.Weyl E1916,] is the first example of number-theoretical :
consequences of ergodic theory. A first introduction into this circle g
of ideas can be found in Jacobs [1972b] or Hlawka [1979] , while
Purstenberg E1981] presents more and deeper results.

IV. D.7T Irreducible operstors on I-.P-spgces:
The equivalent statements of Proposition (IV.7) express essentially
mean ergodicity and some "irreducibility" of the operator Ty corre-

sponding to the transformation ¢ . Using mawe operator theory, further
generalizations should be possible (see also III.D.11). Here we shall
generalize (IV.7) to FDSs (E;T), where E = LF(X,Z ,m), m(X)
=1, 1¢<p<w, and Te L(E) is positive satisfying T = 1 and U= e
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Pirst, an operator-theoreticasl property naturally corresponding to
"ergodicity" of a bi-meassure-preserving transformation hss to be de-

fined.

Definition:

Tet (E;T) be an FDS as explained sbove. A set A¢ & is called T-in-
variant if T1IA(x) = 0 for almost 811 xe¢ X NA. The positive operator T
is called iprreducible if every T-invariant set has measure 0 or 1.

Remarks:

1. It is obvious that for an operator T, induced by an MDS (X, i,ﬁ;(g)
irreducibility of Ty 1is equivalent to ergodicity of ¢ .

2. If £ is finite-dimensional, i1.e. X = {x1,..., xn]- , and T is re-

ducible, i.e. not irreducible, then there exists a non-trivial
T-invarignt subset A of X. After a permutation of the points in X
we may assume A = {x_l,..., xk} for 1< k<n. Then I"llA(X) = 0 for

xe X~ A means that the matrix associated with T has the form

k

-_--,-—!-lq — e — k

1
o .
]
Proposition:
Let (E;T) be an FDS formed by E = LP(X,E ,u), m(X) = 1, 1€ p< © , and
a positive operator T satisfying Tl = 1 and T'1 = 4 . Then T is mean

ergodic and the following statements are equivalent:

(a) T ig irreducible.

(a') The fixed space F of T is one-dimensional, i.e. P =<1>».,

(b) The corresponding mean ergodic projection has the form P = 1 & 1.
. D q

(e¢) < T fs8 > converges to ;};f dp ng dp for every fel~{m), geL*{m),

(@) < T, M ,lg> converges to /;.(A)- )u(B) for every A,Be % .
(e) <« T, Wy, 1y > converges to )A(A)z for every Ae & .

Proof:
Observe first that the assumptions T # =14 and T 1 = 1 imply that T
naturally induces contractions on L1()u )s resp. L% ()‘ ). From the

Riesz convexity theorem (e.g. Schaefer 1974 , V.8.2) it follows that
JT) £ 1. Consequently, T is megn ergodic by (IV.5) or (IV.6).'°
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() =>(a'): Assume that the T-fixed space P contains a function f
which is not constant. By adding an appropriate multiple of 1 we may
obtain that f assumes positive and negative values. Its absolute
value satisfies _(

lel = I7£l ¢ Tlel end  Slel au - $7iflap,
hence |fl € F and also 0< et oas %(lfl+ fleP and 0<f~ := %(lfl-f)e F.
Analogously we conclude that for every neN the function

£ 1= inf (n-£F, W) = 3 (st 4 - Ineft - )

ig contained in P. Prom the positivity of T we obtain

1, = ssupgf‘;_1 : nelNj € F

where 4 := L f¥>0]. Obviously, A is a non-trivial T-invariant set.

The implications (a') = (b) = (c) =» (d) =»(e) follow as in the proof
of (IV.T7).

(e) =>(a): If A is T-invariant the hypothesis T 4 = i implies T, < “A

and the hypothesis T'1 = 1 implies that T1, = 1,. Therefore,
‘Tn1'A’1'A> = <T1‘A’1‘A> = <1|A’1'A> = }A(A)

and the condition (e) implies u(A)¢ §0, 1§ . -

IV. D.8 Ergodicity of the Markov shift:
As an application of (IV.7) we show that the ergodicity of the Markov

A A
shift (X,Z,4 ;T ) (see II.6) with transition matrix T = (a;;) end
Po
strictly positive invarlant distribution u = ( )can be characterized

'Pk--a
by an elementary property of the kxk - matrix T.

Proposition: The following are equivalent:
(a) The transition metrix T is irreducible.

A £ A . .
(b) The Markov shift (X, % , M ;7T ) is ergodic.

Proof:
As remarked (IV.T) ergodlclty of T 13 equlvalent to the fact that the

AR

induced operator Tf := fo‘c, feL (X 2 ,/u), satisfies

<® 1, B> = A(a) A(B)
for all A, B e & , which are of the form
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A= I:X_{ = a_{,oooco,x‘e = 81]
and B = [X_mz'b ,.‘.."xﬁl:bj

With ai,b e{o,...,k 11
For n&N so large that &' :=n - (m +4 + 1) 2 0, we obtain

/A-(-zn_qn B) =/u]_x = PoprevesXy = DpoXp_p = 8 yseeesFy, = 9‘{]

K-4 L34
A -
= c /A. E{ :b ,occ,xm=bm’xm+1=c;1,noo,xm+n =Cn ,xn_‘t*a ,t’ ooc,xn+{ a
&7 ; b-m L!-m bibi+1 B Mm% tes C31%4 % B- ;--{ 88 sq
A ) . DA
= a(B) (T° ) (pg ) (4).
s bLa_, &_, VA

. A o . -1 a A A
Thus lim < T,1,;, Ig> = j(B)-(lim Tn)bma_j' (pa_z) «u(R) = w(B) u(a),
iff (llm Tn)lJ = (1l®‘ll)ij = pj>0 for every i,jego,..., k-ﬁ
By the assertlon (b) in (IV.D.7, Proposition) the last condition is
equivalent to the irreducibility of T. R

IV. D.9 A gynamical system, which is minimal but not ergodic:
As announced in (III.D.10) we present & minimal TDS (X; ¢ ) such that
the MDS (X, ® s 5¢@) is not ergodic for e suitasble @ -invariant

probability measure meM(X).

Choose numbers k.e]N, ie]ﬁ' , such that

{ %) k. -1 divides ks for all ie W

"2 ki 1
— é -y -
and (*:‘ﬁ) :5 H‘Ei— )
i
Por example we may teake ki = 10(3 )

For ie N define Zi 1= §zeZ: lz - n-kilas ki-1 for some n ¢ Z}

and observe that Z
Therefore

]

U Z since k. tends to infinity.
ieM 1
i(z) t= min §jelN: ze Zj}
is well-defined for ze Z.
Now teake
0 if i(z) is even

8 = @) with a_ @=
(az zelZ z % 1 if i(z) is odd,

and consider the shift
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on §0, 1}% .

Proposition:
With the sbove definitions and X i= E’csa ts eZ} C%O, 1&2, the TDS
(X;'t[X) is minimal, and there exists a probability measure m e M(X)
such that the MDS (X, 6’5,}; : ‘th) is not ergodic.

Proof:
Clearly, X is T -inveriant and (X;qx) is a TDS. The (product) topology
on {0, 1}‘Z - and on X - is induced by the metric

. 1 ‘
d((xz),(yz)) t= 1nf-§-;1—I-E t x, =y, for all )zl<t}.

The assertion is proved in several steps.

(i) Teke ielN. By definition of the gsets Zj’ j=15e40,1, the number
i(z) only depends on z mod ks for i(z)¢« i, i.e. the finite se-
quence of 0’s and 1’s

g8 . , &

’-1. a8 889 a F) ¢ 00y ai-1 ’ ai

-i+1 ? 0
reappears in (az)zez with constant period. Using the above
metric 4, the lemma in (III.D.5) shows that X is minimal.

(ii) We prove that the induced operator T := Ig, on C(X) is not mean

ergodic by showing that for the function f e C(X) defined by
f((XZ)Zez) ‘= x1
the sequence (Tnf(a))nel‘f does not converge:
= 2, 1"
] Tf(a) =g Z f(v78) =5 Z s,
and ;&; &, is the number of those z (1« z&n) for which i{(z) is
odd. Consider n = k; and observe that the set }1,..., k;j n Z,

1 J
k.
has exactly E}. (2]:;:3._1 + 1) elements for j = 1yeeu,is
J
Now .
Yok, ¢ 3k, k. .
i =1 JR R 4
__Z £3 (ij-‘l + 1) & i L 3k gz =~ (use (¥¥))
=4 Lo b k
i.e. {1,..., k.‘} n C} Z. contains at most i numbers.
1 34 ) 4
However $1,..., Kk} < Z;,4» hence

:
2
RAFREIVIEA BRI CAPRN V) 2l 7 2k,

and for all numbers in thst intersection we have i(z) = i + 1.




In conclusion, one obtains
1

T £(a) - T, fla)] 2 5 .
| ks ' 2

(iii)Using (IV.8) and (App.3), Theorem 1, we conclude from (ii) that
there exist at least two different T -invariant probability
1
measures m, My € C(X)'. For wi= gz (M + my) 4y g

(X, %, u ;zlx) is not ergodic by (App.S3). .

Remark:
For exsmples on the 2-torus see Parry £1980], and on non-metrizable

v
subsets of the Stone-Cech compactification of B see Rudin [1958] and
Gait-Koo L[1972].

References: Ando (19681, Gait-Koo [1972], Jacobs [1960], Parry [1980],
Raimi [19641, Rudain [1958].

IV. D.10 Uniguely ergodic systems and the Jewett-Krieger theorem:
For an MDS (X, % s M3 cp) and for f e LP(X,E,);.), the means

19 4
nio !

converge with respect to the LP-norm for 1s p<« . Concerning the con-
vergence for LY -norm (i.e. sup-norm) we don’t have yet a definite
answer, but know that in general the sup-norm is too strong to yield
mean ergodicity of T, on L= (). This was shown in example 6 in
Lecture IV for any ergodie rotation @, on the unit circle I' . On the
other hand, in this same example there exist T, -invariant norm-closed
subalgebras b of L™ (M, ® ,m) which are dense in L‘I (", ,m) and on
which T, becomes mean ergodic (e.g. take Q = C(") or even R(I'), see
(IV.D.0). Such a subalgebra O is isomorphic to a space C(Y) for some
compact space Y and the algebra isomorphism on C(Y) corresponding to
T¢ is of the form Ty for some homeomorphlsm  : Y H¥ (use the
Gelfand-Neumark theorem (C.9) and (II.D.5)).

The TDS (Y3 ) is minimal, since Ty 1is mean ergodic with one-dimen-
sional fixed space, and therefore i1t possesses a unique y -invariant,
strictly positive probability measure ¥ (see IV.8). Such systems will
be called uniguely ergodic, since they determine a unique ergodic MDS.
On the other hand it follows from the denseness of b in L(M, B ,M)
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that the MDs (', ® ,m; LPa) is igsomorphic to (Y, B, ; w) (use VI.2),

a fact that will be eXpressed by saying that the original ergodic MD3
is isomorphi¢ to some MD3S that is uniquely determined by a uniquely
ergodic TDS. In fact, ([F, ®,m; @,) is uniquely ergodic since A can
be chosen to be C(I"), but this choice is by no means unique and

A = L¥(r,¢®,m) would not work.

Therefore we pose the following interesting question:

Is every ergodic MDS isomorphic to an MDS determined by a uniquely
ergodic TD3S? As we have explained above, this question is equivalent
to the following:

Problem: Let (X,Z ,m ; @) be an ergodic MD3. Does there always exist

a Ty -invariant closed subalgebra A of L* (X,& , M) such that
(1) Ty 1s mean ergodic on & , and
(11) A is dense in LN(X, T ,p) 7

The subsequent answer to this problem shows that the rotation (I, b,m;(‘ea)
is quite typical: Isomorphic uniquely ergodic systems always exist,
but the algebra L™ (g) is (almost) always too large for that purpose.

Lemma: For an ergodic MDS3 (X,i‘,/u;c() the following assertions are squi-
valent:

(a) Ty is mean ergodic on L% (X,Z,m).

(b) L= (K,i,/u) ig finite dimensional.

Proof:
In view of the representation theorem in (VI.D.6) it suffices to con-~
sider operators

Ty : C(Y) = C(Y)
induced by a homeomorphism on an extremally disconnected space Y.
By assumption (a), Ty is mean ergodic with one-dimensional fixed
space and strictly positive invariant linear formy . From (IV.8) it
follows that y has to be minimal, and hence iwz(y): zéZ} is dense
in Y for every ye¢ Y. The lemma in (VI.D.6) implies that-iqlz(y) iz¢ L}
and hence {y} is not a null set for the measure corresponding to ¥ .
Therefore, {y} must be open and the compact space Y is discrete. g

Having seen that Ty 1is not mean ergodic on all of L™ ()u) one might
try to find smaller subspaces on which mean ergodicity is guaranteed.

~ On the other hand

-60~-

| S L L o S SO



.

FT) @ ﬁd-qu) LY (m)
is the largest subspace of LT ()u) on which T, 1is mean ergodic (use
IV.%.0). Unfortunately, this subspace is "never" a subalgebra.

More precisely:

Proposition: For any ergodic MD3S (X, & ,fa;c.p) the following assertions

are equivalent:
(a) T, is mean ergodic on LY ().
(b) L* ()u.) ig finite-dimensional.
() <1>@ (I&-T, )ZET/M) is a subalgebra of L* ()

Proof:

It suffices to show that (c) implies (a). To that purpose we assume
that the Banach algebra L% (m) is represented as C(Y); Y compact, and
the algebra isomorphism corresponding to T¢ is of the form

T*P : C(Y) = C(Y) for some homeomorphism ¢ ¢ ¥Y->»Y and ¥ # idy. Denote
by Fix (y) the fixed point set of ¢ . Then every function

f e _(Td-Tq, JC(Y) vanishes on Fix (¢ ). Take 0 # g ¢ (Id—Tq, Yo (Y).
Its square g 18 contained in the subspace on which the means of T;

converge and

1
i

T M

.2 2
p 1 = (§g°av)
1 ‘l‘g Y Y

for the strietly positive y -invariant measure ¥ . Therefore Fix (y)
must be empty. It is now a simple application of Urysohn’s lemma to
show that (Id-T.f, )C(Y) separates the points in Y. By the Stone-
Weierstrass theorem we obtain that <1 > & (Id-T, )C(Y) is dense in
C(Y) and therefore that T? is mean ergodic on L* ()A). B

After these rather negative results it becomes clear that our task

congists in finding "large! subalgebras contained in <1>® (Td—T.P)f.“(/n).
This has been achieved by Jewett [1970] (in the weak mixing case) and
Krieger [ 1972] . Theirs as well as all other available proofsrest on

extremely ingenious combinatorial techniques and we regret not being
able to present a functional-analytic proof of this beautiful theorem.

Theorem (Jewett-Krieger, 1970):
let (X,3Z,m ;@) be an ergodic MDS. There exists a T¢ -invariant
closed subalgebra A of L® (LT ,}1), dense in 1] (X,Z ,)J-), on which

- T is mean ergodic.

¢
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Applying an argument similar to that used in the proof of (IV.D.0) the
algebra of the above theorem can be enlarged and the corresponding
structure spaces become totally disconnected. In conclusion we state

the following answer to the original question.

Corollary:
Every separable ergodic MDS (X,Z ”n;(r) ig isomorphic to an MDS de-

termined by a uniquely ergodic TDS on a totally disconnected compact
metric space.

References: Bellow-Furstenberg (19791, Denker [1973], Hansel [1974],
Hansel-Raoult [1973], Jewett [1970], Krieger [1972], Petersen L 198%31.
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V. The Individual Ergodic Theorem

In LZ(X,Z s M), convergence in the quadratic mean (i.e. in T_-.2-nor=m)
does not imply pointwise convergence, and therefore, v.Neumann’s
ergodic theorem (IV.1) did not exactly answer the original question:
For which observables f and for which states x does the time mean
lim 1nz_1 £t (x) i842
P on & @ x ) exist?
But very soon afterwards, and stimulated by v.Neumann’s result,
G.D. Birkhoff came up with a beautiful and satisfactory answer.

V. 1 Theorem (G.D.Birkhoff, 1931 ):
let (X, & ,};;cp) be an MDS3. For any f e LZ(X,E ,}A) and

for almost every Xe X
n-1

. 1 i
o o= fle’ ()
i=0
exists.

Even today the above theorem may not be obtained as easily as its
norm-counterpart (IV.1). In addition, its modern generalizations are
not as far reaching as the mean ergodic theorems contained in Lecture
IV. This is due to the fact that for its formulation we need the con-
cept of m~a.e.-convergence, which is more strictly bound to the con-
text of measure theory. For this reason we have to restrict our efforts

to LP-spaces, but proceed axiomatically as in Lecture IV.

V. 2 Definition:
Let (X,X ,);) be a measure space and consider E = (X, E ,/u),‘lspaoo.
T ¢ £(E) is callgc_iﬁngiividually ergodic if for every f e E the Cesaro

— 1 r
means Tnf =g 1?‘:0 T™Fr converge m-a.e. to some f ¢ E.
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Remark:

The convergence of T, f in the above definition has to be understood
in the following sense:

For every choice of functions =3 in the equivalence classes T;:f, nelN,
(see B.20) there exists a m -null set N such that gn(x) converge for
any xe X~N., Only in (V.D.6) we shall see how a.e.-convergence of
sequences in LP()u) can be defined without refering to the values of
representants.

There exist two main results generalizing Birkhoff?’s theorem, one for

positive contractionsg on L1, the other for the reflexive LP-Spaces.
But in both cases the proof isg guided by the following ideas:
Prove first the a.e.-convergence of the Cesaro means T, on some dense
subspace of E (easy!). Then prove some

"Maximal Ergodic Inequality"
(difficult!), and - as an easy consequence - extend the a.e.-conver-

gence to all of E.
Here we treat only the L1 -case and refer to App.V for the LP-theorem.

V. 3 Theorem (Hopf, 1954; Dunford-3chwartz, 1356 ):

et (X,Z :)u) be a probability space, E = 7] (L, T ,/u) and

Te £(8). If T is positive, T &N 2and ™ <1, then
T is individually ergodic.

Remark:
The essential assumptions may also be stated as ITI,« 1 and ITI ¢ 1

for the operator norms on i(Lw (m)) and ;[(LA (/;.)).
The proof of the above "individual ergodic theorem" will not be easy,

but it is presented along the lines indicated above.

V. 4 Lepma:
Under the assumptions of (V.3) there exists a dense subspace EO of B

= L1 (X, T ,};) such that the sequence of functions Tnf converges with

respect to | ll, for every reE_.

-Gl

B L e P S



Proof:

By (IV.6), T is mean ergodic and therefore

tw=r @ (Ta - L' (w) = F @ (Ia - TL® (),
where F is the T-fixed space in LAI ()«
We take E, = F ® (Id -~ T) L™ (m). The convergence is obvious for
fe Fo But for £ = (Id -~ T)g, ge L™ (@), we obtain, using (IV.3.0),
the positivity of T and Tl £ 1, the estimate

| el = 1(1a - Drgl = 3 | (1a - Tgl¢ (gl + gl

s gl 1+ leles ™) € 5 llglhor 1 - '

V. 5 Lemma (maximal ergodic lemma, Hopf, 1954):
Under the assumptions of (V.3) and for fe L1(X,i s ]u )y ne X, gelﬁ we
define

f‘*

Y 1= sup §T.f : 1ek<n} ana A (£) =[£7>¢].

n,y
Ten  gpla, L () ¢ AnS(ﬂf o s el
21

Proof (Garsia, 1965):
We keep f,n and Y fixed and define

w4
g r=sup L & (Tr -y) t1<ken}.
First we observe that A := A; v () = [g:»ol. Then

g?) 2 (Tg)? , since 0< T,

k-4 .
2> Sup § ( Z (T1+4f -y NT o 1sk$n} , analogously,

- A 3 .
sup § ( % (P**1e - g4 )T ¢ 1¢ken} , since TN,

W

sup § ( & (TP'r - g )t 1<ken-1}

W

= sup § ( 54:. (I'if - 3 ) = (£ - ¢ N :2£ksn}

z sup i %4 (Tif - 3N ) - (£ - pt) 1¢ken §
=0

>y g - (- ¥1).
This inequality yields

Uy (£ = 3 1) > Uy = H,-2g") 2 g* - 1Y) .
Finally the hypothesis AR TRV implies

§.(£-pman = < (£ - g1 > 7 <g” - g™, > =<g",1>-<g", T 1230, :
Al

|
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Remarks:
1. £% := sup § T, : ke N} is finite a.e., since p[f¥>m] =plsup £¥>m]

el he N
m

= sup };[f* >m] % for every me®, and therefore
We N n

AN LeF>m]) =0 or ule*cw] =p( U [fem]) = 1.
me N wmeN
2. Observe that we didn’t need the assumption u(X)< « in (V.5). The

essential condition was that T is defined on L~ (/A) ang L1(/.n), and
contractive for Il-llgy and | II1.

V. 6 Proof of Theorem (V.3):
We take O # £ e L'(u) and show that

h.{x) = 1lim su P P(x) - T2(x)l =0
f() n,mempl n m

for almost every xe¢ X. With the notation introduced above we have

hf(x) ¢ 2|£*|(x) and hf(x) = hp_ (x) for every f_ contained in the
o

subspace E_ of | Ho-convergence found in (V.4). By the maximal ergodic

ineguality (V.5) we obtain for ¥ > O the estimate

plog > ylIf - 20T =plnp e >yle -2, T < pllcs - £ > Fue - 2]

PR Gl
Syl - £ y©

For & > O we take ¥ = + , choose f e B, such that I - £ 1| < g%,

and conclude
pmln.>el ¢ 2¢.

This shows that h, = 0 a.e. u

Remark:

The 1limit function F(x) := ]._‘];gnw T £(x) is equal to Pf where P denotes
the projection corresponding to the mean ergodic operator T. Therefore
T is contained in I.] (p) .

Since LZ(X,Z s M) C 1! (X, , p) for finite measure spaces, the Birkhoff
theorem (V.1) follows immédiately from (V.3) for T = Ty, . Moreover

we are able to justify why "ergodicity" is the adequate "ergodic
hypothesis" (compare III.D.6).
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V. 7 Corollary:
For an MDS (X,Z ,m ;@) the following assertions are equivalent:

(a) ¢ 1is ergodic.
(b) For all ("observables") fe L'(X, Z s ) and for almost every
("state") x eX we have et
time mean := lim 1 = f(¢ (x)) = ff’@; =: gpace mean.
X

n->° o0
Proof:
By (V.7.b) the limit function f is the constant function
(M@ =(§£au)- N. -
X

V. D Discussion

V. D.1 "Eguicontinuity" for a.e.-convergence:

The reader might have expected, after having proved in (V.4) a.e.-
convergence on:@dense subspace to finish the proof of (V.%) by a simple
extension argument.

For norm convergence, i.e. for the convergence induced by the norm

topology, this is possible by “equicontinuity" (see B.11).
But in the present context, we make the following observation.

Lemmas: In general, the a.e.-convergence of sequences in LP(X,E spM) is
not a topological convergence, i.e. there exists no topology on
LPgu) whose convergent sequences are the a.e.-convergent se-

quences.

Proof:
A topological convergence has the "star"-property, i.e. a sequence

converges to an element f if and only if every subsequence containsg a
subsequence convergent to f (see Peressini [1967], p.45).

Uongider (LO, 11, 0% ,m),mthe Iebesgue measure. The sequence of charac-
teristic functions of the intervals [0,2],[2, 11, [0,4] [1, 1] [ ]

[— 17, [O,g],.... does not converge almost everywhere, while every

subsequence contains an a.e.-convergent subsequence (see A.16). 4




Consequently, the usual topological equicontinuity arguments are of
no use in proving a.e.-convergence and are replaced by the maximal
ergodic lemma (V.5) in the proof of the individual ergodic theorem.
In a more general context this has already been investigated by
Banach [ 1926] and the following "extension! result is known as
"Banach’s principle" (see Garsia [1970]).

Proposition: Let (8,), . gy be a sequence of bounded linear operators

on LP(X,E,}I), 14« p<w , and consider
s¥r(x) := ﬁEﬁqlSnf(x)! and

. P,
G := EfeL : Snf‘ converges a.e.} .
If there exists a positive decreasing function ;

c R, >R
such that 1lim ec¢(y) = 0 and
T2

wlsFe(x) > el & e(y)

for all fe LP(/;), ¥ >0, then the subspace G is closed.

Proof:

Replace ii:—li— in the proof of (V.6) by c(y). B

¥
For an abstract treatment of this problem we refer to v.WelzsHcker
£1974]. See also (V.D.6)

V. D.2 Mean ergodic vs. individually ergodic:?
A bounded linear operator on LP(X,Z s A ) may be mean ergodic or in-
dividually ergodiec, but in general no implication is valid between the

two concepts.

Example 1: The (right) shift operator
T : (xn) -= (0, X4y Xpo cess)

on 1'(®) = L'(W,Z, u) where m(§n}) = 1 for every neW, is individual-
ly ergodic, but not mean ergodic (IV.D.3).

Exercise: Transfer the above example to a finite measure space.

Example 2: On LZ([O, 11,0 ,m ), ™ Lebesgue measure, there exist
i ~68~



operators which are not individually ergodic, but contractive hence
mean ergodic (see App. V.10)

But a common consequence of the mean and individual ergodic theorem
may be noted:

On finite measure spaces (X,Z ,)u) the L
convergence imply the u-stochastic convergence (see App.A.16).

P-convergence and the a.e.-

Therefore

lim w7 f(x) - F0)l2el =0
for every £270, f ¢ LF, where T denotes the limit function of the
Cesaro means Tnf for a mean or individually ergodic operator

Te L(LF(m)).

In fact, even more is true.

Theorem (Krengel [1966]):
Let (X{Z,Jﬁ) be a finite measure space and T be a positive contraction

on L1(}A). Then the Cesaro means T,f converge M -stochastically for
every fe¢ L1()L)-

V. D.?% Strong law of large numbers (concrete example):

The strong law of large numbers "is" the individual ergodic theorem.
To make this evident we have to translate it from the language of
probability theory into the language of MD3s. This requires some ef-
fort and will be performed in (V.D.7). Here we content ourselves with
an application of the individual ergodic theorem, i.e. the strong law
of large numbers, to a concrete model.

As we have seen in (II.3.ii) the Bernoulli shift B(%,%) is an adequate
model for "coin throwing". In we take 1, to be the characteristic
function of the rectangle

A=dx=(x) @ x = 1%}

A
in X =§0, 132, then "

Z 1,(x'x) , T the shift on %,

counts the appearances of "head" in the first n performances of our
"experiment" x = (x,). Since B(% ’ %) is ergodic and since )ﬁ(A) = %,
the individual ergodic tlheorem (V.7) asserts that
h-A
1 i 1

13 " =

Lim A ZUpT %) =2
for a.¢. XeX, 1.e. the average frequency of "head" in almost every

* -69-




"experiment" tends to %.

V. D.4 Borel’s theorem on normal numbers:
A number fei:o, 17 is called normal to base 10 if in its decimal ex-

pansion |
g = O.X1X2X3¢-. s’ Xie SO’ 1, L N ) 9} L]

every digit appears asymptotically with frequency T% .

Theorem (Borel, 1909 ):
Almost every number in [0, 1] is normal.

Proof:
First we observe that the decimal expansion is well defined eXcept

for a countable subset of fO, 1] . Modulo these points we have a bi-
jection from Lo, 1] onto 2 = §O, 1,...,9}E-which maps the Tebesgue

measure onto the product measure a with

adx el x =0% = ... = af(x)e Rexg= 9% = 1—%.

Consider the characteristic function X of S(xn)e 2 Xq = 1} and the
operator T : 11(2, f}iﬁ) - L1(R,§ Uﬁ) induced by the (left) shift

T ¢ (xn) s> (xn+1) .

w-4 -4 .
Then E%Cf'x(x) = i;)X(tlx) is the number of appearances of 1 in
V= i=

the first n digits of x = (xn). Since T is individually ergodic with

one-dimensional fixed space, Wwe obtain
1 & s 1
lim - 2 T x(x) = Sxa,,:Té-
X

woee 11 (=0
for almost every x e R. The same is true for every other digit. |

V. D.5 Individually ergodic operators on C(X):?

It seems to be natural to adapt the question of a.e.-convergence of
the Cesaro means Tnf to other function spaces as well. Clearly, in
the topological context and for the Banach space C(X) the a.e.-con-
vergence has to be replaced by pointwise convergence everywhere. But
for bounded sequences (fn)c C(X) pointwise convergence to a continuais

funcetion is equivalent to weak convergence (see App.B.18), and by
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(IV.4.b) this "individual" ergodicity on C(X) would not be different

from mean ergodicity.

Propositiont For an operator Te -{(C(X)) satisfying HTnH < ¢ the
following assertions are equivelent:
(a) For every f eC(X) the Cesaro means :nf converge pointwise to a
function T € C{X).
(b) T is mean ergodic.

V. D.& A.e.-convergence is order convergence:

While the mean ergodic theorem relies on the norm structure of LPQM)
(and therefore generalizes to Banach spaces) there is strong evidence
that the individual ergodic theorem is closely related to the order
structure of LP(M). One reason - for others see App.V - becomes ap-

parent in the following lemma.

Lemma @
An order bounded seguence (fn) C LP(X,Z s )y 1€ p<oo, converges a.e.

if and only if it is "order convergent", i.e.

o-1im f_ = inf su f = sup inf f_=: o=1lim f_ .
waeo 1 ¢ ny 0 kew w2k 1 nos

The proof is a simple measure-theoretical argument. It is important
that the "functions" fn in the order limit are elements of the order

complete Banach lattice L?(p). In particular, "null sets" and "null
functions" don’t occur any more.

Since the sequences (Tnf) in the individual ergodic theorem are un-
bounded one needs a slightly more general concept. We decided not to
discuss such a concept here since it seems to us that a purely vector
lattice theoretical approach to the individual ergodic theorem has

yet to prove its significance.

References: Ionescu Tulcea - Ionescu Tulcea [1969], Peressini {19671,
Yoshida [1940]1.

V. D.7 Strong law of large numbers (proof):

As indicated in (V.D.3) this fundamental theorem of probability theory
can be obtained from the individual ergodic theorem by & translation

kS

-71-




of the probabilistic language into ergodic theory.

Theorem (Kolmogorov, 1933):
Let (fn)ne]N be a sequence of independent identically distributed

integrable random variables. Then H :‘; f‘ converge a.e. to the expect-

ed value Efo .

Explanation of the terminology: f is a random variable if there is a
probability space (R,a,p) such that f: { = IR is measurable (for the

Borel algebra ¥ on R). The probability measure pe f-1 on R is called
the distribution of f, and for Ae ® one usually writes

plreal = pr '),
Two random variables f;, f, are identically disfibuted if they have

the same distribution, i.e. p [fje Al = p [fje A] for every Ae® .

A seqguence Cfn) of random variables is called independent if for any
finite set Jec N and any sets AJ 3 “5 we have

-1
p[f.eA.for everyjeJ]: ((\f (A))—- Trp(f. (A.))

Finally, f is integrable if f ¢ L 1(ﬂ,0(,p), and its expected value

18

§e00) ap(w) = $taere) .
st R

Proof of the theorem:
Denote by u the distribution of f, i.e.

M= pof;1 = p°f;11 for every ne N. Consider

2 = i .

with the product measure ﬁ on the product % -algebra Z .
With the (left) shift

T: 2 >52%
we obtain an MDS (2,% R ﬁ; T) which is a continuous version of the
Bernoulli shift on a finite set (see II.%.iii). As in (III.5.31i) we
can verify that (%, % s ﬁ; T) is ergodic, and the individual ergodic

theorem implies

:—; uE T_z‘i‘ 2:2: gi‘ dp for every ¢ L' (2,2, A).
=0

Next, denote the pr03e0t1 ons onto the i-th coordinate by
Tri : R R R

ES
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. ‘ . 1 A - i
i.e. T;{(x,)) = x;. By assumption, T e L (X,£ , @) and T, Ty = T;-

Therefore

Bi=

n-4
QeC0 ~ _ -
Z T, 2 §1ro = étdju(t)_.Efo .
In the final step we have to transfer the a.e.-convergence on ® to the

d.e.=-CcOnvergence on R

The set of all finite products IiJ Eyo T, with Osgje L ®, e, p) is
.)E-

total in (X Z. )u) by construction of the product & -algebra. On
these elements we define a mapping § by

é(Trg ==Trgj°fj-

ie3 b jed
From ( g2 o T :) da= 11 ¢ du) = Tr ( g of dp)
§ 3 ° J ” 1€3 f§~ » S
f ( Tl' g;° f. ) dp = g § ( g.of.) dp it follows that
363 3&] J J

§ can be extended to a 1inear isometry
1 2 A 1
LRz 0 — LR, A,p) .
But, § is positive, hence preserves the order structure of the L1-

spaces and by (V.D.6) the a.e.-convergence. Therefore,
-4 w-d4

1
= z é(ri) = Z £,
converge a.e. to S §(1ro) dp = Ef_ . s
11

Remark:
In the proof above we constructed a Markov shift corresponding to

p(x,4) = m(A), XeR, Leld .
References: Bauer [1968], Kolmogorov [1933], Lamperti [1977].

V. D.8 Ergodic theorems for non-positive operators:
The positivity of the operator is essential for the validity of the

individual ergodic theorem.

It is however possible to extend such theorems to operators which are
dominated by positive operators. First we recall the basic definitions
from Schagfer [19741-

TLet E be an order complete Banach lattice. T ¢ £ (E) is called regular
if T is the difference of two positive linear operators. In that case,

iTl = sup(T, -7)
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exists and the space {fXEH of all regular operators becomes a Banach
lattice for the regular norm

Il T, = izl il .
If E= L'(u) or E = L® (u) then &7(E) = L (B) and |- )= |- |_
(Schaefer 1974 ,IV.1.5). Thig yields an immediate extension of (V.3%).

Proposition 1t Tet (X, , m) be a probability space, E = L‘1 (X, & ,),‘.)
and T € £ (E). ’
If T is a contraction on L'(u) end on L™ (u), then T is individually

ergodic.

Proof:

{7 still satisfies the assumptions of (V.%), hence (V.4) and (V.5)
are valid for | Tl. But £ T < | Tl implies the analogous assertions for

T, hence T is individually ergodic. N

For 1< p<®, Wwe have ir(LP) # i(L?) in general but by similar

arguments we obtain from (V.8} 3

Proposition 2t Every regular contraction T, i.e. ﬂTHP £ 1, on an

LP-space, 1< p<w, ig individually ergodic.

References: Chacon-Krengel L19641, Gologan [1979], Krengel [1963],
Sato [1977], Schaefer [1974].

V. D.9 A non-commutative individual ergodic theorem:

L” (X, E ,m) is the prototype of a commutative W*-algebra. Without the
assumption of commutativity, every W¥-algebra can be represented as
a weakly closed self-adjoint operator algebra on a Hilbert space (e.g.
see Sakai [1971]J1.16.7). Since such algebras play an important role
in modern mathematics and mathematical physics the following generali-
zation of the Dunford-Schwartz individual ergodic theorem may be of

some interest.

Theorem (Lance, 1976; Kiimmerer, 1878):¢
Let OL be a W¥-algebra and T ¢ £ (&) a weak* continuous positive
linear operator such that T % < 1 and T, u s &4 for some faithful
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Then the Cesaro means T X converge almost uniformly to x ¢ 4 for
every x € O , i.e. for every €>0 there exists a projection p e ™
and [(T,x - x)(4 - p )l —» o.

( = strictly positive) state w# in the predual oA,.

such that u(p, )< ¢

References: Conze-Dang Ngoec [1978], Kimmerer [1978], Lance [1976],
Yeadon [1977].
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VI. Isomorphism of Dynamical Systems

In an axiomatic approéch to ergodic theory we should have defined
isomorphism, i.e. "equality" of dynamical systems, immediately after
the Definition (II.1) of the objects themselves. We preferred to wait
and see what kind of properties are of interest to us.

We shall now define isomorphism in #stich a way that these properties
will be preserved. In particular, we saw that all properties of an
MDS (X, Z , m; @) are described by measurable sets Ae¢E , taken modulo
M —nmull sets (see e.g. III.1, III.3 and V.2). This suggests that the
correct concept of isomorphism for MD3s should disregard null sets,
and should be based on the measure algebra

o
z = z/n‘ ’
where YL is the & -ideal of m-null sets in z (see App.A.9).

Consequently, it is not the point to poins map
g + X =X .

which is our object of interest, but the algebra isomorphism
v b4 =
¢ X —=> 2

induced by ¢ and defined by v

|

t\;’ﬁz ( A) forAeEe%.".
This point of view may also be justified by the following observations:
(1) LF is an isomorphism of the measure algebra § H
(i1) (X, s M3 @) is ergodic if and only if LPA = A implies
A = g or k= X.

These considerations might motivate the following definition,

VI. 1 Definition:
Two MDSs(X, Z , & 3 @) and (¥, T,w; y) are called 1somorghz.c if there
exXists a measure-preserving isomorphism @ from Z onto T such that

the diagram v
P

A 4

Te—M<

3

D<
~Fe— M«
*©x
¥

cammutes.
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While structurally simple, this definition might appear difficult to
work with, since it deals with equivalence classes of measurable sets,
But at least for those who are familiar with the "function" spaces

LP(X,E ,)u), this causes no trouble. Indeed, the measure algebra
v

v b
isomorphism (: Z =—> 2 is nothing else but the operator
. P .
II"? : L(X’i’/‘l) i LP(X_,E,/J)
induced by ¢ and restricted to the (egquivalence classes of) charac-—

teristic functions, i.e.

Ty N, = 1

¥ A ?—1(1&)

or *l-’? 1‘K"“(¥K

for all AeZ .

Conversely, every measure-preserving measure algebra isomorphism can
be uniquely extended to a linear and order isomorphism of the cor-
responding L1-spaces. We therefore obtain a "linear operator version"

of the above concept.

VvI. 2 Proposition:
Two MDSs(X, & , w3 @) and (¥, T, »; ¥) are isomorphic if and only if

there exists a Banach lattice isomorphism

v LK E,m) —> L(L,T, )

with Vv “x = "y sguch that

T
(X, €, p) s ez, m
the diagram Vi l v
L1(Y’T’\’) 7 L1(Y,‘1‘,y)
Ty

commutes.

Proof:
The (equivalence classes of) characteristic functions 1 are cherac-
terized by

rAa(n - x) = 0.
Therefore, an isometric Iattice isomorphism V maps the characteristic
functions on X onto the characteristic functions on Y and thereby in- -

duces a measure-preserving igsomorphism
hd

é : L —» ii .
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Conversely, every measure-preserving algebra isomorphism

v A
é=z—->’i‘
induces an isometry preserving the lattice operations from the sub-
lattice of all characteristic functions contained in L1(X,E:,)L) onto
the sublattice of all characteristic funections in L1(Y,W', »). This
isometry extends uniquely to a lattice isomorphism

v:tHLE, p) = T(E,T, V).

Since é determines V, and ?ff s TESD. i\ﬁ, determine I'q s TESD. T‘l’ R
(and conversely) the commutativity of one diagram implies the cormuts-~

tivity of the other. 5

Remarks:

1. The isometric lattice isomorphism V : 7! (X, Zy p) --—-)L‘I (Y, T, y»)
in (VI.2) may be restricted to the corresponding LP-spaces, 1spso
(use the Riesz convexity theorem, see - Schkefer [197{1,V.8.2).
These restrictions are still isometric lattice isomorphisms for
which the corresponding LP-diagram commutes.

2. The proposition above (as II.D.6 and V.D.6) shows that the order

structure of LP

theory. Therefore, many ergodic-theoretical problems can be treated

in the framework of Banach lattices (ége Skhaefer [19741,ch.III).

and the positivity of Ty is decisive in ergodic

In the topological case the appropriate definition of isomorphism is

quite evident.

VI. 3 Definition:
Two TDSs(X;cp) and (Y; y) are called igomorphic if there exists a
homeomorphism O : X —> Y such that the diagram

°)

Y m >

¢

bt
\

e, e ¢
v

commutes.
Note that by considering the Banach lattice (or Banach algebra) C(X)

one obtains an operator-theoretical version analogous to (VI.2).
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VI. 4 Remark (Hilbert space isomorphism):

For historical reasons and because of the spectral properties (III.4Db)
and (IX.4), one occasionally considers a concept of isomorphism for
MDSs ("speciral isomorphism"), which is defined in analogy to (VI.2),
but only requires the map

Vo LZ(X,E,/I.A) —lp LZ(Y,T,Y)

to be a Hilbert space isomorphism.

By Remark 1 following (VI.2) this concept is wesker than (VI.1). One
can therefore lose "ergodic properties" which are not "spectral pro-
perties" in passing from one MDS to another which is spectrally iso-
morphic to the first. A trivial example is furnished by ([0, 11, B ,m;id)
with Lebesgue measure wa and (N, $(), y ;id), with w(n) := 21,
These two MDSs are spectrally isomorphic but not isomorphic. The
resason is that Lz([O, 13,%,Mm) is - as a Hilbert space - isomorphic
to 12CIN) but (W, Y (®), w;id), unlike ([0, 11,®,m ;id), has minimal

invariant sets with non-zero measure.
More important examples are the Bernoulli shifts B(po,...,pk_1) which

are 2ll spectrally iscmorphie .(see VI«D.5) bub.net negessarily iso-
morphic (X1I.D.1).

This again indicates that Hilbert spaces are insufficient for the
purposes of ergodic theory.

VI. 5 Remark (point isomorphism):

For practical reasons and in analogy to Definition (II.1), which uses
point to point maps ¢ , another concept of isomorphism for MDSs is
usually considered. It is defined analogously to (VI.1) but the

measure-preserving algebra isomorphism

é : ié ‘“9’Tf
is replaced by 2 bi-measure-preserving map & : X ==Y such that the
diagram ¢
X=——>X
A | @
Y_“F—-)Y

cormmutes.
This point isomorphism is stronger thah isomorphism since @ induces
an algebra isomorphism
v b A w
~ @ : T —>Z
v -
by éES:: (9 1B) for BeT . In fact, there exist MDSs which are
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isomorphic but not pointwise isomorphic:

Take (X,Z , w3 @) with X = ix}, £= % (X), m(X) 1, ¢ =1d and
(Y, Top; v) with ¥ = $x, vk, T =4i6¢, Y}, »(¥) =1, ¢ = id.
Nevertheless, most isomorphisms appearing in the spplications and in

concrete examples are point to point maps and not only measure aslgebra
isomorphisms. For this reason we defined the concept of an MDS using
point maps ¢ : X —» X, and therefore one might prefer the concept of

"point isomorphism".

The following classicasl result shows however that the distinction
between isomorphic and point isomorphic (but not betwsen isomorphic
and spectrally isomorphic) is rather artificial. Consequently, we
shall use the term isomorphism synonymously for algebra isomorphisms

and point isomorphisms.

VI. 6 Theorem (v.Neumann, 1932):
Two MDSs on compact metric probability spaces are isomorphic if and
only if they are point isomorphic.

Proof':

Cn compact metric probability spaces every measure-preserving measure
algebra isomorphism is induced by a bi-measure-preserving point map
(see VI.D.1).

Then the cormmutativity of the diagram in (VI.1) implies the commuta-

tivity of the corresponding diagram (VI.5) for point to point maps.
[ ]

VI. 7 The isomorphism problem
is one of the central mathematical problems in modern ergodic theory.

It consists in deciding whether two given MDSs (or TDSs) are iso-
morphic. This is easy if you succeed in constructing an isomorphism.

If you don’t succeed - even after great efforts - you cannot conclude
on "non-isomorphism".

The adequate mathematical principle for proving non-iscmorphism of
two MDSs is the following:

Consider isomorphism invariants of MD3s, i.e. properties of MDS3s,

which are preserved under isomorphisms. As soon as you find an iso-

morphism invariant distinguishing the two systems they can’t be

Y
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isomorphic.

But even it is not impossible to construct an isomorphism between two
MDSs (i.e. if they are isomorphic), such a construction might be ex-
tremely difficult. On the other hand, it might be easier to calculsate
the values of all "known" isomorphism invariants. Such a system of
isomorphism invariants 1s called complete if two systems are isomorphic
as soon as all of these invariants coincide.

To find such a complete system of invariants for =21l MDSs is the dream
of many ergodic theorists. Cnly for certain subclasses of MDSs this
has been achieved (see Lecture VIII and (XII.D.1)).

vI. D Discussion

VI. D.1 Point vs. algzebra isomorphism:

The adequate isomorphisms in measure-theoretical ergodic theory are
given by algebra isomorphisms; in most but not =21l cases these algebra
isomorphisms are induced by point to point isomorphisms:
Take (X,E,/&;cp) gs in (VII.5) and (¥,T, ¥; yv) with ¥ = (R,
T =9 AciR: A or IRNA is at most countable} ,
0 if A is at most countable

v(a) = , and y = id .

‘ 1 if RN A is at most countable
Again, the two systems are algebra isomorphic, but there is no point

isomorphism inducing this isomorphism.

The difference between the two isomorphism concepts and the difficulty
in passing from one to the other can be easily explained to a funchiocnsl-
analyst familiar with the Gelfand - Neumark representation theorem and
its conseguence (II.D.5):
Let (X,Z, m) and (Y,T, y) be two (measure algebra) isomorphic
probability spaces and denote by
VL (XL,E, ) —2 LT(Y,T, ¥)
the corresponding Banach lattice (resp. Banach algebra) isomorphism
(see VI.2). Wext we assume that m 1is a regular Borel measure on the
compact space X, so that there is a canonical Banach algebra morphism
1: X)) = L® (X5, M) .
Finally we assume that (¥,T, ¥ ) possesses a lifting, i.e. there ex-
ists a Banach algebra morphism
Lt L®(LT,y) —>» N2 (LT, »),

FS
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where M® (Y, T, ¥) consists of all bounded functions in F#AY,T,¥»),
which is a right inverse to the guotient map from M* (Y, T, ») into
Lo (Y,T,v).
The composition

j = LeVei
is an algebra morphism from C(X) into M™(Y,T,» ), and its adjoint
maps the set of multiplicative linear forms cfy, ve Y, into the set of
8ll Dirac measures d,, xe X. In this way we obtain a transformation

O : Y X which is measurable and induces V.

It is not our intention to prove these statements (see for example
Tonescu Tulcea - Ionescu Tulcea t1969], ch.X), but we want to point
out that the main ingredient implying coincidence of point and measure
algebra isomorphism is the existence of a lifting. For most measure
spaces (e.g. Borel measures on metric spaces) such liftings do exist.
This justifies the tacit assumption in ergodic theory that point
isomorphism equals slgebra isomorphism.

VI. D.2 The baker’s transformation is s Bernoulli shirft:

As arnmounced in (II.3) we show that the baker’s transformstion
{ (2}(,%) if 0&3:5.%'

¢ (x,y) 1=

(2x-1,1§1 ) if %<x$1

on (L0, 112,‘6,'m) is isomorphic to the Bernoulli shift B(%,%—)
(= (X,% ,ﬁ;'c) where % = {o, 1JZ and ﬁ the product measure defined
11 .

by 2’2) ) .
Define the a-null set X in % by

X = ME)NS((X L€ 2: %= X, for all k ;n}uugm{(xk)e 2 X=X, for all kamj,
and analogously the m-null set Y < [0, 112 by

Y 2= §n.27%: keW; n = 0,...,25} x[0,1] v O, Ixin.27¥:xeN;n=0,..,3F.
Now, the mapping

©:2-X =00, 11° ~ ¥ defined by
(), 5+ (2 2% 1% , ¥ ook
X'k Z v k oy -k

is bijective and bi-measure-preserving.
Finally, it is not difficult to check that et - ¢ o » and there-

fore the two dynamical systems are isomorphic,
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Vi, D% Examples of isomorphism invariants:
In most cases, isomorphism invariants sre real or complex numbers.

For MDSs the so-called "spectrasl invarianis" sre the mosi obvious.
These are isomorphism invariants which are even preserved by Hilbert
space isomorphisms as in (IV.4). In particular we mention the set of
211 eigenvalues, the point spectrum

P 5 (Iy)

of the induced operator T‘P in LZ(X, 2,}..). Similarily, the whole
spectrum &(T¢ ) is an isomorphism invariant. Unforiunately, this in-

variant is not very useful:

Proposition: Let (X,Z, m; ) be an ergodic MDS such that LZ(X,‘Z s M)
is not finite dimensionszl. Then (;(Tq,) = [,

Proof':

In this proof we restrict ourselves to the case X = [0, 1], £ = ® the
Borel algebra and m the Lebesgue measure on X. Since T, is unitary
it suffices to thow that ['¢ &(T, ). Take Ae ! . 3y (X.D.4) for

every ne N there exists a measurable set An such that

An, cpAn,..., gpn-1An are pairwise disjoint, and such that
1 1
mL )z - —=.
n’'”n n2
Define Lz-functions et
R n-i_i
€ T Howa(a) ?;, AT, s

l-(n-l) fOI’ X& ‘-PlAn (i = O’ 1,...,1’1-1)

and_ fn(X) 1=
0 otherwise.

An easy calculation shows, that < gy fn:> = 1 for every ne®l, and

from If, Il €1 we obiain |ig, | 2> 1.

Now, "
: _ 1 n-i,i+1 _ 4n-i+1.;i
I Tq,gn-lgnll-n,mAn I, (a7, A If;)ﬂAnu
1 n+1
= 7 (ATS L™ )
nemii, { ¢ ﬁ\.n Ay
< 1mjl(---—»)oz-m(An)z - 2 3 > 0,
newm(a
newm(a )
which shows Le l';(TtP ) e [ |




Remark:

For arbitrary MDSs the proposition follows from 3chaefer [1974],
V.4.4 and Schaefer-Wolff-Arendt [1978], 2.2 .

Other well known spectral invarianis concern the asymptotic behavior
of T (e.g. mixing, see Lecture IX). But it took quite a long time
until Kolmogorov in 1956 introduced an invariant, the "entropy", which
is not a spectral invariant. See Lectures XI - XIITI.

VI. D.4 Every MDS is spectrally isomorphic to its inverse:
If (X,Z s (p) is an MDS, then
2
Tg' : LZ(X,EJ}") — L(X:i,f*)
is a unitary operator, and its specirum &(T¢y ) is either a finite

union of finite subgroups of [ or equal T (compare VI.D.3).
More precisely, if A&l is an eigenvalue of T, with eigenfunction

fet®(p), i.e.

if Tof = A-f,

then T¢f = 2-T

and Ty elm) _ (To ey o oanen) oy,

where f(o):= |tl, pln+1), gign 1 -f(n), and (sign f)(x) := %,—}(%)l—
if £f(x) £ 0 and (sign f)(x) = 0 if f(x) = 0 .

This shows that the point spectrum of T, 1is invariant under complex
conjugation and cyclic (i.e. A€ P® (T, ) implies R € P¥ (T ) and
Ae P % (Te ) implies A" ePw (T¢ ) for nel). By analogous arguments
the same holds for the approximate point spectrum A s(T¢ ).
In particulsar, we observe that T? and its inverse T;1 (= T:‘ )
possess the same eigenvalues and the same spectrum. Therefore we are
not able to distinguish between (X,Z ,mn ;) and (X, Z ,u ; ¢-1) by
using these spectral invariants. Actually, even more is true.,

Proposition 1: (X, Z,m;¢) and (X,2Z s M3 cp-1) are spectrally iso-
morphic.

Proof':
Oon LZ(X,EZ,};) we consider the conjugate linear involution
I:f =T
and observe that T¢a I=T1IeTp.
Next we apply the spectral theorem (see Reed-Simon [19721) and find an
) Lz-space H and a unitary multiplication operator Mu ! g =»ug on H
sugh that the two FDSs
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(I%(X,Z , )3T, ) and  (H;H)

are isomorphic. This isomorphism may be given by the unitary operator
V o LZ(X,Z' ,}A) —> H. On H, the complex conjugation again is conjugate
linear and will be denoted by J. Since the adjoint of M, is the multi-

plication operator Mu we obiain

_ *
JOMu = Mqu .

Al11 these relations are collected in the following commuting diasgram?
I 5 v J v¥

P () —— 15(w) — H > o > 17 ()
T‘f’ l, Te l, My l/ lMé lTLP#:TLP“"
L (u) ———— () — B ——— i — 1P

We obtalin the conclusion that
W oi= VE%Jo Vel

is a unitary operstor yielding a2 Hilbert space isomorphism between
(LQ(F); TCP) and (Lz(ﬂ); T(f'1). )

In general, 8 unitary operator U e ;[(H), H a Hilbert space, is not
isomorphic to its inverse: Take X := §z¢€?! (2] = 1, Ogarg =z 5-[1-},

H := LZ(X,L@,M) and Uf(z) := z.-f(2).
since §(U) = X but &(U* = §2 ¢ z ¢eX} , U and U¥ cannot be iso-
morphic.,
on the other hand, one sees from (VI.4) and (VI.5.2) that spectral
isomorphism is a rather wesk isomorphism for MD3s. In particular, the
spectral isomorphism of (X, Z ,m ;@) and (X,Z, m; Cf-1) does not imply
its isomorphism.
Therefore one must look for other isomorphism invariants by which one
might be able to distinguish between (X, T , M ;) and its inverse.
Unfortunately, the other important invariant besides the spectral in-
variants does not help.

Proposition 2: (X, Z , m 3 gf) and (X,Z, ;q’-1) have the same entropy!
ho (X5 @) = hy (K)o
This is proved in (XII.4.v) and leaves us with two possibilities:

either (X,Z , m; ¢) and its inverse are always isomorphic
or entropy and spectral invariants together are not a complete system

of isomorphism invariants for MDS3s.
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The examples in Anzai [1951 a,b] show that the latter case holds
(see also XIII.D.5).
References: Anzai [1951 =,b], Ornstein [1973] .

VI. D.5 Bernoulli shifts have countable Lebesgue spectrum:
If the MDS (i,%;nﬁ ;T ) is a Bernoulli shift B(po,...,pk_1) then we

are able to describe the induced operator

A A AA A
T, or P(KE, ) — AKE,E)
in terms of an adequately chosen Hilbert space basis. To this end we

consider thek-dimensional space
2
E ‘= L(%O,...,k-‘]}, (po_’o-o,pk_1)) »

and choose a complete orthonormal system fo,..., fk~1 € E with fo = 1.

The projections

T,

J : X:%O,oo‘,k‘1}z "'") %o,-lo,k“'.l}

(2i)iez > Xj
induce isometric injections
P. ¢ E 12X, 2, )
i ¢ — s & s
i b—-)fﬂ*‘ifj

satisfying ijo = ﬂﬁ .

It is not difficult to show that the couniably many functions

1
g = jeZ ijnj s
where nj = 0 except for finitely many indices, form = complete ortho-

normal system in L?'(f(, ZA'.' ,ﬁ ).
Moreover .
_ I _
Trg = Tolig Pyfa) = jeg Pyeafn, o
which shows that the basis in Lz(ﬁ,i ,)’i) may be wriitten in the form

i .
-iho, Tt hm P ie Z, meJl\I}
where TT ho = ho = ﬂi .
The property of an MDS of having an Lz-basis as above is expressed by

saying that it has countable lLebesgue spectrum. Clearly, for any two
MDSs with countable Lebesgue spectrum the FD3s induced on the cor-
responding L2-Bpaces are isomorphic. In other words, we have the

following result.
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Proposition:
(i) Any Bernoulli shift has countable Lebesgue specirum.

(ii) Any two Bernoulli shifts are spectrally isomorphic.

The statement (ii) indicates that spectral invariants are very incom-
plete. Compare (XII.D.1).

Exercise! Show that an MDS with countable ILebesgue spectrum is strongly
mixing.

References: Helson-Parry [1978], Rohlin [1967]1, Walters [1975].

VI. D& Prom an MDS to z TDS - the Stone space of the measure algebra:

Since every TDS possesses at least one invariant measure (see App.S.1)
it can be viewed as an MDS. We now associate to every MDS a suitable
TDS. More precisely: Given an MDS (X,E , u3 ¢) we construct an iso-
morphic MDS (X1, z1,,u1; c(1) such that (X1;¢1) is a TDS.

First we investigate the "static! situastion and consider T°(X, % ,)\)
as a commutative C*-algebra (resp. a8 an AM-space with unit). From the
Gelfand-Neumark theorem we know that there exisis a compact space e
such that L™ (X,& ,#) is isomorphic to G(}\E) (see App.C.9), The ad-
joint of this isomorphism transporis the positive linear form M on
L®(X,Z , #) to a Radon measure ﬁ e G(X)! which corresponds to a
regular Borel measure, still denoted by ;1 » on the Borel algebra

B of X. Since the 1somorphlsm from L* (X,Z ,}x) to ¢(X) extends to an
isometric isomorphism from L (X, €, ) to L (X,B,/u), we conclude by
(VI.2) that the probability spaces (X,T, m) and (X, ,/u) are iso-
morphic.

Another characterization of X avoiding the use of the Gelfand-Neumark
theorem is possible?

Consider the measure algebra Z t= Z/n (see App+A.9) which is =
Boolean algebra. By the Stone representation theorem (see Halmos [1974],
p.78) there exists a unique compact space Xy such that i is isomorphic
to the Boolean algebra of all open-c]osed subsets of Xg . The compact
space X ¥ is called the Stone space of i s and one can prove that

X and X§ are homeomorphic.

For & more detailed analysis of X we return to the functional analytic -
approach via Gelfand-Neumark and recall that L% (X, % s ) 1s isomorphic ..
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to C(}%).

Lemma *

(i) ¥ is extremslly disconnected, i.e. the closure of every open set
is open.

(ii) The x -null sets in X are precisely the nowhere dense subsSets
of X.

(11i1)L™ (X, @ ,/u) 13 canonlcally isomorphic to C(K), i.e. every equi-
valence class € L°°(X, ,)u) contains exactly one continuous
function £ e ¢(X).

Proof':

(i) ©L°(X,£, m) and hence G(X) is an order complete Banach latiics,
and the assertion follows from Schaefar [1974], II.7.7.

(ii) This surprising coincidence is due to the existence of the strict-
1y positive and order continuous linear form m on L7(X, Z ,/u.),
resp. )u. on G(X):

Tet N be a closed subset of X having empty interior. Since e is
extremally disconnected, we obtain
0 =inf § 1, : N¢ & open-closed }
eand therefore X(@) ¥ A(N) =
On the other hand assume }‘Z(B) = 0 for some Borel set Bc }‘E.

Since 4 is a regular Borel measure, there exists a decreasing
sequence (U,) of open sets containing B and such that

lim ):.(U ) = 0. But from the order continuity of X on C(X) it
Wpoo

follows that /b’t(U ) = /“(Un)’ whers Un is open and closed.

Obviously B, i= ho U contains B and is closed. It remains to
N

observe that B is nowhere dense: :
Assume @ £ @ < B for some open-closed set ¢ . The strict posi-
tivity of }1 implies O < /11((3') sﬁ(B) £ JK(Un) which is =
contradiction.

(iii)For characteristic functions 1|B, Bef , this has been proved in
(ii). But this alresdy implies the assertion since these functims
are total in 1% (}V(, ‘6,}1 ). s

Remark:

The surprising fact expressed by the previous lemma is the complete
coincidence of measure-theoretical and topological concepts in the
Stone space X of = probability space (X, Z ,/u.). For instance, (ii)
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A4
asserts that a set is topologically small (=nowhere dense) in X if and
only if it is measure-theoretically small (= f-null set). This is far

from true for arbitrary Borel measures on arbitrary compact spaces.

After these preparations it is quite easy to obtain the desired iso-

morphism for dynamical systems.

Theorem:

Tet (X, Z , m; ¢) be an MDS and (i,x&,)ﬁ) the probab%lity space con-
structed sbove. There exists a homeomorphism ¢ on X such that
()v(,b,}i;\y) is isomorphic to (X}Z,/u;(f).

Proof:

Ty 1is a Banach algebra 1somorphnsm on LY (X, 2 s o) end yields a Banach
algebra 1somorphlsm i on C(X) As shown in (II.D.5) there exists =
homeomorphism y ¢ X —> X such that Tf = foy for fe G(X). Obviously,

¢ leaves invariant the measure}f . Then the desired isomorphism fol-
lows from (VI.2). »

Finally we return to s question alresdy posed in (II.D.6):

Let (X, & » ) be a probability space and consider an FDS(L (X, ,m)3T).
For which operators T is the FD3 (L ()..) T) induced by an MDS 2

It is clear that T must be a Banach lattice isomorphism satisfying

T4 = 4 and P9 = 1, but if the measure space is pathological
these conditions are not sufficient (see VI.D.1).

By the "Stone space!" construction we may circumvent these difficulties.

Corollary:
Iet T be a Banach lattice isomorphism on LP(X,Z s M )y 1eps «© , satis-
fying T1 = 14 and T 1t = 1. If X is compact and C(X) is canonical~

ly isomorphic to L™ (X,Z, m), then T is always induced by a bi-measwre~
preserving homeomorphism ¢ : X = X .

References: Halmos L19741, Nagel [1973bl, Semadeni [1971],
Schaefer [1 974] .
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VII. Compsct Operator Semigroups

Having investigated the asymptotic behavior of the (Cesaro means
n~1

and having found convergence in many cases, we are now interested in

the behavior of the powers
T

of T (= Tf ) themselves. The problems and methods are functional-
analytic, and for a better understanding of the occuring phenomena

the theory of compaci operator semigroups ~ initiated by Glicksberg-
de Leeuw [1959] and Jacobs [1956]- seems to be the appropriate frame-
work.

Therefore, in this lecture we present a brief introduction to this
field, restricting ourselves to cases which will be applied to messure-~
theoretical and topological dynamical systems.

In the following, a semigroup S is a set with an associative multi-
plication

(tys) ——> t+s .
However such objects become interesting (for us) only if they are

endowed with some additional topological structure.

VII. 1 Definition:
4 semigroup S is called a semitopological semigroup if S is a topolo~

gical space such that the multiplication is separately continuous on
3xS. Compact gemigroups are semitopological semigroups which are

compact.

Remark :

This terminology is consistent with that of App.D, since every com-
pact (semitopological) group has jointly continuous multiplication
(see VII.D.6) and therefore is = compact topological group.

For a theory applicable to operators on Banach spaces, it is important
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to assume that the multiplication is only separately continuous (see
App.B.16). But this is still enough to yield an interesting structure
theorem for compact semigroups. We present this result in the commuts~
tive case and recall first that an ideal in a commutative semigroup 3
igs a nonempty subset J such that SJ = {st t 5€3, t eJ} C d.

ViI. 2 Theorenm!
Every commutative compact semigroup 5 contains s unique minimal ideal
K, and K is a compact group.

Proof':
Choose closed ideals 51,...,Jh in S. Since

n
B # J 050000, & Q Ji s

we conclude that the family of closed ideals in S has the finite inter-~

section property, and therefore the ideal

X = f’} {J : J closed idezal in S}

is non-empty by the compactness of S. By the separate continuity of

the multiplication, the principal idesl Ss = 83 generated by s €3 is

closed. This shows that X is contained in every ideal of 3.

Next we show that K is a group: sK = K for every s €K since XK is mini~

mal, Hence there exists qeX such that sq = s. Moreover for any r eX

there exists r'e€ K such that r's = r. This implies
rq=mrisqg=r1rls=1r,

i.e. g is & unit in K. Again from sK = K we infer the existence of

t (= s~1) such that st = qs

Finally, we have to show that the multiplication on a compact semi-

group which is algebraically a group is already jointly continuous.

As remarked above, this is a consequence of a famous theorem of Ellis

(see VII.D.6) . g

By the above theorem, in every compact commutative semigroup S we have
a unique idempotent g, namely the unit of K, such that

K= ¢gS
ig an idesl in S and = compsact group with unit q. Now we will apply
this abstract result to semigroups generated by certain operators on
Banach spasces. The situations which occurred in (IV.5) and (IV.6) are

the main applications we have in mind.

ES
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VII. 3 Lemma: Let (E;T) be an FD3 satisfying
{'I‘nf ''n ]N} is relatively weakly compact

(%)

for every f€E .

Denote by j’:: iT“ : ne]IT‘E the closure of -[I‘n : n&]N} in J(E) with
respect to the weak operator topology. Then P and its closed convex
hull co¥ are commutative compact semigroups.

Proof':

Multiplication is separately continuous for the wesk operator topology
(see App.B.16), hence {?n :rleﬂ{}is a commutative semitopological
semigroup in JF(E). It is remarkable that separate continuity is suf-
ficient to prove that its closure is siill a semigroup and even com-~
mutative. We show the second assertion while the proof of the first

is left to the reader.

From the separate continuity it follows that operastors in ;f eommute

with operators in {77 : nem} . Now take O # R,, R,ef, f€E, f'¢E'

and € >0. Then there exists R € {T° : n&N] such that
€

l<(R2 - R)f,fl>, & m and
R - i < £
l((R2 R)R L, & s .

Therefore we have
- ! = - - ! P
IK(R4R, ~ RyR)E,EM = I((R1R2 2R + RR, =~ R,R L, O] &

IKRy(Ry, ~ RIE,E'D] + (&~ RORLED] £ €
which implies R1R2 = RZR‘I .

Finally, the condition ( %) implies that f is compact in c‘QDW(E)
(see App.B.14).

Since the closed convex hull of a weakly compact set in E is still
weakly compact (see App.B.6), and since the convex hull co) is a
commutative semigroup, the same arguments as above apply to ng ‘m

Now we apply (VII.2) to the semigroups ¥ and cof . Thereby the semi-
group co¥ leads to the already known results of Leciure 1V,

ViI. 4 Proposition? o
Let (E;T) be an FDS Satisfying (% ). Then T is mean ergodic with cor-
responding projection P, and {P} is the minimal idesl of the compact
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semigroup co {Tn: n&]No}.

In particular, E=F & Fooo»

where F = PE = {féE : If = f}

and F, += P7(0) = TTd - DE = {r €E: 0eoo {r: nelvo]}.
Proof':

The mean ergodicity of T follows from (IV.4.c), and TP = PT = P (see
IV.3.1) shows that {P} is the minimal ideal in E{I’n2 neiﬂ'é} « The
remaining statements have already been proved in (IV.3), except the
last identity which follows from (IV.4.d). »

Anslogous ressoning spplied to the semigroup
P:= {P :new c (5)

yields another splitting of E into T-invariant subspaces. The main
point in the following theorem is the fact that we are again able to

characterize these subspaces.

VII. 5 Theorem: gt (E;T) be an FDS satisfying (% ). Then there exists

a projection

Qe ¥ = nenm?
such that X :=QqYF
is the minimal ideal of :f and a compaci group with unit Q.
In particular, E=G@ Gy »
where G = QF = 1lin {feE: Tf = Af for some Ael, IA] = 1}
= o~1(0) = : . S(E,E')
and G, :=Q ' (0) = {res: o e {Trmer ™
Proof':

(VII.2) and (VII.3) imply the first part of the theorem, while the
splitting E = G @ G, = QE (<) Q"1(0) is obvious since Q is a projec~
tion.

The characterizations of Q"1(O) and QE are given in three steps:

- . - oy’
1. We show that Q" (0) = {rem: oe {r'f: nemw ] f
Since for every f€ E the map S +»Sf is continuous from Qow(E) into B

and since Q is contained in ,)°, we see that Qf = 0 implies
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2,

e

Dﬁ{Tpf: nemo}. Conversely, if O € -[Tnf: nG]No‘}, there exists an ope~-

rator R in the compact semigroup Y such that Rf = 0. A fortiori
QRf = 0 sand Qf = RIQRf = 0
where R! is the inverse of QR in the group X = QJ.

Next we prove that
AQE < H := Tﬁ{feE : Pf = AFf for some ],\l=1} .
Denote by KX the character group of X and define for every charac-~

A
ter gre.’R the operator Pa,, by
Py (£) i= iﬁ'ﬂs Sf am(s) , f&E.

Here, m is the normalized Haar measure on K , and the integral is
understood in the weak topology on E, i.e.

(P},f,f'> = ¥(3) <sf,£'> am(8) for every f'e E'.
Pr(f) is an element of the bi-dual E" contained in

co { {5y +sf: seX} .
However by Krein’s theorem (App. B.6) this set is &(E,E')-compact
and hence contained in E. Therefore Pr is a well-~defined bounded

linear operator on E.
Now take Re X sand observe that

RB,(£) = R(J, FIET 82 am(5) - XRW RSf dm(S)
= ¥(R) Lm RSf dm(RSY) = a"'(R) Pr(f) for every feR,
i.e.) RPr, = P&"'R = r(R) Pav .
For R := TQ we obtain TP&" = TQPJ., = )‘(TQ)P‘T, and therefore Pr(E)c:H.

The sssertion is proved if we show that QE C 1in U{PrE: y—eﬁ_g
or equivalently that  {BE : peR] is total in QE.

Take f'€ E! vanishing on the above set, ji\'e’ such that

L?‘(ﬁ‘ ¢SE,E'y dam(S) = 0 for a1l J€X and all £ eE. Since the
mapping S y——) £Sf,f!'y 1is continuous, and since the characters
form a complete orthonormal basis in LZ(:R sm) (see App.D.7) this
implies that <S8f, f!'» =0 for 211 S€R . In particular, taking
S = q§ we conclude that f! vanishes on QE.

Finally, we show that He QE. This inclusion is proved if Q, the
unit of X , is the identity ope‘;ator' on H.

Every eigenvector of T is also an eigenvector of ™ and hemce an
eigenvector of ReY . Now take £330 and a finite set

$ i= (f1:-'°: fn)

of normalized eigenvectors of T (and R) with
Rfi‘:Ai fi, ,Ai‘ - 1 s 1-4-3'.5-1’1.
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By the compactness of.I‘n the torus P we find méN such that
, 11 - /\i‘ £ € =and consequently
“Rmfi - f;lig € simultaneously for i = 1,..., n.
This proves that the set

Af:s : {R€.3( : |zr ~ £I<e for fﬁ':F}

is non~empty and closed. By the compactnegs of X we conclude that

Q A ¢ £ @, i.e. }{ contains an element which is the identity
?
]

operator on H. Since Q is the unit of X is must be the identity

n -
on H n

The minimal ideal R of ¥ in the sbove theorem may be identified with
a group of operators on H = Iin -fféE: If = Af for some JA| = 1]
which is compact in the weak operator topology and has unit Q = IdH.
Moreover, the weak and strong topologies coincide on the one~dimen~
sional orbits P for every eigenvector f. fherefore the group K is
even compact for the strong operator topology.

Operators for which H = £ (and therefore § = IdE and J =X ) are of
particular imporitance and will be called "operators with discrete

spectrum'.
The following is an easy consequence of these considerations.

VIIL. 6 Corollary: For an MDS (E;T) with ]]‘In"éc the following properties

are equivalent:
(a) T has discrete spectrum, i.e. the eigenvectors corresponding to

the unimodular eigenvalues of T are total in E.
(p) Y -{Ip: neEo}C—Iw(E) is a compact group with unit Idp -

(¢) F

The following example is simple, bul very instructive and should help

{I’n: nemo}c.,fs(E) is a compascit group with unit IdE .

to avoid pitfalls.

VII. 7 Example: Teke the Bilbert space 12(2) and the shift

To(x,) > (x,,4) .
Then {In :né Z} is a group, its closure in iw(lz(z)) is a compsct
semigroup with minimal idezl :K = {O} .

ES
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VII. 8 Programmatic remark:?

f = {T; H ne]NO}

in iw(LP(X,f ,/u.)), 1&£p&® , gppearing in (measure~theoretical)

The semigroups

ergodic theory are compact and therefore yield projections P (as in
VII.4) and Q {2s in VII.5) such that
Iaz2 Q»P2 1@ 1 ,
where the order relation for projections is defined by the inclusion
of the range spaces. While we have seen in (IV.7) that "ergodicity"
is charscterized by P = 1 @ 1 we will study in the subsequent lec~
tures the following '"extreme" cases:
Tecture VIII: Id =
Lecture IX:@ Iida »

1@1 ,
1®1 .

Il

> P
= P

Q
Q

VII. D Discussion

VII. D.1 Semitopological semigroups:
Cne might expect that semigroupsS ~ if topologized -~ should have

jointly continuous multiplication, i.e.,

(ty8) > t+ s
should be continuous from Sx S into S. In fact, there exists a rich
theory for such objects (see Hofmann-Mostert [1966]), but the weaker
requirement of separately continuoms multiplication still yields inter-
esting results as (VII.2) (see Berglund-Hofmann [1967)) and occurs in
non~trivial examples:

ZU{QI of (Z,+) is a semitopologi~
® for every a2€ 3. But the addition ¢

The one point compactification 3

cal semigroup if a +® = ® + a
is not jointly continuous since

G=gi}'m’(n+ (-n)) #gignan+gii_.,n3(-n) = 0.

Obviously, the minimal ideal is K = {ool .

VII. D 2 Wesk vs. strong operator topology on iﬂEg:
In ergodic theory it is the semigroup {Tn‘ nsINo‘i- Ted(8) and E
a Banach space -~ which is of interest. In most cases this semigroup

1s algebraically isomorphic to the semigroup N,. But since our inter-
est is in the asymptotic behavior of the powers ™ , we need some

i
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topology on 2 (E). If we choose the norm topology or the strong
operator topology, and if M} éc)ﬁhcn‘[l‘nt ne]NQZ and {I‘n: nel,}

become topological semigroups with jointly continuous multiplication.
Unfortunstely, these topologies are too fine to yield convergence in
many cases. In contrast, if we take the weak operastor topology, then

-{I'n nG]I\IO'S hes only separately continuous multiplication, but in many

cases (see IV.5, IV.6 and VII.3) it is compact, and convergence of i
or of some subsequence will be obtained. The following example illu-

strates these remarks:

Take E = 12(2) and T the shift as in (VII.7). Then ™ does not con-
verge with respect to the strong operator topology (Proof: If ™f con-~
verges, its limit must be & T-fixed vector, hence is equal to 0, but

Il = I‘Iﬂfﬂ.), but for the wesk operstor topology we have lima ™ = 0.
n~»

The fact that the multiplication is not jointly continuous for the

operator topology may be seen from

0= 1im T « lim '™ ¥ 1im (2.2 %) = 1d.
Tie) n =% Ny

VII. D.3 Monothetic semigroups:

The semitopological semigroup
F - {M:nen}] a X (5
generated by some FDS (E;T) contains an element whose powers are dense

in Y . Such an element is called generating, and the semigroup is
called monothetic. We mention the following examples of monothetie

semigroups?

(1) The set S = {2_n : n&N} and its closure S = {Zhn: nsﬂgvioj,
endowed with topology and multiplication induced by R, are the
simplest monothetic semigroups.

(ii) The unit circle " is s (compact) monothetic group, and every
a&l’ which is not a root of unity is generating (see III.8.iii).
(1ii) The n~torus r'n, neélN, is a (compact) monothetic group, and
a = (a1,...,an) € r'n is generating iff {a.I,...,anx is linearly
independent in the Z-module r' (see App.D.8).

(iwv) S = rU{n—;l— eni : n&JN}, i2 = ~1, is a compaci monothetic
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semigroup for the topology induced by €, the canonical multipli-~

cation on F s

for n, meN

n+1 ni  m+1 mi ., nim e(n+m)i
n m T n+m

and % enl-x— = ).l-. n;l_1 et i r'.em‘ for neN, x-ef'.
The element 2e™ is generating (compare Hofmann-Mostert [1966],
p-T72).

VII. D.4 Compact semigroups generated by operators on LP(X,Z‘,A.),
1&£p £ 0 @

The operators T)’ : Lp(X,z ,/'») — LP(X,Z,/A-) appearing in the
ergodic theory of MDS‘S(X,E,/L\; ¥ ) generate compact semigroups which
will be discussed now in more generality. To that purpose, consider
& probability space (X,S,/u.) and a positive operator

T LN, ) = (X, T, )
gatisfying T1 % 1 and e & 1. By the Riesz convexity theorem (see

Schaefer 1974 , V.8.2) T leaves invariant every LP(/.\), 14 p<ao , and
the restrictions

Tp ! LP(K,S J/‘\) — LP(X:Z:/L)
are contractive for 14 p<£ e . The semigroups
:fp i= ‘ITS : neINol
in iw(LP(/A-)) are compact for 1€ pg oo : if 1< p<g o , argue as in

(IV.5); if p = 1, as in (IV.6). Moreover, it follows from the dense-~

ness of L% (/u\) in LP(/A.) that 21l these semigroups are algebraically
isomorphic, and that all these wesk operator topologies coincide (use
App. A.2)., Therefore the compact semigroups generated by T in LP(/A-)

for 14p&s will all be denoted by J’ .

Irf L1 (/;.) is separable we can find a sequence ‘{xn: nem} of charact~

eristic functions which is totzal in L1 (/A»).

The seminorms

po,m(®) = KR, X . rE X(l(m)),

induce a Hsusdorff topology on f weaker than the wesk operator topo-~
logy. Since Y 1is compact, both topologies coincide, and therefore

f is a compact metrizable semigroup.

FS
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VII. D.5 Operators with discrete spectrum:

Clearly, the identity on any Banach space has discrete spectrum.
More interesting examples follow:
(i) Consider E = C([?) and T := T?a for some rotation

fa :z Py az.
The functions £, : z » z? are eigenfunctions of T for every ne 2
and are total in C(r') by the Stone-Welerstrass theorem. There-
fore, T has discrete spectrum in ¢(f?).

(ii) The operator Ty, induced on Lp(f',B,M), 1€ p<€®® , has dis-
crete spectrum since it has the same eigenfunctions as the ope-
rator in (i) and since C(f?) is dense in Lp(/a) for 1¢p <o .,

(iii)Analogous assertions are valid for all operators induced by any
rotation on a compact abelian group (choose the characters as
eigenfunctions), and we will see in Lecture VIII in which sense
this situation is typical for ergodic theory.

(iv) There exist operators having discrete spectrum but unbounded
powers:

For n3 2 endow Ey:i= ¢® with the norm
n(x1, .,.,,J_:n)ﬂ t= max -[(n+‘|—i):I Izl 2 1% ién}
and consider the rotation operators
S : E : LI ] ® ¢ o0 -
(n) 1‘1—’ En (X.], ) Xn) 4 (Xn: X1s ’ Xn_1)
Every S( )? n g2, has discrete spectrum in E . An easy calcula-
tion shows that IS )" £ 2 and sup{ﬂs(l)". 1;21 "S(n)
for all ne 2. How, take the 1 ~direct sum E := n?z E‘n and

Clearly ﬂTll =1 + 1 for every 1€, but T has discrete spectrum

in E.

VII. D.6 Semitopological vs. topological groups (the Ellis theorem):

In the remark following Definition (VII.1) we stated that a semi-
topological group which is compact is a topological group. Usually

this fact is derived from a deep theorem of Ellis [1957], but the
proof of the property we needed in Lecture VII is actually quite easy

- at least for metrizable groups.
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Proposition: Tet G be a group, O a metrizable, compact Hawsdorff
topology on G such that the mapping
(g,h) +=» gh ¢t Gx GG
is separately continuous. Then (G,®&) is a topological

group.

Proof:
Suppose that the multiplication is not continuous at (s,t) €& GxG.
Then there exists € »0 such that for every neighbourhood U of s
and V of ©

£ £ d(st,sUtV)

for some suitable (SU,tV) e UxV, and 4 (*,+) a metric on G generating

O . Since multiplication is separately continuous there exists a
neighbourhood Uo of s and Vo of t, such that

d(st,s't) £ &4 for every s'e€ U, ,
and

d(sUOt,sU ) & €/4 for every t'e Vo

o]
From this we obtain the contradiction

€ & d(st,s; Tt )

’UOVO

t ) & &,.

& d(st,s_ t) + d(s_ t,s
(,U) (U’Uovo

o o

Therefore the multiplication is jointly continuous on G.

It remains to prove that the mapping g r-)g_1 is continuous on G.

Take: g &€ G and choose a sequence (g contained in G such that

n)nd-IN

lim g, = g. Since (G,0) is compact and metrizable, the sequence (g_1)
N n

. . -1 _
has a convergent subsequence in G. Thus we may assume that nl.;lné g, = h

for some h € G. From the joint continuity of the multiplication we

obtain

thus h = g_1, which proves the assertion. n
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VIII. Dynamical Systems with Discrete Spectrum

As announced in (VI.7), in this lecture we tackle and solve the iso-
morphism problem at least for a subclass of MD8s: If (X,E,/-t; P) is
ergodic and has "discrete spectrum", then the eigenvalues of I'r are

a complete system of invariants.

Before proving this statement let us say a few words about the hypo-
thesis we are going to make throughout this lecture. In particular,
we have to prepare ourselves to apply the results on semigroups of
Tecture VII to the present ergodic-theoretical situation.

Tet (X,E ,/M ;'f) be an ergodic MDS. As usual we consider the induced
operator T := Tf [ X(Lp(/«.)), 1£p <& , and also the compact
abelian semigroup

S = nemO} c ;fw(LP(/A)) (see VII.D.4).
3ince Y is ergodic, the corresponding mean ergodic projection P is of
the form

P = 1® 1 & co f (see IV.T7).

since J is compact, there exists another projection

2e ¥y
such that Q¥ is a compact group (see VII.5). In contrast to Lecture
IX we reguire here that Q is much "larger” than P or more precisely

Q = 1Id,
i.e. :f is a compact group in fw(}f-.-p(/.\)) - or iS(Lp(/H-)), see VII.6e=
having the operator Id as unit. In other words, we assume that
(K,Z,/a; \f) is ergodic and has discrete spectrum, i.e. T‘f has dis-
crete spectrum in IP(X, % M )s 1£p<ee . Under these assumptions we
seek a complete system of isomorphism invariants.

It is helpful to start with the analogous problem for TD3s. We there-
fore assume that (X;\f) is & minimal TDS, and that T'f has discrete

spectrum in C‘I«‘(X)' The following example shows that such systems
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appear quite frequently and are of some importance.

VIII. 1 Example:?
Tet G be a compact group. If G is monothetic with generating element

geG (i.e. -[gn: neﬂol is dense in G, see VII.D.3), then the rotation
ot ‘= is minimal.
ot g jé m

Moreover, every character atea igs an eigenfunction of T? because
Tgy YB) = FEn) = pR) s )

for every heG. Since the product of two characters is still a charac-

ter and since the characters separate points of G (see App. D.7) it
follows from the Stone-Weierstrass theorem that Tt& has discrete

spectrum in G(G).
Conversely, the following theorem shows that fthe example above is

typical.

VIII. 2 Theorem:
Tet (Xh‘r) be 2 minimal ID3 such that Pf has discrete spectrum in

C(X). Then it is isomorphic to a rotation on a compact monothetic

group .

Proof:
From (VII.6) it follows that the induced operator T := Tf in C(X)

generates a compact group
5 = {1 neml & 2 _(0(x).

We shall show that (Xg'f) is isomorphiec to (g ;5 Rot T).
The operator T is a Banach algebra isomorphism of C(X). Since f& is a

group, the same is true for every S € % . Therefore there exist homeo-

morphisms
Y5 @ XX
gsuch that 3f = f e ‘fs for every Sé%, feC(X),
and 75152 = ‘fs1o TSQ for 51, sze% (see II.D.5).

Choose xoe X and define
G: S—-—)be @(S): TS(XO) for Se%.

This map yields the isomorphism between (i}; Rot T) and (X;'r):

It
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(1) @ is continuous: If the net (Sd)
operator topology, then
f (@(S,L)) = Sy f(x ) converges to Sf(x ) = £(B(s))
for every f& C(X). But this 1mplles that (@(S())
to @(b) in X.
(2) @ is surjective: @ (qa,) is a closed subset of X which is Y-in-
variant. From the minimality it follows that @((&) X

(3) @13 injective: If @(,:: ) = @(S ) for S % conclude
that TS xo) = ‘fs (xo) or ‘fs s, (x ) = X,

T4~ (‘fn(x )) = Yn('f (x )) = ¥7(x,) for all neN.
2

oleh converges to 5 in the strorg

o e A COBVETZes

Again from the minimality of f it follows that -{\f (x ) nemg
is dense in X, and therefore that ‘fb = id; or 5, = 8, .
2 1
(4) The diagraem ?
X —— X
GT T@
Rot T

%

copmutes:

For Se% we obtain T(@(S)) = Opslx)) = B(1s). g

As an application of this representation theorem we can solve the
isomorphism problem for minimal TD3s with discrete spectrum.

VIII. 3 Corollary:
(i) For minimal TD3s with discrete spectrum the point spectrum of

the induced operator is a subgroup of the unit cirecle r', and
as such a complete isomorphism invariant.
(ii) Let r'o be an arbitrary subgroup of [? and endow Po with the

discrete topology. The rotation on the compact group
Fa)

G = ]"0
py the character id :tA—A on r‘o is (up to isomorphism)
the unique minimal TDS with discrete spectrum having r'o as

point spectrum,
Proof:
(1) In (IIT.9) we proved that for a minimal TDS (X;‘,D) the point

spectrum PG"(TT) of the induced operator TT is a subgroup of
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r’. Now consider two minimal TDSs (X1;‘f1) and (Xe;'fz) having discrete
spectrum such that P& (T 1’1) = PG (T 7"2)' By (VIII.Z),(X1; \f_]) is
isomorphic to a rotation by a generating element on a compact group

(G‘l; Ta)’ and analogously (Xz; ‘f2) e (G25 ‘fb). The next step is
A

to show that the character group GJI is isomorphic to PG (T Ta):

A
Every 3 e G, is a continuous eigenfunction of T'fa with corresponding

eigenvalue Y(a). It is easy to see that
6 : * — Ya)
N
defines a group homomorphism from G_I into PG-(T‘fa)' Purther more,

® is injective since h(a) = }"Z(a) implies that )‘i(an) - n(an)
for every ne€Z, hence )ﬂ:'= ¥, for (continuous) characters eh 3"2

The map ® is surjective since to every eigenvalue A e Pg (T Ta)
there corresponds a unique eigenfunction f € C(G1) normalized by
f(a) = )\(see II1.9). By induction we obtain

f(anH) - T‘faf(an) - /\f(an) - )\n+‘|

for 211 nelV, and by continuity we conclude that f is a character on
G, with () = A .

Pa)
Therefore, G, igs isomorphiec to PG(T‘fa) = Pg (T ’f‘l)’ and analogously
;v . - . - 7
G, = PG’(T\Pb) = PG‘(T»lp_I). From P& (T 9,) = PS(T )’2) and
Pontrjagin’s duality theorem (App.D.6) we conclude G1 x G2 .

Finally, identifying G_I and G, we have to prove that

(G1; \fa) = (G1; fb) where a and b are two generating elements in G‘I
such that P& (T Ta) = PG‘(T‘Pb).
For Ae PG“(T.ra) there exist unique eigenfunctions fj for Tfa’
resp. gy for T4, normalized by f) () = A , resp. A () = N .
The mapping f)\—b gy * A€ P&(T fa), has a unique extension to a
Banach algebra isomorphism V on C(G1). Clearly V°T'fa = Tpy° ¥,

o~
and therefore (G1; fa) = (G2; ‘f’b) by (VI.3).

(i1) By (i) it remains to show that PGQ(T p. )
from (App.D.6): A A
¢ = I

i

fr . =

o

PE(Tyi4) <

-104%-

F’O. But this follows

s R e oot




We have seen that the classification of minimal TDSs with discrete
spectrum reduces to the classification of compact monothetic groups.
The tori ['", neN, yield the standard examples (see VIII.D.2).

In the second part of this lecture we return to measure-theoretical
ergodic theory, and we can use (VIII.2) in order to obtain a solution

of the analogous problem for MDS3s.

VITl. 4 Theorem (Halmos-v.Neumann, 1942):

et (X,Z ,m;¥ ) be an ergodic MD3 such that I'f has discrete spec-
trum in LP(X,.'Z ,/M), 1€ p<oo . Then it is isomorphic to & rotation on
a compact monothetic group endowed with the normalized Haar measure.

Proof:
If fe LP(/V\) is an eigenfunction of T := Tf for an eigenvalue A ,
IAl = 1, we conclude that
TIfl = JTf] = JAlIE) = If] = c-1
since Y 1s ergodic (see I1I.4). Therefore, the linear span of

{re LP(/u,) : Tf = Af for some I|A]l = 1§
is a conjugation-invariant subalgebra of L®(m), and its closure in
Lw(/u.), denoted by Q. , is a commutative C*-algebra with unit.

By the Gelfand-Neumark theorem (App.C.9) there exists an isomorphism

j rA——>c(¥)
for some compsact space Y.

The restriction of Ty to Q is an algebra isomorphism on Q. Mmere-

T on C(Y) is induced by some

fore, its isomorphic image jel‘r o 3§
homeomorphism ¥ : ¥ -~> Y.
Next we show that (Y; W) is a minimal TPS with discrete spectrums:
Ty has diserete spectrum in C(Y) as Tf has in Q.. Therefore, I'g is
mean ergodic by (VII.6) and (IV.4.c). Thus the fixed space of Ty in

Q ) and therefore of Ty in C(Y) is one-dimensional. Since
(the restriction of)/A— is a striectly positive, I'.f —-invariant linear
form on ., we obtain a strictly positive, Y -invariant probability
measure/\i on Y. Hence the minimality of (¥; Y ) follows from (IV.4.e)
and (IV.8).
Now we can apply Theorem (VIII.2) to the TDS ("}_’;\Y) and obtain a
homeomorphism

®: ¢ —s7,

where G is a compact monothetic group with generating element a,
making commutative the following diagram:
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P
W
O

Jv T v
C(Y) b4 > C(Y)
T T
ev A\ o
c(a) » C(&)
Rot &

where (Rot a)f(g) = f(ag) for f eC(aq).

But Cl, C(Y) and C(G) are dense subspaces in LP(X, ,/k), o (Yﬂ/“)

and L (G,m) respectively, where m is the Hear measure on G. From the
construction above it follows that J/ﬁk /M. Since m is the unlque
probability measure invariant under Rot a, we also conclude Tb =j1 .
Therefore we can extend j and Tg continuously to positive isometries
(hence lattice isomorphisms, see App. C.4) on the corresponding
LP—spaces. Obviously, the same can be done for T, , Ty and Rot a.

Finally, we obtain an analogous diagram for the L?—spaces, which
proves the isomorphism of (X, 2,/&;]") and (G,8, m; Rot a) by (VI.2).

As in the topological case we deduce from the above theorem that
ergodic MD3Sg with discrete spectrum are completely determined by their

point spectrum.

VIII. 5 Corollary:
(i) PFor ergodic MDSs with discrete spectrum the point spectrum of the

induced operator is a subgroup of [7 and as such a complete iso-
morphism invariant.

(ii) Let I“; be an arbitrary subgroup of r1 and endow ’1; with the
discrete topology.
The rotation on the compact group

G = r’

)
with normalized Haar measure m by the character id : Ar— A on
[10 is (up to isomorphism) the unique ergodic MDS with discrete

gspectrum having point spectrum rﬂ;.
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VIII. D Diseussion

VIII. D.1 Rotations on the circle:
The simplest non-trivial examples of ergodiec MDSz having
discrete spectrum are the rotations

Té !z az

on the unit cirele [T for a &l , & not a root of unity.
Their point spectrum is the group {an= aE Z}, hence always isomorphic
to Z. But two rotations (F',G s, M3 fa) and (r’,ZB, m; )’b) are iso-

morphic if and only if their point spectrum is equal, i.e.

a=>b or a-= b_1.

VIIT. D.2 Monothetic tori:s

We have seen in (VII.D.3) and (VIII.1) that the rotation by a gene-
rating element of the n-dimensional torus r7n;116Eh yields the
standard example of & minimal TDS with discrete spectrum.

More preciselys a = (a1,..., a,) € " is generating iff

{a1,..., an} is linearly independent in the Z - module f’, and the
characters

, m, m, m
(21,.|o’ Zn)H Z1 22 eoo 2
for any n-tuple (m1,..., mn)e z7 are eigenfunctions for the rotation
1; . Since G i= [‘S, 8 any cardinal number, is still a compact abeli-~
an group, the rotation fgf a2 €G, defines a2 minimal TDS having dis-
crete spectrum as soon as a is generating in G (see VII.1).

The following result shows that this is true only for "small" tori.

Propositiont G = PS is monothetic if and only if s is at most the
cardinality ¢ of the continuum.

Proof:
Assume that & is monothetic, Fr m (VIII.1) and (VIII.3) we conclude

that the character group g is a subgroup of [7, and in particular

1@[ Z ¢. If J is an index set of cardinality s, the projections
- S - 3

are different characters on[ﬂs, and we obtain s = |J| £ [G] £ c.

kN
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Conversely, if s &c we can choose a set {ak} C.f’ of cardinality s
which is linearly independent in the Z-module [T . Prom (4pp.D.8) it
follows that every open rectangle in f‘s (see App.A.3) contains at

least one power of a = (ak), end therefore a 1s generating in ["s.
.

ViII. D.3 Disconnected monothetic groups:

Tn contrast to the tori Fn, the finite cyclic groups are monothetic
and compact but not connected. The task of constructing monothetic

compact groups which are totally disconnected but not finite is much

more difficult but yields an interesting result:
et a = (ao, 845 «sse) be a fixed sequence of integers an2-2.

2,0
A, = l:g {o, 1, eeey 8, - 1%

and define an addition for x = (Xn)nel\Io’ y = (Yn)nemo € Aa as

Consider

follows:
We write Xy + Vo = Pos * 2, where po€1\30and zoé {O,.-., ao—‘lz o

if Pgs Pyseces Py and Zys Zyseees Zy have been defined, we write
X1 ¥ T Y P T Pryq®iiq t Zpa

Finally, we use the values z  to define

X + y = z 1= (Zn)nel\IoeAa‘

It is clear that the operation " + " 1s commutative and has
0 = (0, Oyess) as neutral element. The inverse of x = (xn)nemo

is the element y = (y )ne]N where
o)

n
0 for 0£€n<dk

Tn i= ak - Xy for n = k
an—xn—‘l for nyk

and where k denotes the index of the first non-zero component of =x.

Finally, we refer to Hewitt-Ross [1973], 10.3 where it is shown that
"+ " is associative. Hence we obtained a group structure on A}a.

The product topology on Zﬁa makes it a compact (by Tychonov’s theorem)
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and totally disconnected space (as a product of discrete spaces).

Theorem:*

Alaendowed with the addition and topology described above is a metri-
zable totally disconnected compact monothetic group. Conversely,
every infinite totally disconnected compact monothetic group is iso-

morphic to Zla for an appropriate sequence a = (ao, a1,...).

Proof':
By Ellis’ theorem (VII.D.6) it remains to show that the addition on
A, is separately continuous: Assume that x, €A\ converge to x €A .

By the definition of the product topology, for every neX,there ex-
ists kn€IN such that the first n coordinates of X, kz.kn, coincide
with those of x. Ihis implies that for k)kn the n-th coordinate of
%, + y agrees with that of x + y for every y &€ A  and shows that
X, + ¥ converges to x + y.

Finally, it is not diffieult to see that u := (1, 0, 0, ...) is a
generating element in Zla, hence Zka is monothetic.

For the proof of the second assertion we refer to Hewitt-ross [ﬁ979],
25.16,

Remark:

If the sequence & = (an)neln)is constant, say &, 6 =p 22 for all

neW , we write z&p instead of Z&a and call it the p-adiec intecers.

VIII. D.4 An MDS with discrete spectrum:
Consider the MDS ([O,1),B ,m;f) where WL is the Lebesgue measure

on [0,1) anad

k ok K
Px) 1= x - &2 irxe [&5 2 1] and ke W .
2 2 2
We show that Tf has discrete spectrum in LE(E),1),E3,WL) :
Define X, = i, 2 ™
and £ = %’:_1 exp (- 2LiKy X for meN
m T O o™ P "ot
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Then Tff = > exp(- Zhlk I'k+1,1’

m =5 221::1
_ 273 _ Wik, &
exp(—— . ) ; exp( i ) f{’m
= exp(zgll:li) . fm ’

2N i
which that 2¥iy :newlc Poi(Ty, ).
ch proves {exp( ) tm 0} ( P )

Since T is an algebra homomorphism on Lm (m), we conclude that

: _ 2% in, on _
I‘ffrr; = e:’cp(—-——----gﬂ1 ) fm for HE{O, 1y veey 2M 1} .

A short calculation shows that

X, = 2-m2%_:1f2 .

n=0_
The "dyadic interwvals" in [0,1) generate B, and hence the eigen-
functions {f‘;ll : mE..JNO; n=20, 1, seey o™ 1} form a complete ortho-

normal system in Lz(m).
Therefore Tf has discrete spectrum and

H l'1=0, 1, .oa,2m_1}

P()“(Tf ) = {exp(-z-—;%i—rl) i melN ;

Moreover, it is not diff'icult to show that ¥ is ergodic. For' a deeper
understanding of the above example and an application of the
Halmos-v.Neumann theorem the reader is advised to do the following
exercise:

Prove that the MD3 ([0,1),@,771; f) is isomorphic to a rotation on

A »)see(VIII.D.5) and construct the isomorphism. (Hints: A, is the

dual group of P(:—(‘I’f ). Write xe& [0,1) as dyadic number 0. X K Xpeasao,

xie{o, 11 , and observe that (Xi)i [ Ag ) .

E:No

VIII. D.5 Spectrum of Bernoulli shifts:
The opposite extreme to the dynamical systems with discrete spectrum

are the systems having no other eigenvalues except 1, i.e. weakly
mixing MDSs (see Lecture IX). The most import examples for this sort
of dynamiczl system are the Bernoulli shifts. Hence, while the set

of eigenvalues characterizes the ergodic MDS3s with discrete spectrum,

ES
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ij.e. is a complete isomorphism invariant, this set if of no use for
the investigation of Bernoulli shifts. In Lecture XII we shall intro-
duse a new invariant, the entropy, which is complete for the
Bernoulli shifts, but takes the value O for all ergodic MDSs with
discrete spectrum (XIII.T7) .

VIII. D.6 Abstract dynamical systems with discrete spectrum:
The representation theorems (VIII.2) and (VIII.4) can be extended in

two directions:
The hypothesis that the induced operator T (= T7 ) has discrete
spectrum is equivalent to the fact that

-{Tn : neI\TOE c ZDS(E)

is a compact group. Therefore, it is natural to investigate the ana-

logous problem for arbitrary (even non-commutative) compact operator
groups. With the appropriate definitions the operators in such groups
can be represented as rotation operators (see Ellis [196§I, ch.4).

The second way to extend and unify the above results consists in the

investigation of irreducible positive operators T on a Banach lattice

E. Clearly, the induced operators Ty on the spaces C(X) or
(X,Z'”M_) are the concrete examples behind such & purely functional-

analytic approach. If the operator T has discrete spectrum then it

can be proved that the Banach lattice E is "sandwiched" between a

space C(X) and a space L1(X,2§{/~). More precisely:?

Theorem (Nagel-Wolff, 1972):
Tet E be any complex Banach lattice and let T be a positive irre-

ducible operator on E.
Suppose that %, 1= {Tn : neINO} CxS(E) is a compact group with

identity IdE If m denotes the normalized Haar measure on %,, the

canonical injection C(%,)-——+ (%_ m) can be factored through E,

and the diagram
¢(4) ——>» E ——> L1(g_ﬂﬂ)
Rot g T Rot g

c(%) - E ——% L"(‘ér sm)
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commutes, where Rot g is the rotation operator induced in c(' ), resp.
L1( ; m), by some generating element g€ gy .

>

Corollary:

Tet 3, T be positive irreducible operators on & Banach lattice E,
both generating compact operator groups in fS(E).

The FDSs (B; 3) and (B; I) are isomorphic iff the operators 3 and

=l

have the same point spectrum.

References: Ellis [1969], Lotz [1968] , Nagel-wWolff [1972],
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IX. Mixing

Now we return to the investigation of "mixing properties" of dynamical

systems, and the following experiment might serve as an introduction

to the subsequent problems and results:

wo glasses are taken, one filled with red wine, the other with water,

and one of the following procedures is performed once a minute.

A. The glasses are interchanged.

B. Nothing is done.

C. Simutaneously, a spoonful of the liquid in the right glass is
added to the left glass and vice versa.

Intuitively, the process A is not really mixing because it does not

approach any invariant "state'", B is not mixing either because it

stays in an invariant "state" which is not the equidistribution of

Water and wine, while C is indeed mixing. However, if in A the glasses

are changed very rapidly it will appear to us, as if A were mixing,

too.

It is our task to find correct mathematical models of the mixing pro-

cedures described above, i.e. we are looking for dynamical systems

which are converging (in some sense) toward an "eguidistribution'.

The adequate framework will be that of MD3s (compare IV.8 and the re-

mark proceeding it). More precisely, we take an MDS (X, &, My ).

The operator T = T), induced on LP(X,Z,/A )s 14£p<Loo , generates a

J’:: {Tn né]’ﬂol

in ;f(LPE/«)) for the weak operator topology.

compact semigroup

Moreover, if we assume LPg}k) to be separable, this semigroup is

metrizable (see VII.D.4).
The above experiments lead to the following mathematical questions:

convergence: under which condifions and in which sense do the powers

™ converge &8s n—>» ® ?

If convergence of I holds in any reasonable topology then P := lim %

MR
is & projection onto the T-fixed space in L?(/a). Therefore, the

second property describing "mixing" may be expressed as follows.

-113-




eguidistribution: under which conditions does the T-fixed space

contain only the constant functions 7

One answer to these questions - in analogy to the case of the fast
version of A - has already been given in Lecture IV, but will be re-

peated here.

IX. 1 Theorem:

An MDS (X,2Z ,/k;f) is ergodic if and only if one of the following
equivalent properties is satisfied:

(a) T —> 1 @1 in the weak operator topology.

(b) <E,f,8) — (Xf aw) (e dm ) for sll f,g € Lw(X,Z,/u.).

n~1

(e) :—-i Z/.L(\f_iA N B) —-—>/u(A) -/u(B) for all A,B ez .

v=0

(d) 1 is a simple eigenvalue of T.
Proof: See (III.4) and (IV.7) including the remark. -

The really mixing case C is described by the (weak operator) con-
vergence of the powers of T toward the projection 1 @ 1 .
In analogy to the theorem above we obtain the following result.

I1x. 2 Theorem:
For an MDS (X,:i',/k 3 ) the following are equivalent.
() T —~31® 1 in the weak operator topology.

(0) <T'f,gy —>(fr an) ([g du) for all f,g € LV (X, T, k).
(c) MY TaNB) —> u(A) + p(B)  for all A,B ez .

IX. 3 Definitions
An MDS (X,Z,/k;f )s resp. the transformation ') satisfying one of
the equivalent properties of (IX.2) is called strongly mixing.

Even 1f this concept perfectly describes the mixing-procedure C which
seems to be the only one of some practical interest, we shall intro-

duce one more concept:
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Comparing the equivalences of (IX.1) and (IX.2) one observes that
there is lacking a (simple) spectral characterization of strongly mix-
ing.

Obviously, the existence of an eigenvalue A £ 1, ]Al =1, of T ex-
cludes the convergence of the powers ™, Therefore, we may take this
non-existence of non-trivial eigenvalues as the defining property of
another type of mixing which possibly might coincide with strong

mixing.

IX. 4 Definition:
An MDS3 (X’ETVM ;f), resp. the transformation‘f » 1s called weakly
mixing if 1 is a simple and the unique eigenvalue of T in LP(X,E ,/K).

The results of ILecture VII applied to the compact semigroup

‘f== {™ :neN}G_

will clarify the structural significance of this definition:

Tet P be the projection corresponding to the mean ergodic operator T,
i.e. {P} is the minimal ideal of co.)f, and denote by Q €¢¥ the projec-

tion generating the minimal ideal
X = af
of f. The fact that 1 is a simple eigenvalue of T corresponds to the
fact that P = 1® 1, see (IV.7), hence
1®1 € 5 .

In (VII.5) we proved that Q is a projection onto the subspace spanned

by all unimodular eigenvectors, hence

QE = PE = N> .
From @ € f it follows as in (IV.7) that

Q = P = 4% & 1,

or equivalently

het1] = R

is the minimal ideal in Y. Briefly, weakly mixing systems are those
for which the mean ergodic projection is already contained in § and
is of the form 1 & 1 .

The following theorem shows in which way weak mixing lies between

ergodicity (IX.1) and strong mixing (IX.2).
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IX. 5 Theorem:®

Tet (4, ,m 5p ) be an MDS. If R := IF(X,Z ,m), 14p<® , is separa-

ble, t%g following assertions are equivalent:

(a) T l—-—a T ® 1 for the weak operator topology and for some sub-
sgquence -{ni} < I,

(') T '——> 1 ® 1 for the weak operator topology and for some
subsequence {njl C. IN having density 1.

1 n-1 ;-1 = i
(a") ﬁZi |<TrE,g> - £, {1 ,gh| —>0 for a1l feE, gek!.
=0

(b) <Tnif,g> —( Sf' d/«) (Sg d/»\ ) for a1l f,g & 1.% (/4.) and for
some subsequence -[nig C. H.

(e) /u()ﬂ_niA(] B)—-)/.((A) o/u.(B) for all A,BEZ and for some sub-

sequence ‘{niz < X,
(a) f is weakly mixing.
(e) ¥® P  is ergodiec.

(£) ¥® f is weakly mixing.

Remarks:
1. A subsequence ‘{ni} < N has density 1 if

h}j;l%“nlg N {1, 2,...,}:}, = 1 (see App.E.1).

2. The definition ‘f@f t (x,7) > (\f(x), f(y)) makes
(X x X, 282 ,/"l(?/"L ; \f@f ) an MDS.

3, (a) and (a') are formally wegker than (IX{.2.a), while (a")
(called "strong Cesaro convergence") is formally stronger than
(IX.1.2).

4. "Primed" versions of (b) and (c¢) analogous to (a) are easily de-

duced.

5 further equivalences are easily obtained by taking in (b) the
functions f, g only from a subset of L“’(/u) which is total in
! (/u\), resp. in (c) the sets A, B only from & subalgebra

generating Z- 0

Proof':
The general considerations above imply that (d) is equivalent to

T® 1t &€ ;f= {In : nel\I:( « But by (VII.D.4), :f is metrizable for

the weak operator topology, hence there even exists a subsequence in

a
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STn : ne]N} converging to 1 ® 1, which shows the equivalence of (a)
and (4).

(a)=» (a"): We recall again that J is a commutative compact semi-
group containing 1 ® 1 as a zero, i.ee R » (1 &® 1) =1 ® 1 for
al1 Red .

Define the operator

% : C(¥) — c(F)

induced by the rotation by Ton ¥, i.e.

N

TF @) =f(ra) forzed, e o).

[ad
First, we show that this operator is mean ergodic with projection P

g

defined as
N N ~ A
Pf (R =F (i ®1) rforred, rec(d:

Since multiplication by T is (uniformly) continuous on & , the mapping

from § into oL (C(¥)) which associates to every rRe¥ its rotation
~ .

operator R is well defined. Consider a sequence (Sk) ke T in ¥con-

verging to S .
LTa .4 ~ A NN ~
Then S, f(R) = I(S,R) converges to f(SR) = 3f(R) for all red, rec(S).
A~ A
But the pointwise convergence and the boundedness of Skf‘ imply weak
A A/
convergence (see App.B.18), hence Se —> S in ,‘fw(c(;?)), end the mapp-

ing S -—>§ is continuous from < into Zf’w(C(:f )). Therefore, from

i adds ——~— Ar ]
713 1 ® flweobtain T *—> (1 ® 1) = P €Ly (C(F)). Applying

(Iv.4.4) we conclude that the Cesaro means of 1 converge strongly
to 115’.
Take now f€E, geEl and define a continuous function f GC(-T) by

F.d
£(R) := |<Bf,h> - <L, - {hed| .
Obviously, we have Pf(T) = f(I1 @ 1) = 0. Therefore

~ It .
0 = 1lim Tn?'(T) = 1m%§1l<ﬁf,g> - ey Le>] .

11 -» e n-»oa

(a") =» (a ): Since :f is metrizable and compact for the topology in-

duced from i’w(E), there exist countably many fke E, 81 € gl such that

the seminorms
pl{,l(R) i= I<Rfk!g1>‘

define the topology on f . By the assumption (a") and by (App.E.2)
for every pair (k,l) we obtain a subsequence

-{'nj&k’l C. W
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with density 1, such that

‘_ni

(T he) —> L0100 {1 g) -
By (App.E.3) we can find a new subsequence, still having density 1,
such that the concergence is valid simultaneously for all fk and gy .
As usual, we apply (App.B.15) to obtain weak operator convergence.
(') = (a) is clear.
The equivalences (a)<»(b)&>(c) follow if we observe that the topo-
logies we are considering in (b) and (c¢) are Hausdorff and wesker

than the weak operator topology for which :f’ is compact. Therefore,
these topologies coincide on JF

(c) =>(f): Take A4, A',B, B'€Z . For a suitable but fixed subsequence
- et 1)
iAn B), resp. /UL( ‘f o\ NnBg'), converges to

(ni) e W MY

(4) (B), resp. &'y . w(Bd"), as n, —» & ., This 1mp1:|_es that
)0, mesm ) 3

(/u@/«)(w@f) Axa')n(BxB') = /u(~,° o) u(p ian 3')
converges to /«(A)J/M(B)a/u(A )-/u\(B ) = (/A@/\)(AXA )'(/Aé}u)(BxB ).
Since the same assertion holds for disjoint unions of sets of the
form Ax A’ we obtain the desired convergence for all sets in a dense
subalgebra of Z@Z . Using an argument as in the above proof of
(a)<e? (b)&>(c) we conclude that the MDS (XxX,Z@E,/«@/« ;\f@f)

satisfies a convergence property as (c¢), hence it is weakly mixing.

(£)=»(e) is clear.
(e)=»(38): Assume that T),, f = /\f, Al = 1, for O £ f€ L1(/'&). Then
we have T‘P f=A T and, for the function f®f: (x,y)+> f(x)-ff-y—j,

— — — 2 — -
(x,7) € XxX, we obtain Tmf (f@F) =Ar@AT= Al (fr@T) = @®@T.
But 1 is a simple eigenvalue of T)”@f with eigenvector 1‘X®1X .

Therefore we conclude f = ¢ Ty end A=1, i.e. 70 is weakly mixing. g

IX. 6 Examples:
While it is easy to find MDSs which are ergodic but not weakly mixing

(e.g. the rotation ‘fa, gt Z 1 for all nel, on the circle r' has all

powers of & as eigenvalues of T a)’ it remained open for a long time

whether weak mixing implies strong mixing. That this is not the case

will be shown in the next lecture.

FN
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The Bernoulli shift B(po""’pk-‘l) is strongly mixing as can be seen

in proving (IX.2.c¢) for the rectangles, analogously to (III.5.1ii).

IX. D Discussion

IX. D.1 Mathematical models of mixing procedures:

We consider the apparatus decribed at the begirmming of this lecture.
Our mathematical model is based on the assumption that two liquids
contained in the same glass will mix rapidly whereas the transfer of
ligquid from one glass into the other is controlled by the experimenter.
This leads to the following model:

Tet (X,Z,/A-; f) be a strongly mixing MDS. Take XI = Xx-{O, ‘Il R
i

Z  the obvious w-algebra on X’ and /u' defined by
]

M1l = ml(axqod) = —;-/{(A) for A€3 . We obtain MDS
i i | f

(X', Z .9/"" 3 P ) by

Ao PHUE D) = (P(x), 1-1)

B.  YPUx, ) = (Y(x), 3)
(P (%), 1) for xeX\ S
c. Pz i) = Y
. (f(x),1—j) for x¢3 ,

for some fixed 3 €2 with 0 < /A(S) < 1 .

Exercise:
Show that C is strongly mixing, B is not ergodic, but the powers of
T converge, and A is ergodic, but the powers of Tf’ do not con-

verge .

IX. D.2 Further eguivalences to strong mixing:

To (IX.2) we can add the following eguivalences:

Ed) (Tnfj £) —>(f, M2 for a1l rer¥ (X, Z, m), where (o ])

denotes the scalar product in Lz(}(.,z,/\. )
n-1 k.
(e) % S TP —1 ® 1 in the weak operator topology for every
i=0

subsequence (ki) < .
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Proof:

(d) => (a): By (App.B.15) it suffices to show that <Tnf,g) converge
to £f,1> - {N,g8y for all g in a total subset of L2(/I4) and
i‘eIf”Q/A). To that purpose we consider the closed T-invariant sub-

space

. . 2
EO = lln {1!, f, Tf, Tzf,aoo} C L (/LL).

i
The assertion is trivial for g € E  and follows from the assumption
for g = Tn'fo

(b) 4= (e): It is elementary bto see that a seguence of real or com-
plex numbers converges if and only if every subseguence is convergent

in the Cesaro sense. »

Certainly, the equivalence of (b) and (e) remains valid under much

more general circumstances. But £or operators induced by an MD3 the

weak operator convergence of % EE: Tki as in (e) 1s equivalent to the
vad

strong operator convergence of these averages. This surprising result

will be discussed in (IX.D.5).

IX. D.3 Strong operator convergence of ™y

One of the striking features of the mean ergcedic theorem (IV.4) is
the equivalence of strong and weak operator convergence for the Cesaro
means T . Since the weak operator convergence of the powers T of the
operator induced by an ergodic MD3 (X;;?{/4;'f) characterizes "strong
mixing" one might think of introducing a possibly stronger mixing
property by requiring ™ to converge in the strong operator topology
in ;?(L1€fx)). But the limit operator is necessarily the one-dimensiodl
projection P = 1 (® 1 and Tf is an isometry. For every characteristic
function ﬂA,.AeJZ , this implies

BT, - 2l = 4, - m(a) il = 2pa)c p(xN ).
Therefore, as soon as (X,Z,/u;f) is ergodic and 0O {/A(A) < 1 for
some A€2 , the powers of the induced operator T,o will not converge
in the strong operator topology.
However, for positive operators T e&f(L1€}«)) not induced by a trans-

formation ‘f: X->X the strong operator and even the uniform con-
vergence of T 1is an interesting and important property and will be

investigated in App. X .
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IX. D.4 Weak mixing implies "strong ergodicity":

Tet (X’:EvM‘3Y)) be an ergodic MDS. In general, its n-th power
(X,ET,/A;‘fn) is no longer ergodic. By the spectral mapping theorem
and by (III.4) this is determined by the existence of an n-th root of
unity different from 1 contained in the point spectrum of T . There-

fore, & cyclic permutation of a set of n elements, n prime, yields an
MDS such that 'f, fz,...,'fn_1 are ergodic but ‘fn'is not.

On the other hand, the rotation ‘fa, a £ 1 for all neé I, on the unit
circle has point spectrum {an: ne 2& (see VIII.D.1), hence contains
no non-trivial root of unity. Consequently, every power of 7a is

ergodic. Such systems may be called "strongly ergodic". Clearly, every

weakly mixing MDS is strongly ergodic, and the above rotation shows
that the converse is not true.

But of course, the two notions coincide for finite-dimensional MDSs.
This statement becomes somewhat less trivial, if we generalize it to
operators not necessarily induced by an MDS. Such generalizations
will be investigated in detail in (IX.D.6). Here we restrict ourselves
to finite-dimensional spaces and consider the following c¢lass of
matrices:

A positive matrix T € Y(e¢%), nel, is called stochastic if T 1 = 4
(i.e. each row sum is 1) and bi-stochastic if the same holds also for

the transpose Pt of T (i.e. each column sum of T is 1, too).

For example, every permutation matrix is bi-stochastic as is the

n_1 2 & 00 n_1
nxn - matrix Jn HE . .
L n_1 .

Now, consider ¢ as L1(X,§:,/A), where X = {1,..., ni , = the power
set of X and /«( -{xl ) = n_1 for x€X. Then Jy, = 1 ® 1 as an operator
on €7, and we present the following result showing the equivalence of
the properties analogous to strong ergodicity, weak mixing and strong
mixing. The "irreducibility" of a matrix generalizes "ergodicity" and

has been defined in (IV.D.6) (see also Schaefer 1974, I.6and (II.D.1)).

Proposition: For a bi-stochastic matrix Te;}?(@n) the following are

equivalent:
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(1) ™—> 1 ®1 fork—>w.
(ii) 1 is a simple and the unique unimodular eigenvalue of 7.
(i3i)T is irreducible for all keli.

Proof:
(1) = (iii): If Tk were reducible for some ke XN the same would be

true for T°F for all reN and - if the limit exists - for lim T°C.
But léi._n;.a ™ - i @® N is not reducible. T
(iii)=» (ii): Since T is irreducible, 1 is a simple eigenvalue. As-
sume that there exists a unimodular eigenvalue A1,

By the theorem of Frobenius (Schaefer 197 ,I.6.5) A is a m-~th root of
unity for some me W, and therefore ™ has at least two linearly in-
dependent fixed vectors, i.e. T is not irreducible (use IV.D.7).

(i1)=»(i): By (IV.5) and (IV.3.1i/iv) T is mean ergodic with cor-
1 ® 1. Define 3 := T - P and observe

responding projection P
that PS = 0 = SP.

Therefore

= (P + 3)¥ = pa4 sK,

If Sf = of for Xe€ with |«} > 1, we obtain oPf = PSf = O, hence
Pf = Q0 and Tf = oL f. For A = 1 we conclude Tf = £ = Pf = 0; for

oL # 1 again we conclude £ = 0 by (ii) and »(T) = 1. Therefore the
spectrum T (S) is contained in ={/\€¢: M\-ﬂg which implies sk > O,
i.e. Tk—9 P fork—wm, n

Remark:
For a stochastic matrix T € ,,‘é’(d:n) we always have an invariant measure

p = (p‘l""pn) on (£,5 ). If we consider T as an operator on L1(X, » D)
we again have T = 14 and 7' = 4 although the adjoint I' of T does no
longer correspond tc the transpose 'I't of the matrix T. I'hus the equi-
valences of the proposition above hold equally for a stochastic
matrix T eo‘f(I;I(p)). The only specialty of bi-stochastic matrices
is the fact that their invariant measure is the equidistribution

M on X = -{1,...,n§ .

IX. D.5 Weak convergence implies strong convergence of averages:
As Wwe have seen in (IX.1), (IX.2) and (IX.5) mixing of an MDS
(X, 2 sM 3 P) is a functional-analytic property of the induced LF -

operator Tf . This observation has lead to a clo=® investigation of
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the asymptotic behavior of the powers of a bounded linear operator T
on a Banach space E (see App. X). For example, it is clear that the
powers of T élgf(E) converge - for the weak operator topology and
necessarily to a projection P - if and only if the averages

N
n,
L
i=1
converge to P for all infinite subsequences (ni)ie;N of I (see IXIn2).

But due to the special geometry of Hilbert spaces we have the follow-

ing more surprising result.

Theorem 1 (Blum - Hanson, 1960):

Tet T be a contraction on a Hilbert space H. Then T is mean ergodic
with corresponding projection P, and the following are equivalent:
(a) T converges to P in the weak operator topology.

of W, the averages

(b) TFor all infinite subseguences (n,).
N b \eN

% E?; i converge to P in the strong operator topology.

We refer to Schaefer 1974 ,V.8.5 for a short procf.

Corollary:
Iet (X,E,/A) be a finite measure space and let T eEf(LPS,k)),1£-p<oo,

be a positive operator satisfying T 14 4 and 7'4 & 1 . Then the

assertions (a) and (b) above are eguivalent.

Proof:
By the Riesz convexity theorem, T induces a contraction T, on L2€/¢).

By (VII.D.4) T satisfies (a) if and only if T, satisfies (a). The same

holds for property (b) since all LP—topologieS, 14 p<eo , coincide on

[-1, f] which is a total subset in LPQAL)-

Therefore, the 1F-result follows from Theorem 1 applied to I, on L2§h).
|

The equivalence of the properties (a) and (b) has been investigated
in great detail, and we quote one of the most beautiful results.
As for the proof see Schaefer 1974 ,V.8.7.

Theorem 2 (Akcoglu - Sucheston, 1972):
For any contraction T on L1€}k) the assertions (a) and (b) above are

equivalent.
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References: Akcoglu-Huneke-Rost 5974], Akecoglu-3ucheston {}972],
fio754] , l9750] , Bellow [1975] , Blum-Hanson [1960] , Fong-Sucheston
[19'?4], Krengel-Sucheston [1969], Tin [1981] , Nagel [1974],

sato [1980] .

IX. D.6 Weak mixing in Banach spaces:

Most of the properties characterizing weak mixing in Theorem (IX.5)
are of purely functional-analytic nature and can be formulated for
arbitrary operators on Banach spaces. In fact, the proof of the eqgui-
valence of (a), (a'), (a") and (d) in (1X.5) is essentially based on
the relative compactness for the weak operator topology of the semi-
group generated by the operator Pf . The only ingredient from measure-
theoretical ergodic theory is the special form of the limit operator
P=1@® 1. This again shows the usefulness of the functional-
analytic and in particular operator-semigroup approach to ergodic
theory.

In the following we shall formulate the "weak mixing theorem" in its

natural Banach space context.

Theorem:
Let T é,f(E), E a Banach space, and assume that

F = 47 : nenm}
is compact and metrizable in.:f@(E). Then T is mean ergodic with

projection P and the following properties are eguivalent:

(a) At most 1 is a unimodular eigenvalue of T.
(b) Pne::f' .
(¢)y T *—> P for the weak operator topology and for some subseguence

hﬁ) < I having density 1.

n,
(@) 1 ZKTlf, £'s - (£, £'S| = 0 for every f€E, £ ¢ E'.
1=
1 —= Pk
(e) - > T " —> P for the strong operator topology and for all
k

=1
subsequences (nk) < W with lower density > O.

Proof:
The properties (a), (b), (c¢) and (d) appeared already in Theorem (IX5)

(with P = 1 ® 1) and the proof of their eguivalence given there ex-
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tends verbatim to the situation treated here. Only condition (e) is

new.

(e) =»(d): 3ince the assertion is trivial for the elements of the
fixed space of T, we may assume that P = 0. If (d) is not satisfied,
we can find feE, £'¢E’, £%0 and a subseguence (ni)c.I\T with upper
density o > 0 such that the follow1ng is true:

for the sequence 8p, i= (T e, !N

we have Re 2ns > € or  -Re 2ns > &

or Im ani > £ or =-Im an.1 > £

for every i1 €W. Let us assume that Re ani > for every i €.

Now define another subseguence (my), ., & I as the union of (n, 1)iew
and (jno) e T for some fixed n € N. Then (mk) has lower density

2> 11-1- > 0, but for 1nf1n1tely many k_ €IV we have

k
.1
Re - z I' ff = = Re a
<ko k= > ko =1 mrl’{1
3
m& O [o]
- —2 Ze K.y
~ k 2 n !
o o

where M != sup -[\(Tnf,f'>l =ne]Ng .
Since n  may be chosen arbitrarily large this contradicts (e).

(a) =» (e): Again, we assume P = 0 and renorm the Banach space E so
as to obtain ||Tl] € 1 (Hint: Jgfi = sup | Tnglf ). Take £ €E fixed
nelN

€
and consider the dual unit ball U° := {e'e E': g £ 1 g.

Nes 1 ~
Then . Telg') :=g(r'g"), gec(v?),
defines a contraction T on C(U°). The assumption (d) implies that

for the function "
£(g') == I<K£,g' >
n
1 E ude Bg . . o) .
the means ~ ; T7f converge toc O polntwise on U . As explained in
i=

(V.D.5) pointwise convergence of Cesaro means to a continuous function

already implies norm convergence, hence
1 n e i i
”-n- f” sup HZ[<Tf,g>' —> 0.
i=1 i=1
Now let (n,) be a subseguence w1th positive lower density, i.e.
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Then n m n,
nl z ke “ < sup 1 Z [<Tks g'>| £ sup -—Z |<I‘1f,g')|
=1 gleU® ™ k=1 A glet® ™ i=1
m
< . L 37 |4rte,g 0 .
cgﬁggo - Eg:.|< 2'>|] —> a

Remark:

Property (e) may be illustrated by saying that Wweak convergence of the
powers I'' along a thick sequence is eguivalent to strong convergence
of the means as long as the powers ovedwhich we average do not get

too sparse. This is a beautiful supplement to the Akcoglu-Sucheston
theorem in (IX.D.5).

In the above theorem we described a certain convergence property of

™ for T e (E) and . n»®, thereby answering guestion (1) stated
at the beginning of Lecture IX. While this was possible within the
general framework of Banach spaces the second question ("equidistribu-
tion") has no natural generalization, since it is not clear which
elements of an abstract Banach space should take over the role of the
"constant functions".

It is here again that Banach lattices and positive operators naturally
enter ergodic theory: Let T € 2 (E) be a positive operator on a Banach
lattice E. If T is irreducible (see II1.D.11) and if the fixed space

F is non-trivial, then F = <{ud for some guasi-interior point UEE, .
If, in addition, T is mean ergodic then its corresponding projection

P is of the form  M®u for some strictly positive T —invariant
linear form /«eE+. This is an analogue of the projection 1 @ 1
appearing in all statements on mixing MDSs in this lecture.

For an abstract version featuring all aspects of the weak mixing
theorem (IX.5) we have to assure only the compactness of the generated
semigroup. This will be achieved by assuming that E has order con-

tinuous norm.

Corollary:

Iet E be a separable Banach lattice with order continuous norm and
let T¢X(E) denote a positive contraction satisfying Tu = u and
T'/A =M for some guasi-interior element w€E, and some strictly
positive linear form /ke-Ei. Then the following properties are equi-
valent:
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(a) T is irreducible and 1 is the unique unimodular eigenvalue of T.
(b) M@ u is contained In the closure of {Tn: neJNE in ;fw(E).

n 2 ¢
(c) Sl ey - {f,/u.>'<u,f'>l —> 0 for every f€E and

i=1
rle

1
n
)

(3|

This theory of mixing operators on Banach lattices is worked out in

Nagel [j97{] and Schaefer 1974 ,V.8.

References: Jones [1971], Jones-Lin [1976], [198] , krengel [1977],
Nagel [19'74] .

IX. D.7 Mixing in C(X):

Mixing properties such as "ergodiclty" and "weak mixing" of an MDS
(X,’f,/u\ ;79) can be characterized by spectral properties of the in-
duced operator TY on LP(X,E?vM )s 1€ p<? ., The underlying reason is
the weak compactness of the semigroup generated by Tf . Since for a
DS (Z;f) the semigroup

{™ : new_}

in QP(C(X)) rarely is relatively weakly compact, there is no hope of
obtaining similar results in the topological context. For "minimallty"
this hasalready been observed in (III.8.1) and (III.D.8). But by choos-
ing appropriate concepts it might still be possible to prove a cor-
respondence betwWween topological mixing properties and spectral proper-

ties of an associated linear operator.

Definition:?

A D3 (Xg‘f) is called topologically ergodic if TKA) = A for some
closed subset A of X implies A =X or A=¢ .

It can be shown that for a TDS (Xg~f) on a compact metric space X,
topological ergodicity is equivalent to the properties appearing in
(IT1.D.8).

Now we will try to find a function space on X such that Y) is topologi-
. cally ergodic if and only if the corresponding fixed space of the in-
duced operator is one-dimensional. To that purpose the space C(X) is
too small as is shown by the example X = [0,1] and Px) = = .

An appropriate Banach space can be obtained by the following procedure:?
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For every bounded complex valued function f on X we denote by C(f) the
set of continuity points of f. Then define

DO(X) t= {f: X-=>»C  C(f) contains a countable intersection
of open dense sets }
and
N o= {f&:Do(X): f(x) = 0 on a countable intersection of open
dense sets} .
DO(X) is canonically a Banach algebra and a Banach lattice for the
sup-norm, and N is a closed ideal, Therefore

D(X) := D_(X)/N

is a Banach algebra and a Banach lattice which can be characterized
in the following way.

Temmat Tet X be a compact space. The following Banach lattices are
canonically isamorphic:
(1) D(X).
(11) The Dedekind completion of C(X).
(iii) C(Y) where Y is the Stone space of the Boolean algebra of all
regularly closed subsets of X.

The proof of this lemma belongs to the theory of vector lattices and

may be found in Nakano-Shimogaki [1962] (see Peressini [j967],p.159
or Semadeni fﬁQ?i],p.267). Its importance for us lies in the fact

" that D(X) is a (more or less) concrete function space which is order-
theoretically associated to C{(X). In particular, the lattice iso-
morphism I, on C(X) can canonically be extended to ff on the
Dedekind completion D(X). Ihis permits the desired result.

Theorem:
For a TDS (X;)ﬂ) the following assertions are equivalent:
(1) (K;f) is topologically ergodic.

(ii) There is no band B in C(X) satisfying Tf B = B except B
and B = { O} v

(iii) There is no projection band B in D(X) satisfying 5} §'= gfex—
cept B = D(X) and B = {O} .

(iv) The fixed space 5 of T, in D(X) is one-dimensional.

14

C(X)
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Proof:
(i1) is just a different way of expressing (i) since bands in C(X) are

of the form B, = -fféEC(X): £(4) C.{Og } for some regularly closed

subset A of X. From results on the Dedekind completion of vector lat-
tices it follows that there is a bijection between bands in C(X) and
projection bands in D(X), hence (ii) is equivalent to (iii).

Finally, the fixed space % of %/f in D(X) is a lr/ector‘ sublattice of
D(X) and contains the order unit . ITherefore ¥ is one-dimensional if
and only if ﬁx cannot be decomposed into a non-trivial sum of two

orthogonal positive invariants elements, i.e. (ili)& (iv). g

Using the Banach lattice D(X) and arguments similar to those in the

measure-theoretical case one can introduce the notions of topological

weak— and strong mixing, and these properties can be characterized by

spectral properties in D{(X). We refer to the papers of Keynes-Robertson
[1968], [969], for more information and close with the following

observation.

Proposition: .
An MDS (X,Z,/A. 3P ) is ergodic iff the TDS (X;y) is topologically
v

ergodic, where X is the Stone space of the measure algebra = and Yy

the homeomorphism induced by 'f (see VI.D.6).

References: Keynes—Robertson [1968], E|968§], Fakano-Shimogaki [1967] .
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X. Category Theorems and Concrete Examples

The construction and investigation of concrete dynamical systems with
different ergodic-theoretical behaviour is an important and difficult
task., In this lecture we will show that there exist weakly mixing MDS’s
which are not strongly mixing. But, following the historical development,
Wwe present an explicit construction of such an example only after having
proved its existence by categorical considerations with regard to the set
of all bi-messure-preserving tramsformations.

In the following we glways take (X,8,m) to be the probability space

X = [0,1] with Borel algebra B and Lebesgue measure .. In order to de-
scribe the set of all m -preserving transformations on X we first dis-
tinguish some very important classes.

X. 1 Definition: ILet (X,B,m; ¥ ) be an MDS. n
. . o
(1) A point x € X is called periodic (with period n € W) if ¢ “x

=x
(and tfnx;éx for n = 1,404, no-‘l). n
(ii) The transformation y is periodic (with period n. e W) if ¥ ° = ig

(and p® #id for n = 1,..., n-1).
(1ii) The transformation ¢ 1is antiperiodic if the set of periodic points
in X is a m -null set. N

Remarks ¢

1. If the transformation is periodic, so is every point, but not eon-
versely since the set of all periods may be unbounded.

2. The set A, = {xe X: x has period n} is measurable:
Consider a "separafing base" {Bk e B : ke Ef{, i.e. a sequence which
generates B and separates the points of..a_g:(see A.13% and X.D.1).

Then we obtain

fxex: ¢Px = x] = @u‘Bk" ¢PB) W (XX By) N .fn(X\Bk))

for every n € N, and therefore we conclude that A € e .

2. An arbitrary tranaformation *f may be decomposed into periodic and
antiperiodic parts:
As above take A, to be the set of all points in X with period n and

Aap =X N\ }J‘ An » Then X is the disjoint union of the ‘f -invariant

sets A, m € N, and Aap' The restriction of f to A, is periodic with

period n and f is antiperiodic on Aap .
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4. An ergodic transformation on ([0, 1] »B,m) is antiperiodic. This
is an immediate consequence of the following important lemma.

X. 2 Rohlin’s lemma: Consider an MDS (X,HB,m; ¥).

(1)

If every point xe€ X has period n then there exists A& & such

that A, ¢4, ?ZA,..., yn_1A are pairwise disjoint and »m (4) =

n

(ii) If ¢ is antiperiodic then for every neWN and £ > O there exists

n-=1

A EB such that 4, YA, sz,..., 2 A are pairwise disjoint

nro
and m( % Y =a) > (1-£).

Proof':

(1)

(11)

If n> 1 there exists a measurable set C, such that m(Cja ®Cy)>0
(use the existence of a separating base) and therefors

m (G N $PC) = m(Cy) - m(Cyn ¥C) =m(¢cy) - m(Pc,ncy) =

=m(~fc \ C )7 0. Certainly, 51 = C AY )P C1 is disjoint from )PB1.

If ny2 there exists C,c By such that M(C, 4 » Cg) > 0. For 5

By, = Cy ™ ?202 we have m(B2)> 0, and the sets B, 'fB2, Yy B2

are pairwise disjoint. Procesding in this way we obtain B, 4 such
n=-=1

that M.(B 1))0 and B _,» ? _qrecer @ B,_4 8&re pairwise dis-

joint.

Consider the measure algebra (B and the equlvalence classes e 43

of sets B & & such that B, ¥ B,..., ‘f’ 1B are pairwise dis joint.

Since ‘E is a complete Boolean algebra (see A. 9) an application

of Zorn’s lemma yields fe which is maximal such that A, A4, ...

an-1A are pairwise disjoint for some A & X,
If we assume i (A) < we can apply the above construction to the

tp =invariant set X f__,of '-PiA and obtain a contradiction to the

[

maximality of i,
Therefors, m (4) 113, and the assertion is proved.
We may. take g = for some p € . For r := np and as in the proof
of (i) we construct B ¢ 8 such that B, ¥B,..., Lf‘r-1B are pair-
wise disjoint and such that B is maximal relative to this property.
For 1 £ k £ r define
B, = {xe c,or'1B 3 tka € B and (fjxtB for 1 £j<k .

These sets are pairwise disjoint, and the same holds for
Bys ¥ Byseees (kak £Or any & = 1y0e0 To
Therefore, the maximality of B implies

- L

() m(p™'8 N Us =

Moreover, the sets

1
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¢ By 2
FB3, ¥°53
¥ By, V254; lf’354

- * . 2. L 3 * L L]

‘PBr’ ? Br’ L] * . * L] » ?r-1B

are dis;joint from any ‘{’ KB for 0€k¢ r-1, since

piByn e = ¢ By wEB) € pl(pTB ApEiE) - 0
if 0¢i< j$r and i<k
(resp. !f’iBjn p¥p = cfk(cfi‘kajn B) = § if k<i).
Finally, they are pairwise disjoint as can be seen considering
sets contained in the same, resp. in different columns.
In particular, we find that ¢B,, §°B,, PBBB,..., ¢ 7B, are
pairwise dis joint subsets of B. Therefore, by (% ) we obtain

k _ - _ P _
m (TR = (L By) = m (p7B) = m (B).

'r'-l
Now, consider B# . f kp y zB, ,
k=0 Aciejé

which is ¢ -invariant modulo m -null sets. Since B is maximal and
¢ is antiperiodic it follows that

B * = XO
Finally, we obtain the desired set:
P P2
- g kn+1
A = k:Lé ¥ v k‘é{ de&ometf By - n-1

Obviously, A, F Aseees ¥ n_1A are pairwise disjoint, and L% tplA

contains every l-(’kB, 0€k ¢r-1., From B¥ = X it follows that

n-7 P-f
X~ L_ lPlﬁ is contained in L G‘}‘{sn kn+inn+j . Therefore, we
conclude that net
m XN U pla) ¢ nom® ¢ 2 -£. m

The lemma above will be used to show that the periodic transforma-
tions occur frequently in the set of all bi-measure-preserving
transformations on X. To that purpose we denote by g the group
of all bi-measure-preserving bijections on (X,8,m ). Here we
identify transformations which coincide m -almost everywhere.

The set ¥:= {T 14 é‘ﬁ} of all induced operators
Ty ¢ LK@ ,m) — L(KE,m)
is a grouwp in Z(LV(X,8,m)).
The following lemma shows that the map ‘f — T.l, from g onto
is a group isomorphism.
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X. 3 Lemmat If P€§ and m{xeX: ¢ (x) #x} > 0 then Tip # I4.

Proof:

The assumption »z{xé X: P(x) # x§ > 0 implies that at least one of
the measurable sets An, n2?2, or Aap defined in Remarks 2, 3 follow=
ing (X.1) has non-zero measure. By (X.2) we obtain a measurable set A
such that m(4) > 0 and A n Y () = @. This yields

an~(a) =8 ana To1, F1,. =

Yo 1
On ‘gwe consider the topology which is induced by the strong operator
topology on a"e(L (m)). This topology coincides on 9 with the topology
of pointwise convergence on all characteristic functions JLBk, kéX,

where {Bk kéN} generates® (use B.11), and will be transfered to g.
In particular, TL? converges to T.f (resp. (ﬁ_ converges to ) if and
only if m( ps(B)a ¢ (4)) —> O for every A€ 8. Since the multiplication
on bounded subsets of éﬁ(L (m)) is continuous for the strong operator
topology, ‘g (and (g ) is a topological group which is metrizable.

In (X.De3%) we shall see that g is complete, hencs @ and ? are come
plete metric spaces, and Baire’s category theorem is applicable (see
A.6).

X. 4 Proposition: For every neéXN the set of all periodic transformations
on (X,8 ,m ) with period larger than n is dense in g.

Proof:
Consider (e (g, & > O and characteristic functions Aypeees Xy € L1 ().
We shall construct tyetg, with period larger than n such that

"T"Pxi -T‘Vx:}.” _4_ 38 for i = 1,-00, e

To that aim we decompose X as in (X.1), Remark 3, into antiperiodic part

Aap and periodic parts Aj’ jé.N.

Then choose | ¢N such that m(jl.;’ﬁj) £ ZE' Defining B t= 441 «.. U A, We
observe that WB is periodic with period at most equal to (!. In the
next step, we choose k&N such that k is a multiple of (! and larger
than max {n, % Iz

Now, apply (X.2.ii) and find a measurable set C C Ay ap such that

c, LPC,...,((k 1C are pairwise disjoint and

PO -5 cma) € m(0) § g om(a) .
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The transformation e ‘3’7 defined as

@(x) forx € B u C U PC ... vt 2

g (x) 2= P1_k(x) for x € 'fk
x for all other x € X,

is periodic with period k> n. But, ¥ coincides with {f outside of a
set R with measure
m(R) € tm(a, )+ & ma,)+2 ¢35,
=k ap 2 ap 2 2
Therefore, Wwe conclude "'qu"i - qu"i ] ¢ 2 *m(R) & 3€ for i=1,...,m.
[ §

X. 5 Theorem (Rohlin, 1948): The set I of all strongly mixing trans-
formations on (X, &,m) is of first category in lf .

Proof: Let A = [0, 2] € X. For every k €N,
. . 1 1
mk = {‘fé%,- WI.(A/')‘-"’ A) Z‘ < 5 }

is closed. If ¢ g' is strongly mixing, we have
. k 2 1
lkm m (AN Y i) = m(K)° = vy (by 1IX.2),

hence € m for all k¥ » k,, or

M= ) W
f = *
&; < W nh o T TCRR w o~ ~
Since n is closed, it remains to show that ‘5 N ﬂn is dense in 'ﬁ,.
Ir (f is perlodlc, say tf = id, then
1_1 -
mAayg A)-Z'4, hence i{’é‘g\m .
"o . k _ . ~ _ . b d
Therefore, b!/n {‘Pé‘%- p ~ld}C<§ k{]hm = g\nk,
and the assertion follows from (X.4).

X. 6 Propositien: The set W of all weakly mixing transformations on
(X,8, m) is dense in (g .

For the somewhat technical proof using "dyadic permutations" of [0, 1]
we refer to Halmos (1956), p.65, or Jacobs (1960), p.126, but we draw
the following beautlful conclusion.
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X. 7 Theorem (Halmos, 1944): The set W of a11 weakly mixing trans-
formations on (X,Q,m) is of second category in ‘g .

Proof:
Since % is a complete metric space, Baire’s category theorem (see A.6)
asserts that is of second category. Therefore and by (X.6) it is

enough to show that W is the intersection of a sequence of open sets.
We prove this assertion for the (induced) operator sets

w fu:fé 2@ ) e Wi 1ot {2, Ley Pe @ subset of L (m)
which is dense in L (m). Define

wijkn t= {Tfe(& : \(Tnfi,f.> -<fi’1> {fj,1>|< 1}:@'0:' i, jyky,neN,

By (X.D.2) the setsw and thereforew u w are open.
We shall show that WY = Q 'UJ’. "
Lidt

The inclusion W & Owi i is obvious by (IX.5.a).
‘AR

On the other hand, if 7P is not weakly mixing, then there exists a
non-constant eigenvector hé L (M) of T‘f with unimodular eigenvalru.es/\
It is possible to choose h with JJh)j = 1 and £h,%> = O. Now, choose
k€N such that ||n - £} £ 1—1

We obtain

]<‘i;lfk’fk> - <fk’1i> <fk’1‘>, =
’<‘¢(fk - h),(fy, - b)> = L(f, - h), N> <(fk_h),1|> + < ™n,n5) >

for every néN.
This yields Tf *— Wkkz, and the theorem is proved. N

N|—=

Combining (X.5) and (X.7) we conclude that there exist weakly mixing
transformations on (X, ,m) which are not strongly mixing. But, even
if "most" transformations are of this type no explicit example was
known before Chacon and Kakutani in 1965 presented the first concrete
construction. Later on, Chacon and others developed a method of con-
structing MDS’s enjoying very different properties ("stacking method")
We shall use this method in its simplest form in order to obtain a
weakly mixing MDS which is not strongly mixing. The basic concepts of
the construction are set down in the following definition.




X, 8 Definition:
(1) A golumn C := (I, )j 1, of height q is a g-tuple of disjoint

intervals Ij = [aj,bj) C.EO,1) of equal length.

(ii) With 2 column ¢ there is associated a piecewise linear mapping
?“f i
: I, —> .
o aé{ 3 52{ I, defined by
‘-Fc(x) = (x - aj) % aj+1 for erj .
Remark:
A column is represented diagrammatically as follows:

 —

I, —m

Therefore the mapping Lfc moves a point xé& Ij’ j € 9=1, vertically
upwards to ch(x) € Ij+1 .
The main part in the construction of the desired MDS (X,B,m; ¥) con-

sists in the definition of a sequence C(n) = (Ij(n))j=1, of co-

-»q(n)
lumns. Then we use the associated mappings ‘Pn i= Lf’c(n) to define

Lpon X.

Take C(0) := ([0, 15)) and denote the remainder by R(0) := [%, 1).
cut €(0) and R(0) "in half" and let
o(1) = ([0, P, [ 2[5 $) and RO =[2, 1) .

In this way we proceed! More precisely, from Ij(n) = faj(n), bj(n)) €C(n)
we produce

a.(n) + b,(n)
Ti() = [a;(n), Lyl )

.(n) + bs(n)
1 (e[ ISPy )

and from R(n) we produce
R'(m) 1= [ by(n) (n), 2Ly

2 e [PA@E
Then we define

Cln+1)i= (Ig(n)yeeey I
and R(n+1):= R” (n).
This procedure can be illustrated as follows:

(n) + 1

)

and

y(n), I/ (0)yeee, I y(n), R'(n) )

q(n q(n
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(0)
(1)
(2)

(3)
(4)

C(w) R(w) o) )
objects defined above possess the following properties:

m(R(n)) = 2-(n+1) converges to zero as n tends to infinity.

Every interval I.(n)é€ C(n) is a union of intervals in C(n+1).

The & -algebra o K'Z ?_ Ij(n) )s keIN, is equal to the Borsel
algebra 8 . helt ael
The mapping (f’n+1 is an extension of "Fn'
For every xe¢ [0, 1) there exists n, ¢ such that
P(x):= @ (x), nng,
is defined.

Now: (X, 8 ,m ;%) is an MDS if we take ¢ as the mapping just defined
onyx = ]:0, 1).

X. 9 Theorem: The MDS (X,B8,m ;¢ ) is weakly but not strongly mixing.

Proof:

(1)

(ii)
1)

(X,8 ,m ;%) is not strongly mixing: Take A:= 11(1) = [o, %) .
By (1) above A is a union of intervals in C(n), and by definition
of p it follows m(y -q(n)(lj(n)),, Ij(n))>Fm(1;(n).
Therefore
m(‘f‘_q(n)(A) n A)2 15»2(4!&) = % for every ncX.

Bat if { were strongly mixing, then m( 1{’_q(n)(A)n A) would converge
to (m (A))z =1'13 (see IX.2 and IX.3).

The weak mixing of (X,®,m; #) is proved in three steps.

For neN and A e & choose Ln’Ag{1,2,..., a(n)} such that

m (A Ag‘eu Ij(n)) is minimal and define

nA A(n):= J'SH,AIj(n)'

By property (2) above and by (4.11) m(A A A(n)) converges to zero
|E n~» o
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Now, m(A(n)) = |Ln AIM(I (n)) = q(n)-1']Ln AI‘(‘I-M(R(n))) implies
that 1im gq(n)~ -1. “‘n A’ = lj_m m(A(n)) = m(A) by property (0).

2) (X,8,m; p) is ergodic? Assume f(4) = Aef. This implies for any
j= 1500+, q(n) that
(I (n)n 4) =m (P31 ()N 4)) = (I (m) 0 4) = a(n) ™! tu(a)-m(R(n)nA))
and therefore
m (a(n)a 4) = am) ™ ] Lo [ (m(8) -m(R(n)1A)).
The following calculation
0 = lim m(A(n)a A) = lim  (w(A(n)) +m(a) - 2m(a(n)n 4)):

= Lp (m@a@) +n@) -2 q@7 L] (m(a) - m(R(n)n 4)))

m(a) +m(a) - 2 m(a)- m(a)
= 2m(4a) (1 -m(4))
proves that m(A) = 0 or m(A) = 1, i.e.#1is ergodic.

3) Finally, it remains to show that 1 is the only eigenvalue of the in-
duced operator Ty (see IX.4)

Assume Tq,f =Af, O£ F € l-(m), and take 0 < € < % .

By Iusin’§ theopem (see A. 15) there exists a closed set D & [0, 1) of
positive measure on which f is uniformly continuous, so that there is
d > 0 such that |x - y|< J implies [f(x) - f(y)| <« € for x, y eD.
Choosing n large enough we obtain a set 4L ¢{1,..., q(n)} such that
D'°=£(_‘_}L I;(n) satisfies DD’ and m(DVD) < ¢-m (D) £ gm(D’) and

m(Ii(n))ﬂ:f for iel.
Now, define I 3= I,(n)n D
where m(Ij(n) \D)< €:m (Ij(n)) for a suitable je& L.
From the definition of ¢ it follows that
m (9 X2 (1)) 14)) > ;m(zj(n))

and M(\Pq(n)+1(1 (M) Iym))3 $m(I ).
'.‘Lherefore, we conclude that
m (i n)(I)n 1) =m (¢ 30N (0))n 1) =m(e 3™ (1, (n)\D)n 1)
2 mey ATy @) A Tym) = md ) (15m)) n (x 3 1) - £ (10m)
%5 'm(I (n5) 2 € m (Ij(n)) >0
and analogously
m(p (1) 4 1)y ImIym) - 28m (1) > o.
If % = fq(n)(y) = yq(n)(z)nl we obtain

£(x) = f(}pq(n)(y)) A £(3) ana |f(x) - £(3)] < € .
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1r x¢ = 3@y o pam gy 1 e obtain
f(xl) - f(? Q(n)+1(yl)) = 3Lq(n)+1f(y') and {£(x') - f(y;)l <€ .

Final

nelly, _ aa(n)+1 £z, £l
A5 Trq@y ° _f%y"_}' 3 ix%

implies

-1l e [EE-EE -0l « [HEL -1 ¢ ae,

which proves that 1 is the only eigenvalue of TLf - m

X. D Diseuasion

X. D.1 Separating bases:

The results of this lecture have been formulated for the particular
measure space ([0,1],8 ,m ). They remain true for more general spaces
(Y, Z ,/u), but an essential hypothesis for defining (X.1) and proving
(X.3) is the existence of a separating base, i.e. & sequence {Bn}n X
of measuUrable sébs geénera¥ing Z such that for different x,ye Y, there

exists kel with x€B, y#Bk or xQBk, T EB,.

As a trivial counterexample to (X.3) we consider (Y, T,4) where y= fa,b ],
S ={d,Y}, 4(y) =1 and @:Y->Y defined by ¢(a) = b and (b) = a.
Then

N mufxey + ¢x) #x} =1,
i.e.y # id infé& s but the induced operator TY’ is the identity operator
on L' .
Since it can be proved that every '"Lebesgue space" is isomorphic to
([o, 1],8,m) (see X.D.5), the cmtegory results (X.5) and (X.7) are
valid for a large class of probability spaces.

X. D.2 Topodogies on operator groups:

Let @’ be the group of all bi-measure-preserving transformations on
(fo, 1],8, m), & the Borel algebra and m the Lebesgue measure. On

g= {1, ¢ L@L'm)) : ¥4}
we can consider three natural topologies: the norm topology, the strong
and the weak operator topology, all indueed from ﬁf,(L1 (m)).
While we used the strong operator topology in order to obtain the cate-
gory theorems (X.5) and (X.7), the norm topology does not yield inter-
esting results.

Proposition 1% fﬁis discrete for the norm topology.
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Proof:
Choose lf‘e@ with t # id. As in the proof of (X.3) we obtain a set
A€ 8 such that m(A)50 and Ty i, A 1, = O. Defining £ = m(A)" -1,
we conclude that

§Ty, -1all 3 1, -2 = m(a)~1 fTp 1y - 1, Ul = 2.

Since fﬁ is a topological group, the proof is complete. g

The weak operator topology is more interesting but coincides on ‘ﬁwith
the strong operator topology, a fact that has already been used in the
proof of (X.7)-.

Proposition 2 : The weak and strong operator topologies coincide on f.

Proof:
Choose T, T & ‘5 < éC(L1 (m)) and assume that Tn -~—» T in the weak ope-
rator topology. The seperate continuity of multiplieation yields
71 T, ~—> Id in this topology. For 0 £f € Lw(m) we observe that

(r7l e | £) —> (£ £) |
where (+|+) denotes the scalar product on L%(m).
Since T and T induce 1sometries on 12 (m) we conclude that

2
It = 22 M = f T2 -2 5

(77 Tnf -f | 1
2 (£]£) =2 (Flrele) — o
as n—» ©0 , By H8lder’s inequality we obtain

(I T,f - If 1/1 — 0,

It

1

i

Tnf-f)

An application of (B.11) yields that T, converges to T in the strong
operator topology on 4. R

We remark that, in contrast to Proposition 2, g as a subset of é(,(L (m)).
is closed in the strong but not in the weak operator topology (see also

X.D.3).

X. D.3 The group of all bi-measure-preserving transformations is

complete:
The group ‘g of all bi-measure-preserving transformations of a probabi-
lity space (X, T ,/u) can lz’e topologized by the following subbase of open
sets U(¢,A, £) := {‘-Pe% ,u(ty AA Y™ A)<£} for tfeg Ae 2 , £50.

In order to prove the assertion stated in the title above, let us as-
sume that (.g is isomorphic to the group of all algebra isomorphisms of

*
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L4 W
the measure algebra 2, i.e. that every algebra isomorphism of X is

induced by = bi-measure-preserving transformation of X, and that dif-
ferent elements in f induce different algebra isomorphisms (see X.3).
In (VI.2) we have seen that every algebra isomorphism if’ of Z— induces an
isometric lattice isomorphism T of L (X, £ y«) satisfying T1 =1, and
conversely. Therefore ‘;is isomorphic to g:: {T & S:t’,(L1 (/u)) : T is
an isomeiric lattice isomorphism with T 1 = i}.

Moreover, the topology of g corresponds to the topology on ‘j_ induced by
the strong operator topology on gﬁ(L (#«)}+ Therefore, it suffices to
show that (ﬁ, is complete: From the Banach-Steinhaus theorem (see
Schaefer 1970 , III.4.6) it follows that the unit ball {s ¢ L(L'(x)) :
s €1} is complete for the strong operator topology. In order to show
that lﬁ, is closed, let T, converge to S, i.e. Tif LA Sf for every
ferl (#). We conclude that (Tifl-—-?lel and Tilflv-)slfl Since

|T1fl = T,1f| we obtain [Sf} = S|f], and S is a lattice homomorphism.
Similarly, one shows S 1 = 1 and [[Sfif = §fl, hence S ¢ Cﬁ .

X. D.4 The Rohlin lemma for ergodic MDSs:$

The proof of the second assertion in Rohlin’s lemma (X.2) is much easier
if we assume that the MDS is ergodic instead of antiperiodiec.

Lemma: Let (fo 1] B s lf’) be an MD3. If ¥ is ergod:l.c then for every
nélN and £> 0 there exists A¢# such that 4, ¥4,..., ¢F =14 are pair-
wise disjoint and m(Uy A)2 1 =-¢.

Proof: Choose Be & such that 0 < m(B) € é and consider the measurable
dis joint sets

B a { o m Py i

m.= XEX-‘P x&B,’-PX.;B ifi=0,..., m-1}
for meW_ . Since ¥ 1s bi-measure-preserving and ergodic we have

n ( (:j Bm) =
-(n-1), & n-1
Define A := ( d(tjﬂ Bjn) and observe that A, ¢p4,..., ¥ A are
pairwise disjoint and 4.1 n-t :
Ugks 2 x v~ Ues., p
k=0 L= 0
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X. D.5 Lebesgue spaces:
4s announced in (X.D.1) we show that there is a large and important

class of probability spaces which are isomorphic to ([0,1], 8, m),
m the lebesgue measure. Here the corresponding isomorphism will be
induced by a bi-measure-preserving point to point map (compare Vi.D.1).

Definition: A probability space (X, 8y, #) is called a Lebesgue space
if X is a separable complete metric space, CBX the Borel algebra on

X and « a diffuse Borel measure.

The isomorphism of (X, By, m) and ([0,1], B, m) will be obtained by
showing that both probability spaces are isomorphic to {0, 1IN with
a suitable probability measure.

Lemma :

(i) Iet ¥ be a diffuse probability measure on the product - s -algebra
5 of X ={0, ¥, Then there is a diffuse probability measure
A on ([0,1],63) such that (i,;’:,v) is isomorphic to (f0,1],33 s/}

(ii) For a diffuse probsbility measure « on [0, 1], ({0,1],8 ,4) is
isomorphic to ([0,1],8,m).

Proof:
(i) This statement is proved by the mapping

o0
: X —> -k
O:X—[0, 1] (5 n 1,{:42 Xy
of (Vi.D.2), which is bijective except from two countable sets, and
by taking u« = ve®~1,

(ii) Let £(t) :=m([0,t]), then £_: [0,1]—>[0,1}is eontinuous, increas-
ing end £(0) = O and £(1) = 1. Define £¥(8) := sup{t: £(t)< s} and
fe(s) 1= inf {t: £()> s} and ¥ := {se[0,1]¢ £%(s) # fi(s)}. .
Obviously, f is constant (equal to s) on the intervals [_'f%(s), f (s)]
for s €M, and therefore /a([‘f*(s), £¥(s)]) = 0. Since

zZ (f*(s) - f,(s)) 4 1, M is at most countable and thus m(M) = 0 and
seM
(W) =S§‘/u([ff¥(s), £*(s)]) = O where XN ==;£jr1 [:f*(s), f*‘(s)] . On the

complement of N the function f is invertible and m= u« o £=1 since
w(£1([0,83)) =x ([0, £¥(2)]) = £(£%(£)) = ¢t = m ([0,t])
for all t ¢[0,1]. W
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Theorem: Every Lebesgue space (X, @X,/u) is isomorphic to ([0,1],B,m).

Proof:

By 13‘he lemma it suffices to prove that (X, Bx,,k) is isomorphic to
(i,f,v) for some diffuse probability measure Vv on % = {0, 1}N. Since
X is separable and metric, there exists a separating base (An)n €N

of open £-balls in X (see X.D.1). We define the embedding

. {1 if xedy

T lo ifrxbay’

which is injective since (4,) is separating.

Furthermore, the map i is measurable since Z is generated by the sets

i+t X— ﬁby (:i.(x))n

By i= {(xm) € Xs X, = 1} eand i-1(Bn) = A . A theorem of Kuratowsky

A

(see Jacoba 1978 , XIII.2.18) yields that i(X) is £ -measurable and

j ¢ X—» i(X) is bi-measurable. Then Vi= o 1-1 is a diffuse probabi-
~ A

1ity measure on X and v (X*i(X)) = 0, hence (X, @X,/t) is isomorphic to

(E,E,V )‘ .

Remarks:
1. "Lebesgue spaces'" can be defined without referring to topological

concepts: it is the existence of a separating base and the measurabi-

1ity of the set i(X) appearing in the proof above for a suitable
¢ -algebra on X which is essential (see Haezendonekflg"{ﬂ,?roposition 6).

2. It is not difficult to deduce from the theorem above an analogous

representation theorem for probability spaces (X, (BX,/«), X sepaprable
complete metric, but « not necessarily diffuse.

References: Haezendonsck [1973], JacobsEl9‘78], RiecanEl978], Rohlin E949] .
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XI. Information of Covers

In this lecture we continue our efforts to find further invariants for
measure-theoretical or topological dynamical systems with the intention
of thereby solving the isomorphism problem for these systems. But hence-
forth the methods and the language we use will change drastically: while
up to now theroms and proofs had a strong functional-analytic touch, in
the remaining lectures we shall develop the concept of "entropy" for
dynamical systems mainly using ordinary set theory.

The fundamental concept will be that of a cover of of a get X, i.e. a
finite collection o« of subsets of X such that X = A‘é}wA‘

Intuitively, we may talk of the "information" that such covers « pro-
vide about the location of a point x ¢ X, meaning the knowledge obi:ained
by specifying an element A € X which contains the point x. Moreover, the
"finer" is a cover the more informations it provides (see XI.1 below).
These intuitive concepts will be made precise in this lecture in a pure-
ly "static" approach. In the next lecture the dynamics will be added,
leading to the important Kolmogoroff-Sinai invabiant for dynemical sy-
stems: the entropy.

XI. 1 Definition: Let ov and 8 be two covers of a set X. We call o finer
then g8, written & » 8 , if every A 6« is containe/in some B¢g .
The cover
«vBi= {anBs Aea, BéF}
is called the common refinement of &« and 3.

Remark:
yrovp if and only if y >« and y > 2. But since "> " is not anti-
symetric and therefore not an order relation we cannot call «vg the
supremum of & and 8 (for example we have & > &v (Xvg£)> & although
o # ot v (xvyB) in general).
As indicated above, we are looking for a numerical measure h of the
"information" of a cover o« . It is reasonable to require h to satisfy
the following two basic properties:

(%) Monotonicity, i.e. & >A implies h(«}> h(B),

(%¥) Subadditivity, i.e. h(etvB) £ nh(x) + h(/s)
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for all covers ), F we are considering. With this in mind there are es-
sentially two different ways of introducing such measures h, which lead
to the notions of topological entropy and of measure-theoretical entropy,
respectively.

The first way can be pursued in a purely set-theoretical context, but we
restrict ourselves to the topological setting. Hence, we assume that X
is a compact space and denote by & the set of all open (finite) covers
of X. The definition of the "information' of an open cover &« e 3" will

be based on the simple idea of counting the elements of &« . Therefore,
we denote by o] the number of (different) elements in &« and conclude

from ltvpl € 1x|- 18]
that hz'(q) = log |ot]

satisfies (¥%). However, it does not have property (%) since for every
subcover 8 of & (i.e. 8&0 and <) we have Az but gl £14l,
Therefore we introduce the following definition which forces the "in-
formation" to become monotone.

- o -~ & " * e -~
XI. 2 Definition: For we (" we call ht(tx ) %= inf {ht(ﬁ)- xXER8 e0}
the £t - information of the cover «.
Formally, the above expression for ht(ct') is analogous to the expression
appearing in Definition (XI.6), and we have the following proposition.

XI. 3 Proposition: The t-information o +—» h, (&) is monotone and
subadditive on (.

The Definition (XI.2) can be simplified conaiderably: As observed above,

a subcover 8 of « is always finer than & . Moreover, for every open

cover ¥~ finer than « there is a subcover /0 of o« such that iy| 2 lﬂl .

There, hy( o) may be computed as follows.

XI. 4 Lerma: The t-information ht(o<) of a cover o ¢ 3‘/ is equal to
log N(at), where N(ot ) is the number of elements of a subcover
of @ which has smalleast cardinality.

The second way of introducing a measure of the "information" of a cover
requires a probability space (X, £,x)}. We can then use Shannon’s in-
formation (see Z.1) to define

* -
h, (0) = - ,4%‘ A(L) log u(h) _

for every disjoint ¥ -measurable cover « of X. If we denote by Z the
set_of all Z -measurable (finite) covers of X, and by Zd the subset of
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all disjoint (finite) covers (=partitions), then we observe that h
behaves quite well on 2.

. L& * * ¥
XI. 5 Lemma: For o, f € Zd Wwe have I}u(dvﬁ) < h,u(c'() + hA(,G).
Equality holds if and only if /u(AnB) = /u(A) -/u(B) for every
Ago ,BESg

Proof':

Let o and 4B be two di93oint covers of X. Then

*(uvp) - n¥ (%) - nf (8)

= 2 /u(AnB)log/u(AnB) + 2: /u(A)log/u(A) + Z/u(B)log/u(B)

Aeu Bes
= - B)1 :
Py 325% A (£aB)1og u(AnB) + 2;“( BZE.p/“(AnB))log/u(A) + 34;:0 (42‘; ,u(Aanog/.(B)
- ) M(A) (B} ‘
= Gep!(P0B) 108 £ A )
A): B
\AZ; Rze.ﬁ/Q(AnB) ( (a3 - 1) «-log e = O,
where the inequality is true since log x £€(x - 1) log e, with equality
only for x 1. W

To extend ; to all measurable covers o we use the same procedure

as in (XI.2).

XTI, 6 Definition: For € f we call _
h, (el) := inf {h* (ﬁ): 0('-‘:[g eﬁ S the -inform-
M af 9hu d M
ation of the covergl. .

Again, hﬁ is monotone by definition, and Lemma (XI.5) implies that
inf {1 ()2 < v <ref }<ine iy vy isspe £g md pspse £47

Sinf{hﬂ(y1):o(4y'1£ d}”inf{l}f(fz’/gé)"zé A.’d}.

Therefore, thiS/q, -information also satisfies the desired properties

(X)) and (¥ X ).

XI. 7 Proposition: The/u =-information o > h/._ (o¢) is monotone and T
subadditive on 2 .

For computations as well as for theoretical reasons the following

result is important.

XT. 8 Proposition: For disjoint covers & ¢ Z we have

B (o) =h/ff(u).
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Proof:
It suffices to show that o« £4 implies h («) € Bt (B) for &8¢ 24.

let of = {A1,...,An} andﬁ .—.ﬁ_lvﬁz v ...vﬁ where’g. ={Bé/8. B cAig.
Then
h;(/@) - Bi(a) = -Zﬂ(B) log (B) + ,2 1AA +) log u(4,)

= 5 (- Z,«(B) log/u(B) + (Z/u(B)) log «(Ay) )
=9 8ep/

=Z-(->: ;(B)logvi&-)-)-)

z/uxl)(-z A{—l)log/i(—lyw °o. M

Bel,;
In the final part of this lecture we deduce some relations between the
different informations of covers which will be of great importance in
the following. To that purpose let X be a compact space, $ its Borel o—
algebra and « = Er:obability measure on X. We conaider the set g’ of all
open covers and & of all Borel measurable covers of X. In this setting

]

it maekes sense to compare t-information and u4-information for o & &.

XI. 9 Theorem:

(i) The t-information majorizes the u,-information, i.e. (o() h, (o)
for every « & C?; .

(ii) The s-information is a concave function on the set of all probabili-

'VH'“ v (x) 2 A'I}/,(at) + (1=2) h ,(x)

for 0 < A < 1, ¢ $ and probability measures « and v on X.

ty measures on X, i.e.

Proof':

(i) If « is an open cover of X we may take a subcover o of & having
minimal cardinality. For & we find & disjoint cover x &8 finer
than & and such that |a| = I&| ("disjointification"). By the
above definitions we have

hﬂ(u) £ h/u(&)

- A
and hy (%) = logiat! = log jel].
'I‘herefore, i

(&) =By (&) € n, (&) - log |

= - AE/L(A) log/w(A) - ;/L(A) 108)""
Z (a) 108 FRTRT

Aed

£ 2: /M(A) (__TITTﬁT_ - 1) -log e = O,
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(ii) It suffices to prove the statement for disjoint covers wedd :
(o) = = A%‘ (A-p(B) + (1 =2)-v(4)) log(Am(B) + (1-1)-v(4))

Byur (1-2)»
- Z (a.m(A) logu(a) + (1 =2)-¥(4) logv(4))
Aex

W

= ;t.h/u(q) + (1 =2A-hy(ax)s

since X 3 -x log x is a concave function on I:O, 1] . »
XI. D Discussion

XI, D.1 The t-information is like & a-information:

One might ask whether there is a closer connection between ht(tx) and
h/u( « )} besides the formal analogies in the structure of the definition.
To this end we conaider a compact space X and introduce a functional m

by 1 if g £ AcX%
m(A) =={

O if ¢ = A. L]
Let « be some open cover of X. Exactly as for the «-information we de-

e Bi() to - X B ()

Aed 9

for q = > m(A) and -

Aex B (®) = inf {n¥(g) + 4R €& ] |
Fortunately, h:(e( ) = log Ix] and therefore hm(o() = ht(ot).
Hence, we obtain the t-information from the same expression as the «-
information just by replacing the probability measure u« by the trivial
functional m. The only difference is that disjoint covers don’t appear
in the topological case (unless the compact space X is disconnected).
For a common generalization of h/“ and ht see (XI.D.5).

XTI, D.2 The infimum in the definition of "information" is attained:

The t-information of «, formally defined as h.(a) = inf{h;f(ﬂ): &éﬂég’}

is in fact equal to min fhf(ﬁHﬂ c«} by (XI.4).

In the measure-theoretical case we defined the x -information of « as
h(w) = ine{b¥(d) tx$d ¢ £,41,

and again this infimum is attained at some "disjointification” of .

The proof of this statement is not quits obvious and needs some prepara-

tion.
Definition: ULet (X, £ ,x) be a probability space.
(i) An element & = (A1,...,An) of £2 is called an ordered cover (6f
length n) if u( (1/ Ai) = 1. The set of all ordered covers of length
i=

. n - .
n is denoted by Zc. Moreover, we call &« an ordering of a cover
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X €Z if ® and « contain the same elements up to ¢ -null sets,
but not necessarily the same number of elements.
(ii) Consider the mapping A Z —_— Z where
(“) {A =l=1’¢o-, n}o

If & is an ordering of o(, then A («) is called the
disjointification of o corresponding to the ordering .

Proposition: h,u (®) = min {h; (f'): Jis a disjointification of 01}

Proof':
Let &€y €2, and assume that y = {01,..., cn} is such that
/“(Ci+1) s/«(c.). Oour aim is to construct a disjointification o of

-:é x .
with bt (£) & by (3):
There 1s an A1 € ¢ such that C1C A1. Consgider
3/'2=={C1U (02ﬂ A1), 02\ A,I, 03,o¢0, Cn} .
Since the u -information is concave (XI.9), we obtain

¥ *
h/u(xz) < I'}u (3‘)-
Then we construct ¥3 t= {01 v (02AA1) u(CBnA1), CoNAL,C 3\A1’C4”"’Cn}
and so on. We end up with aﬂ-n $= {'A,I, 02\A1,..., Cn\ A1} s 8ince

n
A, =0y v ;g/z(ci" A1), and

R (¥g) € n(y)
For the next step we may assume that C, = A, and agail;lj /‘(ci+1) 5_/{(01).
There is A, € o such that C,C A,. Now A v A, = Cy v ;:"{ (Cin Az) and as
above, we replace successively 02 by AZ\ A1 and Ci by Ci\ A2 for
i= %0y e
This time we end up with Y- ={A1,A2\A1, Cg N Apyeaey Cpn Az} and

ht (yp) ¢ B (y)

Continuing in this way we obtain the desired disjointification. i

XI. D.% Conditional information of a cover:
In the proof of (XI.8) we obtained an interesting expression, namely a
convex combination of sums that look like h;fb . In fact, they represent

the information (see App.Z.3) of the vector of conditional probabilities

A A A B)
/{(BIA.) t= -—(T- In analogy, we consider A €& 2, u,ﬁ < Zd and

define the condltlonalﬂ -information of ,@ given A

oo 3 MBAB) | u(BAA)
L B (pla) o= 3%5/(11) 1°g’,am)}
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and the conditional ?y-infongation of 2 given X
I

h ( O{)== (A)h ( A)o
AV A (g

Proposition: Let N,ﬂ,b*é fd' Then

(1) hﬂ(X‘]u)=hﬁ(°ﬁvx')-h/u(o(),

(11) hﬂ(“V“GlX-) £ h/q("”x') +h/4,¢(ﬂfy’):
(iii) hﬂ(dlﬂvy) = h/“(o(v/é’ly) -hﬂ(/@Ir) .

Proof':

(i)  Apply the identity in the proof of (XI.8) to owvy.

(1i) As in the proof of (XI.5) one shows that h/“(o(v/a) c) 413‘(( | G +

13“(/3 !} C) for every C € y .

(iii) hﬂ(«vplx) - (2ly) = h(xvpvy)-n,(y) - B (fvy)+ h/‘(y') = b, (lpvy)
| ¢

« Then

(1) ®$p  implies h}k(delx

Sorollary: Let «o, P¥ € g
)
(i) g2y implies }}.(“’f”

4
€ h (ﬂf)*):
£ h (afy).

Proof:
For disjoint covers «,£ and y we have
h(gly ) =h («ly ) = B (avgly) - B (o ly)
= h,( g]svy) 2 O proving (i), and
R (xly) = b («]gvy)
= h(xly) = h,(avgiy) + I}Q(ﬂjy)
20 proving (ii). WK

"

]

‘3«(’”3’) - h,(xig)

XI. D.4 Two metrics for covers:

If (X, X ,«) is a probability space, then there is a natural (quasi-)
metric on the o -algebra 3. defined by

d(A,B) := «(A4B) for A, B € X,

This metric induces in mcanonical way a metric on & (see below). On
L
the other hand there is* a second metric on Z which was introduced by

R LT v.T TR WO TR

Rohlin and whose definition is based on the concept of "conditional -
information" (see XI.D.3%). In the following we shall investigate and

compare these metrics.
Definition:

(i) For two ordered covers & = (Aypeees Ap) and 5= (Byseves By) of
2. we define
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- d(o(,{@) !=£ /ﬁ(AiAP'i)o
Then the distance between two covers % BEZ is

d(,8) t=min {d(e,F) : « 5Z: an ordering of o,

Z;"ezg an ordering of ﬁ},
n=max (|« , 18)) .
(ii) The Rohlin - distance between two disjoint covers o, f2 € Zd is
given by

flet, ) =R (1f) + h,(Aleat).
It follows from the proposition in (XI.D.3) that ¢ is in fact a metric
on 2 ;. In the following we shall write simply h instead of h,, .

Proposition: The spaces LD := {o(é 5ol ¢ n } and

ig = {d eZd : tell £ nt for fixed ne¢WN are com-
plete for the uniform structure induced by the metric d.

Proof':
By (4.10) 2 and therefore S is complete. Let (di) be a Cauchy se-

quence in $ . Then there is an inereasing sequence (km) such that

i, §J » ky implies d(a,, otj) < 27", In particular, d(Nkm. dka) < 2™,

. — n — n
o
and we can find orderings m € X" of o, and o<m+1 € X of o »
such that d(o_l-m, &m +1) < 2™, By the completeness of S there exists

an ordered cover & € ¥ such that &m converges to o. For the cover
o corresponding to « we obtein lim « g 5 &Ko
The proof of the second part is left to the reader. W

The following theorem:shows the equivalence of d and @ on the set of

all partitions of a fixed cardinality. This equivalence gives us a

greater flexibility and we can apply the metric most suited for the
specific problem. Such applications willl be made in (XII.D.B8) and (XII.D.T)s

Theorem: Let (X, & , &) be a probability space.

(1) The metriec ¢ is finer than d on Ed' B
(ii) The metrics ¢ and d are equivalent on Zg for every né N,
(1ii) For every £ > O there is ¢ » 0 such that
h(glat ) € implies /4% & (compare Definition XII.5)
and ﬁ}é& implies h(gB 1= )< ¢

for any e, € Zd where § has a fixed cardinality.
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Remark:
The statement (iii) can be regarded as an "asymmetric'" version of (ii}).

Proof':

We proceed as follows: First we show the second part of (iii) and extend
the proof to the corresponding part of (ii), i.e. d is finer than ¢ on
ZLd . Then we prove the first part of (iii) and extend it to (i).

atep 1:

In (XII.6) we shall comstruct a function f : N x R _—> R_ such that

ln.m f(n, £) =0 for every nelN, and ,8;0( implies the exlstence of
,y—eZ with @ <xvy and h(y) £ £(ig|,€).

Thus p d_ot implies that

n(gia) = h(xwg ) - hlx ) <€ h(xvy) - h (%) £ hiy) « f(n, ) <¢

for & sufficiently small.

step 2:

If d(«,8) < d then « éﬂ and 2 % « and therefore

ela,p) =n(xig )+ h(_ﬁlo{) <« £ for ¢ sufficiently small,

step 3:

Let 3= h(fl«t) > 0 and n := |B] . For c¢>0 we consider

o :={Aeo¢ : u(h) =0 or h(B{A4) > ¢ {.

)
Then the set A := (/A has measure

° Q
D wayy ¢ £,

for otherwise h(,@{u )y 2 ,E«/“(A) h(p’m ) > gc =J.

For any A€ o~ X, there exists Beg such that
An B >
(2) >

. ks
because otherwise
- log;%(‘-%frB—)— > = 1og(1 = ¢} 2 ¢ and therefore n(gi4 ) > c.
Now we define & mapping b : ol—% £ as follows:
For A ex let b(A) be an element Beg for which #(Bnh) is maximal.
From (2) we obtain .
(3) w(Anb(A)) 2 (1 - c) (s) and .
~(AVvb(4)) ¢« c-/u(A) .
For Bep define Oy 3= fA€w & :b(A) = B} and B := 45, Ae Then
y={alv{B : Bepf 5
is a partition which satisfies « 2y . Moreover, we have

M(B\B) Z,«(A\b(A)) < ¢ Z/u(A) c 4(B) and
4B~ B) -,a( B0 v (Bakg )

¢ 3= /n(cxc) + #(Bnhg)
Ced~{8}

1 - C »
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.,u(C) +/((B/:A )

e

Ctﬁfa}
€ ¢ + /y(BnAo) .

—

Now we take any C € 8 and define
:={B s Be B fctlv {Cua i € Iy
Then Q7% o, Ig'l < 18| and

d(p,/a’) ,u(B\B) + Z /u(B\B) +/4,(CUA v C) +A(C\CUA)
B B B) + P L (BB) 4 w(GNC) 4By O) + (0N D)

In

£ 35/3\(

= %,«(B\B) + Z (BN B) +4(hyN0)
£ en+2% 4+ ¢ + g

€3(dn +M?—: for ¢ = /-’g—l.

step 4t

Let g = ¢(%,8) > 0 and assume that |«j= |8/ = n. Then h(gjx)
and h(«|8 ) s d , and we can perform the construction of step 3 for
both v and 8 . In particular, we have two mappings b : &« —> p and

at B> and two sets w, cx and B, <¢p With/!(Aeqo g’

B) &2

s and the inequalities (3).

/“(Bepo
Take o, as above and

oy t= fAE XNot, : b(A) € /Bo},

oy t= {AE O A, b(A)e BN A o, A F alb(a) ],

oz t= fAEx A, 1 b(A)e B, A= al(b(l) ],
and Fo’ P Pos p3 analogously.
Then & = &, v o4 v o, u Xy and p=pou/?1v/92u/83 B
For A € &4 we have from the inequality (3)

AB) ¢ glz u(b(a) A a) ¢ gl u(b(a)) .
Therefore
@) mGE D € s k(Y B) £ sy
Now we take any B € g\ /A  and consider
oy 1= {Aeo( : b(a) = B .
Then a(B)QN and therefore

]

p(B) ¥ T BaR) + u(Baal®) > “-cMAeZ«;B 4(8) + u(B)) by (3).

This implies
(5) pGE, 0 € T (L 4<%, 1m0 £ 1%

Beﬁ\ EelB
Finglly, again by (3), we get Ko

(6) B (k(b(8)) + u(b(a)% 8)) & e A§“3(/“(A) + 4 (b(4)))€20.
In conclusion, we obtain from (1), (4), (5) and (6)

2
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d(ax,8) € 2¢ + Aezeuog/‘(-“*) + Bé\,@;i“(B)
<

--20 * 2(%.,. c({1=-c ¥ Tf_c
= 4(Vd +T:@'{}"_) for ¢ =4

€16/F for S< 4 W
References: Denken=Grillenberger-Sigmund [19763, Ch.11, Rohlin E|9593 s E96

XI. D.5 Weighted lattices and the information of covers:
The strong analogy in the definitions of the information of a cover in

the topological and measure-theoretical cases leads us to ask for the

common structure behind these two cases. It turns out that the structure
of a "distributive lattice" of & and Z is the essential ingredient.
We sketch this abstract approach to information.
Assume that V is a disbibutive lattice with O and 1 and assume we have
a "weighting function™"

m:V—>R_,
which corresponds to the measure s in the measure-theoretical case and
to the functional m in (XI.D.1) in the topological case. The set

™

Vv 3= {ucv: ] is finite and sup{a= aé‘*} =1}
is called the set of all "“covers" of V. ‘{T'will be (pre)ordered where
« 48 if for every b&g there is aeol such that b £ a. For o ¢ T we

define
¥
M) = - 5 B8y 1o B8y
€

where m () := X m(a) .
@ e

it

Let us furjzher define
h(B) = sup{Hi(x) : A€ and |«l<18]}.

N

Then we obtain the "m-information" of a cover Y € V as

By(y) = inf{hp(p) : yrepl .

With some additional modifications that are irrelevant in the btopologi-

cal and in the measure-theoretical context (see Palm 1976 a,b ) one ob-
tains monotonicity and subadditivity for h, . These are the basic preper-
ties for a further development of the theory as in lecture X1II. Moreover,
the above definition coincides with h/u, resp. hy, if we take V = X and
m=u for a probability apace (X,Z,/u), resp. V= (¢ and m as in (XI.D.1)
for a compact space X. ‘

Referencesas: Palm E9'76 a,bj -
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X1I. Entropy of Dynamical Systems

Having introduced the necessary "static" coneepts in the previous lec-
ture we now consider the "dynamics" as given by the transformation

(.(:x-—->x

of an MDS (X, T, ;3 P} or of a TS (X3 ¥). In a natural way, { also in-
duces dynemic® on the set 5 of all (finite) measurasble covers or on the
set O’ of all (finite) open covers of X, More precisely, to every (measur-
able or open) cover o of X we associate the cover

{e71a) 18 e
Similarily, we define

PP = {¢Pa) treu}
for n € Z and use the following shorthand notation:

~ ~ ~ll— n-1 ‘
<x§ t= u.y-q?k+1ogv'... V\Pn 1 ‘{ 'f o( for k,nisZ' k<n,
n-
ot 3= 0(0 = V '® for n IN, and
0 .. 4O .
& = g t= {}

As explained at the beginning of lecture XI, a cover & informs us of
the location of a point x e¢X by specifying an element A € such that
x € A. Consequently, #® provides the same information about the point
Y(x) and :'f:'nd about (pn(x) : Xe &,o'n(A)é t}'nq iff Pn(x) e A ed .
We have measured this information by I}u( ™), respe. ht( ol)e
Obviously hﬂ(tﬁ'&) = h, (), resp. hy(yfa) = By(at) ,

n m n m
and h, (™) ¢ h, (o ), resp. hy(a ") ¢ hy(a ™),
for ns m. ‘Ihe study of the asymptotic growth of (ot oy, resp. hy(a oy,
then leads to a new constant depending on o and the dynamics provided
by ¥ . Variation over all suitable covers o yields the new isomorphism
invariant, the "entropy".

XII. 1 Definition: Consider an MDS (X, Z,/u; $)e
The entropy of xe X (with respect to ) is defined by

B (o5 9) = hl_,ngﬁh (af) .

The u-entropy of (X, Z',/u $1¢) is defined by

Y
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By (X3 ¢) &= sup {hy (x39p) ¢ o0eZ |

In the topological case we proceed analogously.

XITI. 2 Definition: Consider a TDS (X;¢).
The topological entropy of o ¢ & (with respect to ¢ ) is defined by
. . . 1 n
ht(“a CP) = hl-:-glo n ht(ﬂ )0
The topological entropy of (X; ) is defined by
ht(X;(f) i= sup{ht(N;‘P) P X € a'} .

Remarks:
1. We observe that the two definitions are identical, and the same will
be true for some of the following proofs. Therefore, from now on we
write h in all statements valid for both h/‘_ and hi. 5_
2. The limits in the above definitions exist since the subadditivity of

h (see XI.4 and XI.7) implies that
(¢ **™) £ n(« ™) + h(a™).
In addition, the elementary ILemma (E.5) shows that
h(s; ) = inf I n(x™. |
3. The u-entropy was first introduced by Kolmogorov in 1958, the t-entropy
by Adler, Konheim and McAndrew in 1965.

XII. % Proposition: The entropy h(X; tf) is an isomorphism invariant.

Proof':
An isomorphism & between two MDSs fresp. TDSs) induces a bijective
mapping

0o o {0'1A : A e}
that preserves the pre-order relation "<" on f(resp. 5) and satisfies
n(«) =h (o).
Then, step by step, one shows the equality of the entropy of two iso-
morphic systems. .
Still, there remains the troublesome fact that the above definition of
entropy involves several steps, and it seems to be difficult to do all
the required computations in concrete examples. Therefore, it is our

first aim to become familiar with the definition and %o find rules to
faciliate these gomputations. A first list of such rules is contained in

the following proposition.
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XII. 4 Proposition: For the entropy of a dynamical System (X, Z,/a.; ©),
resp. (X3¥ ), and a measurable, resp. open, cover « the-following state-

ments are valid:

(1) 'h(X;lp)=sup{h/u(ot;P)=defd},
(13) h(&;P) = h(&3¥) for k<m ¢ 2,
(111) h(es ¢) = lim —= h( D) ,

(iv) h(« ;) %s the Cesaro limit of the sequence (h(w
(v) h(X;9™) = im|-h(X;¢) forme Z .

215 - ne™) e

Proof':
(i) The set Zd of cl:.sjo:l.nt measurable covers is cofinal in £ , i.e.
' for every o ¢ Z there exists dJd ¢ E'_d which is finer than o .

Therefore, the asssertion follows from the monotonicity of h

~ Vel
(ii) For any cover 3 We have h(g) = h(¢ B ). Therefore
1 myny _ 1 n#m-1, 1 nim-k=1, _
In((a®® = In@d™) - 1nx ) =
=n+mr.l—k-1 n-:-mlk-1 n(g PHTE-T) converges toh (N3tp) .
(iii) The seguence ( h(O( n))nem ( 1’1((:(21'1))n (¥ Sonverges to
h(; ).
(iv) It suffices to observe that
n~1 . .
15 m(al*) - n(al) = Ima™ - n«?) = In«™ .
L=e
(v) Assume first O <m e]N. By (11) we obtain

= 1im1ﬁh(o< ) =m1mm—nh(cx mn =mh(ot;‘1°) .

For m = O we have h(®;id) = lim L (&) = 0. Finally, it suffices
to show that

h(as¢™1) = h(e39) ¢ Lim & n(ag_p) = Um 2 n( F;_) = L nx D).

Remark: The term

n(o ™) - n(«®) = h(«_)) - ha_d) occuring in (iv),
can be interpreted as follows: )
Given all the information provided by & about the points sﬂl(x_) "for a
long time in the past" (i = -1,..., -n), this mdy still be insuffient to
predict the position of x, because the additional information provided
by &« about x is h “-:1) - k_z(et_g) > h(o;%). Therefore, if h(x;¥ > 0
for every & this inmplies that the dynamics ¥ is not fully predictable,
although the mapping { is well defined. By (XI.D.3), h(o.)) - h(at 2)

= hio|« _p)decreases monotonically to h(o ;) as n .
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But even with these "computation rules" in mind the calculation of h(X;¢)
for non-trivial exsples remains dificult, if not impossible.

Exerciget: Calculate h(X;'¥) for periodic ¢ .
The main difficulty is caused by the supremum in the Definitions (XII.1)
and (XII.2), since it requires to calculate the entropy for gll covers
- a seemingly hopelesa task. However, if we are able to find a cover
whoae entropy dominates the entropy of all covers, we can overcome this
problem. For instance, assume that our dynemical system admits a cover
having the following property:
( %) For every cover @ there exists meWN such that £« o(m.
Using (XII.4.ii) and the monotonicity of h we conclude that

n(psp) € n(«;9) = n(as),
hence H(X; ) = h( o3 ¥ ). Therefore, it suffices to calculate the entropy
of a single cover &, a task solvable in many cases.
Unfortunately, dynsmical systems possessing a cover ® with property (%)
are rather rare.
But - and this was the essentisl observation of Kolmogorov and Sinsai in
1856 - for MDSs it will be possible to weaken the condit:l.on (%) such
that, firstly, it will be satisfied in many cases and, secondly, it still
permits the same eonclusion. The reason for this is the fact, that in the
measure-theoretical case (in contrast to the topological case, see
Keynes-Robertson 5969]) the metric induced by the measure s+ on X is
non-discrete and yields a non-trivial metric on X thus permitting us

to say when covers are "glmost equal" or "almost finer"®.

XII. 5 Definition: Let (X, X , ;) be an MDS and &, 8 € £ .
Then we introduce the following notation.

(1)  a(®,8) = min {‘é,u(A a () : Tt k~>8 is bijective};
here we assume that I[«| = |8/ which may be obtained by adding
a suitable number of . -null sets to o of ‘g .

(ii) y2 ‘—’é- o ("x is finer than /y up to g") if there is a cover ﬁ'ef
such thet B'2x , I@gl = (gl end A(B8,B)< € for £ > 0.

(1ii) A subset W of X 1is called generating if for every £ >0 and
every ,aeE there is « € W and n € W such that g E‘.. Q(En .

(iv) If a generating subset W only contains one element o, then « is
called a generator.

Certainly, the condition in (XII.5iii) is a weakening of the property

(¥) above. In order to prove that the entropy of (X,E.',/a;gp )y i.e. the

"gupremun" in (XII.1), is already attained on a single cover « satisfy-
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ing (XII.5.iii), it is essential to show that £ £ implies some y
estimate of h (p) by /‘( % ). This is achieved by the following lemma.

XII. 6 Lemma: The function £ ¢ Wx R — IR, defined by
f(n,£) 2= =(1 - €) log(1 -¢) - €logé + £ logn
has the following two properties:
(1) 1:1.m f(n,£) =0 for every n el .
(ii) Let £>0 and o, B€ Y . Then B &% implies the existence of y—eZ

such that g4 XVv¥ and h /‘(3‘) < £( @i, £).

Proof':
The first assertion follows from analyzing the function
X+ x log x for xéfo, 1]

For = fB seesy B } there exists B! soeny B such that
A 1 n p'= 13 p ;
B’%e and d(p;p) = /u(BiA B ) < £ . Consider D = (,g B. 4 B;,

C :=X~Dand Y= {C, D"Bi t1l=1,04, n}é f . We claim that g<avy™
Take an element of v Yy . If it is of the form AnDnBi, Aeot , then it

is contained in B; € B « If it is of the form AnC, A &o , then there is

a B; €4’ such that A ¢ B;. This implies that

AnCc B{aC = (B v(B; a Bi))nC = (Bju (By & B{))AC = BynC B, ea .
Now we estimate h,(y ) : Let di={C, Dyseuc, n} be a "disjointification®
(see XI.D. 2) of y such that D; ¢ DnB;. Then y 44 and

(X') £ (d”) - pM(C) log/u(C) - Z'/a(D) log «(Ds)

= -,a(c) log/u(C) - «(D) log u (D) - «(D) Z,u(Di) 1og/¢(Di) < £0180, £)
(use XI.9).

After this preparation the main result, on which most calculations of
h/‘ are based, is a rather simple consequence.

XI1. 7 fl'.heorem- If (X,X ,m3¢) is an MDS and W a generating subset of
Z then h/u(X,‘P) = sup{h (ot ) 3 ole‘l:f}.

Proof':
" -ad - n
For every £ » 0 and B ¢ 2 there exists & € W and néN such that pgq_n.

By (X‘II.Q) we can find yeZ such that g« txz_lnva" and h/u(é’) & £(Igf, £).
By the standard computation we obtain

k % k=1
and

’_‘n) +kn, (y)
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)
hence I}“(ﬁ;?’) € p(a39) .

h(A;¥) € n («2:%) +n,(5) € B (as9) + £01g15 €) ,
XII. 8 Corollary (Kolmogorov - Sinai, 1958): Let (X, s 43 %) be an
MDS and & € Zd' If Z is generated by Uot n» then

Proof:

In (A.11) we mentioned that for any subset W of Z the closure with
respect to the metric 4 of the algebra (W) generated by W is the
o -algebra O (W) generated by W. Therefore

oo Guln=a(g«t) = Gael).

Thus for B¢ £ and &> 0 there exists ne¢X, and B' ¢ OI(otn ) such
that/u(BA B') < £. As a consequence, for £>O and B& & we find neN,
and p € Z R'C vt(a n) such that 4(g, [o‘ )< € . Since ™ is disjoint,
p < o (x -n) implies that /G’é c(!_ln , and we have shown that & is a

A« —generator. [

The most important concrete examples for which we are sble to compute
the entropy are Markov- and, in particular, Bernoulli-shifts.

A A A
XII. 9 Proposition: Let (X,Zﬁ}t;\f) be the Markov shift with invaeri-

ant distribution /u =[°

and transition matrix T = (313)(593
Pr1 I1.6).

~
Then hy (X3¢) = - Z pj a5; log gy -
"ﬂ

Proof':

onX= 0,004, 1&-1]2 choose the disjoint cover o= fAj,e.s, A,_.}

where A; := { (x ):J X : Xg = 1} From the definition of the product
-algebra on X 1t follows that we can apply (XII.8) to obtain hﬁ(u $)=

= h/;\,(X, ¥) . To caleculate this number, we use (XII.4.iv):

;(u’“‘) h,a(«n)

= - («(An B) logm(AnB) + 2 w(A) logu(a)

e«" Aeu”
Ae« Bgllujﬂ( n B) log ’Awl,a

2 Z pl a.i i 8: o see a,i i log 8.

Copaiiy Epmyg o1 1112 n-1in 11-1:L
= - Z Z Py a. . logea. . ,since Sp. a..,=p.. N
Cnes Ly n-1 111-11!1 1n_11n ; i 71j 3
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A A
XII.10 GCoroll : Let (X, Z, ;%) denote the Bernoulli shift
Lorollary: ’ « &
B(po,.a., pk-‘i)' Then 13,_, (X3) = = L_z_: p; log py -

Proof':
This is a special case of (XII.9) for 83

o] 3 Therefore,

- ‘Z,: P; 235 108 a35 = - Z‘;pjlogpj. |

Remark:

In the next lecture we shall show that MDSs arising from rotations on
the unit circle /™ have entropy zero.

Theorem (XII.7) may be applied immediately to obtain a relation between

A =entropy and topological entropy.

XII.11 Corollery (Goodwyn, 1969): Let (X;¢) be a TDS and (X,8 3 )
an MDS for a If -invariant probability measure 4 on X. Then

h, (X3¢) £ he(x;¢) .

Proof:

Let & denote the family of all open subsets of X. Then & satisfies the
assumptions of (XIL.7). Since the «-information of open covers is domi-
nated by the t-information (see XI.9), we conclude that

b (5¢) = sup{n,(a;¢) : xe b} ¢ swp{n(a;¢) r«el} -n(x5¢). 8

Finally we show that the dynamical entropy is affine,

XII.12 Proposition: Let (X;§) be a TDS. If « and v are y-invariant
probability measures on X, we have
Bous (1oa)v (39) = an, (et 9) + (1 -2) h(«5¢)
for 0 < A ¢ 1 and every cover o ¢ ad.

Proof':
For A e andm 1= Au(a) + (1 =2) V(&) we have
mlogm - Au(A) logu(h) - (1 = A )V (4) logv (A)

A pu(A) (log m - loge(4)) + (1 -2) v(A) (logm - logv (4))
A u(A) (Jogm = log(Au(a))) + (1 =) v (A)(log m = log((1-2)V(4)))
+ a(A) Alog A + v(4) (1 =) log(1 = A)
2 «(A)Alogd + y(a) (1 =) logll - A).
For every cover o e%’d this yields

= By 4(1-a)v (&™) +an, (x®)+ (1-2) 10, (x7)
3 Alog A + (1 -2) log(1 - A) 2 = log 2 by Appendix Z, Property 3.
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Now the first inequality follows by dividing by n €W,
In view of (XI.9.ii) we have the converse inequality, and the assertion
is proved. W

XII. D Discussion

XII. D.1 Entropy is a complete invariant for Bernoulli shifts.

The fact that we are able to compute the entropy of a Bernoulli shift
quite easily in (XII.10) shows that there are infinitely many non-iso-
morphic shifts: For any number »r ¢ ['0,1] we can produce a probability
vector (p1, p2) such that B(p1,p2) has the entropy r = - p,log Py

- polog p, - Thus we can distinguish different Bernoulli shifts (for

example: B(%,%} and B(%,%)) although they are all spectrally isomorphic
(see VI.D.5).

But we are faced with a remaining problem: The Bernoulli shifts
B(‘é‘,%’%’%s%) and B(%,%,%,%) have the same entropy 2 log 2 and therefore
might be isomorphic.

Do we need another isomorphism invariant to distinguish between them ?
The answer is "no%". Meshalkin D9593 and Blum-Hanson [963] showed that
in fact B(Q’Q’B’B’—) is isomorphic to B(I’I’I’I) .

Finally, in 1970 Ornstein gave the most general answer to this problem.

Theorem:(Ornstein, 1970): Two Bernoulli shifts are isomorphic if and
only if the have the same entropy, i.e. the entropy is a complete iso-
morphism invariant for Bernoulli shifts.

In general the entropy is far from being a complete invariant as can be
seen from (XIII.T).

The subsequent table shows that we have solved the isomorphism problem
for two extremely opposite cases:

point spectrum Pg (Ty ) | entropy h »
ergodic and any group G <l 0
discrete spectrum | (complete isomorphism
invariant)
B(pgses « 9P ) {11 any Y>O©O
(complete isomorphism
invariant)
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Xil. D.2 The usual definition of a generator. Usually a generator o of
an MDS (X}Z,/u; ¥) is defined by the property appearing in (XII.8):
G’(”léjuezfn) = Z.
But for disjoint covers this coincides with our more general definition
in (XII.5).
~

Propositiont ILet (X,Z,/.c; ¥Y) be an MDS. For o € Zd the following

are equivalent:

(2) ¢ is a generator.

() e(Jea )= X

Proof':
For the implication (b) = (a) see (XII.S8).
(a) = (b): Let ol be & generator and B¢ X . For B:={B, X\B} and £>0
we find nélN and ﬁ'ef such that /G’é ozx_ln and d(/g ;/g‘) < £ ., We may as-
sume that g'= {Bys By} and «(BjaB) + u(Bya(XB)) < € .
Then we have
/4.(31/\ B,) € «(BnB,) + ((B1A B)n B2)
¢ u(Bo (X3B)) + a(Bo (Bya (XB)) + u((By & B)ABy)
£ w(Bya (X0B)) + w(ByaB) < € .

Ir B' denotes the union of all A € & such that A ¢ B,, then

#(ByaB') =u(BivB') £ «(BjnBy) < €,
and therefore
w(BaB') € u(BABy) + w(BjoaB') < 2 ¢ .

Thus B H%UL (& I_J‘n) = o (h(EJNo( I_ln) (see XII.3) .

XII. D.3 Which MDSs have a generator ? We have seen that it is much
easier to calculate the entropy of an MDS once we have found a generator.

But the existence of a generator seems to be rather restrictive, hence
the following theorem of Krieger EIQ?OJ is a relief:

Theorem (Krieger, 1970): ILet (X,Z,/‘ 54 ) be an ergodic MDS with separ-
able measure algebra and finite entropy h P (X3¢ )+ Then there is a dis-
joint generator o with i1&| £ ot 1.

Once we have found such & disjoint generator o, we may represent

(X, & s 3 $) as a shift: For & = fA1,..., %}we define

: -163-




!f/ X""""}{1,.ot, n} '—S

by Y(x) = (k;);.5; where Y (x) € Ak Then
Wep = Toy

where 7 is the shift on S. The transferred measure

vi=puey ' on T = W (X)
is T -invariant. The MDS (S, %, v; T) is called a "general shift".

In view of Krieger’s theorm this shows that every ergodic separable MDS
with finite entropy is isomorphic to a general shift. Therefore we can
see that it is neither the sequence space {0,..., k-1} nor the shift
transformation that is so special about a Bernoulli (or Markov) shift.
In fact, the essence lies in certain "independence" properties of the
measure, which will be characterized in more detail in (4pp.T ).

XII. D 4 The entropy of Y o:
Given two MDSs (X, 2, « 3 ) and (¥Y,T,v ;v ) we may consider X x Y en-
dowed with the product o -algebra and the product measure DV - The
product transformation ¢ &® ¢ defined by

424 (x,5) 3= ( LF(X)’ Q/(F))

preserves /u@v » and we are able to compute its entropy.

Proposition: h/u@v (X2Y; @ ¢ ) = }}u(x;vf ) + hv(Y;q/ }e
Proof's For any o & Z ; we define
XY =f{AxY :aea}
and analogously Xxf8 for gg ‘Df'd. Then we have
h (uvaXxp) = ,«.@v(dx Y) + V(Xxp ) by (XI.5)

ABV
and analogously,

hagy ((2XT v Xxxp)") = hﬂg,v((oz: N7 (X x,g)n)

=h/‘@y(0! x¥ v XxA7)
n n

h, («7) +h, (8%,

i

This shows that
hy, (X3¢) +h, (Y5¢) € b o, (Xx¥; ¢Oy).
For the converse inequality consider
M t=f{AxBA€EZ, BeT ] and ¥ t= {wef: « c M}
which isegemerating subset of Z .
Thus
v (KXY; pOW) = sup{ o (Fs p@y ): € M, y cover of XxY ¥ .
Let ¥ ={A1x31,..., AxBn} ¢ M, oft= {As50005 A Fand A= {Biyeess Bngg
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The Boolean algebras generated by & and by B are both finite, and we
denote the covers made up of their atoms by X4 € Zd and /@1 € ‘:Fd,

respectively.

Then we obtain

which implies

< oz1x"YVXxﬁ1

h}«@f (¥) £ haey (Lyx YV X"‘g1)

= B, (o) + nyl fy)

and the desired inequality. W

XII. D.5 Topological entropy of the shift:

Consider

ﬁ =={0,1’000,k-1}2

as a compact metric space with the metric

- 00

a(x,y) := Z;J(Ii,yi)'ﬁf'i + 2 Gr(xiyysi)'li-i

where d(r,8)

e2=1

{‘o if »r =8
for ry8 ¢ {0,15¢00,k=17¢,
1 if r 4 s ’ {” ’ }

L=

"
i

The (left) shift T (xi) — (xi+1)
is a homeomorphism on }?, hence (?(; T) is a TDS called the topological

For any closed T -invariant subset ¢ of f we may consider the TD3 (?;t’)

called a topological subshift.

Propogitiont

cover

Let (?;T ) be a topological subshift and consider the open
o 2=

fh0s Byseees Ap 47

A
where Ay 3= fxé ¥:x - i} for i = 0, 15e0es, k=1. Then ht(Y;"L)

= h.t(oa 3T ).

Proof:

Take R& 5

&)

. Lebesgue’s lemma (A.5) there exists £ = 4™, meN,
&

such that for every x€X the open £-ball Ua(x) is contained in some Béﬁ .
By definition of the metric we have yeU&(x) if and only if the coordi-
nates x; = y; for i = -m,..., m.

This implies that Ue(x)e(*_m s hence ﬂé— O(_$ . Now we immediately ob-

tain ht(l&;r) £ h (X _3T) = h(;T) by (X11.4.1i1). B
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Corollary: The topological k=-shift has the topological entropy log k.

Proof':
For the cover of appearing in the above proposition we have

ht(o(;‘r) =%ﬂ% log x| = log x| = log k. W

We remark that the cover o may be called a topological generator, and
refer to Keynes-Robertson E96§B for more information.

XII. D.6 Another approach to the Kolmogorov-Sinai theorem:

The proof of the Kolmogorov-Sinai theorem (XII.7 and XII.8) requires
essentially two steps: ”

(i) the hypothesis " o'(h(=/1 & 1) = £ » implies that any cover A can be

approximated by o(_g for sufficiently large n.
(ii) a continuity argument for the entropy ensures that hﬂ( o 3 (f) is
close to hﬂ_(,&; ¥) is o Es close to £ .
We have used the metric ¢ on X . Therefore the first step was rather
simple (see XII1.8), whereas the second step required some trickery (see
X11.6).

Proposition 1: The entropy mapping
a}—a'Qh(N; )
is continuous on Fn for the metric d.
We refer to (XI.D.4) for the notation; the proof follows immediately
from (XII.6).
Another approach to the Kolmogorov-3inai theorem uses the Rohlin metric
(see XI.D.4). In this case the first step becomes difficult (see,for ex-
smple, Walters E97§], IV.4.8) whereas the second step is quite simple.

Proposition 2: The entropy mapping
& +—> h («35¢)

N

is continuous on X a with the metric ¢.

Proof:
Assume f(d’f;)=hﬁ(“lﬁ)+h}c(ﬁl°‘)<£ + Then
B ((tvp)™) -1, (™) = B, (v p e ™)
<z g((ﬁf(w,a )l«.“)
€¥ n ($H(avg ) §x) by XI.D.3, Corollary)

/u

~
74
-
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mh, (v g | «)

= .hﬂ(plcx).
Therefore 0 < h (otv/z 3 ) - (c(;tf)s,’- 13“ /G]o()
and 0 ¢ h(xvﬁ ¥) -h(/g Y) € h,(x1p), which implies
{

lh,,(d"f)-h(/& s¥) ¢ n(aip) +n (1) <5 . M

References: Rohlin [196'7], Walters EI9'753.

XI1. D.7 Entropy and discrete gspectrum:

Intuitively, the ergodic MDSs with discrete spectrum are at the opposite
extreme to the ergodic MDSs having large entropy (compare XII.D.1).

But it is very surprising that the purely functional-analytic property

v discrete spectrum" can be characterized by the concept of entropy.

et (X, Z,/«; ¢ ) be an MDS. As before we denote by E‘ﬁ the set of all
dis joint measurable covers of X having cardinality at most n. On f‘.g we

consider the topology induced by the metric ¢ (or d) (see XI.D.4).

-
Lemma: For a subset X of Zc% the following assertions are equivalent:
(a) K is compact.

(b) ‘I'Lﬁ: -113- h/“ (;\Z’N 3) = 0 for every sequence (&3 )jeq ¢K »
Proof:

(2) = (b): Assume that K ig compact and take (o i)ie:NcK and ¢ » 0.
The oben g -neighborhoods U (e« j) of &4, i¢IN, for the metric ¢ form
an open cover of the closure of {« j ¢ i€eW }. Therefore there exist
i1 {ip<¢ ... <iy such that

N
feti : iemW} C UU (di.) .
Then for any k>i there is an i‘ 1n such that g(0oly, R 3) <& Therefore

h(JZ «4) - /‘(o\-c dj)_hﬂ(aklifj < ﬁ(aklul)-g(otk, o) £ ,

which implies the assertion.
(b) = (a): If K 1§ n6f coMpAct, then there is an £>0 and a sequence
(oei)CKsuchthat f(o(l,tx)r for 1 # j.

Next, we , construct &> 0 and a subsequence s such that
n
hﬂ(“i | ‘Vo{ N> for all néIW
B 91 ]

First, we recall that by (iii) in Theorem (XI.D.4) there is /> 0 such
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s o
thathﬂ(_ﬁid)_{f implies g g % for any &¢ 2.4 and Aszczi.
Now we set i, *= 1 and assume that i,,..., i,_, have been chosen suitably.
Consider the set

: £2 , v
e {peE i, (pl Jhy)ed
This set is contained in a finite union of é - balls, hence M, {O(i:iem} )

is finite, ar}’d we can find in> i
Y

hﬁ (cxinl Y o(ij) > .

By (i) in Proposition (XI.D.3) and elementary analysis, this implies that

n
lim ln, (V «; .
h»aon/“(a!r 13)30P L

n-q Such that «iné My, i.e.

Theorem (Kushnirenko, 1967) : For an MDS (X, T3 ¢ ) and a sequence

8 i= (ij)jem of positive integers nwe 3§fi.ne |
ho(d5¢) := 1im%h/u(a.x ¢ Jg) and ,
hy(X59) = i}aphs(d;tp) . ’

Then, (X, f,/«; ¢ ) has discrete spectrum if and only if h_(X;¢) = 0
for every sequence s.

Proof:
The MDS (X, Z,«; ¥), resp. T¢ , has discrete spectrum if and only if _
{T,?lA : né.]N] is relatively compact in L1(/a) for every A& 2 (8e0:VII.6)«

Consider the mapping
@ : {1A : AeZ} —> ig
which associates to every characteristic function 1, the disjoint cover
O (1) = «, ={a, x\a}.
@ is continuous since i, - g = % a( X,y xg), -see (XL.Dd4). Moreover,

& subset K G:‘i‘lﬁ : éé..z}is compact iff B(K) is compact. Therefore, we
observe that T, has discrete spectrum if and only if-}?no(A : nel} is 3
compact for every A€ .

By the above lemma this holds iff h (o ;) = O for every A€X and
every sequence s in N. But this is equivalent to hS(X;f) = 0 for every
sequence s, because for an arbitrary o{&>y we have & & Ve, and

Ay,
ho(ed 5 ) .é:Zhs(o(A;‘f) = 0. ©
Aex

Reference: Kushnirenko 1967 .
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XIII. Uniform Entropy and Comparison of Entropies

In our final lecture we consider a TDS (X;¥), the Borel algebra & and
the various ¢Y-invariant probability measures on X. While we have seen
in (XII.11) that the topological entropy hi(X;¢) is an upper bound of
all measure-theoretical entropies l'y(X; ¥), we now prove that it is in
fact the least upper bound.

To that purpose we need new methods and, in partieular, a new entropy
(due to Dinaburg and Bowen) based on the uniform structure of the com-
pact space X. For greater simplicity we assume in this lecture that X is

a metric space with metric d, and for every ne¢lN we introduce a new, but
equivalent metric

d,(x,y) := max {d( viz, vly) 1 04 1 ¢ n -1 }
and denote its open £ -balls with center xe X by

Un,£ (x) := {yex : dn(x,y)d.é} .
Finally, it is convenient to call a subset R of X an (n, £ )-net if
x = U {Un,s (x) = x¢€ R} . With this notation the new entropy of (X; ¢)
will be defined in three steps.

XIII. 1 Definition: Iet (X;¢) be a TDS. For nelN and £>0 we consider
rn(€) i= min {IRI: R is an (n,&)=-net in X} and
r (£) = linm % log v, ( €).

Then the uniform entropy of (X; ¢ ) is defined by
(X34 ) = 1im r(€ ) .
alXs ¥ 50

To justify the above definition we have to observe that r(€) is in-
creasing as £ 0, and therefore the 1imit exists, though it may be +0o.
Even though there is much we would say about this new entropy (see

Bowen EI9'7‘G, E9733, Dinasburg E97OJ » Denker-Grillenburger-Sigmund E976],
Walters B975], C}_i.G) we shall use it only to prove the following in-

equality between hy and h Ik
As in (IV.S8.4) we denote by ﬁF the set of all ¢ -invariant probability
measures in M(X).
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XIII. 2 Theorem: hi(X;%¢) € hy(X;) £ sup {}?‘(X;If) P e P?},

Proof':

a) For the proof of the first inequality we choose an open cover « ¢ F
and ne¢ N. By the compactness of X we can find &£ > 0 such that for every
x€ X there exists A€& with U, ¢(x) € A, Now choose an (n, & )-net R
for n and £ as above. By deﬁni%lon, we have y € U € (x) if and only if

1
Yy € él ‘P‘1U1’£ (tp x). But by the choic:e of £ there exists Akie o
n-
such that A w-iU1 e (¢ix) € N tf’-iAki ,
L=o

{20
which is an element of & ™, Terefore the open cover {Un e(x) : x € R}
2

is finer than «®.
Now we choose the (n,¢£)-net R in such a way that (R| = r (6)
Denoting the minimal cardinality of a subcover of /?e.o by N( A )y We
obtain

M(oe™) < N({u, . (x) : xeR}) £ |R] = rq(é&)
and

he(as3P) = 1im & log N(&™) 2 Tim & log ry(€) £ hy(X;9)

for every o € g.

b) The proof of the second inequality is much more difficult. We present
a proof due to Misiurewicz 1976 and show the following:
For every £ >0 there ensts a ¢-invariant probability measure /o on X
and a disjoint cover o & ‘Bd such that h,(a&5¢) > »(€).
We fix £ > 0 and proceed in several steps.
step 1. The construction ofL
For every n £l choose a subset Sp € X maximal with respect to the follow-
ing property:
X, Y& Sy and x # y emplies dj(x,y) > &€ .
By the compactness of X, S, is finite and an (n, £ )-net, hence
18,4 2 rp(€).
Define the following probability measures on X:

- 1 . 1 i

o TS, Zxdx M4 fntm Z, T |
where d'x denotes the Dirac measure at x€X, T‘P the operator on C(X)
induced by (¢ and T;, its adjoint on C(X)' . Finally, we choose & sub-

. . 1
ence (n of N for which lim =— log r £ = r(£) and a
sequ (ny) Hn 7~ log nk( ) (
o (C(X)',C(X)) = cluster point u of ;junk : kel § .

step 2. The g-invariance of 4 :
This follows from standard apguments (use IV.3.0) and the weak*_con-

tinuity.of T'f) and may be left to the reader.

EN
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step 3. The construction of of :

Take &an open cover of X by £/4-balls. For every x €X there exists an
open neighborhood U,, contained in such an &/4-ball and such that the
s -measure of the boundary of U, is zero.

This is possible since every ball Ugs (x) is the disjoint uncountable
union of the boundaries of Upn(x), O £r < £’ , where only countable many
of these can have non-zero measure. From the open cover {Uy : xeX} ~
choose a finite subcover, form a disjointification and obtain o« € & a
such that for every A € ® the dismeter d(A) is less than &4 and

/u(boundary A) = 0.

step 4. The continuity of htE in o :

For every A € ® there exist: a compact set K and an open set U such that
xeclcaciceu,
where & is the interior and X the closure of A. By Urysohn’s lemma (A.4)

we find 04 f, g &€ C(X) such that
e €< 98 ¢ Ty € W £ 8¢ Ay

Since /u(ﬁ) =/u(A) =/u('15.') by step 3, and since 4 is a regular Borel mea-
sure, we may choose f and g in such a way that <f - g,«> becomes
arbitrarily small. Therefore, the fact that 4 is a &°(C(X) ,C(X))-cluster
point of {/““k} implies that /a(A) is a cluster point of f/un (A): ké]\I}
for every A €« . Recalling the definition of the entropy for a disjoint
cover (see XI.8), we see that it depends continuously on the measure.
Therefore, wWe obtain that hﬂ- (o) is a cluster point of {h/‘nk( o) keIN}.

step 5. Auxiliary estimates?

Using the subadditivity of h, and (XI.9.i) we obtain for n, k&I the
n

estimates
k-1 .
k ~1
h 4 < ] .
p (¥7) ¢ éhpn( Fra) ¢ k 1og I
On the other hand, it follows from the construction of & that anSnl £ 1
for every B € &« N, Therefore
By (&%) = - 13z‘:.,pnuss) log p,(B)
Z _1_
Z 4T3 8 TS,
log {8,
2 log r,(£), by step 1.

|

1
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step 6. The estimate for h, ( o ; :

We want to show that h,u(otm) > m r( £). By the continuity proved in

step 4 it suffices to show an analogous statement for h/“ and large neNN.
n

To that end we take 0<k€fm<n and consider
1(k) == [B=ET,
i.e. 1(k) is the maximal number of consecutive blocks of length m start-
ing at k and ending before n.
Then, we ca&lculate:

i=p

pn

1 Z".-T ~1i m

= 1 lsoh'pn(v o)
o1 LK)

= 1 ! ~Adm+k m

0 g; ,'éo hpn (e )

1 g‘
2 a = hpn(o( E) , by the subadditivity of h,

m-1 :

? nl. (n, («3) - nh_ (%)), sagain by the subadditivity of h,

1 -7
> 7L (log I8,/ -k logi«l), by step5,
> B log mp(6) - BEL 108 1y .

Letting n —» © , we obtain the desired inequality. W

After these efforts, now we are able to draw some beautiful and inter-
esting conclusions. Since a careful inspection of the sbove proof shows
that it also works for compact not necessarily metric spaces (see XIII.D.1),
we formulate these conclusions for arbitrary TDSs.

XIII.3 Theorem (Dinaburg-Goodman-Goodwyn, 1969/71 ):
For a TDS (X;(p) we have

he(X3¢) = b, (X5 ¢) = sup {rju(X;tf) e Bple

Proof:
The above equality is a consequence of the inequalities in (XII.11) and
(XI11.2). W

XIII. 4 Corollary: In the TDS (X3¢ ) is minimal and Ty is mean ergeodic
on C(X), then '
h (X)) = h/,,L (X3 ¢) .
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for the only {-invariant probability measure s on X,

Proof:
Here, we apply (IV.8) and (XIII.3). B

XITII. 5 Corollary: If ¢ 4is an isometry on the compact metric space X,
then he(X39) = by (X3¢ ) = h, (X3¢) = 0O
for every lf—invariant probability measure &« on X.

Proof:
If ¢ is an isometry it follows that rn(E ) = rp(£€) for n, m €N, hence
h, (X;¢) = O. Then apply (XIII.3). M

XIII. 6 Corocllary: Let G be a compact metrizable group, ¥ G- G an
automorphism and ¢@:= gr &€ G, & left rotation on G. Then

hi(Gs we®) = hi(G; ).

Proof':
Take a left-invariant metric d inducing the topology on G (see Hewitt-
Ross 1979 , 1I1.8.3). Then the metriecs

ay(x,y) = max fa(pix, p'y) : 0414017 ana

d;l(x,y) max {d((tfog)lx, (ifogjiy) : 0£i< n-1 coincide,

since
d(fe@(x), pop(y)) = d(¥ (gx), ¥ (gy))
= (¢ (g)y (x), #(g)p(y))

= a(p(x), @) .
Hence the assertion follows from the definition of hu and from (XIII.3).H

XIII. 7 Corollary: Irreducible dynsmical systems, i.e. ergodic MDSs or
minimal TDSs, with discrete spectrum have zero entropy.

Proof':

By (VIII.2) or (VIII.4) the dynamical system is isomorphic to a potation
on a compact group G. This group is metrizable if C(G), resp. L1(G, 8,m),
is separable (see Schaefer [1974], II.7.5). In this case the assertion

follows from (XIII.6). The general result may be obtained from (XIIL.D.T)
and (XIII.3). W
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XI11.D Discussion

XIII. D.1 Uniform entropy for general uniform spacest

In {XIII.1) we defined the uniform entropy only for metric spaces. Here
we briefly indicate how this definition carries over to the general case
(the same is true for the proof of hi(X;¢) € h, (X;% ). A uniform struc-
ture on a set X is defined as & filter UL on Xx X having special proper-
ties (see Schaefer [1966:], prerequisites B.6). Now consider a TDS (X; ¢)
and the (unique) uniform structure L that generates-the topology of X.
For a vieinity U e I we can define

U, = /ﬁ"(:foy)'i(u) = {(x,y) € X xX: (?i(x),;oi(y))eU for
i=0,.0e, n-1} 77
and Up(x) := {y eX: (x,y)éUnf for xeé X.
A smbset R of X is called a U,-net, if

X = UfUn(x)z xeR}$ .
Then the uniform entropy is defined as follows:
For Uelrand ne N let

r,(0) := min {{R]: R is & Up-net } ,

r(0) = T § log ry(w) ,
and finally
hu(X;lf) = lim r(U) = su%tr(U) .

XIII. D.2 Entropy and dimension of a metric space:

At first sight and for a beginner, the definition of the uniform entropy
b, (X3tp) of a TDS (X;¢) is complicated. But there is a forerunner of

this concept initiated by Rebr jagin-Schnirelman [19323 in their endeavour
to measure the dimension of a metric space. In the terminology of (XIII:1),
for £7> 0 the number

log r (€)
is the E—entropx of the metric space (X,dn), and the size of X with re-
spect to the metric 4, is measured by the increase of this g -entropy as
£ tends to 0.
As an example we mention that a subset of a Banach space is k-dimensional
if and only if its &£ -entropy increases as (%)k (see Pietsch [1972], ch.9),
In our attempt to describe the dynemics of a homeomorphism ¢ on & metric
space X, we apply the above idea but we reverse the order of the limiting
procedures. First we measure the size of X for the metric 4, and £ > 0.
As n tends to infinity these new metrics reflect the dynamics of .
Only thereafter do we take the limit as £ - 0. Briefly, the uniform

ES
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entropy of (X;¢) is

(X3 = 1im 1lim -+ [£-ent £(X .
k) < i 1 [ o]

For more information we refer to Kolmogorov-Tichomirov [1 961] and
Pietsch [1971] .

XIITI. D.3 Entropy of homeomorphisms of the unit circle:
It is obvious from (XIII.3) that as scon as we have calculated one type
of entropy this information can be carried over to the other types of

entropy. We present the following example.

Proposition: TIet tp be a homeomorphism of the unit circle I' and « a
g-inveriant probability measure. Then h/u( " 5¢) =0.

Proof:

It suffices to prove that h.(I"; $) = 0. To do this we use the fact

that Y maps "segments" (a,b) of I onto segments. For any open cover o
consisting of segments, define B(x ) := {ae /"¢ (a,b)éx for some b & f"} .
Clearly N( ) £ |B(& )| . If ﬁE 4 is arbitrary, then we can find a cover
o »f consisting of segments (use Lebesgue’s lemma (A.5)).

Now N(xX ™) ¢ [B(x®)] ¢« ‘%lB(tf‘ltx)l = n- |B(&)f .

This implies that O € hy(w; ) & 1im & log(n-|B(& )|) = 0. M

XIII. D.4 Subshifts of finite type are intrinsically ergodic:
Let CG'= (¢;,) be & kxk-matrix with ¢; 5 € {0, 1} and assume that no
row and no column of C consists only of zeros. Consider

Y := {x = (xn)neif H xne{0,1'...,k-1} and x, = i,xn+1 =

= j implies cij =1

which is & closed shift-invarksnt subst of X t= [0,1,...,k=1 }Z .
'iherefore, (Y3 T) for the left shift T is a TDS, called a subshift of
finite type (compare XII.D.5).

Proposition 1: The topological entropy of & subshift of finite type de-
fined by the matrix C is log A, where A is the largest

(real) eigenvalue of C.

Proof':
We apply (XII.D.5), Proposition, and consider the open cover

& = {Ao,..., Ak-1} where Ay 3= el(xn)_eY X, = i} .

m-q _1 me2
Since Yn /) T 'A; #@ iff Jle; ., =1 we obtain
Leo %2 d=0 "2 R2+1
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k-1 kﬂ-f m-2 k"'"

™= Zeeee 2 e = > 4%-:1(‘71“-1)157" ey

iy=o im-1 =0 R=0 J‘2:.52+1 {so 9=0
i.ec |o¢ ®| is equal to the L'-norm of the (m-1)-st power of Cé Ekz.
Therefore
he(x;T)

1im 1 log ta ™ = lim } log ™,
-1
Lin log || ¢"Il,"

But by the Perron-Frobenius theorem (see Schaefer [1974] sLe2.3), the
spectral radius r(C) of C is an eigenvalue of C. u

log r(C).

Subshifts of finite Yype are & second example of how to associate a dy-
nemical system to a positive matrix. The first has been the Markov shift
corresponding to a transition matrix (see 1I.6), whose measure-theoreti-
cal entropy has been calculated in (XII.9).

An irreducible (0,1)-matrix C = (cij) (see IV.D.6) defines a subshift
of finite type (¥; 7 ). We may also construct a Markov shift from C if we
observe that C and its adcoint C' both have strictly positive eigenvec-
tors x and y corresponding to the spectral radius A of C (see Schafer
5974], I.6.2). The new matrix |

P = (pij) defined by Pij ;;—_-fi cij
i

is stochastic, again irreducible, and has a unique strictly positive
probability vector o with 77; = X3¥; such that P'1r = 7 (et KyZppe; T°)
be the Markov shift defined by P and Tr.
Next we restrict 4 to ¥ and to the o-algebra T induced by & . Since
4 (¥Y) = 1, we obtain an MDS (Y,'T’,/u; ') isomorphiec to (X,}‘:,/(; ). By
(X11.9), its measure-theoretical entropy is log A and, by Proposition 1,
squal to the topological entropy of the TDS (¥Y;7T ).
In view of Theorem (XIII.3) we have thus constructed a T -invariant
measure « on Y on which the maximum in

h(¥37) = sup fh(L;T) t v e & }
is actually attained (Ja\._, denotes the set of all ?-invariant probability
measures on Y). Although v > hv(Y;t') is an affine function (see XI1I1.12) _
on the compact convex set P‘tr (see also IV.S.4), the existence of such
a measure is not at all clear in general, since V hv(Y;t’) does not
necessarily have the '"right" continuity properties (compare Denker-
Grillenberger-Sigmund [1 976] )e
But for subshifts of finite type we shall show even more.

Definition: A TDS (X34 ) is called intrinsically ergodic if the func-
tion 4r>h ﬂ(x;cp) on &}P attains its maximum at exactly

one measure.
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Proposition 2t Any subshift of finite type is intrinsically ergodic,

and the measure on which its entropy attains its maximum is the measure
constructed above.

Proof':
We will use the notation introduced above. In particular, A will be the
'maximalt measure on ¥ constructed above.
Assume that hv(Y;r ) » h/u(Y;r) for some = -invariant probability measure
v # 4 and write vy = ey + (1 - ¢) "\.72 for O¢ ¢ <1, v, absolutely con-
tinuous with respect to .« and VvV, singular with respect to ,«. Since

Vo is T-invariant and C is irreducible we may assume that v, =
Therefore, since v # . i.e. ¢ # 0, we obtain h, (Y,’z:) /«_(Y; T).

Next we take a set MeZ with /u.(M) 0 and v, (M) = 1. For the open
cover & = {A,,..., A,_4} considered above we find M & o (ot 2 o) such
that %-1':20 (@ +v4)(Mp & M) = O and therefore u«(Mp) —> O and v1 (Mn) - 1.
For A e o z_ln we have

a-(2n + 1) -(2n + 1)

r ¢ u(A)< A
for r = min { AX;y3, 0¢i€k-1} and s :=max { Axyy; 2 0 £i<k-1}.
Then

log ;LZn + 1 (2n + 1)13“(3{;'5‘)6 (2n + 1)hw (Y37 ) £ hy (& En)

Z - 51"\!1(11) log V,(4) - Z v1(A) log v1(A)

-y1(Mn) —"—E"ﬁ')') log —{——Ly - V1(Hn Z V(Mc ?\;&—%)6)
- v, (1) log vy(M,) - v,(M7) log v, (Mn)
¢ vi(y) log |faea Byt acu }i

+ () log | fA e «x2) s Ac M }]

- v () 1og2v1(M ) = v, (3) log vy (13)
¢ v, 04,) log(;\ /u(lu )) + v1(l-i ) 1og(A‘
- vy (M) log vy (M) - v4(M3) log V4(My) .

- e 0)

and therefore

0 ¢ V() log 4n). v, (18)10g ,L— - vq (M) log v (M) - ¥, () Log v, (Mg)

On the other hand, this term converges to - as n s &nd we have

a contradiction. X

This proposition incidentally proves the theorem of Dinaburg-Goodman-
Goodwyn (XIII.3) for subshifts of finite type. In fact, this theorem was
first known for subshifts of finite type (see Goodwyn [_1969]) and its
range of validity was subsequently enlarged, uptil it was finally shown

a
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to hold for arbitrary TDSs.

References: Adler-Weiss I1970] » Denker=Grillenberger-Sigmund [_1976] .

XIII. D.6 Concluding example?

Spectral invariants and entropy have been investigated in detail in the
previous lectures. They have been also used to solve the isomorphism
problem for some subclasses of MDSs (see Lecture VIII and XII.D.1). But
we have already remarked that both invariants together are far from
being complete (e.g. VI.D.4). Here we present a simple but illusion-
shattering example proving Jjust that.

Tske X = Mx[D" and ¢y : (u,v) (au,uPv), Po ¢ (u,v) > (au,ulv)
where a€¢ I" is not a root of unity, and p, q ¢ 2. The normalized Haar
measure m on X is invariant under ?1 and ¢o, and by (XIII.D.5) we have

he(q) = By(pq) = 0 = hel(gp) = ylpa) .
Next we show that (X,8 ,m; #4) and (X, ®, m; ¥2) are spectrally iso-

morphic:
Consider the basis

{gm,n:n,mezxz

of LZ(X,B, m), where gm,n(u,v) 1= W .

Then T ¢y g, »(u,v) = s BuPRR, dLe. Ty &, = a® Bu,n forn=0
and orthogonal to gm’notherwise- Thus LZ(X,B s m) has a basis consist-

ing of eigenvectors of T %# corresponding to the simple eigenvalues o
and of & countasble union of "orbits" {T;}J‘ h; 3 jeZ{, nie 12 (1) (com-

pare VI.D.5). The same reasoning applies to T\FZ, and the correspondence
between the two bases yields the desired isomorphism.

Finally we show that (X, 8, w; ¢4) and (X,8 ,» ; ¥,), while being spec-
trally isomorphic and having the same entropy, are not isomorphic in

general.
Assume that €: (u,v) > (flu,v), glu,v))
is a point isomorphism on x|’ satisfying
Oopy = $pe@
or explicitly
(1) fetp, =af and
(ii) g ¢y qug.

As s consequence of (i) we find that
flu,v) = ¢-8q,0(u,vl= c-u for some ¢ £[” (use the above basis),

and therefore (ii) becomes
getf1 (a,v) = cqqu(u,v) .

-
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Using the basis {gm’n :m, n¢ 2} again, we see that g has to be of the
form

g = d * gn, q_p""l L

c = atd and de I,
Therefore g is a multiple of p and

G (u,v) = (an‘:l-‘I , duncq-p_1)
for some né £, del”’ , which is invertible only if qp'1.—. ¥,
Otherwise the two MDSs are not isomorphic.

References: Anzai [1951] , Walters [1975].
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Appendix At Some Iopology and Measure Theory

(1)_Iopology

The concept of a topological space is so fundamental in modern mathe-
matics that we don’t feel obliged to recall its definitions or basic
properties. Therefore we refer to Dugundji 1966 for everything con-
cerning topology. Nevertheless we shall briefly quote some results on

compact and metric spaces which we use frequently.

A.1 Compactness:

A topological space (X,8&), ¢ the family of open sets in X, is called
compact if it is Hausdorff and if every open cover of X has a finite
subcover. e second property is equivalent to the finite intersection

property: every family of closed subsets of X, every finite subfamily
of which has non-empty intersection, has itself non-empty intersection.

4.2 The continuous image of a compact space is compact if i 1is
Hausdorff. Moreover, if X is compact, a mapping : X —> X 1s already
a homeomorphism if it is continuous and bijective. If X is compact

for some topology ¢ and if &' is another topology on X, coarser than
7

¢ but still Hausdorff, then O = & .

A.% Product spaces:
et (X4 ) a non-empty family of non-empty topological spaces. The

o €A

product X := Xy becomes a topological space if we construct a

m
2 EA
topology on X starting with the base of open rectangles, i.e. with
sets of the form -{x = (xd) : “ié O“i for i = 1,..,n } for

o€ A
o(1,..., oanA, n €W and O""i open in X°"-i' Then fychonov’s theorem as-

serts that for this topology, X is compact if and only if each

X,, ®* €4, is compact.

0{’

A, 4 Urysohn’s lemma:
Let X be compact and A, B disjoint closed subsets of X. Then thers

exists a continuous function £ X—"[E), 13 with F(4) < ‘Log and

2
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£(8) € {1f .

4.5 Iebesgue’s covering lemma:

If (X,d) is a compact metric space and  is a finite open cover of X,
then there exists a d >0 such that every set A ¢ X with diameter
d(A) < & is contained in some element of .

A.6 Category:
4 subset A of G topological space X is called nowhere dense if the

- e
closure of A, denoted by A, has empty interior: &4 = {.

A ig called of first category in X if A is the union of countably
many nowhere dense subsets of X. A is called of second category in X

if it is not of first category.
Now let X be a compact or a complete metric space.
Then Baire’s category theorem states that every non-empty open set is

of second category.

Somewhat less elementary but even more important for ergodic theory

is the concept of an abstract measure space. We shall use the standard
approach to measure- and integration theory and refer to Bauer [%972]
and Halmos E950]. The advanced reader is also directed to Jacobs
Bg?é]. Although we again asgume that the reader is familiar with the
basic results, we present a list of more or less known definitions

and results.

A.T Measure spaceg and null sets:t
A triple (X, £, ») is a measure space if X is a set, 2 a 6-algebra

of subsets of X and # a measure on 2, i.e.
P - oo
A 2. - Eﬂ_v {feo}

is ¢ -additive and satisfies w«(¥) = 0 .
If 4 (X) <o (resp., m(X) =1), (X, Z,«) is called a finite measure

e et e ey

X = nlejm A with s(A )< for all néN.

A set NeZ2 is a wu-null set if /u(N) = 0.

Propertles, implications, conclusions etc. are valid "« -almost-
everywhere" or for "almost all xe X" if they are valid for all x €& X\ N
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where N is some 4 -null set. If no confusion seems possible we some-
times write "... is valid for all x" meaning ".... is valid for almost
all xe€ X".

A.8 Bguivalent measures:
Let (£,3,« ) be a 0 -finite measure space and v another measure on Z.

v is called agbsolutely continuous with respect to A4 1f every .« -null
set is a y-null set. v is eguivalent tor. iff v is absolutely con-
tinuous with respect to & and conversely. The measures which are
absolutely continuous with respect to . can be characterized by the
Radon - Nikodym theorem (see Halmos [1950], §31).

4.9 The measure algebra?
In a measure space (X,¥ ,s«) the w -null sets form a & -ideal N . The

Boolean algebra
hd

2= Z/n

¥
is called the corresponding measure algebra. We remark that 2. is

isomorphic to the algebra of characteristic functions in L* (X, 5, «)
(see App.B.20) and therefore is a complete Boolean algebra.
For two subsets 4, B of X,

Aa B = (AvB)~ (AnB) = (ANB)u (BN A4)
denotes the symmetric difference of A and B, and
da(4A,B) := « (4aB)

defines a quasi-metric on X vanishing on the elements of
v

(ir /u(X)< 00), Therefore We obtain a metric on 2 still denoted by d.

4.10 Proposition:
v
Ihe measure algebra (2, d) of a finite measure space (X, 2, «) is a

complete metric space.

Proof:
It suffices to show that (Z, d) is complete. For a Cauchy sequence

¢ Z , choose a subsequence (A_ ) +

n)ie such that d(Ak,Al) < 27

(An)ne i)

o %)
for all k, 1» n;. Then A4 := Ve U A, is the limit of (4)).
o0 m=1 j=m ]
Indeed, with B := {J A~ we have
J=m 7§
A(By b, ) € Z pc(a, N A )
’ = AL
Bm Anm j=m Anj—l-‘l J
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and s

: <
d(A,Bm) £ j=Zm /u(Bj\ Bj+1)
[+~
< 22 (A(B.,A. ) + a(a_ LA ) + d(a JB. L) )
j=m b nj n:j nj+1 nj+1 Jj+1
&9 s 3 _(.+1)
< 2 (2- 279 4 274 + 227N )
J=n
g™
Thereforse
a(a,a,) & 4(a,B) + d(Bm,A%) + d(Anm,Ak) g€ 11« 2™

for k>/nm .

v v v
A.11 For a subset W of £ we denote by a(iW) the Boolean algebra

v v
generated by W, by G (W) the Boolean 6 -algebra generated by W.

o
Z 1is called countably generated, if there exists a countable subset

s

W sf such that O'(ﬁ) = ﬁ .

A\
The metric 4 relates a(W) and G'(Iw:!). More precisely, using an argument
as in (A.10) one can prove that in a finite measure space

A d v d v >
o(W) = a(W) for every W € X .

A.12 The Borel algebra:
In many applications a set X bears a topological structure and a

measure space structure simultaneously. In particular, if X is a com-
pact space, We always take the ¢ ~algebra ® generated by the open
sets, called the Borel algebra on X. The elements of 8 are called
Borel sets, and a measure defined on B is a Borel measure. Further,

we only consider regular Borel measures: here, # 1s called regular
if for every Aed8 and ¢ > 0 there is a compact set K< A and an open

set U2A such that «(ANK) < € and «(UNA) < £ .

A.13 Example:
Let X = [0, 1] be endowed with the usual topology. Then the Borel

algebra B is generated by the set of all dyadic interwvals
D o= {27, (ke1):277] ¢ i€F; ko= 0,.0a, 27 -1} .
aD is called a separating base because it generates $ and for any

X, yEX; x # ¥, there is Ded such that xe D and y&D, or
x&D and ye D.
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A.14 Measurable mappings:

Consider two measure spaces (X, %, ) and (Y,T,V ). A mapping

Y : X~ ¥ is called measurable, if ?"1 (L)e Z for every L€ T, and
called measure-preserving, if, in addition, /u(tP—1(A)) e V(4) for
all 4 € T (abbreviated: ey = v),.
For real-valued measurable functions f and g on (X,% » 4¢), Wwhere R is
endowed with the Borel algebra 8, we use the following notation:

[fe€8] :=t71(8) forzed,
[f=g] ={xeXx: f(x) = g(x)},
[f < g_] : {Xé X: f(x) ¢ g(x)} .

it
i
i

i

Finally,

1 if xe¢ A .
I x > denotes the characteristic
A 0 if x¢ A

function of A¢X. If A = X, we often write 1} instead of 1{X-

4.15 Continuous vs. measurable funetions:

Tet X be compact, 8 the Borel algebra on X and &« a regular Borel
measure. Clearly, every continuous function f : X~» £ is measurable
for the corresponding Borel algebras. On the other hand there is a

partial converse:

Theorem - (Lusin):
Let £ : X —>C be measurable and € > 0. lhen there exists a compact

set A€ X such that /u(Ac)< £ and f is continuous on A.

Proof (Feldman f1981]):
Let {Uj} jem be a countable base of open subsets of L. Let Vj be

open such that f—1(Uj) < Vj and ,u(vj\f‘1(Uj)) < .2€ 2".]' . 1
0 ) i
1f we take B i= (/1 (Vj\ £ 1(Uj))’ we obtain u(B)< gg , and we show
J=

that g i= f[Bc is continuous. To this end observe that

c -1 c c c -1 c
V. = V. VN . = V. . f .
JnB Jn( f £ (UJ)) A B J,;(VJ v (UJ))n B

-1, .. o -1 c -1
V.Af - = f . = » *
3 (UJ)" B (UJ)n B g (UJ)

i

Since any open subset U of € can be written as U = ({1 Uj’ we have
je

g—1(U) = U g—1(Uj) = (/ Vj » B, which is open in B®., Now we chooss
JeM Jer
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a compact set A€ B® with JA(BC\ A) < é » and conclude that f is con-

tinuous on A and that w(X\A) = «(B) + «(B°vi) <& . B

A4.16 Convergence of integrable functions:

Let (X, Z,x) be a finite measure space and 1< p < ¢ . A measurable
(real) function f on X is called p-integrable, if ‘f{flp d/u < oo

(see Bauer 1972 , 2.6.3).

of p-integrable functions we have three im-

'ql
For sequences (fn)ne X

portant types of convergence:

1. (fn)ne]N converges to f‘;u - almost everywhere if

n;]._;.rgq (fn(x) - f(x)) =0 for almost all x € 4.
2. (:n)neIN converges to f in the p - norm if
_lim ']fn - £/ du =0 (see B.20)
3. (fn)nelﬁ converges to f - stochastically if
n{)iﬁrg/u[{fn-flzf] = 0 for every € > 0.
Proposition:

Tet (fp)pem be p-integrable functions and f be measurable.
(1) If £f,—> f 4« =-almost everywhere or in the p-norm, then f —¥ f
e -stochastically (see Bauer [1972], 2.11.3 and 2.11.4).

(i1) If (fn) converges to f in the p-norm, then there exists a

neXE
subsequence (fnk)keeﬂ converging to f w-a.e. (see Bauer 1972 ,
2'7‘5)!

(iii) If (f,), .y converges to f x-a.e. and if there is a p-integrable
function g such that [fn(x)l £ g(x) A —8.e,, then fn — f in
the p-norm and f 1is p-integrable (Lebesgue’s dominated convergence
theorem, see Bauer [1972], 2.7.4).

Simple examples show that in general no other implications are valid.

A.17 Product spaceg:
Given a countable family (Xu’ ZQ‘,/Md )oléA of probability spaces,

we can consider the cartesian product X = EA X, and the so-called
o
product & -algebra X = ®, Z . on X which is generated by the set

of all measurable rectangles, 1.e. sets of the form
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L] = = : A f r i=1 soyll
Rq‘]""’un(A“‘l, ,Ad‘n) {X (xd)o(élf\. Xoeié oy 0o seey

fOI‘ d.-1,0--’ dneA, nem, Adie Zd..
- 1

The well known extension theorem of Hahn-Kolmogorov implies that there
exists a unique probability measure :=0((é®A Fa on &£ such that
n
R A (] A. - A
PG i 1) = T g )

for every measurable rectangle (see Halmos [1950],§ 38 Theorem B).

Then (X,Z,/u) is called the product (measure) space defined by
(s Zus Ml s -

Finally, we mention an extension theorem dealing with a different
situation (see also Ash [1972], Theorem 5.11.2).

Theorem:
Let (X ), ,pbe & sequence of compact spaces, @n the Borel algebra on
Xn. further, we denote by 2. the product ¢ -algebra on X = IE'E Xn »

by :fm the set of all measurable sets in X whose elements depend only
on the coordinates -m, 4,0, «.., m. Finally we put F o= %IN ?m
m

If 4 is a function on F such that it is a regular probability

measure on Fm for each méX. then/u has a unique extension to a

probability measure on .

Remark:? n
Let o, ¢ X > Y = _g X‘i ;(Xj)jez — (x_n,..., Xn). hen we assume

above that vn(A) :=/u(50;1(A)), 4 measurable in Yn, defines a regular

Borel probability measure on Y. for every ne W.

Proof:
Ihe set function s has to be extended from F to O(F)=Z . By the
classical Caratheodory extension theorem (see Bauer E1972], 1.5) it

suffices to show that ;l‘};mm /a(C.l) = 0 for any decreasing sequence
(C4)3e gy Of sete in F satisfying igm C; = ¢ . Assume that u(C;)> £

for all i€ and some ¢ » 0. For each Ci there is an n €X such that

-1
C; € F,and 4 ¢ Y with C; = ¢ (4).
£ -1

< £,
Let B; & closed subset of Ai such that vn(Ai\ Bi) €502,
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-] .
, £ -1
._ : ] < =
Then Di t= ‘-Pn (B.l) llis compact in X and /t(Ci\ D.l) s 3 2 .
Di form a decreasing sequence of compact sub-

Now the sets G_ := /]

sets of X, and we have

k
e U (0 D))

G, € Oy and /“(Gk) - /u(Ck) - /;(Ck\ek) '_‘/"(Ck)
. 13 £
2 m(C) - :-E;/“(Ci‘Di) 2 &= 57 = 5.

C., Which contains A D:., is non-
em 1L iem *

Hence G, # § and therefore
i

empty, a contradiction.
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Appendix B: 3ome Functional Analysis

As indicated in the introduction, the present lectures on ergodic
theory require some familiarity with functional-analytic concepts and
with functional-analytic thinking. In particular, properties of Banach
spaces E, their duals E' and the bounded linear operators on E and E!
play a central role. It is impossible to introduce the newcomer into
this world of Banach spaces in a short appendix.

Nevertheless, in a short "tour d’horizon" we put together some more

or less standard definitions, arguments and examples - not as an intro-
duction into functional analysis but as a reminder of things you
(should) already know or as a reference of results we use throughout
the book. Our standard source is Schaefer [3971].

B.1 Banach spaces:?

Tet E be a real or complex Banach space with norm ||-|| and closed unit
ball U := {f&E: ||-F||..‘.-13 . We associate to E its dual E! consisting
of all continuous linear functionals on E. Usually, E! will be endow-

ed with the dual norm
0N = suo {IKe,2'S] : el €17,
where <£:,*» denotes the canonical bilinear form

(£,74) b L2y = £(£) on ExE!.

B.2 Weak topologies:
The topology on E of pointwise convergence on E} 15 called the weak

topology and will be denoted by G(E,E!). Analogously, one defines on
E! the topology of pointwise convergence on E, called the weak ®
topology and denoted by (T(E',E). These topologies are weaker than
the corresponding strong (= norm) topologies, and we need the follow-

ing properties.

B.3? While in general not every strongly closed subset of a Banach
space E is weakly closed, it is true that the strong and weak closure
coincide for convex sets (Schaefer [3971], IT.9.2,Corollary 2).
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B.4 Theorem of Alaoglu-Bourbaki:

The dual unit ball U% := .{f' ex':)r'l £ 1} in 8! 1s weak® compaet
(Schaefer [1971], IV.5.2).

From this one deduces: A Banach space E is reflexive (i.e. the cano-
nical injection from E into the bidual el is surjective) if and only
if its unit ball is weakly compact (3chaefer [1971],_‘12“\?.5.6).

B.5 Theorem of Krein-Milman:
Every weak® compact, convex subset of E} is the closed, convex hull of
its set of extreme points (3chaefer [1971],II.10.4).

B.6 Theorem of Krein:
The closed, convex hull of a weakly compact set is still weakly com-

pact (Schaefer [1971],IV.11.4).

B.7 Bounded operators:

ILet T be a bounded (= continuous) linear operator on the Banach space
E. Then T is called a contragkion if JTf|| £ Irk, and an isometry if
e} = Bl for a1l reE. We remark that every bounded linear
operator T on E is automatically continuous for the weak topology on
E (Schaefer [1971],III.1.1). For feE and f'¢ B! we define the cor-

responding one-dimensional operator

'@ by (£'®£)(e) = ety er
for all g€ E. Moreover we call a bounded linear operator P on E a

projection if P2 = P, In that case we have E = PE @ P 1(0).

Proposition:
For a projection P on a Banach space E the dual of PE is (as a topo-

logical vector space) isomorphic to the closed subspace P'E} or E.

Proof':
The linear map ﬁg: E! — (PE)! defined by Jgf' t= f‘,PE ig surject-

iye by the Hahn-Banach theorem. Therefore (PE)' is isomorphic to
E
/ker@'. From ker_{ = 710) ana B! = PPE' @ P "1(0) we obtain

(pE)! ¥ /19'“1(0) Y?PE'. M

B.8 The space &L(E) of all bounded linear operators on E becomes a

Banach space 1f endowed with the operator norm
Wed e= sup {Noel = Nell & 1 .
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But other topologies on .Z(E) will be used as well. We write zS(E)

if we endow 2(E) with the strong operator topology i.e. with the
topology of simple (= pointwise) convergence on E with respect Lo the
norm topology. Fherefore, a net i&l converges to T in the strong
operator topology iff T, f -I—"-b Tf for all f &E. Observe that the strong
operator topology is the topology on X(E) induced from the product
topology on (E,H-" )E.

The weak operator topology on ,2°(E) - write XW(E) - 18 the topology
of simple convergence on E with respect to o(E,E}). Therefors,

Ty converges to T in the weak operator topology

ire LT, £,0'y =D LLrr, e for all f€E, r'€E' .

Again, this topology is the topology on &p(E) inherited from the
product topology on (E, G"(E,E'))E.

B.9 Bounded subsets of x(E):

For M Cie(E) the following are equivalent:®
(2)
(b)
(c)
(da)

is bounded for the weak operator topology.
is bounded for the strong operator topology.
is uniformly bounded, i.e. sup-["T" : TeM} .

= B BB

is equicontinuous for K-l .

Proof:
See Schaefer [1971],111.4.1, Corollary, and III.4.2 for (b)&d(c)&d(d);
for (a)@(b) observe that the duals of ,'?S(E) and R’W(E) ars identic-

al (Schaefer [1971],IV.4.3, Corollary 4). Consequently, the bounded
subsets agree (3ghaefer [1971},1?’.5.2, Corollary 2). m

B.10 If M is a bounded subsst of Z(E)', then the closure of M as .
subset of the product (&, {-l )E is still contained in o'lo(E)
(Schaefer [1971],II1.4.3).

B.11 On bounded subsets M of 2 (E), the topology of pointwise con-
vergence on a total subset A of E coincides with the strong operator
topology. Here we call A "total" if its linear hull is dense in E
(Schaefer [1971],III.4.5).

The advantage of the strong, resp. Weak, operator topology versus the
norm topology on SP(E) is that more subsets of JP(E) bscome compact.
Therefore, the following assertions (B.12) - (B.15) are of great

importance.
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B.12 Proposition:?

For MC.i(E), g €E, we define the orbit Mg = -{’I‘g: I‘&Mgc E, and the

subspaces G, *= {féj’ﬂ: Mf is relatively l-ll-—compact}

and G *= {feﬁ,: uf is relatively G‘(E,E')—compact] .

If i1 is bounded, then G, and Gy are ][.ﬂ—closed in E.

Proof':
The assertion for GS follows by a standard diagonal procedure. The

argument for Gy 1s more complicated: Tet (fn) be a sequence in

nel

Ge converging to f €. By the theorem of Eberlein (3chasefer [1971],

IV.11.2) it suffices to show that every sequence (ka)kaI\T’ TkeM,
has a subsequence Which converges weakly. Sincse f1eC§,- there is a

subsequence (Tk- f1) weakly converging to some g1eE. Since fzeGs—
i
1
there exists a subsequence ('I‘k ) of (I‘k ) such that (I’k fz) weakly

T2 1 i

converges to gzeﬁ}, and S0 On.

Applying a diagonal procedure we find a subsequence (Tk )ie.‘i\] of

i ~peo :
P f . -,
(I‘k)kal\I such that I‘kifn —_— gne.E weakly for every né&W from
1
le, - gl - sup { <g, - gol> el & ]

sup { Uim | K8 7, - B £ 213] AN £ 1}

¢ ’lTki" -t - m"

it follows that (gn)n e ig a Cauchy sequence, and therefore converges
i-pm
to some g@E. 4 standard 3¢ -argument shows I} f —» g for T(E,E').
i
»

B.13 Proposition:
Tor a bounded subset M & P(E) the following are equivalent:
(a) M is relatively compact for the strong operator topology.

(b) HMfis relatively compact in E for every f &E.
(¢c) Mf is relatively compact for every f in a total subset of E.

Proof':
(a) = (b) follows by the continuity of the mapping T —» Tf from %(E)
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into E.
(b)&>(c) follows from (B.12), and (b) «»(a) is a consequence of

(4.3) and (B.10). IR

B.14 Propogition:t
For a bounded subset M & f(E) the following are equivalent:

(a) M is relatively compact for the weak operator topology.

(b) Mf is relatively weakly compact for every f&E.
(c) Mf is relatively weakly compact for every f in a total subset
of E.

The proof follows as in (B.13).

B.15 Proposition:

let M &2 (E) be compact and choose a total subset AGE and a

o (E!,E)-total subset A'ew!., Men the weak operator topology on M
coincides with the topology of pointwise convergence on 4 and A'. In

particular, M is metrizable if E is separable and B! is @1Eﬂ,E)—
separable (separable" means that there exists a countable dense set).

Proof':
The semi-norms

Pe,p1 (1) = |LT6,5'>] , Tel, rea, rlea

define a Hausdorff topology on M coarser than the weak operator
topology. Since M is compact, both topologies coincide (see A.2).

B.16 Continuity of the multiplication in L(E):
In Lecture VII the multiplication

(8,7) D g o7

in & (E) plays an important role. Therefore, we state its continuity
properties: The multiplication is jointly continuous on ;f(E) for the
norm Ltopology. In general, it is only separately continuous for the
strong or the weak operator topology. However, it is jolntly continu-
ous on bounded subsets of JfS(E) (see Schaefer [397{L p.183).

B.17 3pectral theory:
Tet E be a complex Banach space and T & ¥(E). The resolvent set £(1)

consists of all complex numbers 4\ for which the resolvent

-182-~




R(/\,T) i= (;\ - I‘)—1 exists. The mapping /\ > R(/\,I‘) is holo-
morphic on Q(T). Ihe gpectrum G(T) := ¢ N (L) is a non-empty com-
pact subset of €, and two subsets of &(T) are of special interest:
the point spectrum

Pe(I) := -‘I\GG(I'): (A - T) is not injectivez

and the approximate point spectrum

Ae(T) := -I/\ecr(l‘): (A— )f 20 for some mormalized sequenee (J;I)Z.
A complex number A 1is called an (approximate) eigenvalue if A€ Pe{T)
(resp. A6 A ¢(T)), and fy = {fe E: (A - IFf = 01 is the eigenspace
corresponding to the eigenvalue A ; A is a simple eigenvalue if
dim Fy =1 .
The real number r(T) := sup {|4\|: A €& P)} is called the 599_9_@5%_

radius of T, and may be computed from the formula r(T) =ri|.‘}‘n‘1b(||fn|[ )7,

if |r\| > r(T) the resolvent can be expressed by the Neumann gseries

o0
R(A,T) = nzzo)\“(n”)rn .

For more information we refer to 3Schaefer [:1971], App.1, and
Reed-3Simon [1972].

B.18 The spaces C{X) and its duals M(X):
Let X be a compact space. The space C(X) of all real (resp. complex)
valued continuous functions on X becomes a Banach space if endowed

with the norm

Il := sup -“f(x)' : xeX}, fa&C(X) .
The dual of C(X), denoted ¥M(X), is called the space of Radon measures
on X. By the theorem of Riesz (Bauer [1972],7.5) M(X) is (iszomorphic
to) the set of all regular real-(resp. complex-)valued Borel measures
on X (see A.12).
The Dirac measures 5;;' xeX, defined by {7, §X> = f(x) for all f&C(X),
are elements of M(X), and we obtain from Lebesgue’s domlnated con-
vergence theorem (see A.16) the following:

If £, £€C(X) with |f || &€ c for all n&N, then f_ converges to f
for W{C(X),M(X)) if and only if <£f, é}? —>{r, S_7 for all xéX.

B.19 Sequence sgpaces:
Let D be a set and take 1€ p L8 . The sequence space 1P(D) is defined

by
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P - . E p
1¥(D) := ‘l(xd)dep : =5 Iz < ‘OZ
where Xy are real (or complex) numbers.

Analogously, we deflne

1% (0) = {xg)gep * sup 1541 < o]

The vector space 1P (p), resp. 1% (D), becomes a Banach space if endowed

with the norm

. 1/

respe. “(xd)deDl = S?Dlxdlo

In our lectures, D equals W, ]No or Z. Instead of 1P(D) we write 1P
if no confusion is possible.

B.20 The spaces IP(X,2 ,M):

Let (X,Z,/u.) be a measure space and take 14 p <oJ.
By gfp(X,Z,/u-) we denote the vector space of all real- or complex-

valued measurable functions on X with ._}![f, p d/a- < 00 .

Then

. P 1/p
"flp e (.}[lfl am)
is a semi-norm on ip(X,z,/u.), and
. P . -
Ny 1= {f el (x,i,/k) .Hflp = oz

is a closed subspace.
The quotient space
P
P ,E, ;) = P(m) 1= KT, m)
N
) = P /5
endowed with the quotient norm is a Banach space. Analogously, one
oe
denotes by P (X, Z, M) the vector space of M-essentially bounded
measurable functions on X, Again,
llfu“ t= inf {ceJR*’:/u[lfl > c] = o}
yields a semi-norm on X‘”(X,Z, ), and the subspace
LV
N, = {26 2% T ) el = 0]
is closed,
The quotient space
i (X,'.i,/«) = L"(/a.) = ﬁx,z,/n)/N
is a Banach space. M

Even if the elements of IP(X,X ,/A) are equivalence classes of func-
tions it generally causes no confusion if we calculate with the
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function f & ,?P(x,z,/u) instead of its equivalence class

ferP(x,Z,m) (see II.D.4).

In addition, most operatars used in ergodic theory are initially
defined on the spaces,‘fp(}(,z,/u). However, if they leave invariant
N/.,, » We can and shall consider the induced operators on LP(X,Z,/O\).

B.21 For 1£ p4 0, the BanachVSpace LP(X,Z,/A) is separable if and
only if the measure algebra 2 1is separable.

B.22 If the measure space (X,z,/«) is finite, then

® ) e 1P Lp1(/k) o T

B.23 Let (X,Z',/.\) be & -finite.
Then the dual of I.p(X,Ey« ), 12 p<Le , is isomorphic to Lq(X,E'yn), ‘

where 1,1 1, and the canonical bilinear form is given by

P
Lf,g> = Jf-g dpm for fGLp(/A), geLq(/u).

Analogously, the dual of L1(/'«) is isomorphic %o L”(/A).

B.24 Conditional expectation:
Given a measure space (X,E,/M) and a sub~G-algebra Z < E .

We denote by J the canonical injection from Lp(_?(,fo,/u) into
P (X, Z,/«) for 1% pg @@ ., J iz contractive and positive (ses C.4).
Its (pre-)adjoint
P LULI M) =2 LK, M)
is a positive contractive projection satisfying

P(f.g) = g+P(f) for feLq(X,Z'yk), geL®(X,&,, ).

Proof':
P is positive and contractive since J enjoys the same properties.

The above identity follows from

{p(fg),h>» = £fg,h> = jfgh g = ££,3(gh)> = £(Pf) g, nd

P
for all (real) he&L (X, S’O,/A). ]

We call P the conditional expectation operator corresponding to Z:) .
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Tor its probabilistic interpretation see Ash [1972], Ch.6.

B.25 Direct sums:
Let Ei’ i €F, be Banach spaces with corresponding norms l'l, and let

14&p<L00 . [he 1 - adirect sum of (Ei)iem is defined by
E:=@_E. := A{(x ) : x.€ E, for all 1€X and Zﬂxlp<wz
T Wp i i‘ijemw” T iem 1 ‘

E is a Banach space under the norm y

. Py P

Given S, € ,;f(Ei) with ?épm i si" < &,

then
@ 85 ¢+ (xpyeqm M85 ) 5.y
is a bounded linear operator on E with VQS:.L”E = sup{"Sin : ie.]I\IZ.

. o« A
Analogously one defines the 1° - direct sum @,, E;
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Appendix C: Remarks on Banach Lattices and
Commutative Banach Algebras

R s L o=

A large part of ergodic theory, as presented in our lectures, takes
place in the concrete function spaces as introduced in (B.18) - (B.20).
But these spaces bear more structure than simply that of a Banach
space. Above all it seems to us to be the order structure of these
function spaces and the positivity of the operators under tonsidera-
tion which is decisive for ergodic theory. For the abstract theory

of Banach lattices and positive operators we refer to the monograph
of H.H. S3chaefer [39743 where many of the methods we apply in concrete

cases are developed.
Again, for the readers convenience we collect some of the fundamental

examples, definitions and results.

C.1 Order structure on function spaces:
Tet E be one of the real function spaces C(X) or LP(X, T, M), 14p 4eo.
Then We can transfer the order structure of R to E in the following

way:?
For £, g ®E we call
f positive, denoted £20, if £f(x)2 0 for all xeX, and define

fvg, the gupremum of f and g, by (fvg)(x) := sup{f(x), g(x)g for
all xe X,

fAag, the infimum of f and g, by (fAg)(x) := inf {f(x), g(x)}
for all x6X%,

If] , the sbsolute walue of £, by Ifl (x) := |f(x)] for =all xeX.

The new functions fvg, fAg and |f| again are elements of E.

Remark that for E = IF(X,= ) the above definitions make sense

either by considering representatives of the equivalence classes or

by performing the operations for M-almost all x 6X.

Using the positive cone E := -{fGE: f;o} we define an order rela-

tion on E by £f2 g if (g - f) 6E+. Then E becomes an ordered vector

space which is a lattice for Vand A .

Moreover, the norm of E is compatible with the lattice structure in
=197 -




the sense that O £f 2g implies )£l & Jgh, and [l = JIfll for every
fé&EkE.

If we consider a complex function space E then the order relation

"e" is defined only on the real part E, consisting of all real valued

functions in E. But the absolute walue |f| makes sense for all feE,
and JlIflIll = JIfll hoias.

C.2 A Banach lattice E is a real Banach space endowed with a vector

ordering "<& " making it into a vector lattice (i.e. |f| = £ v (-f)
exists for every £ €E) and satisfying the compatibility condition:

1f1 £ g implies |IfH £ ligl] for al1 £, g e&E.

Complex Banach lattices can be defined in a canonical way analogous
to the complex function spaces in (C.1) (see Schaefer[1974] ch.1I,§ 11.

Ce3 TIet E be a Banach lattice. &4 subset 4 of E 1s called grder
bounded if A is contained in some order interval [g, h]J := {f&E:géf_’ahg
for g, h €E. The Banach lattice E is order complete if for every order
bounded subset A the supremum sup A exists. Examples of order com~

plete Banach lattices are the spaces Ep(/u), 1¢ pg @ , while c([o, 1)
is not order complete.

Ce4 Ppositive operators:
Let E, F be (real or complex) Banach lattices and

T :E -»F
a continuous linear operator.
T is positive if TE & F _, or equivalently, if T |f] 3 ITfl for all

f ¢k,

The morphisms for the wector lattice structure, called lattice homo~
morphisms, satisfy the stronger condition TIf] = |Tf] for every
feE.

If the norm on E is strictly monotone (i.e. 0£ £< g implies Jfh < ligls

e.ge E = LP(/A) for 14 p<ge ) then every positive isometry T on E is
a lattice homomorphism. In fact, in that case

ire| £ TIe) and Blrelll = Preell= llelt= Nigtd] =) vletllimpiy

izl = TIfl .

Finally, T is called order continuous (countably order continuous) if

inf Tx, = O for every downward directed net (sequence) (x,)
el

oleR
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with inf Xy = 0.
L& f

C.5 Examples of positive operators are provided by positive matrices
snd integral operators with positive kernel (see Schaefer [43%#¢lcn.1ys8.)

Further, the multiplication operstor
Mg t C(X) —> C(X) (resp. LP(x, X, pm) TP (X, 5, 1))
f(x) —» f(x)- g(x), xeX,
is a lattice homomorphism for every O&gé C(X) (resp.OegGL”(X,f,/q.)).
The operators

T'f : L e foy

induced in C(X) or fip(X,E,/M), 1€ p4e , by suitable transformations
f : X —»X
are even lattice homomorphisms (see II.4).

= = g K 4 &

While certeinly order and positivity are more important for ergedic
theory, in some places we use the multiplicative structure of certain
function spaces.

C.6 Algebrs structure on function spsaces:
Let E be one of the complex function spaces C(X) or L“(X,E',/u). Then
the multiplicative structure of € cen be transfered to E: for f, g &E

we define
f.g, the product of f and g, by (f.g)(x) := f(x)+g(x) for all x eX,

bpr—

f*, the ad joint of f, by *(x) := £(x) for all x €X where "——" de-
notes the complex conjugation.

The function 1 , defined by 1l (x) := 1 for 8ll xe&X, is the neutrsl
element of the sbove commutative multiplication. The operation "a" is

an involution.

C.7 A C*-algebra Q. is a complex Banach space and an algebra with
involution ¥ satisfying
be - oM = i
for all f&6 Q& .
For our purposes We may restrict our attention to commutative o* -

algebras. ~199~




As shown in (C.6) the function spaces C(X) and L“(X,Z,/a) are com-
mutative C¥ -8lgebras. Another example is the sequence spsace 1% .

C.8 Multiplicstive operators:

Let O, &nd Qz be two C¥-algebras.

The morphisms

T 3 a1 —> 0_2
corresponding to the C*-algebra structure of a1 and az are continu-
ous linear operators sstisfying

T(f-g)
and T(£*)
for all f, gea1.
Let QA = ¢(X), resp. L% (X,zs/'\)- 1f

f: X —2X

is a continuous, resp. measursble, transformation, the induced ope-

(T£) +(Tg)
(re)*

reator
Ty ¢ Ff b= £
? Y

is a multiplicative operator on Q satisfying Tf 1= 1 and

T, f* = (T, £)* (see II.4).

r 14

C.9 Representation theorem of Gelfand-Neumark:

Every commutative C¥*-algebra A with unit is isomorphic to a space
C(X). Here X may be identified with the set of all non-zero multipli-
cative linear forms on Q , endowed with the weak™® topology (see

sakei [1971], 1.2.1).

We remark that for QA = 1% (W) the space X is homeomorphic to the
Stone~Cech compactification 32& of M (see Schaefer [418#+), p.106),
snd for Q = 1® (v,Z s A ), X may be iden\t/ified with the Stone repre-
sentation space of the measure algebra 2 (see VI.I6).
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Appendix D: Remarks on Compact Commutative Groups

Important examples in ergodic theory are obtained by rotations on
compact groups, in particular on the tori r’n. In our Iectures VII and
VIII we use some facts sbout compact groups and character theory of
locally compact sbelian groups. Therefore, we mention the basic de-
finitions and main results and refer to Hewitt-Ross [1979] for more
information.

D.1 Topologicel groups:
A group (G,+) is called a topological group if it is a topological
space and the mappings

(g,h) ¥»» g+h on GxG
1

and g2 > g on G
are continuous.
A topologicel group is a compact group if G is compact. An isomorphism

of topological groups is a group isomorphism which simultaneously is &

homeomorphism.

D.2 The Hasr messure:
Let G be a compact group. Then there exists & unigue (right and left)

invariant probability measure m on G, i.e. m = ngm = L;m for all g6 G

where Rg denotes the right rotation Rgf(x) t= f(xg), x6G, f&cC(a),

and Lg the left rotation on C(G).

m is called the normalized Hasr messure on G.

The existence of Hasr measure on compact groups can be proved using
mean ergodic theory (e.g. (Y.10.1) or Schaefer [48#%], III.7.9, Corol-
lary 1). For 8 more general and elementary proof see Hewitt-Ross [1979],

1505 - 1.5013 .
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D.3 Charscter group:?

Let G be a locally compact abelian group. A continuous group homomorph-
ism X from G into the unit circle [? is called a charascter of G. The
set of all characters of G is called the character group or dusl group
of G, denoted by 6 Endowed with the pointwise multiplication and the
compact-open topology 6 becomes & topological group which is commuta-
tive and locally compact (see Hewitt-Ross [1979], 23.15).

D.4 Propositiont A
If ¢ is a compact abelian group then G is discrete; and if G is a dis-

crete abelian group, 6 is compact (see Hewitt-Ross [1979], 23.17).

D.5 Example:
Let [7:= §z€€: 121 = 1] be the unit cirele with multiplication and

topology induced by €. Then [T is a compact group. Moreover, each

cheracter of r' is of the form
n

2 =» z
A

for some n€& 2, and therefore 7 is isomorphic to Z.
Finelly, the normaslized Hsar mesasure is the normalized one-dimensional
lebesgue measure m on .

D.6 Pontrjagin’s dusality theorem? a
Let G be a locelly compact abelian group, and denote by G the dual

group of 8.
8 is naturally isomorphic to G, where the isomorphism
j G - ﬁ

. . R . A
is given by g > g with g(X) = X(g)

A
for all AX&G (see Hewitt-Ross [1979], 24.8).
In particulsr, this theorem sasserts that = locally compact abelisan
group is unigquely determined by its dusl.

D.7 Corollary:

The characters of a compact sbelian group G form an orthonormal basis
for LZ(G,Q N @ the Borel algebre snd m the normslized Haar mesasure

on G.
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Proof:
First, we prove the orthogonality by showing that Jit(g) dm(g) = O
for k #Z 1. Choose héG with Z(h) # 1. Then we have

Jl(g) dm(g) = JZ(hg) dm(g) = Z(h) th'(g) dm(g)
and hence Jl’(g) dm(g) = O.

Clearly, every cheracter is & normalized function in L2(G,3,m).

Let g, h&G, g £ h, and observe by (D.€) that there is s I{ee such
that X(g) # AX(h), i.e. the characters separate the points of G.
Therefore, th2 Stone-Weierstrass theorem implies thﬁt the algebra
generated by G, i.e. the vector space generated by G, is dense in

c(G), and thus in LZ(G,B,m). ]

We conclude this sppendix with Kronecker’s theorem which is useful
for investigating rotations on the torus r’n. For elementsary proofs
see (III.8.iii) for n = 1 and Katznelson [1976],Ch.VI, 9.1 for general
n€N. Our abstract proof follows Hewitt-Ross [1979], using duslity

theory.

D.8 Kronecker’s theorem: "
Let 8 := (a1,..., an) e’ such that {a;,..., ang is linearly inde-
Zn

pendent in the @ - module I", i.e. 1 = a11.... a zie Z, implies

2, = 0 foris=1,..., n. Then the subgroup {az: zGZI is dense in r’n.

Proof':
Endow f: [T with the discrete topology and form the dusl group

A A

A

(2)y = I -

4 I

l"d is s compasct subgroup % the product I" - note that here the

compact-open topoclogy on r:i is the topology induced from the pro-
I

quet [T .

We consider the continuous monomorphism

A
$:2 — (@),

2 r—-i(-z) defined by i-(z)(a‘-) t= r_z for all rel”= ; .
AN

- - A
Then the duelity theorem yields that @(Z ) is demse in (Z ), .

-203-




Now let b = (b yes., bn).:,r"f1 end £50.

Since -{31,..., ang is linesrly independent in the Z-module I’ there
exists & Z-linear mapping

xely with XY(a;) = b

i for i = 1,040, n.
By definitifn of the product topology on r F and by denseness of
j( Z2) in n{ we obtain z6 Z such that

la; - s = 1B2)(a;) - X(ap)l

for'i=1,..., Nl .
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Appendix E: Some Anslytic Lemmas

Here, we prove some analytic lemmas which we use in the present
lectures but don’t prove there in order not to interrupt the main
line of the arguments.

First, we recall two definitions.

E.1 Definition:
(i) A sequence (x_) of real (or complex) numbers is called
n'ne M,

Cesaro - summable if 1lim Z xs exists.
n-» oo i=0

(ii) Let (n, s)3 e Pe & subsequence of N . Then (n;); 1y hes density

aé[O, 1], denoted by d((ni)iém) =8, if
;l('{ni: ie N}n {0, 1,000, k-1}f = =

where |- denotes the cardinality.

E.2 Lemmsa:
q &0 s s 42 s N
For ‘(xn)ne No € 1 GIQ the following conditions are eguivalent:

1 21
(i) 1im = X. = 0 .
n->e B i=0' il

(ii) There exists & subsequence N of ZNO with d(N) = 1 such that

lim X = 0 .
neyN n

Proof':
We define N, 3={0, 1,000, k-1}.

(i) = (ii): Let J t= fneIN : ]x [ > %} s K>0, and observe that
J1 € J, € vee o Sinca z [xl[ IJan |, each Jk hes density 0.

Therefore, we can choose integers 0 = n, < n, < n, < +.. such that
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1 1 >
nlJ+1nan< Er for n > n, .

Define J := (J (3., (N. ~ N_)) and show d(J) =0 .
kemw K1 o1 Pk

¢ .
Let nkSn Dy qe Then, we obtain

JaN, = (JnNnk) Y, (Jn(Nn\ Nnk)) c (Jannk) v (Jk+1nnn),

and conclude that

15,5 el 1

n{jnnn'— TR
If n tends to infinity, the same is true for k, end hence, J has
density O. Obviously, the sequence N :=IN‘J has the desired proper-
ties.
(ii)=> (i): Tet £ >0 sand ¢ = sup {]%[ tnelN }.

Because of (ii) and AN N) = 0 there exists nse]N such that n2n,

implies |x |< & for néN and - l(II\N)nN [<€ . 1If n>n, we con-
clude that
n-1
1 1 1
5 L Iz | = a . 2 lxi] + 5 2_ [=; |
i=0 i€ (I N)nNn i€NnN,
¢ 2 jmNMan, | + £
< e+ -£ . u
E.3 Lemmsa:
Take & sequence (z )N g °F complex numbers such that
F al ity - 5al? 1 3
nlz -z <oo o If lim = z, = 0, then 1lim z_ = O.
n=1 n+1 n— 0o 2 i§1 + ’ n—e -
Prooft 2 t
Define ¢_ =2k ,z -z | . Then 4

k=n
26-3

mex {lzmk - 2,[* 1€ksn-2 } Z lzk+1- zkl-.(z [zk+1-zk| (n-2))

<
.._cn

and n-2 1 n
izn‘ = ,bn_1 - 2b2n o + "_f f: (zn+k - Zk){ for b = n i§1 Z3 .'
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E.4 Lemmss
Let Ni, i=1,2,... , be subsequences of ]No with density d(Ni) = 1.

Then there exists & subsequence N of I  such that d(¥) = 1 and N ‘N,
is finite for every i€ N.

Proof:
There exists an increasing sequence (kj_)j_e]q € I such that

1-2"1¢ duafo,een, k-1l for a1l K2k .

If we define N := ./lm N vf0,..., k;=1f , then N has the desired
1€
properties. B

E.5 Lemms:
If (%), o 18 & Sequence of positive reals satisfying ;nn+m € x, * X

for 811 n, meW, then 1lim X—Q exists and equals inf —= .
n-» 064 nel§

Proof:
Fix n> 0, and for j> O write j = kn + m where k€N, and 0 £m<n.

Then

M. Tmem B e B B EL e
J ¥Yn +m - kn kn T kn kn n kn

If 39 then k- ¢, too, and we obtain

X X,
1lim sup—zl 3 EE, and even 1lim sup—.-l..é infx—rl.

j~>eo J ? j—> oo neW
*n *n
On the other hand, inf o ¢ 1lim inf — , and the lemma is proved. ¥
n
neilN n—y &0
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Appendix S: Invariant Measures

If (X3) is & TDS it is important to know whether there exists a
probability measure V on X which is invariant under ¢ . Such an in-
variant messure 8llows the application of the measure-theoretical re-
sults in the topological context.

It is even more important to obtain a Y -invariant measure on X which
is equivalent to & particular probability measure (e.g. to the Lebesgue
messure). The following two results show that the answer to the first
question is always positive while the second property is equivalent

to the mean ergodicity of some induced linesar operator.

S.1 Theorem (Krylov-Bogoliubov, 1937):
Let X be compact and ¢: X —> X continuous. There exists & probsability
measure ¥ € C(X)' which is ¢ -invariant.

Proof:
Consider the induced operator T := T, on C(X). Its adjoint T' leaves
invariant the weak * compact set € of all probability measures in M(X).

If Vo € ¢, then the sequence
' -
{Tn Vo ¥ n&]N}
has a weak ™ sceumulation point V . It is easy to see (use IV.3.0) that

T’y = v, i.e. ¥ is ¢ -invariant. N

As a consequence we observe that every TDS (X; tf’) may be converted
into an MDS (X,8 s p1 3 LF) where ® is the Borel algebra and e SOme

¢ -invariant probability measure. Moreover, the set J{", of all ¥-
inveriant measures in # is a convex ¢ (C(X)',C(X))-compact subset of
¢(X)'. Therefore, the Krein - Milman theorem yields many extreme
points of J{'F called "ergodic measures". The reason for that nomen-

clature lies in the following charscterization.

S.2 Corellary:
Let (X;%) be & TDS. . is an extreme point of 6"? if and only if .z
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(X, 8 s po s (.() is an ergodic MDS.
Proof':

If (X,cB,/« 3 50) is not ergodic there exists Aé@, 0< «(A) < 1, such
that (4A) = A and (f(X\ A) = XV A. Define two different measures

Mgy Ay € € vy
21 (Bn A)

/‘2(B) o= W for B € B .

Clearly, o= () - At (1 - @ (4)) e end ¢ is not an extreme

point of Py .

On the other hand, sssume (X,8 24 3% ) to be ergodic. If o= % (/‘1 +/(2)

1 ! 00

for Y xywe 5@, » then «, £ 2. and hence 4, ¢ L (/._) =L ().

But the fixed space of T:F in Lw(/a) contains « and «, and is one-

dimensional by (IV.6), (IV.4.e) and (III.4).

Therefore we conclude 4 = u 19 i.e. ««must be an extreme point of 6’9;.
|

The question, whether there exist ¢ -invarient probability measures

equivalent to some distinguished messure, is more difficult and will
be converted into a '"mean ergodic! problem.

S.3 Theorem:

let 4« be a strictly positive probability meassure on some compact

space X and let {: X—> X be Borel measurable and non-singular with

respect to & (i.e. #(A) = 0 implies /c(‘{"“(A)) =0 for A€ @).

The following conditions are equivalent:

(s) There exists &  -invariant probability measure v on X which is
equivalent to s .

(b) For the induced operator T := T[_P on L7 (X,B » #) the Cesaro
means T converge in the o (L ,L1)-operator topology to some
strz.ctly p031t1ve projection P & i(L"o(/«)), i.e. Pf>0
for 0< fe 1%

(c) The pre-adjo:.nt T/’0f T = T,fp 1s mean ergodic on ! () &nd Tu=u
for some strictly positive u ¢ ! ()

Proof':
The assumptions on ¢ imply the T = TY’ is a well-defined positive
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contraction on L™ (#) having a pre-adjoint T’ on L‘1 (e )
(see Schaefer [18##],III.9,Example 1).

() = (c): By the Redon-Nikodym theorem the ¢ -invariant probebility
measure v equivalent to u corresponds to & normalized strictly po-
sitive T -invariasnt function u ¢ L1 (/4). But for such functions the
order interval

[-u, ul = { e (u): -usfsu }

is weskly compsasct and totel in L1 (/u )+ Therefore T u = u implies the
meen ergodicity of T as in (IV.6).

(¢) implies (b) by & simple argument using duslity theory.

(p) = (a): The projection P : LM(/«) — Lw(/a) satisfies PT = TP=P
and maeps L"o(/u) onto the T-fixed space. Consider

Vo = meP
which is a strictly positive Y-invariant linear form on L (/4)
Since the dusl of L (/u ) decomposes into the band 1] () and 1ts

orthogonal band we may teake Y as the band component of Yo in I.. ( /u).

By Ando [1968], Lemma 1, v is still strictly positive and hence de-
fines & measure equivalent to « . Moreover, T'v is contained in
L1(/+) and dominated by Vs hence T’y 2 V. From T I = 1l we conclude
that T’y = vy and that v is ¢ -invariant. Normalization of v yields
the desired probability measure. N

These abstract results are not only elegant and satisfying from s
theoretical standpoint, they can also help to solve rather concrete
problems:

Let ip: [0,1]—>[0,1] ve a transformation which is piecewise 02, i.e.

there is & finite partition of f0,1] in intervals A:i such that ¢ can
o )
be extended continuously from the interior A; to the closure K. and

the resulting function (3 is twice contlnuously d:.fferent:.able on A-.
moreover we assume that the derivates LP deo not vanish on A. s hence

'f’i is increasing or decreasing.
In this case, % is measurable and non-singular with respect to the

Lebesgue measure m , and
Tf := foi¥p
defines & positive contraction on > (f0,1], B, mn) satisfying T4 = AL
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snd having s pre-adjoint T’ on L1(m,).

As 8 consequence of this theorem, one concludes that { possesses an
inveriant probability measure which is sbsolutely continuous with
respect to m iff dim F(T') > 1. In particulasr, this follows if T’
is mean ergodic.

To find out under which conditions on ¢ this holds, we observe that
the pre-adjoint T’ can be written as

TE(x) = Z fopN(x) 0 (x) 4, (%),
. 1 1 .
i i
where Bi = yé(Ai) and 0 is the absolute value of the derivate of

ot

In fact: For every X € (0,1),

JC f dm.

Y (0,x)

Thus T'f is the derivetive 2 of the function g(x) = J(.O,x)f dm,
?

If ¢ 1is piecewise 02, we can calculate this derivetive and obtain

x ?
4
ofT £fdm = ;rf~1(o’x)c‘f7 dm =

the sbove formulsa.
Recall that the vaeriation v(f) of a function f : [e,b] —> R is de-

fined as
v(f) = sup { Z () - f(t )[ P a=t €« £ < s < =b}.
nell j=1 -1 o 1 n

With this concept and using some elementary anslysis, one proves

that 3

8 v(tg) € v(f)llgh, + [|eglam
a

if £ is piecewise continuous and g continuously differentisble.

After these preparations we present the mein result.

S.4 Proposition:
Let ¢ :[0,1]—-> [0,1} be piecewise ¢ such that

s t= inf{|§ (t)] * t€(0,1) and {p differentisble at t}>1,
Then there exists a ¢ -invariasnt probability measure on [0,1] which

is sbsolutely continuous with respect to the Lebesgue measure m .

Proof'*

By (S.3) we have to show thet the pre-adjoint T'.‘o of T‘P is mean er-

godic on L (m. )+ The fzrst part of the proof is of a technical nsture. ::
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Choose n€IN such that s"> 2 and consider the map

f:= p*
which again is p.iecewise 02.
Clearly, inf {[d(t)| ¢ t€(0,1) and ¢ differentisble at t}3s™> 2.
Now we estimate the varistion v( T‘; f) for any piecewise continuous
function £ : [0,1] — R.
To this purpose we need some constants determined by the function ¢ .
Teke the partition of [0,1] into intervals A; corresponding to ¢ =and
write

m

-1
Te£x) = Z b (x) 65(x) 3, (x)
where B; = q’;i(l_i-) and &, (x) = 1(43}._'1)(::)! .

1. For cri we have G'i(x) ¢ 8 ® ¢ ;—for every xeBi.
1,

2. Put k := max'ﬂé’i(x)[ :xeg; i= ..,m}-max {[cf;i(x)| : xelg;i=1,...;n}.
3. For the interval A; = fai_1, 8;] we estimate

[£(a;_ )] + [£(ag)] ¢ 2 inf {{£(x)] = xens} + v(flAi)

in

2
;:TK:T d{{fl dm + V(f!Ai)
< 2n [{f] dm 4 v(f], )
A i

i
for h := max{—m—}n.—y H 1£'i$m}.
1

Now, we can galculate:
m

, -1
v(T, £) € 7 w(fed, (x): o (x)[ lBi(X))

i=1

- -1 . -1,
€ T (Mol vitod ((x)-25 (x)) + [[£0d - &l am
i=1 1 Bi

(by the inequality (% ) above)
m
S 121(5'11 (!f(ai_1)[ + lf-‘(ai)lfi- v(flAi)) + I B"”fo CP;"'UE dm)
= . i
(since max{( d)i(x)‘ X € f\_i-;i-ﬂ, ..m} = min{og(x) :xeB; 5=1, ..,m})

m
¢ 3 (s7(2n [lflam + 2 (£, ) + k f{£l am)
i 1

i=1 Ai Ai

< (h + k) ﬂf[[.l + 2 872 y(£) .

Observing that v(iL ) = 0 and T;rjl_ is again piecewise continuous, we iz
obtain by induction
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r-1 .
v(T‘;, P4y ¢ (h+ k) 2 (2 s < —h—*'l-(—n for every re¢N,

i=0 1 -2 a8
and therefore b ,
i T < [ T T o€ 1 e —2EE
g "l € HT, "all+ v(T, "0 tTS

i.e. Té, rjj_ L M1 for rell and some M >0.

For the final conclusion the abstract mean ergodic theorem (IV.6)

implies that T; is mean ergodic. Since T; = T% n’ the same is true
for T‘;, by (IV.D.2). M

In conclusion, we present some examples showing the range of the

above proposition.

5.5 Examples:
1. The transformstion

2 % forOéts;-
p(t) :=

2 -2t for %t €1

=

satisfies the assumptions of our proposition and has s y-invari-
ant measure. In fact, m itself is invariant.

2. For

1
—— = Py
=% for 0% ¢ €35

)

P ()
2t -1 for 2<t €1
The assumption {?(t)l > 1 is violated at t = 0. In fact, there
is no y -invariant and with respect to m absolutely continuous
messure on [0,1], since T;"f converges to O in measure for
felLl(m) (see Lasota-Yorke [1973]).
3. For ¢ (t) := 4t-(1-t) the assumption [?(t)|> 1 is strongly

violated, nevertheless there is s (¢ -invariant messune:

Indeed, the equation _ J_ f dm = 1 S ram together with
[0,x] ¥~ Lo,x]
the plausible sssumption that £(t) = £(1-t) leads to
%~ %aox

F(x):=ff(t)dt=2- Sy av = 2 p(} - 3 IET)

(]
By substituting x = sinzf we obtain

s 2 N 1_1 _ .2 Z
F(sin“} ) = 2 Flz-5 cosf’) = 2 F(sin® £)
which shows that F(x) = aresin Jy x' is & solution. Thus the

function
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f(X) = 1
2 f x(1-x)

yields a ¢ -invarisnt measure f'm oR f0,1] .

4. Finally, @(t) 1= 2(t - 2°1) rfor 27 c £ €2™7%, iem,
has ‘Pi(t) = 2, but infinitely many discontinuities. Again there
exists no ¢ -invariant measure since T‘;, Bf converges to zero in
measure for f¢ L1(m ).

References: Ando fl968], Bowen [1979], Brunel EI970], Ha jien-Ito [1967],
Lasota [1980] , Lasota-Yorke [1973], Neveu [1967],
Oxtoby [1952], Pianigisni [1979], Takeheshi [1971].
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Appendix T: Asymptotic Independence

In (IX.2) we have seen that an MDS (X, Z, i« ; ¢ ) is strongly mixing iff
,u('f‘_nAn B) converges to /A(A)-/«(B) for every A, B€ 2 . Since in
probability theory the "events" A and B asre called independent if
#(AnB) = u(A)- u(B), mixing can be interpreted as asymptotic in-
dependence with respect to ¢ of any two measurable sets. In the
following we transfer this notion of asymptotic independence to covers
and define stronger mixing properties.

T.1 Definition:

Let (X,X ,43 ) be an MDS and ,8 € X, .

(i) The dependence between & and g is defined by
[

dep(x,8) = 2 2 |u(anB) - a(s)-«(B)] .

Aea Begp
(ii) The disjoint cover oo is called mixing (or asymptotic indepen-
dent) if

1lim dep(o(n, \?'ko(m) =0 for every n, meX.
ke -» 00

(iii) A is called a K(olmogorov)-partition if

lim sup dep(o n, t?"ko(m) = 0 for every nelN.

k22 mejN

(iv) is called a w(eak) B(ernoulli)-partition if

1im sup 4 n ke omy o
k"@”magéw ep(q ’Lf “ )

(g
Clesrly, for o« € Zd wB implies K, and K implies mixing. Moreover,

in Definition (ii) and (iv) one might as well choose n = m. This is
due to the fact that o4 o € 2, implies that dep(%,A) £ dep(x’,A).

For the canonical generator « of a Bernoulli shift we have

dep(« ,?'ko() = 0 for every kéW. Therefore o has all the above

properties.
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T.2 Proposition:
An MDS (X, 3,4 3 %) is strongly mixing if and only if every partition

o € Zd is mixing.

Proof:
"é& ": For A, B ¢ 2 consider i= {A, X\A}v {B, DN B} « Then
fpe(p ™8 B) = w(a)u(B)] = IZ. T (p(p 20 B) - w(a’)m()
A’€A L B'EB Bigy
& - =k o =k '
..ﬂ%n ”ggcl,n(tf 2'AB") - (¢ ™2") (BY)
& dep (e, t?'ko( ), which tends to zero.

e

"=y " Fix &€ Zd and n, meN, For £ 0 we can find k€N such that

) } £
[t FanB) - e (yFa) @) éloem(- [ ™[

for every Ace qm end B & «=. Therefore dep(fxn, '_?'k(xm) < £ . B

T.3 Proposition: -
An MDS (X, S, ;) with a mixing generator o€ Z 4 is strongly
mixing.

Proof's

The set {1 i A€ o.: n for some nc-.]N} is dense in {:MB. BE Z} . For
A€ r-xn and Béo(_E we have Lf—nA € « 2241 ong ¢ B ¢ &2m+1 » &nd
therefore

| w1 ~Ean B) - w(a) m(B)]

= (g ETRp ) 4 @B) - ( TPA) (9 B)

é dep([?’k'{'m - 2n+1’ °{2m+1) — 0 as k- oo,

By (IX.2) this shows thet (X, Z, «; ¢) is strongly mixing. R

YT RN F T ———

Before introducing mixing properties based on (T.1(iii) and (iv), we
show some interesting equivalences,

T.4 Proposition:

For & partition o e¥. 4 the following are equivalent:
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. . ~k n -
i} 1lim sup de = 0 holds for eve e 2, .
(1) 1im sup dep (4, ¢ a™) ° ry geZ,
(ii) ¢ is 8 K - partition.
(iii)For every n¢l and A€ o
klim sup { [,u(AnB) - /«(A)-/a(B)lz Be ‘qum’ meN}: 0.
-3 00
(iv) o ssatisfies Kolmogorov’s "O - 1 - law", i.e. for every
o oo "Vk m
A€ Teil(x) = /] (U ¢ a™) we have wu(2) € fO, 1}.
k=o Mmza
Proof:
The implications (i) = (ii) = (iii) sare obvious.
(1i1) = (iv): Let 0 < £ < 1 and define 2., 3= O°( U/ FrEg™).
me i

If A&Tail(el ) then A € Zk for every keNo. Therefore, there is

~ m
By € t.fko(mk such that d(a, Bk) < £ . In particular, Boé o © and by
(iii) it follows that

Ipm(B,nB) - w(B)): w(B )| <€

for sufficiently large k.
Thus

[p(a) = (82| & [u(a) - w(BoAB)| + [u(ByaBy) - «(B)aB,)]
+ [ (B w(B) - ,u(A)2[
£2¢ + £ + 28 + € 2
€ 6¢, and we obtain . (A) = . ()% .

(iv) = (i): Fix (G € fd and define Zk as above. The semigroup
consisting of the corresponding conditional expectation operators

P, t BN E,0) — BUX T,u) (ke

has triviel fixed space (by hypothesis) and is mean ergodic by (Y.104)

As in (Y.14) it follows thsat

for every f € ! (X, 2 s 4 )
Therefore, for £ >0 we can find k sufficiently large such that
£
P1 - B) L[f< —
for every B € £ .

Since Ae §¥u™ ¢ Z, implies that «(AnB) = <1,, 157 = {1,,P,157

we obtain
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dep(f8 , ¢ St ™)

L]

> Z (AnB) - A) 4<(B)
Bes Aecr&j"ﬁ "B) - (a) (B

2 |<1A’ Ple> - <1A’1 b A (B) I
BLAE - | a
€ 2, Z, I My I Belpg - 4(B) 1] du

= 5/3 il Bl - 4c(B) L
< £ . ]

H

T.5 Definition: -
An MDS (X, &, « ;#) in which every partition &€ Zd is 8 K-partition
is called a K(olmogorov) - system .

The next result is the analogue of Proposition T.% for K-systems.

We present it without proof (see Smorodinsky [1971], Remark to
Theorem 7.13% and Lemma 7.14).

T.6 Propositiont
An MDS (X,X , . ; ) possessing & generator o€ Zd which is a
K-partition, is & K-system.

From this proposition we can easily infer that every Bernoulli shift
is a K-system. It is clear that every K-system is strongly mixing,
but the converse is not true. In fact, the "Kolmogorov-property" con-
tains much more complete information about the spectrum,

T.7 Proposition:
Every K-system (X,Z, «; ) with separasble infinite-dimensionsal 1.2 (/q,)
has countable Lebesgue specirum.

Proof:
To simplify the proof we assume that the K-system (X, ,/«;7’) pos-
sesses & generator &K (compare XII.D.2). From Proposition T.4 we in-

fer that Teil(o) := ?‘? Zk contains only sets of measure O or 1.
k=0

Here E'k = o( {3 FE™), keZ, and the corresponding pro jections P,
m=1

satisfy ;L_:;.:a Pyf = {f,1}) 1 for every f€E := Lz(/q_) and

o)
/) PkE=<j. )o
k=1
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Since ™ is a generator, _fj P, E is dense in E.

~ k
We write POE = P,'E @® F, where F := (I4d - P1)P°E.
Then
TF = (TP.D - TP1)E = (P1 - P2)E = (I4 - P2)P1E
and P1E = P2E @ TF. Egnt.’;nuing this process we see that
E=<1L>® & TF.

RS
Now we show that E.o has no atoms. Indeed, if A were an atom of Z'o
and () >0, then ¢¥A € T < Z_, and we have either

(1) Lfk(A) = A for some k¢l or

(ii) ‘{’k(A)n A =@ for every ke N.

In case (1) then A € Tail(i ) and therefore «c(4) = 1.

This implies that PoE is one-dimensional. But then also PkE = TkPOE
is one-dimensional for every ke %, and hence E is one-dimensional.

In case (ii) the sets (‘PK(A))kE:N are pairwise disjoint and hence
U _wE(a)) = 00 whih is also impossible.
U pEa) p
Next we show that dim F = o0 . Let 0 # ge¢F and consider
B:=[g#0] ¢ Zo' Since «(B) > 0 and Z  has no atoms,
ig* P,E i= {13' h s hEPOE}
is infinite-dimensional, and
lg PP = 1gF + 1y FE .
If F were finite-dimensional, then 1B- F would be too.
By (gf1,f> = (g ff,) =0 for f,, £,¢P,E We obtain that
g-P_lE is contained in F. Therefore g- P1E and also 1B' P1E would be
finite-dimensional which gives a contradiction.
Finally, if (fi)ié 7 1s an orthonormal basis for F then E has an

orthonormal basis of the form {:L, Tin $ i, EZ}. .

On the other hand, the "Kolmogorov-preoperty" is no longer a "spectral®
mixing property, but it can be characterized in terms of the entropy.
This is the content of the following theorem which is stated without

proof.
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T.8 Theorem (Rohlin-Sinai, 1961):
An MDS (X, £, 3w ) is a K-system if and only if h/‘(o(;y’) > 0

for every oeZg .

The Property (iv) in Definition T«1 appeared in the investigations of
Ornstein and Friedman on the c¢lassification of Bernoulll shifts and
leads to a still more restricted class of "mixing" MDSs.

T.9 Definition:
An MDS (X,Z",/( 3¢ ) is called a weak Bernoulll system if it possesses
a generator that is a weak Bernoulli partition.

Remark: ~
Here the requirement that every o € Zd be weak Bernoulli would be

too restrictive, since even for Bernoulli shifts there are partitions
which are not weak Bernoulli (see Smorodinsky EI971_J).

T.10 Theorem:

Por the Markov shift (2,2,/1 s ) obtained from a matrix T and in-
variant distribution p>» 0 the following are equivalent:

(a) ™M-— 1® 1 asn—> o ,

(b) (%, f,/: ; ) is ergodic for every ne.

(e) (i,ze_',/:;t') is weakly mixing.

3

)

(a) (X, Z,/‘) 3T) is weak Bernoulli.

Proof':
(d) = (c¢) is clear, since weak Bernoulli implies strong mixing by :

Proposition T%3and strong mixing implies weak mixing by (IX.5).

fc) = (b) follows from (IX.D.4).

(b) = (a): As in (IV.D.7) we can infer that ™ is irreducible for
every neN. Then we use (IX.D.4), Remark.

(a) = (d): Define A, := { (x5)€ X: Xy = m} for me X = {0,040y k-11}.
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Then & := {Ao,..., Ak 1} is the canonical generator. If l'm is the
characteristic function of {m} X, then 855 = <1y T1j> and (a) im-

plies that Cop™ a5 85) = a(ag)Aag]
= | Z:_.p ali 8y 4 e84y

. a. .
1t n-2'n-1 tn-1J
Py - ! :'|.’ -'j> - le
converges to zero as n — oo .

Now we show that X 1is a wB-partition:
For £ > 0 we find n sufficiently large such that

|< 2,747 - oy

for every i, je€X, where & != max {p31

- 3y |

o oen

jex } .

For A, B e ixm, say A = [} p'iAm , and analogously B, we define

i
P, = 8 eses B and analogously p + Then
A Tmgmy My oMy B
A (8) = p.p, for some x€X,
/1 (B) = PyPp for some ye X and
/b',‘,(A n LF-(n+m)B) = pgpp < 1z’Tn+11y> - P for some z ¢ X.
Thus
" -(n+m)gy _ 2ca) 8 - . i+ -
lcany B) ﬂ(LMwH pgg@!(%, 3&> %f
£ A8) AB) e- (<L, ™)y - p |
< /Q(A)/&‘ (B) ¢ , and therefore
dep(u ‘fn+m ™y ¢ & for every meN. N

Theorem T.10 shows that for a Markov shift all mixing properties

coincide, namely weak mixing, strong mixing, the K-property and the
weak Bernoulli property. This can be compared with the coincidence
of different mixing properties of the matrix T (see IX.D.4 and also

Uo 1 3) .
The main reason why the weak Bernoculll property became famous, lies

in the following result, which we cannot prove here.

T.11 Theorem:
Every weak Bernoulli system is isomorphic to a Bernoulli shift.
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This theorem has been used by several mathematicians to show that
various MDSs are isomorphic to Bernoulli shifts (e.g. Katznelson [1971],

Ornstein-Weiss [1973]).
One important result of this kind is the following immediate corollary

of Theorems T.10 and T.11.

T.12 Corollary:

Every weakly mixing Markov shift is isomorphic to a Bernoulli shift.

References?! Friedman-Ornstein [1971], Katznelson 5971],
Rohlin-Sinai [1961], Ornstein-Weiss [1973], Shields [1974],

Smorodinsky E|971] .
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Appendix U: Dilation of Positive Operators

A A A A
In (II.6) we constructed an MDS (X,z,/( ;'f) starting from a positive

operator
T s L1(X,Z,/'~)-9L1(X,f,/-\) with T4 = 1 and T'4 = 1.

Actually, in (II.6) the space L1 (X,EV«) was just lFihl and M was given
P
by a probability vector (§)° ). Then we pointed out in (II.D.9) a

particularly important property of this construction: There exists
A A

. . 1 . 1,4
a canonical imbedding of L (X,Z s4) into L (X,Z,/“) relating T (and
its powers) to the induced lattice isomorphism

A A A _1

Tf = fo7T .
Such "extensions" of a given operator on & given space to an isomorph-
ism on a larger space are called "dilations". For our purpcses the
interesting spaces are Banach lattices of type Lp, and therefore we

make the following definition.

U.1 Definition:

Let T be a positive operator on IP(X,= ,/4) for 1A$p<.:o and u(X) = 1.
Assume that there exists a probability space (i,i,/t ), & positive
isometry J, a positive operator T and a positive contraction Q such
that the diagram

™
Px,Z,pn) y IP(X,Z , 1)

J Q

AT A A A A
T, R) > P(L,E,4)
i
A ) ~ A A
commutes for n = 0, 1, ... «» The FDS (T; L (X,i,/ft )) is called a
positive dilatiom of (T; IP(X,¥ ;M ). It is called a lattice dilation

if T also is a Banach lattice isomorphism.
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From several points of view the construction of lattice dilations

seems to be important:

(1) A lattice dilation is the Banach lattice analogue of the "unitary
dilations" which are a fundemental tool in the investigation of
Hilbert space operators.

We refer to Sz.-Nagy-Foias 1970 .

(ii) The dilated ocperator @ has nicer properties but is still closely
related to the original operator T. In particular, Gy reflects
the asymptotic behavior of the powers of T (see U.12 below). For
a representation theorem of lattice isomorphisms on Lp-spaces we
refer to Schaefer 1974 , III.Exercise 27.

In this appendix we extend the construction of (II.6) from L1-spaCes
to LP-spaces for 1€ p< o and from positive operators satisfying

T41 =1 and T’l = 1 to arbitrary positive contractions. To do this

we proceed in several steps and construct several different (positive
and lattice) dilations which will be composed to yield the final
lattice dilation.

In the following we always consider E := LP(X,Z}/u) for some finite
measure space and for 1<£p< . The notation O<«u ¢E indicates that
the function u is strictly positive, i.e. u(x)> 0 sa.e. on X. The dual

E' will be canonically identified with Lﬁ(X,Ef,/u), where % + % = 1,

Finally, the operator T ¢ & (E) is assumed to be a positive con-
traction.

U.2 Proposition (first dilation):
Assume there exist 0<<ue€élE and 0<< v ¢ E such that Tu< v and

T'vp'15 wP~1, Then (E;T) has a positive dilation (ﬁ;f) with 0<<¥ £ &
such that @' "1 =1 ana F1=7.

Proof':
Define the new measure space (f,i:,/a) by adding two different points,

N .
i.ee X t= Xv{y, 2}, and i« := up-/u +0(-d-y +4-d,, vwhere Jy, d, are
the Dirac measures in y, z and

o 1= (2P = 1)1, Cu, uPT! - pPly

Ar= (1 - 2Py 1y -, P>,
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In the following we identify a function f on X with the function on z .
which is zero on y and z and coincides with f on X. Then we define a
positive isometry

s

1

by Jf t=u . f
and a positive contraction
A A ~
Q :E —> E by QL = £+ u.

p

For the element £ := £ + o 1+ 1, € B, reP(X, 5 ,uPu)

and #, ¥ ¢ R, we define the operator iy by

TFf = ulpur) + g~ <F1,5 (v - m) + 2711 )

+ 21 TR, 1w gy - 'R Py g

uTlr(ue) + 9Ny - M)+ 271
¢ 217P(p 4 x T {fﬁx - ulPrlyPlyq 2 )1
where we may assume that 0 # o, P .

v+2°1y+

71 = w i 4 u-1(v - Tu) + 1§ 1, + o1-p 0{'-‘1-(fu(up'1-T‘vp'1)d/a +N)1y_
b 4

1 1z and obtain

N —

A -
Then we put v i=u

awly + 21'130(-1(0((2p - 1) + o) 1y + %.‘Lz

1

- ) 1 oA
u v+21y+212 = v

and
<, $P7

{u_‘lT(uf)-u.'_pvp--l az + [u_1(v-m)u1-pvp-1 d .
X
+ 482 4 poa _gf(:tx ~ WP Py a2

‘{;T(uf)vp-‘ld# + “f"/“(v - Tu)vp_1d/a

+ xf.p-z'P + onex 4+ {u:t‘(up'1 - p'yP-1y d e

{uf, 'I"vp-1) + gt oo+ {uf, uP~1 - /Py
éfd/i‘
< f, 12 > .

Py
Pinally, it is easy to verify that f = Q ™ Jf forn = Oy 1ye0e o
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The above dilation is of a preparatory nature, and allows us to ob-
tain the desired lattice dilation by a construction similar to that

in (II.6).

U.3 Proposition (second dilation)?
Assume that there exists 0« v ¢E such that £ 1 = v and T'vp-1 = 1 .
Then (E;T) has a lattice dilation (8;T).

Proof':
Define X := X% with product o -algebra 5 . We denote by 7 the (left)
shift on X. With the projection onto the i~th coordinate

A

2

(x5}5¢2 7 %

we obtain 1ri = - ’lTocti for icg Z.

Next we define positive operators
8, 8_ t L7(X, T, u) —> LXK, 5, «)

1

by S, t= v T end S_f 3= P(vP7'f). Then 8,1 = S_1=1 sand in view

of (4.17), Theorem, we can define a measure & on (?(,%) by
n n

n -
AT £50 ) 2= a0 (£ (W sMe)L (T sMe)1)

i=-n i=-1 i i=1 i
where Mfig t= f;-8 for f; € L? (X, s pu)e

Now take

£ — fe“t;

which is a lattice homomorphism with J 1X = 13‘(. From J;Jf dj«‘:ff d/u
X

follows that J is even an iscmetry from IP(X,¥ ,. ) into IP(X,Z, )
for every 1¢ p<co. Consequently, we can consider J on L%(X, 2,4 ) and
its adjoint

Q=J' P, E,4)—> P(X,T,uk)
is a positive contraction.
Finally we define A s .

T ¢ E —> E

by Tf 3= Jy.feT

g




Pa)
Then T is a lattice homomorphism with dense image. It is even a Banach

lattice isomorphism since it acts isometrically on the elements
Fa

f = ’IT f. o’T, f e L™ (X,Z,/u) : Denote g. := lf.lp » Then
i i
i=—n
n

PPy - (
_){lfl d/.._j 1]' S M. - g, T;S+Mgi1 S

¥ 1=-1 i=

-1 Il
J r' (P g _1 T SMg_1I)'g°-TS+Mgi1ld/-(

1==2 ¢ -1

w1 g T’SM1|I(g ‘T?‘smu)d
8_q | oS Mg W) on

1~-2

va g_q ¢ Izs Mg'ﬁ TS+Mg1 ]

'y AI p n
J;?va | £ogl A
Lﬁf‘p’ aR

A
With all these definitions in mind we can show that T is in fact a

dilation of T:
Choose 1, geI:‘”(X,E,/a) and nel\Io « Then

{ Tan, Jg >

‘<1ﬂ;V° s .fo s 8e W}>>

n-1 .

=fx g(MS)7f du
'<Tpf, g7 - .l

<qttar, g5

Remark:?
For v = 4 the above construction coincides with the usual construct-
ion of the Markov procegses from "transition" operators.

As soon as the assumptions of (U.2) are satisfied we obtain a lattice
dilation simply as a composition of the "first" and "second" dilations.
For p = 1 and a positive contraction T it is easy to choose O<<u eE
and 0<< v ¢E satisfying Tu<€ v and S TP RPN e o

Therefore we have proved the first main result.
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U.4 Theorem (L1 - dilation):
Every positive contraction on L1(X,E'”u ) has a lattice dilation.

The question of whether every positive contraction on Lpgu), 1<p <99,
possesses a lattice dilation is more delicate. But at least for posi-
tive contractions on finite dimensional Lp-spaces we are able (see U.B
below) to wverify the assumptions of (U.2). Again, by composition of
(U.2) and (U.3) we obtain the desired result.

U.5 Theorem (finite - dimensional IP - dilation):

Every positive contraction on a finite-dimensional IF-space has a
lattice dilation.

Remarks?
1. In general, the assumptions of (U.2) are not satisfied (compare

Akcoglu - Kopp [1977]). But by approximating IP(X, 3 ,«) by finite-
dimensional sublattices and using (U.5) and ultra-power techniques

we are able to construct a lattice dilation for every positive P -
contraction (see Akcoglu - Sucheston [1971]). In addition, for many
applications, the finite-dimensional case is sufficient (see App.V.6
and App.V.7).

2. Te lattice dilation constructed above is not unique, but at least
the "second" dilation has scme remarkable properties (see Kern-Nagel-

Palm [1977]).

It remains to prove that in fact, every positive contraction on a
finite-dimensional IP-space satisfies the assumptions of (U.2). This
will be achieved in (U.8) and in the course of the proof we shall
freely use lattice-theoretical notation and arguments. In particular,
f L gmeans Ifl A [g]l =0 and{f}"' 1= {gELp: £ 4 g} is the band
orthogonal to f.

U.6 Lemma:?
let T be a positive contraction on Lp(X, Z,mu)y, 1<pcoa,
If there exists 0<f éLpsatisfying Kol = £, then

-228-

R



k‘if /h

(1) TnP ' = P' forn = o0 .
(ii) g4 £ implies Tf 4L Tg .
(ii1) g4 Tf implies T's L f .

Proof':
(1) Por V£ = 1 we have
e, P71y = wpu® o yrep P =, (re)P7y = ¢r, TRPTY)
1 _ fp-1

Since riT’hP'1r/q €1 and (P71 = 1 this implies T'nP"
(ii) By the positivity of T we obtain

0 £ (Imzl,(Te)P-1> € (rlg|, vP-1) = <igl, P71,
(iii) follows similarily. N

]
o

Now we proceed as follows:

If Lp(/u ) is finite-dimensional and T has norm one, then we can find
0<f, hwith {Tfll = N£H and TP~V = P~ (apply U.6).

We shall try toc add successively more positive components to the
vectors f and h until we obtain strictly positive vectors ud £ and

v>h satisfying Tu< v and T'vP" 1< wP~1. 1o 4o this we need another

lemma.

U.7 Lemma:

Let T be a positive contraction with norm one on a finite-dimensional
space IP(X, ¥, 4), 1<p < 0. Choose 0<f €IF(u) satisfying

Hre W = W . If

f£}° 4 §o0} 4 {meit ,

then there exists a contraction S € iﬁ(Lp(/u )) with T £ 3, and

: L
0<f, € (P(u) satistying hse Il = H£ 4 sma {r 3" & {237 .

Proof:

] - . J— .
Define ¢ = sup {Ing}l s gl €1, ge {£}*} . If ¢ # 0, we can find
0<g, € §r3t with g ¥ =1 and “Tgo [ = ¢. Then we define

1

S(:t‘1 + f2) H Tf1 + C -Tf2

where e{rjtt, £, ¢ {£}* and we take fo 1= + gy Then 0CT$S
and [Is£ ® = Joef P+ o rg P = pEfP + 1= f2 4 P,
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If c =0, we take 0<g,, &, € {f}"‘ and 0 <g2' in the dual of {f}*
satisfying 1!82 = | gé ¥ =1 and (g.l, gz') = /}g_l {l « Now we de-
fine f_ :=f + g, and 8 := T + g, @ g;;' which have the desired

properties. W

U.8 Proposition:
If T is a positive contraction on a finite-dimensional space

IP(X,Z,m), 1<p < ©, then there exist strictly positive functions

0¢«u, v € IP( ) such that Tuzv and plyP-1 o yP-l

Proof':

Applying (U.7) a finite number of times we eventually obtain an
operator S 2T and O< g with /[[Sg | = [ g (| such that either

fg}t = {03} or {sg}t = fo}. I 0« g, iee. {g}t = {0}, then
we take u 3= g and v = 3g + h> 0, where h L 3g.

If 0<«<8g, i.e. {Sg}* = {0F, then we take v = Sg and u := g+h> 0,
where h L g. In both cases it is easy to verify the desired properties
(use U.6). R

In the final part of this appendix we shall verify the statement that
our lattice dilation reflects the asymptotic behavior of the original
operator. More precisely, we shew that T and T possess the same ergo-
dic properties such as ergodicity or mixing. To do this we have to
restrict our attention to positive operators T @ L1(X,'i',/a)—~> I.-'."(X, 2,4
satisfying T 1 =1 and T'1 = 4, so-called H-Markov or doubly
stochastic operators. Then we can apply the construction of (U.3)
with v = 1 and obtain a lattice dilation (L1(5‘E,i,,{l );T). Moreover,
the operators S, S_ appearing in the construction are simply T and T,'

respectively, and ﬁ‘\ is the operator induced by the left shift T
on 5\(. In fact, the construction in (U.3) coincides with the con-
struction of the Markov shift in (II.6).

We start with some observations: By the Riesz convexity theorem (see
Schaefer, [19743, V.8.2), T induces a centraction on LZ(X, Z,m) as

does

T t= A T for (Al =1.
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By (IV.5), T, is mean ergodic, hence the Cesaro means (Tl)n converge
strongly to the orthogonal projection P, onto the fixed space F(T. )
of T, which is the eigenspace of T corresponding to A . Since Ta 1is
contractive, it follows from Hilbert space arguments that F(TA)==F(T;).

Therefore the Cesarc means (T;,) also converge to P, .

n
- - 3 A - L3 - -
Analogous considerations are valid for T, which gives rise to a unitary

_1)

2 o e ~ P ) -~
operator on L°(X, Z,4 ). Hence the Cesaro means (T,;‘_l)1 and (T, con-

n
verge strongly to the projection $a onto the eigenspace of T corre-
sponding to A . It is our first aim to establish a relation between

P, and ?A « From anJ = T and the strong convergence of the Cesaro

fa)
means we obtain Qﬁk J = P, . But it is more interesting that P, can
be calculated from 31 .

U.9 Lemma:
Define &' (resp. ﬁ') as the closed sublattice of Lz(i,fl,/i) generated

n -n
by all functions T £, e, (resp. g ;0 17'1) where néXlN and
i=0 i=0 ~

£y ¢ Lw(X,Z,/u). Then we have
A
B A B = 3(P(X,T,k)) .

Proof':
One inclusion is trivial. For the other we observe that Q(fg) = Q?-Qg

it Fe®' A 17X, 2,2) and Bef™a 1R, 2,7). Now take
Pe® n B A LK, £,2). en 3q(1F12) = {Jof|? and therefore

A

f1f17 a2 = [aif)?ai = [lfi® ez = [19ef? ag.

Since JQ is the orthogonal projection from Lz(i,idlﬁ) onto

L) A
J(L*(X, £, #)) we conclude that f = Jof. W
U.10 Proposition: $A. = J Pn Q for any A el .
Proof: K
Py -]y A
For f:= T fia’i‘t’i and n >k we have Epfe E' and TfeE s and
i=-k
therefore
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B, = 1im (F,) F= 1im @) F ¢ BAE = 505X, 2,4)) .

Using this relation between P, and ﬁl one shows easily that P, f = f
(resp. §A F = f) implies §l Jf = Jf (resp. Py Q§ = Qf), i.e. J is an
isomorphism from the A -eigenspace of T onto the A -eigenspace of iy
(with inverse induced by Q). We collect this information in the follow-
ing theorem and refer to Lecture VII for the spectral-theoretical
background.

U.11 Theorem:
Let T be a bi-Markov operator on 1’.1 (X, £, ) and let (L1(X, Z,A4); ‘f‘)
be the corresponding lattice dilation as in (U.3). Denote by G (resp.

@) the closed subspace in I?(X,Ef,,u) (resp. Lz(i,f',)ﬁ)) generated
by all eigenvectors of T (resp. T) with unimodular eigenvalues.

Then J(G) = G and the FDS (Gs TIG) is isomorphic to (6; fla) .

Another way of expressing the result is by saying that T and its di-
lation Gy possess the same unimodular eigenvalues with the same multi-
plicities. Since ergodicity and wesk mixing of T and T are determined
by the eigenvalues (see IX.1 and IX.5) we have the desired result.

U.12 Corollary:
The FDS (L4(X,2T,/m);T), T bi-Markov, is irreducible (resp. weakly
mixing, resp. strongly mixing) if and only if its lattice dilation

(Lf(i,fi”a );%) is irreducible (resp. weakly mixing, resp. strongly

mixing).

Proof:
After the previous considerations only the strong mixing-case needs
an additional argument: Take

A n
f o= T £ .01
i=—n i 1
- m o?
and g = r gioﬂ’i for fi’ gié L (X!z’/“)"
j=-m
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For k>n + m we observe that f‘mé‘ e B, ™fe &' and ¥ MF ¢ B, erefore
¢ M, Ty o fq(ﬁ'k'mf F8) de = [QP*ME. g g d
X x

= [TEIOTRE . T d
x
= <Tk-m-n1’;', z > where © i= QIf and g := Q°g .

Hence the weak convergence of ™ is equivalent to the weak convergence

ofﬁ’n. X

As an application, we show that for a Markov shift with finite state
space (see II.6), the different mixing properties coincide.

U.1%3 Corollary:
Let (3\{, f,/’“ 3 T ) be the Markov shift generated by the transition
. matrix T. The following conditions are equivalent:

(a) ',:'k is ergodic for all k€ N.
(b) T is weakly mixing.
{({e¢) ¢ 1is strongly mixing.

Proof:

The Markov shift, resp. (L'(X,Z,:2);T), is the lattice dilation of
the positive contraction T on some finite-dimensional 1] (o)
Therefore, the assertion follows from (U.12) and the Proposition in

(IX.De4).

References: Akcoglu E|975a], Akcoglu - Kopp EI977],
Akcoglu - Sucheston [!977], Kern - Nagel - Palm [19773,
Nagel - Palm [1982], Peller [1974].
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Appendix V: Akcoglu’s Individual Ergodic Theorem

It is not difficult to show that the linear operator T, induced by an
MDS (X,=Z s fA3 f) is mean ergodic on LZ(X,Z,/A_). In fact the original
v.Neumann mean ergodic theorem has been extended to much more general
situations (see App.Y). In contrast, the proof of the individual ergo-
dic theorem, even in its c¢lassical form, requires considerable effort
and fewWwer generalizations have been obtained. For instance, no com-
plete and satisfactory answer to the following gquestion is available:

Let T be a contraction on IP(X,Z ,/4), 1<4p<9 , Then T is always mean
ergodic (see IV.5). Characterize classes of operators T which are also
individually ergodic !

It was soon conjectured that the positivity of T might somehow be
essential for individual ergodicity. A.Jonescu-Tulcea [1964] succeeded

in showing that positive isocmetries on Lp(/«), 1{ pLo®, are individu-
ally ergodic. Thereafter, many partial results were obtained, but the
final (positive) answer was given only after Akcoglu [1975b] construct-
ed lattice dilations for positive constructions on Lp(/w).

In this appendix we present a complete proof of the individual ergodic
theorem for positive contractions on reflexive Lp-spaces. As in the
proof of (V.3), it is easy to cobtain a.e.-convergence of the Cesaro
means on a dense subset of Lp(/k). The difficulty consists in establish-
ing some "equicontinuity" of the Cesaro means for a.e.-convergence.

The "dominated estimate" of (App.V.3), however,does just that.

We shall be considering throughout the following situation:

Let (X,Z',/ut) be a probability space. Choose 1< p<£ & and consider
E = LP(X,Z,/A). Let TE€ X(E) be a positive operator satisfying
T}l £1. As before we denote by

1= .
Tt 1 iTl

n n
1=0

il )

its Cesarc means, and we call T individually ergodic if T, f converges

a.e. for every f €E.
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Vel Lemma:
There exists a dense subspace Eo in E such that Tnf converges 8.€.

for every f GEO.

Proof':
The contraction T is mean ergodic by (IV.5). Therefore

E :=F + (Id - ME

Q
is dense in E, where F denotes the fixed space of T. Since the asser-
tion is trivial on F, we chocse f := g - Tg for some g€ E. By (IV.3.0)
it suffices to show that 11-— Tng converges a.e. to O. For 0 £g &éE this

"

is implied by the following estimate:
co 22 et 0
1 P 1 P am. 2 ILllr & ! P
(zT2)P 4 =Z f(*Tng) d =Z ™gfP = ~a=) {D,
g n - n=1 n /“. n=1un ﬂ (‘:xé; nP Ilgﬂ

Now, the assertion holds for every g €E, since

lTngl & Tn,g',
T being positive. W

V.2 Definition:
Té x(E) satisfies a dominated estimate if there exists 0£LM such
that

Il & n - Jefl

for f€E and T sup {Txf= kaIN} .

Remark :
It suffices to require that for every nel

ol PR RV B

* -
for £y t= sup {ka. 1£k£xn} .

V.3 Lemma:
Every positive contraction T € X(E) satisfying a dominated estimate

is individually ergodic.

Proof:
We take f €& E and show that
ho(x) := lim _ sup | T £(x) - T £(x)| = 0 for almost all x &X.
nmeéeN
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First, we observe that h, = hf_fo and h,_ £ £ 2\ -1¢ | for every f_
contained in the dense subspace Eo of Lemma (App.V.1). For € 0 we
choose fo (=3 E0 such that

g J
= JIE -t} am < g
and, by the dominated estimate,

2 %

E flf - fol d/‘ < 8'
This implies that

* £
/"-[hf>5] = )‘Elf‘-f: e] & mlle-2l" > 5] < €&,

and h, = 0 almost everywhere. N

We are now going step by step %o extend the class of operators on E

satisfying a dominated estimate.

V.4 Lemma:
The shift operator
H —>
T (xn)nez (xn+1)n &7

on 1P(Z) satisfies a dominated estimate with M = E‘E'T .

Proof:
For 0&£f := (xk)kez € 1P we write

=—’ Su X+X L BB ] —' .X x -.o"" }
Im P {xm, ( T+ )’ 'n ( m mal xm+n-1)

for the m-th coordinate of f* s nélN fixed. Choose ¥ > 0 and consider

(£) := [f# >,.] where the sequence (ar(k))kez denotes the

r
charac teristic function of An P By the maximal ergodic lemma (V.5)
3
we have Z
1
2 an(k) £ % 8. (k)
ez ¥ ¥ia xr
or

P2 e ) & P72 ey ()

keZ

Integrating the left hand expression yields
4

JE Zo0 - S P o op- 2 [rup- 15 2 L

-236-




while from the right hand term we obtain
) 0
25 > [ b
a. (k) dp = a. k) dy =
f d ez k¥ ¥tz JE °r = e
o Z ?
- - -

1 - . . .
& — n(xk)kszﬂp,' ﬂ(yi 1 Mez lq, by HS1lder’s inequality,
-4

4l
%, f ¥ ar
(]

o)

1 -1
=P mﬁﬁkszhf’“ﬁJkszug :
“B_

Therefore a dominated estimate holds for positive f€1P and M = -7 °

For arbitrary f €1° the assertion follows since It = ]If] § ana
*
"f:' < ulfnl " M |

V.5 Lemma®
Every Banach lattice isomorphism T on LP(X,E ,/A.) satisfies a domi-

nated estimate with M = 51_’—-1- .

Proof:
With the notation introduced above and for 0 &f e IP(/K) and nelN fixed

we obtain
* *
(e), = TE(EY),

f(ka)ZPcy« = J(ka;)Pcyu = Jf‘,}lpcy-« ,

gsince T is a lattice homomorphism and an IP-isometry.

Theref £*P g =—1-—% kaf P au.
erelore Jn /‘ 2N+1 keoN ( fn /"

For €>0 and xeX define

and

ka(x) for |kl & N

0 otherwise ,

where N is such that gg—g—_ﬁl-ﬂ- < 1 +§& . Applying (App.V.4) to

(xk)kez 6 1P(Zz) we obtain

N+
Sf;}’ i & st 2p)” jﬁ (T2(x))P gm £(1 + &) (Bp)P pr G -
L

l=-N~n

Remarik:
It suffices to assume that T is a positive iscmetry on Lp(/d.)(use Ced)s
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The possibility of "dilating" a positive contraction on IP(/R) to a
Banach lattice isomorphism enlarges considerably the class of opera-
tors admitting a dominated estimate.

V.6 Lemma?
Every positive operator on 173 having a lattice dilation as in App. U
admits a dominated estimate with M = EgT .

Proof:
N
With the notation of (U.1) we have Tk = Q-@kOJ. Moreover, T admits a

dominated estimate with 5§T by Lemma (App.V.5). Therefore

L]

3
: )},

and

Pehr & Haasfpll & Qo l = B bash = Bpolel o

t* = sup {ka.}f : 1¢kenf & Q(sup {F,9f : 12ken})

The above simple observation and the ingenious construction of lattice
dilations were the essential achievements by which M.A.Akcoglu in 1975
was able to prove his individual ergodic theorem for positive P -con-
tractions. But on the basis of the dilation results presented in
Appendix U there remains to surmount one further difficulty. In fact,
not every positive IP-contraction satisfies the assumptions necessary
for our construction of a lattice dilation (see Remark 1, following
App.U.5). Fortunately, the finite-dimensional dilation theorem as

presented in (U.5) is sufficient.

V.7 Lemma?
Assume that every positive contraction on a finite-dimensional
IP-Space gsatisfies a dominated estimate with EET' Then the same holds

for every positive contraction T ef(LP(x,S ,/4.)).

Proof':
We may assume that IP(X,:Eﬂ/A) and therefore the measure algebra
is separable (If not, consider a separable, T-invariant closed sub-

lattice). Then there exist finite subalgebras 2, & ZMC-‘....C.Z
and positive and contractive projections
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Bny ! PRE, M) =2 1P, F, M)

n)
such that f(n) := P( )f "' f for every fe€ Pz, = s/ ) (use Schaefer

E974] p-211 and apply a martingale convergence theorem as in (Y.14)).

Define

RCIRERC
for £eIP(X,Z,, A). Then

ﬂP(n)TP(n)f -Tell < ﬂP(n)TP(n)f - P(n)Tf" + "P(n)Tf |
& ]lP( )Tﬂ . "P(n)f - + "P(n)Tf - 7l

implies that T( ) (n)f -!-!> Tf for every féLp(X,I,/a).
Similarily one shows that T (n) (n)f ——jb T f for every i&N,.
Therefore
* .
f(n) m = sup {%i Tl(n)f(n) : 1% .‘:m_g
converges to f"‘ = sup -f ZTlf' 1‘-k‘m£ for every méH.
i=o
On the other hand, T(n) satisfies a dominated estimate, i.e.

Iyl £ 557 Beml T

for every n€lN. - L
Tne convergence proved above shows that

Il &« 2 U)o m
Now the desired individuel ergodic theorem for a2 positive tP-contrac = .
tioi T will be obtained by putting together the various pieces: )
First, we have a.e. convergence on a dense subspace (App.V.1) which

can be extended to all of LP(/J-) as soon as we have a dominated

estimate (App.V.3). Such a dominated estimate can be achieved for
finite-dimensional Lp-spaces since positive contractions thereon pos- 1
sess a lattice dilation (U.5), and the dilated operator admits a domi- '
nated estimate (App.V.5) which is transferred to the original operator
(App.V.6). Finally, the dominated estimate for T on minfinite-

dimensional Lp(/&) is inherited by its finite-dimensionel approximants
T(n) (App.V.T7), and the proof of Akecoglu’s ergodic theorem is com-

plete.
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V.8 Theorem {Akcoglu, 1975):
Every positive contraction on a reflexive Lp-space is individually

ergodic.

After having proved individual ergodicity for positive contractive
operators on I,P(/U\-) one might ask for which larger classes of opera-
tors the same conclusion remains true. Since positivity was very es-
sential in the proof it is not surprising that Akcoglu’s ergodic
theorem extends to all "regular" contractions T ei(Lp(/d.)), i.eq,to
operators T having a modulus |T| € <(IF) such that ||ITI|| £ 1.

On the other hand it was soon realized that the positivity assumption
may not be dropped without any replacement. In fact, this followed
from earlier results of Burkholder [1962_'], and in the last part of
this appendix we shall present a concrete example of an Lz-contraction
which is not individually ergodic. The basic tool for the construetion
of such an example is the following classical theorem (Kolmogorov -
Menchov [1927_]) from the theory of orthogonal series (see Olevskii

E97SJ for details):

V.9 Temma:
In the Hilbert space L2( [0,1J,£,m.) there exists a complete ortho-
ngomal system (en)nsN and a funetion fo such that the series

Z(fo]en) en(x) diverges for almost every x€[0,1] .
n=1

Next we shall denote by Q the set of all positive sequences

(an)nem’ strietly increasing to 1, such that there exists a sirietly

inereasing subsequence (r,), e of N with

T r
n 2 et n 2 . f t i —
(an-1)n> 1 E1 and (1 a )n&IN €1l An example of an element in 3

-1
Q is furnished by a, = g{(20)1) for 0<t<1 with n := (2n-1)! .

With this notation we obtain the desired result.

V.10 Proposition:t
Take (an)neﬁ € Q@ with corresponding (rn)ns]N’ and choose an ortho-

in 12([0,1],B,Mm) such that for some f_e L(n)

mrmal system”( en)ne N

 the series Z(fofe.n) en(x) diverges a.e.. Then the operator T on
N n=1
- 12([0,1],8,m) definea vy
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20

T ==Z an(flen) e, » ret’(m),
n=1

is contractive, hence mean ergodic, but not individually ergodic.

Proof:
Clearly T is contractive and therefore mean ergodie by (IV.5), and we
oo

observe that the only fixed vector is 0. Since ka = Zai(f|en)e
n=1

have A oo
J‘Z k7% - ™*¥12)2 am =
o

k=1

Me

i [Io¥e - TEH1e | 2
i (af - a¥*)2|(g]e )] 2

1 bn1
- 21 k(al - af*")2(rle )] ?

G
In particular this permits us to conclude that Z k,ka T’k+1flz(x)
k=1
is finite for almost every x €& [0,1]. Now assume that T f, converges

a.¢.., By the above remark it must converge to 0 and by the elementazry

L
n
-

[i/‘s

Ly
[l

"n"
_\

Lemma (E.3) we obtain that even lim ka 0 a.e.. Writing
k-0 O
Yy = 2 é (fole )e and z, = g}_‘ (folen)en Wwe get

K=4

21, = T
Uyp, = 2l = 2 2y " lggle)l® + 20 (1 = 0 [t le)|®

2r ;
L. 2 k ky2
"fo" (ak_1 + (1 a, )%) .
As before we conclude that 2 ]y - 2y is finite a.e., and

therefore (yrk - Zk)kGN converges to O a.e., as does yrk by the above
considerations. From this follows that Z (fo] en)en(x) CONVErges Q..

in contradiction to our hypothesis. P

In conclusion, we remark that it seems to be unknown whether every

tP-contraction for 1{pgew , p # 2, is individually ergodic.

References: Akcoglu E197SJ [19791, Ionescu-Tulcea [196%]
Krengel 1983]
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Appendix W: TUniformly Ergodic Operators

For a bounded linear operator T with bounded powers on a Banach space
E the weak and strong operator convergence of its Cesaro means

1 n-1
Tn:= a 2: 7t
i=o
are equivalent, while the norm convergence is a much stronger property.

Operators having this convergence property will be discussed in detail
in this appendix.

In the following let E always denote a (complex) Banach space. We re-
call the basic concept from (IV.D.1).

We1l Definition?

An operator T& ¥ (E) is called uniformly ergodic if the sequence of
its Cesaro means (Tn)ne]H converges in the operator norm.

Remarks:
1. If T is uniformly ergodic, then T is mean ergodic, and there exists

a corresponding projection P and a decomposition
E-PE® P 1(0) ,

where PE = F(T) :=§f€E : Tr=f} and P~1(0) = {Ta = DVE
(see IV.3).

2. If T is uniformly ergodic, then % AT )|l=0 for n»e , and r(T)$ 1
for the spectral radius r(T) (use IV.3.0).

3, If »(T) ¢« 1 then T is uniformly ergodic with P = 0.

We recall that mean ergodicity of T is determined by a spectral proper-
ty (i.e. by the dimension of the fixed spaces of T and T!', see IVi4.e).
In a stronger sense the same will be true for uniformly ergodic
operators. As a preparation to the main characterization theorem the
following lemma describes first the spectrum of a uniformly ergodic

operator.,
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W.2 Lemma?t
let Te £ (E) be uniformly ergodic.
(i) The following are equivalent:
(2) 1 &« &(71),
(b) 16 P&(T),
(¢) 1 is a pole of order one of R(A ,T).
(ii) (I4 T)E is closed.

Proof':
Consider Eo = (Id - T)E = (I4d - P)E and S := T]E . If we assume
o

1¢ B(S), then 1 e G(Sn) and ]!Snll 2 1 for every nelN. On the other

hand S is uniformly ergodic with corresponding projection 0. Therefore
1 ¢ &(3).
(i) The implications (c) & (b) = (a) are evident. For (a) =p (e)

wWe observe that -1
R(2,T) = (A& -1)"'P + R(A,8)(Ia - P)

for A # 1 in some neighborhood of 1. Hence 1 is a pole of order
one of R(A ,T).
{ii) The operator (Id - 8) is invertible and therefore
Eo = (Id - S)Eo = (I4a - T)Eo c (Ida - TE . |

The following theorem-shows that under a weak boundedness condition
the uniform ergodicity of T is characterized by the behavior of

R(A,T) in a neighborhood of 1.

We3 Theorem:!

Assume that T &€ P (E) satisfies 1lim 1 I]T”l[ = 0.
nye

The following are equivalent:

(2) T is uniformly ergodic.

(b) There exists a zero-element P e FE“‘“{@: ne I»To},
ioeo PT=TP=P=P2l

(¢c) 1 ¢ ®(T) or 1 is a pole of first order of R(A ,T).

{({d) (Id - T)E is closed.

(e) The Abel averages (A - 1)R(A ,T) norm converge for A 1 .
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Remarks:
1. The boundedness condition in the above theorem is necessary to

deduce uniform ergodieity from (b),(e) or (d): take E=C and

™ 1= =2X.
2. If one of the conditions in (W.3) is satisfied, then the mean
ergodic projection P is the zero element in (b) and the residuum

Of R(lgT) at l=1-

Proof:
The implication (a) =% (b) is clear.
(p) =» (c): The zero element P is a projection onto the fixed space

of T. Consider E_:= (Id - P)E and & := T| .
o Eo

Since the resolvent of T has the representation
R(A,T) = (A - 1)7'p + R(XA,8)(Id -P) for14A ¢ ¢ (S)
it suffices to show that 1 ¢ &(S): But if 1 € & (S), then 1 € & (V)

end 1€ V|| for any V € co s S neINO}. This contradicts the

— -1l
assumption 0 = PIE &€ co -f s" . neINo}.
o

(e) =»(d): If 1¢ &(T) then (d) holds. Let 1 be a pole of first
order of R( A ,T) and consider E, i= (Ida - TE @and S := T}z - Then
[0

we have

R(A,T) = (A - )P + H(A)
for 1 # A in some neighborhood of 1, where P is a projection onto
the fixed space of T and A +V» H(A ) is holomorphic. From the Neumann
series it follows that R( A ,3) = R(A ,T)]E = B(A )IE s hence

o o

1 ¢ & (3). This yields

E, = (Ia - 8)E, ¢ (Id - TE .
(a) = (a): By the open mapping theorem there exists ¢ »0 satisfying
the following: For every g € (Id - T)E there exists f€E such that

ifll & ec-lgh and g = (Id - T)f. Thus
n-1 n-1

1 = el - rfaa-nells c-li—g;f—u--'llgll

B 4o i=o
and S = TIE » B = (1d - T)E, is uniformly ergodic with projection O.
o

As above we conclude by the spectral mapping theorem that (Id - 3) is
invertible on Eo. For f g E there exists geEo such that

(Ia - T)f = (Id - T)g. Therefore f = g+(f-g) and T(f-g) = f-g, i.e.
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E=P(T) & (Ia - T)E, and T is uniformly ergodic.
Finally, the implications (c) =» (e) =» (b) are easy to verify. »

W.4 Exemples:

1. T is uniformly ergodic as soon as some power ™ is uniformly
ergodic. This follows analogously to (IV.D.2), and implies that peri-

odic operators (i.e. T'*= Id) are uniformly ergodic.,

2. If X ¢ f(E) is compact and satisfies :—luKnu >0, then any pole of

R(A ,K) on the unit circle [* has order % 1 (Dunford-3chwartz [1958],
VIII.8.1). Therefore (W.3.c) implies that such operators are uniformly

ergodic.

2. If T is uniformly ergodic, then ™ is not necessarily uniformly

2 and T the multiplication operator

ergodic for any n & 2. Take E = 1
T((x,)) = (o %)
where §{ o ¢ nelN} = {yel“:gs arg ¥ ¢ 1r} .

Then 1 ¢ «(T), but 1 € & (T8) is not a pole of R(A,T") for every ng2.

Another example is given in (IV.D.2).

4. Convex combinations of commuting, uniformly ergodic operators are
uniformly ergodic. The proof follows from (IV.D.4) and the imbedding
procedure developed in Schaefer [19741, V.1 if we observe that the

original operator T is uniformly ergodic if and only if the extended
operator T on theqf—product_ﬁ_,‘aﬂgh_e_ Frechet filter, is mean ergodic.

As a consequence we remark that compact operators with bounded powers
yield an important class of uniformly ergodic operators. The msain
reason for this is the partieular structure of the spectrum of compact
operators., On the other hand it is clear by (W.3.c) that the conver-
gence of T, - if r(T) ¢ 1 - is determined by the behavior of R(A ,T)

on the unit eircle I’ only. Therefore one might expect that a useful
class of operators might consist of operators having spectrum like a
compact operator on and outside the unit circle and arbitrary spectrum-
in the interior.

In the following definition we make precise this idesa.
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W.5 Definition:

An operator T € L(E) is called guasi-compact if there exists a
compact operator X € £(E) and ke XN such that

N -xt < 1.

W.6 Exsmples:

1. T € L (B) is quasi-compact if some power of T is compact.
2. T is quasi-compact if some power of T has norm less than one.

3. BEvery power of a quasi-compact operator is quasi-compact
(see Neveu [1964], Lemma V.3.1).

The first step toward the main characterization theorem (W.10) is the

following lemma.

W.7 Lemma:
The eigenspaces corresponding to unimodular eigenvalues of a

quasi-compact operator T are finite-dimensional.

Proof:

We show that the fixed space F(S) is finite-dimensional where

S :=T™ and JsS-Kl<1 for some compact operator X &€ &£ (E):
Take xneF(S), fx, =1 and U :=3S8 - K. Then Kx = (Ia - U)xr1 and
(Ia - U) is invertible. Therefore X, = (Ia - U)-1Kxn. Since K is

compact this proves that (xn) has a convergent subsequence, hence

nell
dim F(T) § dim F(S) < & ., For arbitrary eigenvalues Ae ¢, JA] = 1,

we consider 1-1T which is quasi-compact iff T is quasi-compact. -
Cur next aim is to establish a relation between quasi-compactness

and uniform ergodicity. This will be done by showing that quasi-compact
operators satisfy (W.3.d).
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W.8 Lemma:
If 7 e £ (E) is quasi-compact, then (Id - T)E is closed.

Proof:
Take K € £(E), X compact, and k ¢ N such that

1™ -Klle1

The operator V := ™ - X has norm less than 1 and Id - V is invertible.

Now recall the following identities:
k-1
(¥) Id=(d-V'1x+(a-V'1"S ™1a-1,
i=o £,
(#%) Id-T=Ia-(Id-""'xr-(a-v'% rIa-1.
i=1
Teke £, € E such that (Id - T)f, converges to some g ¢ E.

Suppose first that (fn)nel‘l contains a bounded subsequence, or with-

out loss of generality suppose that the sequence (fn)ne]N itself is
bounded. From equation (%) we obtain
-1 1=t
£,=(Ia - V7KE + (Ia - V)71 2 ™ (1da - 7)f
n i=0 n

|
=2 a, + bn .

contains a convergent subsequence (a )ieIN since K is com-

(an)ne]N
pact, and (’Dn i)ieIN converges by assumption. Therefore (fni)iem

Dy

converges to fe E and (Id - T)f = g.

if (fn)neIN contains no bounded subsequence we consider

d := inf $ 1 £, -hl: heF(T)}, F(T) the fixed space of T,

and choose 8, € F(T) such that
d, s £, -8 Il ¢ 24 .

n
If the sequence (dn)hel.( were unbounded, we can assume that
(Ia - T)f,
lim 77— = 0, while still 1im (Id - T) f_ =g .
ufn - gnu ’ o0 ) n g
r, -8
n n

By identity (##%) and by writing h,i= B we obtain

n_"&n .
(Ia - T)h, = b, - (Ia - V)" 'KTh - (Id - V)~ _2'1 T (Id - T)h,
i=

g

~r
=3 1’]11— an - bn .
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(Ia - T)f

Since (Id - P)l:.l.n Hf - gnlf , the sequence (bn)

nely conrverges to

zero. Since KT is compact and (hn)ne]N

=ta. Consequently the subsequence (h, ) con-
i

is bounded, we find a subsequerxe

satisfying ,1im (2,.)
i

verges to a, too.
On the other hand we have

0 =_1im (I4d - T)h.n = g - Ta and
1-»- d
- - - —n_1
il hn all = llf []f (gn + [[fn gn“ a)ll 2z 7 =5

This yields a contradiction and shows that (fn - gn)neﬂ has to be
bounded. Since (Id - Tﬁ(fn - gn) = (Id - T)fn we prove the assertion

as above. B

As an immediate application of Lemma (W.8) and Condition (W.3%.d) we
obtain the following theorem, which remains true under the formally

weaker assumption that :-1- ™ converges to zero in the weak operator
topology (see Dunford-Schwartz [1958], VII.8.4).

W.9 Theorem:
A quasi-compact operator T ¢ ;,E(E) satisfying lim % i 'I'nll =0 is
n-yee =

uniformly ergodic and has finite-dimensional fixed space.

mually, if T« £(E) is quasi-compact and satisfies the above bounded
ness condition, then AT is uniformly ergodic for every Aelt .
Conversely, conditions on the spectral behavior of T in each point
Ael' - instead of just at A = 1 - characterize quasi-compactness.

We10 Theorem?

For T e £(E) satisfying :—1 “Tn[l “»0 the following assertions are equi-

valent:

(a) T is quasi-compact.

(b) AT is uniformly ergodic for every Ae and the corresponding
projections Py have finite-dimensional range.

(e) w(T)a only contains poles of R(1 ,T) of first order with

finite-dimensional eigenspaces. L
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(d) T=S + R, where S ¢ £L(E) is of finite rank and R ¢ P (E) has
spectral radius r(R) < 1.

Proof:

The implications (a) =P» (b) =¥ (¢) have been proved in (W.3) and
(W.9).

(e) = (d): The spectral projection Q corresponding to the spectral
set §(T)a P is of finite rank. Therefore S := TQ and R := T(I4d - Q)
satisfy (d).

(d) =» (a): There exists n e N such that HRn[|< 1. Therefore

™ = (8+R® = U+ RY
where U is of finite rank, hence compact. N

Remark:

The equivalence of (2) and (d) holds without any boundedness condition
on {T”: neN}. For the most far-reaching result see Brunel-Revuz

[1974].

To summarize the results obtained so far we state that uniform ergo-
dicity of an operator T e £ (E) with »(T)& 1 is determined by its
spectral behavior at (resp. in a neighborhood of) & = 1, while quasi-
compactness depends on a specific structure of all of the peripheral
spectrum B(T)n I*.

Therefore it is quite surprising and satisfactory that fthere exists

an important class of operators for which the peripheral spectrum is
largely determined by the behavior of the resolvent near the spectral
radius. In fact, this idea is the "Leitmotiv" of the so-called
"Perron-Frobenius theory" of positive operators on Banach lattices and
has been confirmed by many beautiful results. We refer to Schaefer
[1974], chap. V for a presentation of the general theory.

In the following second part of this appendix we will prove some uni-
form ergodic theorems for positive operators on abstract and concrete
Banach lattices. These are based on the above mentioned spectral
theory of positive operators and lead us closer to the situations oc-

curring in ergodic theory.

The first result in this direction is nothing else but a reformulation
of Schaefer [1974], V.5.5 and shows that for positive operators on
Banach lattices the converse of Theorem (W.$) holds.

-249-




W.11 Theorem (lLotz-Schaefer, 1968):
Let T be a ppsitive operator on a Banach lattice E. If T is uniformly
ergodic with finite-dimensional fixed space, then T is quasi-compact.

Another example showing which strong properties can be deduced from
the uniform ergodicity of positive operators is obtained if we con-
sider lattice isomorphisms. Obviously, this result applies to operators

Ty induced by an MDS (X, Z s b ).

W.12 Proposition:
et T be an isometric lattice isomorphism on a Banach Iattice E. T is

uniformly ergodic if and only if T is periodie, i.e. ™ = Id for
some n ¢ W.

Proof':

By assumption &(T)eP*. If T is uniformly ergodic, then 1 is isolated
in 8(T). The results on the cyclie strueture of the peripheral spec-

trum of positive operators (see Schaefer E1974],v.4.9) imply that

g(T) is finite end &(T) = $1Y for some n e N. From Schaefer-Wolff-

Arendt [1978] we conelude that fn = Id.

The converse impliecation has been discussed in (W.4.1). |

As asnother feature of positive operators we mention that the equiva-
lences of (W.3) hold under the weaker assumption that r(T) ¢ 1- (see
Karlin £1959]). We are now turning our attention to positive operators
on concrete function spaces and first reformulate a classical result
from the theory of Markov processes due to Doeblin [1937] (see Jacobs
[1960]). It will permit us to obtain rather surprising ergodic thearems

on L'- ana T°-spaces. Our presentation follows Lotz [1981].

We13 Propesition:

Tet T denote a Markov operator (i.e. a positive operator with ™ = 1)
on a Banach lattice C(X), X compact. If T satisfies (D) there exists
melN, O<mu € M(X) and 0« y< 1, such that

Tf - w(£)1 s y for all Osfsl,
then T is quasi-compact.
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Proof':
If we assume that C(X) is order complete we know from Schaefer E1974],

IV.1.5 that £ (C(X)) is a vector lattice. In particular, it follows
from the conerete representation of the lattice operations for opera-
tors (see Schaefer [1974],p.229), that condition (D) implies

(" - a@ W™ = sup $77°¢ - u(f)e:0srsn}
s 1.
Since (T™ - m @ 1)* is = positive operator we obtain
[[(Tm - M® 1!7+“$2r . In the vector lattice i(C(X)) we can decompose

™ =0+ V
where U := (T" - p@ﬂ)"’ and V := T° A @M . The operator V is domi-
nated by Tm, hence is contractive, and dominated by u@® 1, hence is
weakly compact, what can be proved as follows: from V & m@1N one ob-
tains that V can be extended to ¥V on IL! (X, B, ), hence V = 7« J where
J denotes the cenonical imbedding from C(X) into L'(a ). Therefore Vv

is weakly compact since the same is true for J (Schaefer [1974],p.129
Example 5).

In order to show that T is quasi-compact we consider

i

(U + V)®
= U™ + (IIrl"l V4 U2 VU 4 euue + V’U‘n'1) * Kn’
where K, is compact by the Dunford-Pettis property of C(X) (see
Schaefer [1974],11.9.9). On the other hand
| ™ - K, Il % x-n + n-x‘n-1 < 1

for n large enough, so that T is quasi-compact.

If C(X) is not order complete we consider the biadjoint ™ on c(x)"
which still satisfies (D) if T does. From the proof above we conclude
that T" is quasi-compact. The characterization (W.10.c) implies the

quasi-compactness of T. [ ]

It is not difficult to show that the condition (D) is in fact an ab-
stract version of Doeblin’s condition for a transition probability
(see Lotz [1981]), but we shall pursue the investigation of abstract

Markov operators.
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In the following we assume T to be an irreducible Markov operator on
C(X), i.. 0Ty, ™M = 1 and T leaves invariant no closed non-trivial
(lattice) ideal. In that case the dual fixed space F':= P(T!) is a
non-trivial sublattice of M(X). In fact, the existence of T -imvariant
probability measures is proved as Theorem 1 in ( App. S ), and for
every M € F' we have

pl =] 'ml s 1'ipl ana
<M, T'l/ul - l#l > = 0, hence Inl e .

Moreover, every 0<};.6F' is strictly positive, since otherwise

3},, = §feC(X) : <[], p> = o} would be 2 non-trivial T-inveriant
ideal. Analogously to the argument for F! this implies that F:= F(T)
is a sublattice of C(X). If dim P22 then there exist two positive
orthogonal functions f,g e F generating two non-trivial T-invariant
ideals. Therefore F must be one-dimensional end is spanned by the con-

stant functions (see Schaefer [1974], V.5.2).

FPinally, if T is mean ergodic it has been shown in (III.D.11) that

the corresponding projection P is of the form P = a® 1N for the
strictly positive T'-invariant probability measure p spanning the
fixed space F!.

The following main result confirms once again the claim that for posi-
tive operators quasi-compactness is implied by much weaker ergodic
properties. We present a graded list of equivalent properties showing
that an irreducible Markov operator on C(X) is already quasi-compact
if its adjoint is mean ergodic having not too large fixed space.

W.14 Theorem (Lotz, 1981):

et T be an irreducible Markov operator on C(X).

The following are equivalent:

(2) T is quasi-compact,

(b) T is uniformly ergodiec.

(e) T and T' are mean ergodic.

() dim P! = 1 = dim F" , where F" := F(TH).

(e) ™' is mean ergodic and the vector lattice F' has a weak order
unit.
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Proof':
The implicabions (a) = (b) =P (c) = (d) 9 (e) are obvious and show that
(e) is (formally) much weaker than (a).
However we are able to show that T satisfies a Doeblin condition (D)
if (e) holds. Consequently (e) implies (a):
Take a weak order unit a in F' and define functions

gn(x) = inf { (1 - £)(x) + M(£) osfsn}

for xeX, nelN. As a pointwise infimum of continuous functions every

g, is upper semi-continuous. On the other hand,

inf§<g,Tm<fx >+ m(f) : 08f,geC(X),f + g = 11}

g, (x)
(7' A p)n
| T‘an AMp Il
where Jx denotes the Dirac measure at x e X (again Schaefer [1974],

p.229(1)).
Finally, Os Tfs N for O0¢f 41 implies that (gn) is an increasing

sequence, i.e.

g (x) & inf§T°(M - T£)(x) + u(If) : Osfen}
= ane{ P - £)(x) +p(f) r0sT s}
5n+1(x)'

Now define H := {f € C(X) : 0%f%g V. It follows immediately that

an Hn+1 and Tan Hn+1. Therefore

H := UHn

is a T-invariant subset of C(X) and
A t={xeX: h(x) = O for all heHd}

is a2 closed subset of X. Since T is irreducible the closed ideal gene-
rated by H is either equal to {0} or equal to C(X), hence
A =X or A= w’ .
Assume that A = X and consider the closed sets
. __ [ -1
Bn,k ._{x. gn(x) 2k }

for n,kelN. The interior of B ; is empty since H = § 0} for every
’ )

nel. Since X is a Baire space there exists ye X\nLk)1 Bn It
= ?
For this point and every ne N we have ’
- _ ppln
0 ._ g,(y) = il Jy yh I and therefore
T, d apm=0.
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By assumption the sequence (Tril) converges strongly to a projection

nel
P on M(X). Since the lattice operations are norm-continuous in Mx)
we conclude that P J Ap = 0. But M is a weak order unit in F!,
hence P J = 0. E[hls is a contradiction to 04<1I,J > =< 1,7 J >

= < 1', P J.y>o
Therefore A must be empty. By the compactness of X we can find

h1,...,hjeH such that

J
= h;(x)20 for every xeX.
i=1

h]
-
jeHm and h:= 3 g «H .

h is a strictly positive continuous function on X, and there
exists 0 < d < 1 such that

Moreover, we can find me X such that h1,...h

Jighgg s T(N-1) + (p@U) £ for every 0%7% 1 .
Teking ¥y e (1-d, 1) we obtain the Doeblin condition

T'F - (@ U)F < P . "

Even if condition (e) above is formally much weaker than quasi-compact-
ness it might still be difficult to check it in conecrete cases. In ]
perticular it is not simple to control the adjoint T' on the rather

large dual Banach space M(X). Therefore we continue our search for
additional hypotheses faciliating this task.

First we observe that the dual fixed space F'! has a weak order unit irf

it is separable. Moreover we recall that a Banach space E is called a
Grothendieck space if every weak™¥ convergent sequence in E! is weakly

convergent. A space C(X) is a Grothendieck space if two open disjoint
Fy -sets in X have disjoint closures, in particular, if X is ®-Stonian =
(see Schaefer [1974],11.10 or Seever [1968]).

W.15 ILemma:
Tet T be & Markov operator on a Grothendieck space C(X). If the dual
fixed space F! is separable then it is finite-dimensional, and T! is

mean ergodic.

Proof:
The dual fixed space F' is weak¥-closed, hence it is the dual of
C(X)/c_ where G = {f€C(X) ¢ 4f,¥» » = 0 for every ve& F'} .
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The separability of 7! implies that C(X)/G is separable, hence it

follows as in Schaefer [ 1974], II.10.4, Cor. 2, that C(X)/G is reflex-
ive.

The dual of a reflexive Banach space is reflexive, too. On the other
hend, F! is a closed sublattice of the AL-space M(X), therefore is

an Al-space and hence has the Dunford-Pettis property (Schaefer [1974L
I1.9.9). This and the reflexivity imply that F' is finite-dimensional.

- L] - ,
Now we show that T' is mean ergodic, i.e. T y norm-converges for
£ » n 24

every Y€ M(X). By the mean ergodic theorem (IV.4) it suffices to
show that (Triy)ne]N has a weakly converging or, since C(X) is a

Grothendieck space, weak®-converging subsequence.
As we have seen, the subspace G of C(X) has finite co-dimension, hence
there exists a finite-dimensional subspace H sueh that C(X) = G + H.
Obviously we can find a subsequence (Tl V) such that
n, kelN
(<h, T-_" v >)k¢IN converges for every h eH. On the other hand, every
B

. . ! . -
accumulation point of (< g, Tnk y >)keIN for geG is equal to <g,v¥v >
for some weak accumulation point ¥ of (Tnf v )keN « But such accumu-

k

lation points ¥ are contained in F' and hence <g, > =0 and
(<g,T v > )ksle converges Lo zero. Since C(X) = G + H we have

Ty
proved the weak®-convergence of (T! y )ke]N and therefore the norm

e

!
eonvergence of (Tnv)nelﬂ' -

From (W.14) and the above lemma it follows immediately that an irre-
ducible Markov operator T on a Grothendieck space C(X) is quasi-compect
as soon as its dual fixed space F! is separable. A rather concrete
situation is described in the following corollary for wWhich we recall

that 1* (X, & ,)&) is isomorphie to some C(Y), Y hyperstonian (sece
VI.D.10).

W.16 Corollary:
Every irreducible contraction T on L™ (X, Z, m), M(X) =1, is

quasi-compact.
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Proof:
The assertion follows if r(T)4 1. For r(T) = 1, the dual fixed space
! contains a positive linear form f! (Xrein-Rutman theorem, see
Schaefer [1966], App.2.6, Cor.) which is strictly positive since T is
irreducible (compare the reasoning preceeding (W.14)). Since T is
contractive we have T % 1 and

<1 - T™,'» =0,
which implies that T is in fact a Markov operator.

Next we observe that the dual fixed space F' of a Markov operator is
a sublattice in the dual of L* (X, % s ). If dim D!» 1, there exist
at least two positive, orthogonal, invariant linear forms ! ,g' € F! ’
both being strictly positive. Decompose £! into its order continuous
end singular part, i.e. £' = Y‘n + Y‘S where Y, = 8'M for some

g6 L1()a.) and for every & » 0 there exists A €& such that pli)c e
and the support of Vg is contained in 4.

Therefore the order continuous component of f! is strictly positive
on L* (m) and corresponds to a weak order unit in 1! (m ). The ortho-
gonality of £! ana g' implies that g! has trivial order continuous
component, which contradicts the strict positivity.

Therefore we obtain thet F' is one-dimensional. Since L* (m) is a
Grothendieck space we can apply (W.15) and the assertion follows
from (Wt14)o »

Remark:

The operator T‘, induced by an ergodic MDS (X, Z s M} @) is in general
not irreducible on L™ (M) - while it is on L1(;&). In fact, Ty leaves
invariant no non-trivial projection band in L* ()u.) but there are
many closed ideals invariant under T¢ {compare IV.D.10).

On the other hand, kernel operators

m(x) = §r(x,7)E(7)apm(y)

are irreducible on L* (m) as soon as k(x,y) » &€ » 0 for x,y&X.

In the next corollary we transfer the previous results to operators

on L1 -spaces.
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W.17 Corollary:
et T denote an irreducible positive contraction on L1(X,2 ,)u),

(X, & ,/4.) a probability space. The following are equivalent:

(a) T is quasi-compact.
(b) T is uniformly ergodic.
(e) T! is uniformly ergodic.
(d) T is mean ergodic.

Proof:

It suffices to show that (d) implies (a), and we may assume that

r(T) = 2(T!) = 1. Then the T -fixed space in the bi-dual of L1(X,2,/.l)
is non-trivial by the Krein-Rutman theorem. If T' is mean ergodic on
L* (/J. ), then (T:lf")neﬂ is weak® convergent for every ¥ in the dual

of L® (p). But L® ( m) is a Grothendieck space and therefore
(Trl;fu)nem is weakly convergent, and T" is mean ergodic with corre-

sponding projection P¥ # 0. In particular, the original operator T is
mean ergodic on L1(/A ). Since T was supposed to be irreducible, the
corresponding projection P is of the form P = g' ® f for strictly
positive functions felL*(4), g'e L { ). Since £ is a strictly posi-
tive linear form on L® (A ) and since T'1l & 1| we conclude g'= 1 and
P! = f@® 1 for P! the projection corresponding to !, The proposi-
tion in (III.D.11) implies that T! is irreducible on L® (X, €, M) and
hence quasi-compact by (W.16). ]

In conclusion we remark that most of the previous results can be ex-
ténded from irreducible operators to operators having finite-dimensio-
nal fixed spaces. We refer to Lotz [1981] and quote the following

final theorem.

W.18 Theorem (Lotz, 1981):
ILet T be a Markov operator on L%* (X,Z,)A). If the T'-fixed space F!
is contained in L"(X,Z,/u), then T is quasi-compact end uniformly er-

gOdic .

References: Ando |:1968], Axmann [1980_], Brunel-Revuz E1974],
Fortet [1978], Horowitz [1972], Lin [1974], [1975], [1978],
Lotz [1981], Revuz [19751, Yoshida-Kakutani [1941].
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Appendix X: Asymptotic Behavier of Markov Operators

One of the central themes of these lectures has been the asymptotic
behavior of operators Ty induced by an MD3 (X,2 /A3 ). Actually,

we could extend many of the results to more general classes of opera-
tors such as contractions on Hilbert spaces (e.g.IlV.5 or IX.D5) or
positive operators on Banach lattices (e.g. IX.D.6 ). & very important
class of operators generalizing the T., s are the positive operators

T on L] (X,Z,/A) satisfying T1 = 1 and ™4 = 4. 1In applications
such operators are induces by transition probabilities p(.,.) having
invariant probability measure m . They have been called bi-Markov ope-
rators in (App.U). They are the functional-analytic model of a Markov
process with finite invariant measure, and admit a very intuitive inter-

pretation:
If there is a canonical choice of a2 representative in each equivalence

class Tn‘ll

then the wvalue

™4 L 3 (or T'P4 L (®))

may be viewed as the "probability of the corresponding Markov process
being in AeZ. at time n € IN when starting at x ¢X at time 0" (Yoshida-
Kakutani [1941] or Lamperti [977]). This interpretation yields one of
the reasons, why we are interested in the limit of ™ for n-» e .

A’

Concrete examples are provided by doubly stochastic matrices on E"? R
by the induced operators Tr on L1 (X, Z ,/A) and by operators defined
by measurable "kernels":

X.1 Exa]'ﬂgl :
Let (X, 2 ,/A) be a probability space and consider a positive measurable

function k(.,.) on XxX such that

Sk(x,y)d/\(y)
Sk(x,y)d/a (x)

1 for almost all x €X

and
for almost 211 y €X.

Il
-
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Then TF(x): = ~YK(x,y)f(y)§/A(y), £ 6L1(X,:f;}t),

defines a bi-Markov operator on L1(X,E', ).
The operators of the sbove form are called kernel operators and we
refer to Schaefer [39743, IV.9 for a detailed investigation.

In this appendix we shall present a systematic account on the asympto-
tic behavior of bi-Markov operators. More precisely, we investigate

the following.

X.2 Problem and conjecture:
Let (X, y”') be a probability space and T a bi-Markov operator on
L (X,:Z%/A) Moreover, we assume in most occasions that T is irreducible,

i.e. the fixed space
F(): = {retl s - s}

is one-dimensional (compare III.D.11). We ask the following question:
Under which conditions and with respect to which of the standard
operator topologies does ™ converge as n ~»& 7 Motivated by many
results in the previous lectures (e.g. Lecture IX) we conjecture that
this convergence is determined by that part of the spectrum of T which
is situated on the unit cirele [ .

Before dealing with the convergence of the powers ™ it might be
useful to recall the results from Lﬁ ure IV and App.W on the conver-

gence of the Cesaro means T : T1
n n 120

X.3 Theorem (convergence of mesns):

Tet T be an irreducible bi-Markov operator on L1(X,2f5}t). Then

(i) T is slways mean ergodic and T, converges strongly (= weakly) to
the procetion P = 14 ® 1 .

(ii) T is uniformly ergodic, i.e. Tn converges uniformly if and only
if 1 is a pole of R(A,T).

The assertion (i) has been proved in (IV.6) and is the only conver-
gence property holding in general; (ii) is a rather simple equivalence
treated in (App.W.3). More important is the following consequence for
the structure of the spectrum of T (see W.11 or Schaefer [1974],
Ve542)
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X.4 Corollary:
If T is an irreducible bi-Markov operator on L‘I (X,Z‘,/a\) which is

uniformly ergodic, then S{T)n 7 is the group r; of all k-th roots
of unity for some k& T and every Ae F;: is an eigenvalue of T,

For our considerations the above corocllary shows that - as soon as
k »1 - we may have uniform convergence of the Cesarc means Tn while

the powers ™ do not converge even in the weak operator topology. In
feet, if /\ is a primitive k-th root of unity and
Tf = Af
for 0 £ fe i1 (/.\), then T defines a cycliec permutation on
-[f, Af,eee, )\k‘1f_i and therefore Tf does not converge. On the

other hand one might still hope that the powers of T behave asympto-
tically as such a cyclic permutation on the eigenfunctions of T. The
subsequent concept will help us to pursue this ides.

X.5 Definition:
An operator S € P(E), E Banach space, is called partially periodic if

n
there exists noe]N such that 8(Ia - s % = 0.

n n n
The above statement implies that S O(Id -3 o) = 0, hence S o is a

pro jection and therefore an equivalent property is the following:

E is the direct sum of two closed S-invariant subspaces Eo and EP

n
such that SlE = 0 and (SIE ) ° = 'IdE « In particular, a periocodic
o P

P
operator is partially periodic with Eo = {O& .
Using this notion and Theorem {(App.X.3.ii) we are able to describe the

asymptotic behavior of an irreducible bi-Markov operator with respect
to the uniform operator topology.

X.6 Theorem (uniform convergence):

Iet T be an irreducible bi-Markov operator on L1(X,Z',/l«). The follow-
ing are equivalent:

(a) 1 is a pole of R(A,T).

(b) There exists a partially periodic operator S € -‘f (L1(/l4)) such

that T° - s% -!-'-'4-; 0 for n—>&0 .
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Remark:
We repeat again that the assumption (a) referring to the spectral
radius of T Iimplies that all other spectral values of T on [ are

simple poles of R(A,T) (Schaefer E974], Ve5ed).

Proof:
(a) =>(b): T is uniformly ergodic and even quasi-compact by (W.3) and
(W.11). Moreover, we remarked in (App.X.4) that s(mnl? = r; for
o
n
some noe]N. Therefore t= T © is uniformly ergodic with

Q;(R){Ir' = {'I} . The corresponding projection Q 1is a positive pro-
jection onto the fixed space of R which coinecides with the linear
span of the eigenspaces of T corresponding to the eigenvalues in

r’ «» Define the operator
N
S = TQ = QT

which is positive and partially periodic, since Sn°= fno Q = Q. On the
other hand T¢ - s = T(Ia - @) (T(Id - Q))™ norm converges to

zero 88 n—»& since the spectral radius r(T(Id - Q)) is less than 1.
This proves (b).

{(b) = (a): If S is partially periodic then Q : = S
n
for some noe]N. By assumption the powers of T ° norm converge to Q,

n
o]

n
° isa projection

hence T
uniformly ergodic, tooc. B

is uniformly ergodic. 4As in (IV.D.2) one deduces that T is

The snalogous result for wesk convergence is slightly more complicated
since we obtain - as in (IX.5) - convergence for a "dense" subseqguence
only. But still, 1ts proof is based on the same arguments:

Consider R : = T ° for some appropriate n €., apply the spectral
mapping theorem and then use the weak mixing theorem (IX.D.6).

We leave the details to the reader.

X.7 Theorem (wesk convergence):
Ilet T be an irreducible bi-Markpv operator on L1(X,:f”/k).
The following assertions are equivalent:
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(a) 1 is isclated in PG"(T)/}V.
{b) There exists a partially periodic positive operator S 62(1.19!&))
. n.
and a subsequence -{nich with density 1 such that Tnl- S 1-—9 0
in the wesak operator topology as t->o0 .

Remark:
By the theorem in (III.D.11), (a) is equivalent to the fact that the

peripheral point spectrum PG{(T)Al" is equal to some finite subgroup
r;lo of J7.

As can be seen from its proof the uniform convergence theorem {(App.X.6)
is essentially a consequence of the established and well known theory
of uniformly ergodic and quasi-compsct operators (see App.W). On the
other hand the weak convergence theorem (App.X.7) is & corollary of
the weak mixing theorem (see IX.5 and IX.D.6). The intermediate case
of strong convergence is much less known, and for its investigation we
have to develop new and very interesting tools. But first we state the
theorem which expresses exactly what could be guessed by "interpolating!
(App.X.6) and (App.X.7) with the difference that we can prove only the

implication (a) = (b).

X.8 Theorem (strong convergence):

Let T be an irreducible bi-Markov operator on ! (X,Syu).

Ten the condition (&) implies (b):

(a) 1 is isolated in G(T)n /7.

(p) There exists a partially periodic positive operator S £X(L1 SA))

such that T% - s®~30 in the strong operator topology as
n —0 ,

Remsark:
By Schaefer [1974], V.4.6 the condition (a) is equivalent to the fact

that the peripheral spectrum G{(T)nl? is equal to a finite union of
finite subgroups of r’.

As announced the proof of this theorem is long and complicated.
Essentially it is based on s generalization of the "0-2 law" of
Ornstein-Sucheston [1970] to non-irreducible Markov operators. We
first present this theorem and only thereafter return to the proof of
(App.X.8). The reader may already be advised that a good knowledge of
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the order-theoretical structure of the vector space of all operators
on L1(X,Z ,/U«) will be necessary. 411 the needed information can be
found in Schaefer EI9'74] IV.1: Flrst we recall that for the Banach
lattice L] (X,z,/.g) the space ;ﬁT (/u. ) is a vector lattice with lat-
tice operation T —»|T| and with the infimum SAR of two positive
operators S, R defined as in Schaefer [19741,p.229. In particular one
has ]Sfl £1sl 1| and |BS| & [R] |S] for R, S e 2 (L] (M) and
et (/u), and two operators are called orthogonal if [R| A |S] =

Now let T be a bi-Markov operator on L1(X,£,/A). Then the fixed
space F(T) is a vector sublattice of L1(/-\):

Tf = f implies T|fl If].
since {TIf], 1> = l£l, T'U> = Zlfl, 1) we have TIf] = |f].
For ¥k, néXN we obtalin
)T (1a - )|

as a positive operstor on L1( ). Choose 0 ¢ veF(T) and consider the

sequence (|T(Id - Tk)' v)

nel” It is decreasing since

0& T (1a-T)) v ¢ |P(Ia-T)| v = |T™(1a-TF)|v £ 2v,
and its infimm w: = inf |PIa-T%)|v  satisfies
néN
é Tw'

As sbove we conclude that subinvarisnt elements are invariant and
hence wWeF(T).

X.9 Lemmsa:
Let k€N be fixed and choose 0 £ v,w eF(T).

(i) The following are equivalent:

(a) ITn(Id-Tk)I vy w.
(b) (PAT*E)y 4 v-1 v,
(ii) The following are equivalent:
(¢) I1a-T)] v = 2v
(a) ('I'rlAT'rl+k)v = 0.
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Proof':
The assertions follow from the identity valid in vector lattices
(Schaefer [1974], 1I.1.4, Cor.1):

(In/\f[n+k)v = 4 ((T? + Tn"'k)v - ]Tn - Tn"'k]v)
-1 ™aa - ™|v. g

< N

,The next lemma contains a simple technical statement, which will be

useful in the proof of our "zero-two! law.

X.10 Iemma:

Sv——

For k6N fixed, define §_ : = ™ A K gng suppose that lim S_v 30
n n-ye o

for every 0L v& F(T). Then 1lim S mv)O for every meN and
n-de o

0<¢ v &F(T). Moreover, the fixed space F(T') is contained in F(Tk)
for every re&N.

Proof:
We know that 0<1lim S v=: v,&€F(T) and 0<€1im S_v, = : v, &F(T).
n-ves 1 1 haeo 1 1 2
Therefore
= 2 2 2

converges to zero, and the assertion is proved for m = 2. Repeating

the same argument proves the first assertion for m» 2.
Now suppose that #{(T") is not contained in F(Tk) for some relN.
If we dencte by T1 the restriction of T to the closed sublattice

. s . k - r
P(T") this assumption implies T, #’IdF(TI’) = 7,7 .

As in Rohlin’s lemma (X.2.i) for some meX, k # 0 mod m, one finds
pairwise orthogonal positive functions Cyseerse € F{T") such that

Te; = €4,

end observe that DTe = esle - 2e,{. Therefore

Tn+k|e > (™ - ‘I’n+k)(e - 2ei)l = 2lei+n+1~: - ei4nl

m
for every imodm and k # 0 mod m. Define e t = o=.

[
i1=1 *

= 2(e,+n+k + ei+n) 2 2e. , for every i mod m.
This implies |'I'n - Tn+kle & 2 +s8up {ei : 1£i_‘:m£ = 2e.
By (App.X.9) we conclude that Sne = 06 thereby contradicting the

hypothesis of our lemma.
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After these preparations we state the announced "0-2 law" due to
Ornstein-Sucheston [1970] for irreducible operators and extended by
Grelner-Nagel EI982] to positive operators on Banach lattices with

order continuous norm.

X.11 Theorem ("0-2 law"):
Ist T be & bl-Markov operator on L1(X,2,/A)- For every keIl there
exists 1 ,e&F(T), A€Z , such that

(0) I™(1a - ™) U4, V0 as n-»o,
and

(2) I?®(1a - )] 1 = 2.1

A for every néN.

A

Remark:
Obviously, the charascteristic funetion 1| A of the above theorem de-

pends on keIl and generates a T-invariant projection band isomorphic
to L1(A,Z ’/":'a.)' Lemma (App.X.9) shows that the operators T° and

Tn“‘I restricted to this band are orthogonal for every nelN.

Proof':
Throughout the proof we keep keN fixed and set

Sn: = T A Tk,
Now choose 4 €Z maximal such that 1] p €F(T) and S 1 , = O for every
n&lN. For the following we may suppose that 4 = ¢, i.e.

lim S v>0 end lim S v >0

N30 n

for every 0 v€F(T) and méXN (apply App.X.9 and App.X.10).
Then we consider

w t = inf |T14 - )1 € F(T)
nemw
and show that
w & 2.
m

1

- for every melN.
Suppose to the contrary that there exists melN such that

Wy = (w-rn?—z—-ﬂ )+>O.
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Since F(T) is a sublattice of L1Q/4), W, is contsined in F(T) and
there exists noaiﬂ such that
m
(%) s, w,>»0.
o
Finally we define an operator

U = Tr - Sﬁo("""”‘——Id;Tk)m ?

where r! = m(q3+ k). This operator is positive since

n_+k n_+k
1+ T, & Lpto™™ |

S_
n, 2 2

and therefore
m(n +k)

> e 88 *
—

g (Id+Tk)m Sm-1 Tno+k(Id+kan-1‘
n, 2 < n, 2
Beginning with

™7 = (U + ST (—--Id;Tk)m)TI‘
Q

L S e

2 4+ (st 4 g Tr)(Id+Tk)m
n, n, 2
one deduces that
p* - gl BTy
for jéN and a certain positive operator R depending on j and satis-
fying
04R1 2TV +RY = DT = 1.
Consequently,

pIT(1q - )

m
ud(za - ™) + .2 ; (?)Tk‘e(xd - ™)
=0
. m+1
- viaa - ™) e re2™ 2 [ - (] T
£=0 -
By taking the absolute values we obtain
|297(1a - ™)|1 & 2890+ rE £ 2090 4 2o,

m+1 Ja’ J;?
where the estimate for 27 EEE:I(?) - (421)’ follows from Stirling’s
=0

formulsa.
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The definition of w and the sbove computation shows that
w & =21 + 2u0dq
m
for every jeNN.

Let Q denote the band projection onto the T-invariant band in
L1 (X,Z,/u\) generated by Wy The component
v: = Qi

of 11 1s contained in F(T) and

: 2 + 2
W, = QW, = (QWw - &= v)" = Qw - == v .
1 1 W lE_r

The band projection Q commutes first with T , then with Sn which

is dominated by s , and finglly with U . Therefore

w1+——v=Qw_£_--—2—v+2UJv

or w, & 20y
for every j€N. But (UJv)jeN is 8 'decreasing sequence since

vgv-S)v=Ur. Let v, be its limit. Then v, is fixed under U
o]

and hence I‘rv1 -3 vy Again, ™ = 1 implies Trv1 = v, and there-
fore I'kv1 = v, by the second part of Lemma {(App.X.10). The invariance

of vy Py U, T and ’I‘k yields Srlg v, = 0. Since v, & 2v1 and
o

0 % 3" w
n_ 1

< ZSrr'l1 v, = 0 we end up with a contradiction to the
o} o}

1

inequality (%). )

This "0-2 law" yields a decomposition of the bi-Markov operator T
into two parts with extremally different behavior. In particular, if
T is irreducible we have the impressive alternative that T satis-

fies either [*(1d - )1 Y0 or |7Id - )1 =2-1.
These two properties may be interpreted using the prcbsbilistic mean-

ing of Tn1| A(x) described at the beginning of this appendix.

In particular, for k = 1 we have the following alternstives (0) or

(2):
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X.12 Probabilistic interpretation:

(0) )™(1a - )1 ¥ 0 means by (App.X.9.i) that for almost every
x€X and for g€ » 0 there exists n eIN such that
PAT M (x) 31 - &
for n 2 -n . By the formula determining 'I'n/\.'I'n'*1 this is equi-
valent to

T (o)« g, (0 21 -8

for every B€ Z and n 2 n,. Since

9 g(x) + ) Baa(®)

we deduce that
I g (x) - Mg (x)| £ &

for every Be€Z and nen,.

n+1 -n+1
™4 g(x) + ™ Ty wpl®) =1

In probasbilistic terms this means that for the corresponding Markov
process when starting in x and for every B 6 2 the probabilities of
being in B at time n or at time n+1 are almost equal (for n

sufficiently large).

(2) (T*AT*1)4 = 0 rfor every nelN implies by the formula defining
the infimum of two positive operators, that for (almost) every
xeX, nelN, we can construct B &2, such that

™, (x) + ™,
or I'n‘llB (x) = 0 and Tn'”ﬂB (x) = 1.

(x) =0

By the ssme interpretation as above this means that B distinguishes
between the time n &and n+1 , i.e. T is "time determining"
(compare Ornstein-Sucheston 5970]).

After this excursion into probability theory we will use the "0-2 law"
for the proof of Theorem (App.X.8). But before doing so we sketch how
the two things, i.e. the "0-2 law" and the strong convergence of the
powers of a bi-Markov operator, are related:

Let R€X(L'(M)) be a bi-Markov operator satisfying F(R) = F(RY)
for every KkEN.

“ Obviously, R &s any power Rk is mesn ergodic and we have

L‘(/u) - F(R) @ (1a-R )11 (M) = F(R) @ (1a- 7<) (M)
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Therefore it suffices to show the strong convergence of 8" on & total

subset of (Icl—-Rk)L‘I (/A-) for some kegN.
To that purpose take O£ f&« 1 and observe that

J&*(1a-R5)] 1 2 |R*(1a-8¥) )¢ 2R (1a-RX)£].
Consequently, r? converges strongly on L‘| (/L\.) as soon &s

lim an(Id-Rk)]ﬂ = 0 for some k€XN. This shows that & proof of the
n=»ao

strong convergence theorem is achieved as soon as for some k€N we can

exclude the property (2) in (App.X.11).

This property (2) is a statement on the orthogonality of certain
operators by (App.X.9.ii), and it is not at all clear how a spectral
condition such as (App.X.8.s8) could have some consequences in this

direction. The following lemms bridges this gap.

X.13 Lemma:

et R denote a bi-Markov operator on E = ! (X, = ,/4.).
Suppose that for every ne€N there exists a T-invarisnt projection
band E, # -{Ol in E such that the operators

-{Id'En,R]En,....,Rn| Enl

are pairwise orthogonal. Then the spectrum G{R) contains the

unit eircle r’.

Proof:
Assume that o(er' is not contained in G(R) and consider

5t = 4 (1 + &R).
By the spectral mapping theorem, r(S) < 1 and therefore
” SncJ I €1 for some n  €N.
On the other hand, we apply the hypothesis of the lemma and assume

n
without loss of generality that En = E, l.e. {Id,R,...,R Oj
o

are pairwise orthogonal.
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Therefore we obtain

DOI

Ii arad
n
= (et - Ay

n
Again it follows from the spectral mapping theorem that 1 € & lS ol),

Is

hence “ IS l l . But for operators on L (/A) we know that

" S On " ls Olu (Schaefer [19'74], IV.1.5) contradicting the
assumption o(e.g(R) N

X.14 Proof of the strong convergence theorem (App.X.8):

The peripheral spectrum of T is cyelic (by Schaefer EI974], Ve4.6)
and finite (by hypothesis). Therefore

S(RIal" = {1}
n
for R: = T ° and some noeN. As in the proof of the previous con-
vergence theorems (App.X.6) and (App.X.7) it suffices to show that

R? converges strongly ss n -»e&o .
First of all we observe that F(R) = F(RX) for every keN.

Next we apply the 0-2 law and find 1 A € F(R) such that
k

R ARn+k IA = 0

k
n k
and IR™(1a-R)| 1 Xoa, Y o.

Denote by E the R-invariant projection band generated by A1 A
k

and define ()
n .
B --E1{1E2n...ﬂEn.

Then 1t is clear that

r . 8
R IE(n) is orthogonal to R IE(n)

for 0£&£r{sé&n.
On the other Hand, Lemma (App.X.13) implies the existence of mOG.]N
such that for every non-trivial R-invarisnt projection band B in

L1(/4) we can find O£r<4{s&m, such that
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r 8
Flp ARp > O
Combining both cbservations we obtsain

E(mo) ) {01

+..u+E =Et
m

. E_L
2 o

or E’1 +

-
But the powers of R restricted to Ek converge by (App.X.11.0) and

the considerations preqeeding Lemma (App.X.13). Therefore, the proof
of Theorem (App.X.8) is finished. ]

X.15 Concluding Examples:

1.

For an irreducible bi-Markov operator T on L1 (X,I,/u) the peri-
pheral point spectrum is a subgroup of ' and <(T) is invariant
under rotation by these eigenvalues:

Therefore the following spectra are prototypes of S(T) as appearing
in the uniform, strong and weak convergence theorem:

® Pole * e,iuéenmlu:c Y G‘[T)\’PG‘U’)
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2
The spectrum of an opersator T‘f induced by an ergodic MDS

(E),ﬂ,%,’m;f )» m the Lebesgue measure, always contains the unit
circle {(see VI.D.3), and the powers of Tf never converge in the
strong operator topology (see IX.D.3). Therefore "weak convergence!

n
is the best we can expect for Tf . In addition, Property (0) of the
n
0-2 law holds for “IIA = 0 only, and we show that {Tr 4 nemog are
pairwise orthogonal: Iet n,m&lﬁf0 be fixed and assume m< n.

By Rohlin’s lemma (X.2) and for every keXN we obtain measurable sets
4 € [0,1] such that

(1) the sets A4, f(Ak),..., rn(Ak) are pairwise disjoint,
and

(i1) wm( U )&(Ak))>1 -1

From (i) it follows immediately that also the sets
7;J’.(AK), f-iH(Ak)""’ f;i+n(‘°‘k)

are pairwise disjoint for every 1 G{O,1,...,n} .

We therefore conclude

..(T AT, & T2y a
! r(A) 4 yl(Ak)ATf £ (4,)

= 1 . A 1 .
i-m i-n
P A) oA
= 0
for 1 = 0,.+e,n and every kelN.

Finally, the inequalities in (ii) yield that the lattice ideal genera-

ted by the functions 1| i , K€ s8snd i = 0,sse,n, is dense in
Pa)

' (m). Consequently we obtain T;,”A T;* - 0 for n,meN, and n # m.

3,

Uniform convergence is obtained if the bi-Markov operator {(or some
power) on 1! (X,f,/\) is compact or even only quasi-compact. Typical
examples are kernel operators

mx: = frxyemam)
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defined by a bounded kernel O0£keéL (X x X,/'l@/k )+ Further compact-
ness criteria for kernel operators may be found in Schaefer [1974],
IV.10.

4.

Not every kernel operator on L1(X,Z, ) is (quasi-)compact. But if

it is irreducible and bi-Markov, then its peripheral point spectrum

is & finite subgroup of [?, hence condition (&) of the weak convergece
theorem is satisfied. But surprisingly the much stronger conclusion (b)
of the strong convergence theorem is valid. The proof of this result
uses deep structure theorems on operators on Banach lattices and we
refer to Greiner-Nagel [1982].

5.
The spectra of interesting Markov operators are computed in
Vere-Jones E|963_].

Referencest Bonsdorff El980], Derriennic EI976J, Drey [1971],
roguel [1976], [1979], Greiner-magel [1983], Lin [1982],
Lin-Sine E|979], Tuecke E977], Ornstein-Sucheston EQ?O],
Yoshida-Kakutani [1941].
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Appendix Y: Mean Ergodic Opersator Semigroups

In our lectures the dynamics of a system has been described by a
single mapping and its powers, but in many situations it is useful to
consider systems in which the asction is performed by an arbitrary
semigroup of mappings. Many concepts and problems of ergodic theory
can be extended to this context, but in this appendix we only discuss
the generalizations of the mean ergodic theorem (see Lecture 1IV).
Thereby our combined functional-analytic sand semigroup-theoreticsal
approach {see Lectures VII, VIII and IX) proves to be most useful.
The objects we are investigating in this appendix are a (real or com-
plex) Banach space E and a semigroup J’ of bounded linear operators
on E with adjoint semigroup :f" = {T' GX(E'): T e:fi On x(E)
and therefore on P we consider the strong or weak operator topelogy,
both making S into a semitopological semigroup (see VII.1).

The following is a very abstract version of the property appearing in
the classical mean ergodic theorem {(IV.1).

Y.1 Definition:

The semigroup JOCI(E) is called mean ergodic if its closed convex

hull
wJF

in Q"S(E) contains a zeroc element P, i.e. TP = PT = P

for every T € cod .

Since the wesk and strong opersator topologies possess the same closed
convex sets in P(E), we could take co in cZDW(E) as well and would
8till obtain the same concept of mean ergodic semigroups. From the
gbove definition we first draw some simple but important consequences.
Then we prove equivalent characterizations leading to interesting

examples.
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Y.2 Proposition:

Tet  be & mean ergodic semigroup in .f(E) with zero element P. Then

(1) pre 5Pt and P'r' e 5 P £ for every £€E, £ € E' ana
the weak¥- topology on E'.

(ii) P is a projection onto the fixed space
P t= {f€E: Tf = f for all TeJ'_E . Its adjoint p! projects E
onto the dqusl fixed space Pl:= fe'e B': 7't' = £'for a11 T'e¥'],
and (PE) is (as a topological vector space) isomorphic to P!E!.

(iii) P" (0) is the closed linear hull of {(Id - T)f : f€E, Texl

Proof':
(1)  The continuity of T ¢dTf from &, (E) into E implies that

Pf €¢co -[I'f : Te:f} = ¢o ff. Analogously, the cont:nulty of
T ' e from & (E) into (E', &(E',B)) shows that P'r' €To e

(ii) Precs Preand TP = PT = P° = P for &1l T € J implies that P is

& projection onto F. Similarly, one shows that P'E' = Pl. The
isomorphism of (PE)' and P'E' is proved in (App.B.7).
(iii) is left to the reader. "

It is surprising that for bounded semigroups the mean ergodicity can
be characterized by a fixed point property.

Y.%3 Theorem:
For a bounded semigroup J in zS(E) the following conditions are
equivalent:

(a) J’ is mean ergodic.
(b) o Pr contains a fixed po:Lnt of & for every f €E and co
contains a fiXed point of P' for every r'e E!.

T“Joft

Proof:

(a) % (b): This has been proved in (4pp.Y.2.i).

(b) = (a): co Fr N Fis non-empty by the assumption on f and con-
tains st most one element by the assumption on :f’.

Define P : f Hfoe'c_é' Jof A F for f€&E. We show that P is linear,

i.e. homogenous and additive. While the first assertion is clear, wWe
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have to prove the additivity, i.e. £ 60 Ff NF and g ecoSg n F
implies fo + goe'c_S J°(f + g)t For E» O there exists Recod such
that [lgf - f Ml < & . since gerE Fre c 0 Pg we find Secodf
such that [IsRG - goﬂ <& . Together, this implies

Ise(f + g) - (£, + g )l & llsat - £, + llsrg-gll <hshe + €.
Since P is obviously bounded we have found P g(E) satisfying
TP = PT = P for T€YP . It remains to show that P is contained in

53'30 s 1lees for E£>0 and {f1,..., fn} c B we have to find b‘ne co.:f
such that lsnfi - Pfi" L£E for 1 = 1,ve+yn : We proceed by induction
and assume that there exists S _, ecog‘]° satisfying

"Sn-1fi. - Pfi' € &¢ rfori=1,0.ey, n-1 and c = sup{HTﬂ: 7€ .T}.
Define g := S, ,f .

By assumption there exists T, e co:f such that ,Tng - Pg " £ £.

The operator Sn:.—- TnO Sn-1 is contained in coy, and the assertion

follows from

and Snfn - an = T, - Pg. B

The above characterization has a first application to Banach spaces
with uniformly convex norm. In such spaces every closed convex set
contains & unique element having minimal norm (Dunford-3chwartz [1958],
IT.4.29). Therefore, if the operator semigroup J° is contrasctive, this
element in co Jf has to be fixed under . If the same holds in the
dual space we obtain mean ergodicity of P and thereby retrieve a
classical result due to Alsoglu-Birkhoff [1940] for Hilbert spaces.

Y.4 Corollary:
If E and E! have uniformly convex norm (e.g. E = Lp(/g),1<p<ao) and

Ye SC(E) is & contractive semigroup, then f is mean ergodic.

In this application the particular norm structure of E and B! implies
mean ergodicity for arbitrary contrsctive semigroups. For more general
Banach spaces we have to enforce our assumptions on the semigroup. The
adequate conditions are of topological ("compactness™) and algebraic
{"amenability") nature.
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Y.5 Definition:
4 semitopological semigroup S 1s called left smenable, if the space

Cb(S) of all continuous bounded functions on S has a left-invariant
mean, i.e. there exists O L/u,ecb(b)' N, /‘\> = 1, such that

= for all left rotations Lg f(t) = f(st) for s,t€S and
fecb(/‘-

Right amenability is defined analogously using the right rotations RS,

end S is called gmenable if C,(8) possesses a left- and right-invari-
ant mean.

Amensble semigroups have been studied extensively, and we refer to
Day [1969] and Greenleaf EI969] for further information. But beforse
stating the main lemma containing the fixed point property of amenable
operator semigroups We mention important classes of examples.

Y.6 Examples:
(1) Every gbelian semigroup - if endowed with the discrete topology -

is amensable. This may be proved using the Markov-Kskutani fixed
point theorem (Schaefer EI9'74], III.7.12).

(2) Every compact group is asmenable, since the Haar measure is an
invariant mean.

(3) The free group with two generators is not amenable
(Greenleaf [1969], 1.2.3).

Y.7 ZLemma:
Let fe X (E) be a bounded semigroup.
(i) 1£F is right-smenable, then co,f f in (E & (E!,E)) contains
an )° -fixed point for every f ‘e E'.
(i1) If P is left-amenable, then o fr in (E" ,<\'(E" ,E!)) contains
j’” -f'ixed point for every f &€E.

Proof:
(i) Choose f'G E! and define by

£ =1 e e, ]

" a continuous linesr map from E into C (:f), whose adJoz.nt transforms

the right-invariant mean /\é c (:f)" into an element f‘ 'ér!. Since
/& is contained in the weak*—closed convex hull of the Dirac measures

&T’ Te¥, and since éT is transformed into T'f! we obtain
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—_ !
f‘; e co :ff'. A short calculation shows that I"f.‘c'J = fé for every

7 ecf.

{(ii) Now fix fe€E and define by
£' v Jr s o, ' |
& continuous linesr map from (E', B(E',E)) into Cb(-:f), whose adjoint
maps the left-invariant mean ﬁecb(:f)' into an element f;' ee".
As asbove one shows that f: ecoFr in (", c(E" ,E")) and
i f:; = .f‘;‘ for every T é;f. P

Recalling (Y.3.b) and applying (Y.7.i) we see that for right amenable
bounded semigroups ,‘f’c i(E) a property assuring fixed points in
Fc?ff implies mean ergodicity. But the fellowing theorem shows that
even & very weak separation property for the fixed spaces F and Pl isg
sufficient.

Y.8 Theorem:

For a bounded right amenable semigroup JOC-ZD(E) the following are
equivalent:

() P is mesan ergodic.,

(bp) ©co Pr N F is non-empty for every f &E.

(e) P separates Fl.

Proof':

The simplications {(a) *» (b) = (¢) follow from (Y.3) and (Y.7).

(¢) = (a)* By Lemma (Y.7.i) and by assumption, co f'f' n F! contains
exactly one element fc: for every f'EE'. Define P! : E'——":F‘ by

p'rt := fcl> and show that P! is linear: Let f', g' eE’ and

— !
P! (rl1gl) € To :f(f'+g'). since P'r! 4+ P'g! e ' and F separates !
we conclude P'f' + Plgt = pl(rl+g!).

Next, we observe that P! is continuous for W(E',E) end o(F',F) on #l. --

But P! is G(E',E)-closed in E', hence 6(E!,E) and &(F',?) coincide
on the equicontinuous sets of rl, Therefore, P' e X(ED) is G"(E',E)-
continuous and has a pre-adjoint P e-?(E). If we assume that

rr ¢ co S £ for some fEE, then exists £'€ E' such that
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{Pf,f') = <f,P'f'> ¢ co {(Tf,f'> : Te.f! which is a contra-
diction to P'f'e oo P! £!. Therefore, we obtain Pf & co Jf and F is
mean ergodic by (Y.3.b). u

If the bounded semigroup Je ¢Z"(E) is actually amenable there exist
fixed points in E! and in E" . Therefore, P is mean ergodic as soon
as we know that the fixed points in B are already contained in E.
Weak compactness of J’ (or stronger: reflexivity of E) are the appro-
priate and natural assumptions.

Y.9 Corollarz:
Let _j’c.o'z’(E) be a bounded amenable semigroup. If Jr is weakly com-

pact for all f in a total subset of E, then S is mean ergedic.

Proof':

By (B.12) and (B.6) it follows that & Jf is weakly compact for all
f&€FE and therefore coincides with its c‘(E" ,E')-closure in BN,

By (Y.7.ii) there exists an P-rixed point in coPf and the assertion
follows from (Y.8.b).

Y.10 Examples:
(1) Every compact group :f’c{(E) is mean ergodic.

(2) Every abelian semigroup ¥ cX(E) which is relatively compact
for the weak operator topology is mean ergodic.

(3) Every bounded amenable semigroup fc.‘..i(E), E a reflexive Banach
space, is mean ergodic.

(4) Let E be a Banach lattice with order continuous norm (e.g.

E = Lp(/u\ )s 1&£ p<do) and :]o a semigroup of positive contractions
on E. If there exists a quasi-interior point u&E, and a strict-

ly positive linear form /«\GE_: such that Tu £ u and T/'u f.-/u.

for all T‘._)o, thenJ° is mean ergedic. See (Schaefer EI974],
V.8.4).

A1l mean ergodic semigroups appearing in the examples above are rela-
tively weakly compact. But in contrast to examples (1) - (3) where the
algebraic extra-conditiocn "amenable" had to be added, it is the topo-

logical nature of the underlying Banach space alone which implies
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mean ergodicity in (Y.4) as well as in Example (4). The main ingredi- — -
ent in the proof of (Y.10 (4)) is the construction of an associate
semigroup -)02 which is contractive on a certain Hilbert space (see

Schaefer [1974], p-346) and therefore always mean ergodic by (Y.4). -

7 Using 2 similar idea wWe are able to prove another mean ergodic theorem

"mean ergodic theorem will be a non-commutative analogue of the canoni-

without making additional algebraic assumptions on the semigroup. Here -
the underlying Banach spaces are (non-commutative) w* -algebras and
their pre-duals. For the necessary terminology and basic results we
refer to Pedersen [1979], Sakai 197‘1] and Stratila-Zsido EI979].

The main ingredient in the proof of the subsequent non-commutative

“n

cal embedding

L“(x,z,/a ) — T2 (X, X ) —11(x, X, A

*

(X,Z,/A) a probability space. To that purpose consider a W -algebra

OU with pre-dual Q, and faithful (=strictly positive) state Y& Q.
let A denote the modular operator (see Pedersen [19'79J, 8.13.14) on
the GNS-Hilbert space _ with canonical c¢cyclic vector YE}L cor-
responding to f . - -

As an appropriate injection j, a—- ?(. we define e

sy
j1 (X) $= A X . -

Then it can be shown (for the following, see Groh-Kimmerer EI982J)
that the adjoint of j1 defines an injection is :R—* Q.* satisfying

jz(g ) = r . If a and a* are ordered by their natural cones and if

2{ is ordered by the (self dual) cone

- {&%¢ ixea ]

(see Stratila-Zsido [1979], 10.23) then the embeddings j, and j,
enjoy the following fundamental properties: _Z
(1) The map j1 is an order isomorphism from the order interval

[O, ‘I] in a_ onto the order interval E),?] in K. Analogously,

j2 is an order isomorphism, mapping E),;] onto E),f] in a* o ——-t

(ii) The restriction of iy to j1(a,1),-;a_1 the unit ball of a., is
a homeomorphism for the weak (resp. norm) topologies on

X ana a* . 3
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[97]
£
oy

___ It should be noted that in the commutative case, i.e. if a = 5.¥ (/u) .

- and f =/« » then j, and j, are indeed the canonical embeddings

Pp) = (M)

this situation every bi-Markov operator T on L1(/A.

— L'I (/\A). Moreover, it is well known that in

(8]

) can be restricted

to a positive contraction on L% (/»\) and can be interpolated to a

_ positive contraction on the intermediate space Lz(/a\) (see Schaefer
[19'?4], V.8.2). The above embeddings j1 and j2 allow an analogous con-

struction:

Let T be a positive contraction on a satisfying T-f 470 for the

faithful state \fe% Then

= for j t= jzo j1 is a well-defined positive contraction on Q .

Moreover,

yields a linear operator from the dense subspace j1a. into J{. . By the

non-commutative analogue of the Riesz convexity theorem (see Groh-
Kimmerer [1982], 3.5) T, has a continuous extension to a contraction - -

__on ){ still denoted by T, .
The following diagram and a look at the paper of Groh-KUmmerer 5982]
~— helpeto clarify the situation:

Tre

3

Using this interpolation method we are able to prove the announced i

mean ergodic thecorem.




s}
0

-— Y«.11 Theorem (Groh-Kimmerer, 1982): -

Let E = O*_ be the pre-dual of a w*-algebra a and assume that
jCi(E) is a semigroup of positive contractions. If Ty £ f for
some faithful state fea* and every TEJ then g'_f is mean ergodic. ___:

Proof':
We perform the construction described above and obtain the interpolsted -

S, =, Tejl

on 3{ which is mean ergodic by (Y.4). We denote by P, the correspond-

contraction semigroup

ing progjection. Since j(a1) is invariant under J2 Wwe obtain —_—
P22 € 35'-{1‘2‘2 : Te;fg C 51((11) for every !Zej1(0l_1)a g
Moreover,
I,(Pq) € JZ(COJZI) =l co{-:fazhz ))
by property (ii) above. On the other hand it follows that
i (gl = Ml & o Uil
for every 76 j1(a1) and some constant ¢ %0 independent of 2 . _:

Therefore '
Riz(Py 00 & lizn ll & Hgll &c-5(q00 =

and the mapping .
3201) 2 (%) :

is norm continuous from j(a) into a# . Since j(Q) = linnLe)mEO, n'f] V

is dense in a-l‘ we obtain a continuocus extension P Go‘f(ax) satisfy-
ing TP = PT = P for every T€J and Py ¢ EE?g for every .

Y e Q0.

As in the proof of Theorem (Y.%) it follows that J is mean ergodic..ﬁ

ey

i

* -algebra Q and an operator

Since in most situations it is the W
semigroup on Ot - and not on a,‘ - which is of interest it may be

useful to give a "dual" formulation of the above result. 2z

Y.12 "Dual theorem":

Let (1 be a Wt -algebra and assume that jCX(Q_) is a semigroup of
positive, weak™ -continuous contractions. If there exists a _f; -
subinvariant faithful normal state ona, then f is weak®- mean
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. _ergodic, i.e. there exists a weak® -continuous projection P from CL .
~ onto the fixed space F(Do) such that TP = PT = P for every T&J,
““~and Px € oo Jx for every x€Q eand the weak® topology on (O .

Obviously, Example (4) in (Y.10) applied to Banach lattices L"(X,Z,/A)
--is a particular case of Theorem (Y.11). Another application is to
groups of % -automorphisms on a as discussed by Kovacs-Sziics EI966]'.
~ Finally, if we consider the group of all inner automorphisms of a
- W”e -algebra, we obtain the following characterization of "finite"
w* —algebras (see Sakai [1971], 2.4.6).

Y.13 Corollary: )
T T Let Q be a w¥ -algebra possessing a strictly positive "trace" TGQ‘, -

i.e. Y(x) = ‘f(uxu* ) for every chl and every unitary u eq .
Then the group IntQ of all inner automorphisms is weak®- mean ergo-
dic, and the corresponding projection maps Q_ onto the center

zZ{Q) == F(IntQ).

: . For a final application of our mean ergodic theory we return to the
commutative situation and present a convergence result for positive
contractions in E,1(X,Z,/\4), which is an abstract version of the clas-

: sical martingale convergence theorem (see Ionescu Tulcea-Ionescu Tulcea -
[1969], II.5 and Appendix I).

Y.14 Application:
> - Let (X,Z',/A) be a probability space and assume that Pneuaf(IJ(X,Z,/ma)f*j
is a sequence of positive contractive projections leaving invariant the .

. 1 N =
constant funetions. If PPy = Pp fornem and \J P L (/A.) is
neéN

1
dense in L then
) )
Pf w——sp f 1

= n

for every feL1(/w). .

i Proof: =
Ingstead of proving that P, converges in the strong operator topology
~ " to Id we show that

Q, = Id - B

converges to zero. To that purpose consider the bounded abelian
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—_semigroup

F = {o, s newd |

7which is relatively weakly compact since j[—ﬂ ’ 1!3 C [—1\ ’ ‘ﬂ] .

The fixed space of J is n PI_11(O) = {0}. Therefore, we know that )
i nel Lk
:f is mean ergodic with projection P = 0, i.e. there exist convex R

combinations
n
R, = % ci,nPi € co:f

such that Rnf converges to 0 for every fGL1(/&).

Now, keep f€L1(/A_) fixed. For k €N we find n, meIN such that
1 .
— _ o — L 3
lanf" < - and QR = Q. since Qin = Qj for i&j.
From "le & 2 we conclude llmel < % and find a subsequence Q. T
k

converging to O. Again from Qin = Qj for i4j follows the conver-

gence of (Q'nf)neIN . I

References: Alaoglu= Birkhoff E94OJ, Day E|969], Eberlein [1948],
[1949], Greenlear [1969], Gron [1984], Groh-gKimmerer [1982), -
Hiai-Sato [1977], Ktmmerer-Nagel [1979], Nagel [1973],
sato [1978], [i979], Schaefer [1974 .

I!'Il

[
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Appendix Z: Ergodic Theory and Information

Our first aim in this appendix is to give an intrcduction into the
basic ideas of information theory, starting with a rather intuitive
concept of information (part 1) and ending up with a proof of the
famous coding theorem of Shannon (part 2). In part 3 we prove essenti-
2lly the theorem of McMillan which is needed in part 2.

We follow the outline of Khinchin 1957 , although this appendix is
shorter and modernized from the mathematical point of view. Due to the
systematic application of concepts and results from ergedic theory the
proofs become more stringent and more general.

Finally, as a feedback this appendix may help the reader to a better
understanding of the results of Lectures XI - XIII which are strongly
motivated by information theory.

part 1

The mathematical concept of "information" is intended to be a measurable
quantity that specifies the amount of information in a given message
(e.g. answer to a question). In the following we present a definition
of "information" and motivate it by investigating its properties.

We assume that all possible answers u41,ooo,Jﬁ1 to a guestion can be
enumerated and (estimates of) their probabilities Pysse+sPp>
n

(0¢p; and ‘21 p; = 1) are known,
1=

Now we define the "information'" of the scheme

V".i,oooo,i/"

n

p1,...I’pn *
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[4}]
[#3}

on
¢
[

— Z.1 Definition: n
- (L) == - Z p;log p; - :

Since I(0r ) depends only on the probabilities PysssssPy We write some- -
times I(p) where p denotes the probability vector (p1,...,pn).

Moreover, the logarithm "log" is taken to the base 2 and
-x logx t =0 for x = 0.

Property 1:
L-I(0t) 2 0, and I{({r) = O iff one of the answers \743 has probabili-
A

ty p; = 1. -

. Interpretation: 1
~ If we know in advance with probability one that the answer is going to |
be \)43, we do oot expect to obtain any information by asking the

oL T

question.

Property 2: ;
B tzd’ o-o,.d’ ' ’ Iy ""’IA— : :
~ For o = 1’ n) and o = Aor 1 n) "'"7

P1:'°°’Pn .0 ’P-I’--O’Pn

we have I({x) = I(0(') .
— Interpretation:
If one of the answers, i.e. H? oceurs with probability 0, we may 2

a3 well leave it out of the scheme describing the question without

changing the amount of informaticn.

Property 3: (041 seve, d—n) 3

" “For fixed nélN the information I({{) of the scheme (= 0 b
1,..., n

for i = 1,...,n .

ST

is maximal if and only if p; =
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Proof': n
1 1
I(p1"ll’pn) - I(H’.DI’H) = - .21 pi 10g pi - 10g n
SR 1=
n ] n P ]
= L p; log — = Z - In —
i=1 npy 3oq 1R 2 npy B
n
< Pi 1 1 1
-— - 1 = - = O -
Z in 2 (npi ) In 2 1n 2 -
i=1

The inequality follows from 1n x € x - 1; equality holds iff x = 1 ,

Cf.e. iff = = 1 for every i. WX

. Interpretation: i
Among all guestions that admit n answers we expect the most informa-

~ tion where all answers have the same probability.

ProEertE 41

The function p += I(p) is continuous on

n
_Sn P o= {p= (p,l,ooo,pn) :piao, ig.lpiz 1} for all nell.

Property 5:

“- The function p —» I(p) is concave on S, for every neNl, i.e. .z

CI{atp + (1-%)g) > «I(p) + (1-«) I(q) for  €[0,1]. :

Proof': .
This follows immediately from the concavity of p+—> - p log p on lR-'

Property 61

‘,4.1,000,411) and m’___. '4413000,41{,"42’-00,‘411 R
1"{_’..0,1"{_’ pz,o-l’pn

PqseeesP,

Then I( (') = I(O0) + p Ik, .ee,i)
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[R1]

H
€
<
4

——- Proof': n
1
I(gr) + p1I(%,~--,E) = - i§1pi log p; + py log k
n
= - py{log p, - log k) - i‘{_zp,-_ log p;
L P =
= = Z_-kllogj%' = Zpi log py = (e’ .
i=1 i=2

Interpretation:
The scheme I’ means that the answer ”41 in ¢ is divided into

- ‘
k subcases d;,..., "d'k' One would expect that the information ob-

- tained by an answer to (&' is the same as the information provided by

the same answer to X if this answer is one of 04—2,..., ud»n. If the
answer to ([ is "4'1 (which happens with probability p1) one gets

additional information by asking a’ according to the possible sub-

cases 1,41’,..., ulk’ . The amount of additional information is determined -

by the fact that all the k subcases of .,4—1 have the same probabili-

/
ty -11-5 . In sumary, by asking ¢ one gets the information I(0l) of

0t plus the additional information I(f,...,1) with probability p, .

Z.2 Theorem:®
Any real valued function J on the set of all schemes satisfying

properties 1,2,3,4 and 6 is of the form
n

Ld e ;.+
J(¢r) = -c.Z1pi In p; where of = ( 1 ’ n) s
1=

PqseeesPp

for some constant ¢ ¢€IR.

For the proof we refer to Khinchin [1957].

The factor ¢ is conventionally determined by the following

normalization.
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—— Property T -

— 114’13542 ,‘
For (f = we require that I(0r) = 1.
1 1 :
27?2
Interpretation:s
This normalization yields ¢ = (1n 2)'1 in the above theorem and
2 In P; 2
therefore J(p) = - ;Z%pi in 2 = - ig;pi log pj s i.e. we obtain -

- the base 2 in the logarithm.
In this case the information is said to be measured in bits. In the »
‘present lectures we adopted the policy not to speecify the basis of the
logarithm, i.e. we use the basis e whenever it is convenient.

There is another mathematical framework in which one can describe the
outcomes of an experiment, and which is more closely related to the
mathematical setting of our lectures:

ILet X stand for the set of all possible "states of the world"

x relevant to the experiment with outcomes 041,.-.,u4h . Then to each

outcome “$i corresponds a subset A; of all states x€X that

_yield the outcome o¢i. In this notation, the experiment is described

" by a partition « = -{A1,...,An_} of the set X . If we want to de-

> - termine the information given by the experiment we assume a probabilitymé
- distribution p on X, i.e. we have a probability space (X, Z, p),

and we assume the partition « to be measurable, i.e. o« € 2.

In this case the partition & corresponds to the scheme

. ( Aysenons, Ay i

,’ p(A1),...,p(An)) -

and we define _

P () t= -2 p(4) log p(4) . —
Ae

=+~ Moreover for A,B € Z one can define the conditional probability =
. of A given B as .

_ p(A{B) = = plhnB)

p(3) -
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" is equal to the average information contained in £ plus the average

- Recalling the Properties 1,...,8 above we realize that we have derived —

(1)
($h]
)

N

Using these conditional probabilities for a partition o= {A1"""%}*---
and Bé&J we can consider the scheme o
Wyenn, ) .

p(a,18),..,p(a_IB)

and the corresponding information

I(e|B) + = - 2 p(ais) log p (4[B) , '
Aeéx
which has to be interpreted as the information of the scheme B
041 3 00 egy g#n

P(A1)s""P(An) F

given that we know that the state x is in B .

Z.3 Definition:?
Given two partitions d,ﬂ then we define the conditional informa-

tion of o given@_ as
W [B) + -2 p(B)IE]B),
Bef

and interpret it as the average information of ¢ given that we know
in which element B of # the state X happens to be.

Property 8 (see (XI.1): .

wp) + uxlp) = xevf .
A proof is given in (XI.D.3). i

Interpretation: oz

The average inforamtion contained in the scheme described by wx v /3

information of o given that we already know about £ . 2

a reasonable way of measuring the information I(Q_) contained in a -

" scheme OL , resp. the information

i(et) = hp(o()

contained in a partition o of a probability space (X, Z,p).
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- part 2 S

. " We start by defining some ergodic-theoretical objects and by fixing
:. some information-theoretical terminology: :
A source (or information source) is a device that consecutively pro-

duces symbols from a finite set -

L= {11".."{1{}’ o °

called the galphabet of the source. In mathematical terms, a source N
will be (described by) a shift

(X:Z}/“i 7)
where X : = LZ and &« ([kn = f‘{]) is interpreted as the probabili-—

Lo,

ty that the source produces the symbol (or letter) ’ei at time n . _ :

et & = A1,...,Ak with A, @ =[:xb ="ei] denote the canonical

generator of the sbove shift. Then the elements of o« correspond to
the words (or blocks) of length n produced by the source starting

at time 0. Thus hﬂ_(arﬂ can be interpreted as the average inform-

ation contained in a word of length n produced by the source.
Consequently, h , (X;7) = 1lim 1 (ull) is the average information -

e Nl /4
-~ per symbol produced by the source or the average information produced -- -
by the source in one time unit and will be called the information rate

‘n)

of the source.

A channel is a device that transmits sequences of symbols from its
so-called input alphabet L to sequences of symbols from its so-
called output alphabet M. In order to model a channel we use again

the shift T on the input space

T Z
X P = IJ
i with product 6 -algebra Z and on the output space oz
z

- Y :1= M .
with product o -algebra T . On the product (X x Y , ZxT'), called
“_. the channel space, we still have the shift transformation if we iden- ._::
tify X XY with (L X M)Z. With these notions, we define a channel

as a Markov kernel from (X,X ) to (¥,T), i.e. as a mapping

p:XxxT—s [0,1], -

(1%
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on (XxY, ZxT) defined by -

" for BeT.

" as the probability that the output sequence is in B & T given that

A mapping m ¢ Z->X can, of course, be regarded as a special channel,

__Such channels will be called deterministic.

"As indicated above we shall measure the information, passing through

- we may consider the following quantitiés: ez

¢
1
I
(8]
o
€3]

where p(x,+*) 1s a probability meassure on (Y¥,T ) and p(-*,B) a .
measurable mapping from X into [0,11. Here p(x,B) 1is interpreted

the input sequence was x¢€ X. E
Let 4 be a fixed probability measure on (X,Z ), called input pro-
bebility. Then the Markov kernel p yields a probability measure De

P, (AxB) 1= ifp(x,B)iLA(x)d,w

for A€ 2, Be T,
In particular, we glso denote by Pu the output probability on

(¥, T) defined by p =and oy Lee.

p, (B) = {p(x,B)d/..,

Given two channels p and p' vwhere p has input alphabet L and
output alphabet M and p‘’ has input alphsbet N and output alphsbet
L , we consider the space Z := I\IZ with the product ¢ -algebra Y

[£5]

and define the compeund channel pep’ by

pep’(z,B) : = Jp(x,B)dp’(z,x)
X .t

for ze?7 and BeT .

where for a given input zé¢ 7 there is no uncertainty about the out- _
put xéX, i.e.

0 if m(z) ¢ A a
m{z,4) = for ze¢? and Aé J .
1 if m(z) € A =

I(\’;

[ ]

a channel, using the concepts of part 1@ iz
Let p Dbe a channel with an input probability 4 . Then for the
canonical generators o and @& of (X, Z,/a;t') and (Y,T s P 3T)
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(1]

——h,, (o n), i.e. the average information of an input sequence of

: length n,
n . . .
hﬁt(ﬁ ) ¢ = hRM (ﬁrﬁ, i.e. the average information of an output
sequence of length n,
- h/u (oknx/an) :=h (o Px ,_f,’n), i.e. the average informationof a pair

P
# of corresponding input and output se-
guences of length n.

Then we define the transinformation

6 (u) #=h, (x7) -1, («%]g™),
i.e. the average information in an input sequence of length n minus
the average information still contasined in an input sequence of length
-n given that we know the corresponding output sequence of length n .

Or in other words: tn(/u) is the average amount of information about

an input sequence of length n that is contained in the corresponding

output sequence of length n.
Twe extreme cases may help us to understand this terminology:
If h# (o(n{{gn) = 0 then the input sequence can be determined (with

" probability 1) from the output sequence and therefore the whole in-
formation of the input sequence is transmitted through the channel,
. _ n ny,n, _ n _
ices B (@) =h, (x7), If h, ( l,ﬂ ) = h, (a"), then the know

ledge of the output sequence is cof no use to determine the input se-

quence, Consequently, no information is transmitted through the chan- _

nel and tn(/u) = 0,

After having fixed the basic terminoclogy we need some particular pro-
perties of channels. The following is essential in order to apply our
results on MDSs.

~_ 7.4 Definition:?
A source is called stationary, if (X, Z,/‘ $3T) is an MDS, i.e. the

if p(x,B) = p(T(x),B) for xéX and BeT . Finally, a stationary
channel p is called ergodiec, if (X x ¥, qu’,p/“ s ) is ergodic
whenever (X, }:,/;; z) 1is ergodic (compare Adler [1 9613).

~293=

. input probability . is ¢ -invariant. The channel p is stationary,




[¢3]

_. Concerning ergodicity, we remark that the converse implication is
~ trivial, i.e. (XxY,ZxT,p, ;) ergodic implies (X,Z, 4#; %) and
Y, T,p, 3 z) to be ergodic.
It is easy to see that for a stationary input probability .« and a
channel p the systems (¥,T,p, ;*) and (XxY, ZxT,p, sz) are
- MD3s. In the following we assume channels and sources to be stationary.--

Then it follows from Property 8 in part 1 that .

ty = h, (x") -hﬂ(anlﬂn)
=h, (2™ +h, (8T -h, («xpg")
o= n (8™ - n, (BT ™) s
and
0 £ t_ £ min (hﬁ(un),hﬁ(f{n)). .

We define
- — : l — -
Blad P = Lm g () =B (K 2) 4B, (7)) - B L (KRT, ¥)
and the 1imit exists by (E.5).

The set Pz(X) of stationary input measures is non-empty and com-
.- pact (compare App. S ). Therefore the following definition makes —

sensge. B

7.5 Definition:
o c ¢ = sup {t(/n) Ly eP(X;7) is called the information

transmission capacity of the channel p . -
Let us show how the capacity of simple channels can be calculated.

 Z.6 Example: )
" A stationary channel is called memoryless if for

B n-1 3 " n-1 3 n 2
A= 1l T A € and B= [f] 7 Bieg
. . i
- i=0 1=0 -2
"“* we have —
n-1
- p(x,B) = T q(Ai,Bi) for every x € A. i
i=0
Here, q : ®&X g — [0,1] should be given by a stochastic matrix, i.e. =
2 q(A,B) = 1 for every 4 € & .
Bes

~29l-
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This definition may be interpreted by saying that & memoryless channel
transmits each symbol independently from former (or later) symbols.

It fellows easily that for a memoryless channel :

n; n n
n, (87 |«”) =n.h, (i) and h, (") € nh, (8),
which are determined by the matrix gq and the vector v := (/“(A))Aem .

Therefore the optimal input probability .  is given by a v-Bernoulli -
. n . .
shift (where h,,,L (ﬂ ) = nh/u (/3 )), and we obtain the capacity

¢ = E(&) =hz(f) -h ()
= - 2 (Z a(4,B)a(4)) log ( I a(4a,B)&(4))
BéS A€ Aex
Z 2 q(A,B) #(a) 1 A,B
+ 8%s acw q ) +(A) log q(4,B)
= 2 q(4,B) &(A) log (a(8,B)( T a(a’,B) (A’ N
Thus ¢ = sup .Z_' ali, v, log (aqli, 3¢ ; q((,j)xrz)"');

v i,
and this equation can be used te find the optimal vector v .
Still this is not easy in general (see Ash 1965 ) but for example if

h-(g]4) = - 4,B) log q(A,B
= (Bl A) B%:/s q(4,B) log q(A,B)

is the same for every A ¢ &, then v = const. is the optimal vector.

As & more concrete example we mention the so-called binary symmetric

channel which is a memoryless channel with

L= §0,1 } =M and matrix q = (1(_1d 1ad) for some 0 £d €1, i.e. —
d if X, = 0 :

{1-d if x, = 1 s

and of course )

i

p(x’ [yo = O] )

1l
.
i
i

p(x,[v, = 1]) I

In this case the optimal vector is v = (%,%) and we obtain

¢c =1+d1logd+ (1-d) log (1-d).
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- - Various properties or types of channels are defined in the "classical"

literature (e.g. Ash f19653, Feinstein E|9583), the most important

ones being channels with finite (inputJmemory. Here we introduce some
more general properties of channels (see also Pfaffelhuber ]:1971],
Gray and Ornstein [1979], Kieffer [1981]).

Z.7 Definition:
A channel p with input space (X,3 ) and output space (Y,T ) is
called weakly continuous if the mapping ¢ : xi—» p, from X into the

space

P(Y) of all probability measures on Y is continuous for the

~—weak topology on & (¥).

~—Consequently [p,(g) - p,(g )< flgn - g(dp, < £ for any xéX,
Y

“-Since the mappings X p.(g,) are continuous by hypothesis we obtain

.. that x = p,(g) 1is continuous.

;ﬁ'—Finally the equivalence of (b) and (¢) follows from the fact that

7.8 Lemma:

For a
(a)
(b)

(ec)

Proof':

channel p the following are equivalent:
p 1is weakly continuous.
The mappings LVB P X px(B) from X into f0,1] are contimpous

n
for every Bé& B_ , nell.
For any > 0 and nél there is méN such that for
x,x'¢ A € o{_$ we have lpx(B) - px,(B)l < &€ for every

n
Bea(fh_).

(a) implies (b), since the sets Bé/az_ln are open and closed.

For the proof of the converse implication (b) => (a) choose ge¢ C(Y) i

and £ > 0. By the definition of the topology on Y we find nell

and a

e -

n

B -n

step function €n supported by elements of ﬂr_ln such that

gy ll < € -

[\

is finite and from the definition of the topology on X and (Y. HK:
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7.9 Proposition: L
Let p be a weakly continucus stationsry channel. Then the capacity

c equals

: c ==sup{t(/4) :/ued%(X) gand T ergodicfor/u.(.

Proof:

We have only to show that c 2c : The measures . ¢ & for which

T is ergodic are exactly the extreme points of the compact convex
set ( compare App. S.2). Now We use the following theorem of

3auer 59633: "Let K bpe a compact convex set and let f1,f2 be two
semicontinuous real valued funections on X such that f,| is convex ._.:°

~and f is concave., If f1.<.. f2 holds on the extreme points of K z

2

then f ¢ f2 holds on K ". As soon as we are able to apply this

theorem to

£(s) h, (X57) +h, (Y52),

fz(/u) ce+h/w(XxY;’r),

i

Wwe are done.

From (II.12) we know that f, and f, are affine. The mappings

n n n, . n
/,.,;.-;h/u(o( ),/uv-—-) h/‘{/z. ) and/u-—-,»h/'(o( x/g ) are weakly con-
tinous on @&  because p is weakly continuous.

. . s 1 n . . . . _
Since h/“ (Xs ) = nlél:i[;[ = h/A (o0™") and similarily for h/, (X3 ) eand-——
: h/,_L (XxY;t), foth f‘1 and f2 are (upper) semicontinuocus. N —=

_ Remark:

~ It is possible to show this proposition under more general assumptions it

_on p (see Parthasaraty [19613). However, we need the weak continuity .
of p also for other purposes, and therefore we decided to present

‘~ this simple proof that relies on the elementary theorem of Bauer E963 =2

The condition (c¢) of Lemma (Z.8) can be interpreted as follows:
= the outcome of a sequence (from the -nth to the nth symbol) at the .
cutput of the channel does not depend much on input symbols that have ]
occured or will occur at very distant times. In the following we shall
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_._ need a glightly stronger version of (Z.8.c).

Z+10 Definition:

A channel p has asymptotically decreasing input dependence (for
short: adid), if for any £ > 0 there is meXl such that for any
ne¢e B and any x,x'€ A¢ o(_n"'m and Bé€ G‘(ﬁ_g) we have

1=
[pL(B) - p,(B)| < €.

The commonly accepted definition of & channel with finite memory con-
sists of two parts: one part concerns the finite input dependence and

© dne part concerns the finite "internal memory" of the channel (e.g.

Feinstein [1958]). It is fairly easy to see that the first part im-
plies "adid" and the second part implies ergodicity. Therefore, any
channel with finite input memory is ergodic and has "adid".

Now we proceed to formulate and prove Shannon’s theorem.
Intuitively it says the following:

Given any channel with cespacity ¢ and a source . with information

rate h, <c, then it is possible to adapt the source to the channel
in such a way that one can retrieve "almost" the complete source
sequences from the corresponding channel output sequences:

Source —P—{ Adapter P Channel[——%

Alphabet N Alphabet L Alphabet M

The adaption of the source to the channel input is done by means of
block coding, i.e. by mapping blocks of a certain length n of sym-
bols from the source alphasbet to blocks of the same length of symbols

- from the channel input alphabet.

Z.11 Definition:
Consider two finite sets I,N , the corresponding product spaces
(X, 2 ), (2,Y) , and the canonical generators & ,¥ . A mapping

b xk — dk defines a measurable mapping m, * 2 ~—> X where
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. . .2 -ki ki, k
mf(x) is the unique element in /} <= (f(Ai)), where T (x)éAiecx .
=60

This mapping ma will be called a block coding of length k .

Now we should specify what is meant by "retrieving almost the complete
source sequences from the corresponding channel output sequences'.
To that purpose we define the "guessing" of an input sequence of
length n from an output sequence of length n by a mapping

n n
where o« and @ are again the canonical generators. The guessing
g will be wrong if xchea™ , yeBe 8" but g(B) # A .

Therefore we define

E = U{AxB:Aeqn s Be/@n,g(B);éA}

and call p/u (E) the probability of error for the guessing g ,

the channel p and the input probability 4 .

Then the theorem of Shannon says that for a certain class of channels
p with capacity ¢ and ergodic sources 4  with rate h/u < c and
for any £ > 0 there is a coding

m, i (2,¥)—> (X, £)

between the source alphabet and the channel input alphabet and a guess-

ing g for the compound channel p' = pem, such that the probability

of error p/’q’ (E) < £ .

But before stating this theorem we prepare the basic combinatorial

tools for its proof.

Z.12 Definition:

Let p be a channel with input probability 4 and let o,Z2 be

. the canonical generators of the input and output space, respectiveiy
A subset {A1,...,Ak} of of® is called A-distinguishable, if there

is a partition B’ = {B,,...,B } 44" such that

c _ c .
p, (B; [a) = b, (4 xB;°)/, (a;) < A for im lyeeesk .
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Observe that a A -distinguishable set {A1,...,Ak} € Nn may be used

in order to construct & guessing g *? /gn — o« with a low probabi-
lity of error. Indeed by g(B) 3= A; for BB, we obtain a guessing
with

K K
C
p, (B) < PAER" Y, a ]+ P (i(=J1 a,;x 3,°)

k

k
Y 8)%) + L A peay)

1

1N

1=
k

/‘4 (( U Ai)c) + /2- .
i=1

In the following we shall sometimes identify Ai with Ai XY or

B; with X X By , when no confusion seems possible.

Most types of channels (e.g. memoryless channels) defined in informa-
tion theory are ergodic. For such channels we now state the theorem of
McMillan (see part 3) exactly in the form we need it.

Ze13 Lemma:
Iet p be an ergodic channel and 4 an ergodic input probability
for p . Take the canonical generators &, 8 and ®x8 on X,Y
and X X Y and define the functions oy 88 at the beginning of

part 3. Then the functions

s (%,5) =1r_(x) +r_ (y) -r  (%7)

converge in 11z x Y,P. ) to t(/u)- .

Z.14 Main lemma (Feinstein, 1954}:
Let p be a channel with input probability s« . Let &, >0,ke N

and define
W o= {(x,y)e IxY : sn(x,y)> a} .

Then there is a 2 -distinguishable set in x® with cardinality

larger or equal to 28 7 - P (we)) .
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Proof:
We construct a finite number of sets Bi » Which are unions of sets

in A ™ and the corresponding sets A; with p, (B;%a5) = A

Successively, we take A1 ’Az’%’ csee such that

k-1
p/“_ (WnAk\iy1 Bi)//“(Ak)),‘l - A

and define 81,B2,B5.-0 b'y . 1
B, :={yeY : (x,7)€ W, x€A,_ and y¢i(=J1 B, §.

(The empty union is defined as @).

R R . n . .
Observe that B1 is a union of sets in B s since s is constant

on the sets of o« X ,Gn .
This procedure works for a number +30 of steps and we have to show
that

t > 2%9(a - p, (W)

or (¥) p, (W) £ ¢ 2781 L1 - a .

1
t t
For B := |/ B; we have XxB= [/ W Ay .
= J'=1
Now pﬂ_ (W) € P . (WaAB) + P . 1(;W,v\ Bc) and

o, (WnB) € p.(®) = Z

C pa (By) .
j=1

If yéBé,@n and BEBJ. then sn(x,y)> a and xeAj . Therefore

- - A, - . .
log . ( J) log P (B) + log P, (AJ x B)>an
Consequently,
p, (B)<2™%p (4. X B) and
M ~ J //«, (A_'])
i p (B.) ¢ % Z-anp (4,xB.) < I Mk
=1 M J- = = Vad J J//“ (Aj) =

For the other term we have p/M (Wh Bc) £ 1 -2 . Otherwise we could
find A€ & such that '
c
p, (WAaB A 4) 2 1 - A
”“ ‘an(n)y ©
~-301~
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and we could perform the procedure above more than t+ times.
Taking these estimates together, we obtain inequality (x). M

The main reason why we need channels with adid is that the notion of
a A -distinguishable set for a channel with finite input memory becames
independent of the input probability.

Z.15 Lemma:?
Let p be a channel, 4« an input probability, and %, A the canonical

generators. To a A -distinguishable set {A1,...,Ak} £ o{n correspands
a partition B’= {B,,...,B, } such that P, (B;®fa;) 2 A .
With these notations the following holds:

(i) There are X, € A.l such that p(xi,Bic) £ A.

(ii) If the channel p has adid, then for any £ > 0 there are

! !
AiSAi s Aj ¢ o(rf:}n such that p(x,Bic) £ A+ £ Tfor every sti'.

Prooi':
(i) p/t (Bic[Ai) £ ) means p/“ (Bicx Ai) £ ;{}“(Ai)‘

Ir p(x,Bi°)>/1 for every X €A; , then P (Bic b4 Ai) =

= (P30, Rdu(x) > S, (Rdulx) = 2 a(8y) .
' i i

(11) Define A] by requiring x,& A€ o™ . Since B,eg 4 47
and by Definition (Z.10) we have

p(x,Bic) < p(xi,Bi°)+ £ &€ A+ § for every xeAi' .

U S OO

Z.16 Theorem (Shannon, 1948):
Ilet p be an ergodic channel with adid and capacity c¢ and let

(Z,¥, V; T) Dbe an ergodic source with canonical generator ¢ on
7 i= N2 . Ve assume that h ,(Z; T)<c¢ . For £> 0 , kXN there ex-
ists k€n €l méN a block coding my : Z ~> X of length n + 2m
and a "guessing"® g : 8 —> y T such that the compound channel

p’ = poe m. has the following properties:
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<

(i) p, (E)$ € , i.e. the probability of error is less than € .
(i) t(v)2 h,(Z;57) - &€, i.e. up to ¢ the total information
of the source is transmitted through the compound channel.

Proof:

et 0¢< cf(’% (c =h,,(Z; 7)), and « be an ergodic input probability

for the channel p with t(«) 2 c - I (from Z.9). Choose m so
large that for any neéIN, x,x'€ A€ alj;m and any B € 3’(ﬁn) we

have fp (B) - p.s(B)[ < J . Now take n2m sufficiently large to
obtain _
v l_lro(m_m)(z) - hV(Z; I’)l< J] > 1 -4 (use Z.22 in part 3)
and
pﬁ[isn(x,y) - ()< g1 > 1. ¢ (use Z.13)
and
-nd . 2m + 1
2 < Jd S < d .
For W := {(x,y) : sn(x,‘y) > ¢ - 2J} we have pﬂ W) < 4.

Now we look for a A -distinguishable set FA®" having cardinality

larger than 2n(c-3d‘). By Feinstein’s lemma (Z.14) this can be found

as long as
gnle=38) o onle=2d) (3 2y 5.6 1344207,

Therefore, we may take A = 2d .

Next we consider
Zo 1= {zéZ : ron(z) < hV(Z;t’) + J}

and observe that v(Zoc) < and
-nron(z) § 2-n(hv(Z; T )+ )

qon(z) > 2
. . n .
for ZEZo « Since ron 1S constant on the sets of y* , Zc> is a
union of sets in gy ? , say
Zo = oY ©
where G E‘Yn . For 2 € C €G we have qon(z) = v(C) and therefore

1> v(zZ,) = 2. v(c) > lgl2nlry (ZsT)e d)
CeaG
lG( < 2n(h‘\? (Z; T)+ 4) < 2n(c'3J) < IFl .
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By this last inequality we can find an invertible mapping f_ : G —F.
Since F = fA,y..e, A ] 1is 27 -distinguishable, there is the cor-
responding partition  g'= {By,e.., B} £ B". For C€G we define
n , c _ . .
§fBep™ : BeB; end £ _(C) = A; ¢ F}. Then we define

g(B) 3= C for B € B, &nd extend this to a mapping g : 8~ —> y .

Now we can define the block coding m, @

+11

For A.€F there is by (Z.15) en Aie mmm such that p(x,Bi°)53J .

for every X ¢ Ai . For every c'e J"T;ln with C'eCce G and

fo(c) = A; , We define f(c') = and extend this to a mapping L

. m+n m+n
fiy > oo,

Finally we consider the compound channel p’ and calculate

p. (E) = p, (UfoxB :cey™ Bep™, gB) £¢})

v(z°)+pv(U U C xB)
CeG Bef \ﬂ

P’v (C(ejG[Zé C, '.YQ Bj_: fO(C) = Ai] )

/5N

+

= v (2,°)

€ v (2%) vy (U [mp(z)€ay, By, £,(0) = 4y ])

+

v (2,°) [me(z)ea;, v&€B; ])

p!
v Aef (C)

n
+

vz v Z [p0n8%) 4,0 () d(vemz") (x)

< v (z,°)

+

Z f340,0 avenzx) :
; _

€ 45
which proves (i) by choosing 4 4 < &
As for (ii) we calculate hv( y nl/zn) by means of (i):
h, (FPfe™) € hy(y "w{EE} [T
= hy, ({EECFIA™) + b, (y " | A7 {E,E° })
¢ b, ({EE®}) +n, (y *|e % {E,E°}) .
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For Céxn and Bepn we have

‘0 if ¢ # g(B)
p, (C[BA E®) = { -

1 if G = g(B) .
Tus hy, (y 7| g7 {E,E° })

= B%Gn(p; (BAE) by, (y"[BAE) + p (BaES)R (y™ [BAE))

< pl, (BAE) log S B
B§?11~o /3’ I

Therefore

1
TGy By (¥
1

£(2m+n) ' ﬁ1(2m+n))

< _2m_;n__hv(¥2m+n’ﬁ2m+n)
€ zmm tBy (PP +ny, (#7RD)

< 5=, (p®™) + 0, ({EE}) + 4dn dog 1y[ )
¢ == ((2m logly| + 1) + 4dlog(y] )

54 log Iy] -

17,

Mus t'(v) =n,(Z;7) - Unln,(p? g™

>h,(2;%) -5l Y] - W

The theorem of Shannon essentially shows that it is possible to think
of "information" as an incompressable measurable quantity. This is an
important motive for the definition of a numerical measure for infor-
mation (as in part 1 of this Appendix). In fact, the calculation of
the numerical values of h, for a source u and of the capacity

¢ Tfor a channel p allows definite practical predictions:

If Qﬁ < ¢ it is possible to adapt the source to the channel in such

a way that a source sequence (of length n )} can be determined from
the corresponding output sequences with a small probability of error.
Thus the channel may be used to transmit the information provided

by the source.
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if %M »c¢ , this is not possible. Thus there is no way of using the

channel to transmit all the information provided by the source.
This last statement still requires some proof.

7Z.17 Proposition ("Converse® of Shannon’s theorem):
Let p be a channel with capacity ¢ and let (Z,¥,v; ) be a
source with h,, (Z;%)>c¢ . Then there exists ¢ > O such that there

is no blocking coding ma and no guessing g satisfying
(1) p\; (E) £ £ for p' = pemy ,

or
(1i) t(v)2 h,(Z;7) - £ .

Proof:
If we choose 0 <£<h, -c¢ , it is clear that (ii) is impossible

since otherwise
t'(v) 2 h,(Z;7) -¢5> ¢ 2 ¢
which is the capacity of the compound channel p' = pe mp and hence

by definition at most equal to the capacity ¢ of the channel p .

As for (i) we assume that for every ¢ > 0 it is possible to achieve
p, (E) ££ and use the argument in the proof of (Z.1&ii) in order to
obtain a contradiction. Indeed, we have shown the following:
n n c n
hy (P P18 ™) ¢ n, ({ EE°}) + p,, (E)log| y ™|
and therefore
1

1—15- n, (AR 15" ¢ In, (7] g™ ¢ In, ({EE}) + p)(E)log Iyl

Given £> 0 1t is now possible to achieve

' (v)

i

ny(ysr) - lim gony, (p*7 [ p27)

W

h,(Z:7) - 20, ({EE°}) + p), (E)log Iy/

> hv(Z;T:) - £

which contradicts (ii). W
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Remark !
In our version of Shannon’s theorem we have simply relied on the con-

cepts from ergodic theory developped in this book, to find the most

convenient assumptions. Although we have not aimed at utmost generali-:

ty, we have achieved a version that contains most "Shannon theorems!
in the literature. More general versions have recently been proved by
Gray and Ornstein [1 9'79], and Kieffer E981] . Kieffer has managed to
prove a "Shannon theorem" for weakly continuous ergodic channels; this

seems to be the most general version.
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part 3
In this final part we show a version of the theorem of McMillan [1953].

et (X,Z,#4; ) denote an MDS and for a disjoint cover o€ fd we

consider the following closed subspaces of E := ! (X, €y )

Fo: =4 >
F:=1in {1, t 4 € o] and
n ) A =N
Fg:’- UF L]
nzon

As in (Y.14) one shows easily that for the conditional expectations
(compare B.24)

Pn= E — Fn and Pt E—>F

we have strong operator convergence, i.e.

it

Pnf —> PP

for every fé€ E,

In the following we take n = 0,1,2,¢+4,k € IN and define

. . !=—l .
Uy = ijLA Pn:l.l_A and rnk klogan
Ae o

Observe that
L o pW, sy =-f 22 L (ogaal)- i,

md therefore
1 1 k
r o de = -% 2 () logm(a) = £ h  (x¥)
PZ[ ok /4 kK, o{k/"‘ M~ k "

More generally, one cbtains the following relations.

7Z.18 Lemma?

(1) For Aeo{k s Be_oﬁ: eand XeANnB we have

(11)  fraan = Ln, (@Flal)) .
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Proof:

(1)

(1)

By definition,
Ay (%) = P, (x) for xeh.

Since x&€ B and PnllA is constent on B , we have

/—H%ET <Pnﬂ"A ’JLB>
1 g(A B)

P L, (x)

1!

By (i) we obtain

frnkd/“ = Z k B%a -1 frnleAan/“
-n

Ae ¢
_ 1 AAB)
= ZA % -E/a(AnB) log:fﬁi—(g)——

1 k|, -1
£ B, (d 2 . M

From the strong convergence of P, to P it follows that the

functions 4y Rorm converge to

as

Q. = 2 . 1 ,Pi
k Aeo(k A A

n—> e, The analogous result for the functions L and

. 1
r.t = -glog q

is less immediate.

Z+19 Lemma:

For

every k €N, the sequence (rnk)né]N is contained in

L1 (X, & ,/4,) and norm converges to Pee

Proof't

The

Now

first assertion follows from (Z.18.ii).

take Aec(k s Bee(::1 and X €A nB . As observed above, we

have

and

- _1 An B
rnk(x)—- klog/\wl 3

therefore
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275(51) L(53) ¢ w(aB) < 27K L(p)

if térnk(x) € t+1 .

Consequently
frnk JLD; €r_, ¢ t+1] du = 2. Z f Pok ter . < t+1]d/‘-'—

Ae x ¥ Beu:l AnB
<z % 275 (41) a(B)

é’dk{ . 2-kt(t+1) .
As a technical aid we consider the functions
£:[01]—> R, seR,,
defined by
£ (x)t = inf {-log x,8} , x€[0,1].

£ - £ (x'
5 %) 5 | : x,x’ ¢ {0,1] } it follows

By the boundness of {{ = — =7

that fso 4, TOrm converges to fgeq, as n - &,

Therefore, the middle term on the right hand side of the estimate
fope - o € lrpye = & Tgoamed + £l 0 apye = To0 ay [+ £50 a-n |l
becomes small for n sufflciently large. Also, the first and the

last term can be made small (for s sufficiently large) since we

have shown above that

i -kt -
frnkli_[ssrnk]d/u [ Efe275%(541) . M

1N
\V m]\/]

Before stating the main theorem we need one more technical result.

Z.20 TLemma:
- k-1

1 .
ok = EE) Tlri1 , Where T (:= Tq,) denotes the operator

induced by ¥ on L1(X,Z',/u,).
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Proof':

Choose X€A := A_n ‘,7-1(.&1)/1..../1 lf-k+1(Ak_1)€°< .

k

Then r01(x) = -log qo1(x) = =log Poﬂ_Ao(x) = -log /u(Ao) ,

m(hyn PR )

i

ro, (¢ (x)) = -log qﬁ(‘f’_:X)) =i — e i)
/u(tf’ AgnAy)

s (A ) ’

= =log

flby o By P7R)

r21(tP2(X))= -log q21(‘f’2(X)) = -log

/«(?'QA A A an)
= =log ,
/u( ? A./aA )
and finally _
k=1 wulp ko) 14....4A)
Le-1)1(¢ (x)) =log (‘f_k+2 WPTY
Thus we obtaln
k-1
E:' EO 1(p H(x)) = log/u(A) log Pq

Z.21 Theorem!?
Let (X, X, x;4¢) denote an MDS and T (:= TY,)

on L1(X,§Z,/¢). Consider the functions r and

Then
lim r = r
It < 00 ok !
where
r: = 1lim T r,
n >0
for the Cesavo means n-1
1 i
hi=g X T -
i=0

Proof:

A Pa,n 502110)

L, (x) = v, (x). N

the induced operator

T, defined above.

By the mean ergodic theorem (IV.6) it is clear that the limit r

exists and is T-invariant. But by (Z.20)
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-l

froe = Tt < Illgo ”I'i1"9’i‘r1° o
n-1
|
=a & hryg-rg

0

(i
]

which converges to zero by (Z.19). B

Z.22 Corollary (McMillan, 1953):
If (X, Z,m3y) 1is an ergodic MDS then lim T = h/u(X; $) L .

e Lt
Proof:
By the ergodicity of @ we have 1lim Pop = ¢ % end
ko
c=flimr du = lim fr d =lim1h (o{k)d =h (L,y). B
= Tok ok Kk M R R
ks w koo ke

This last corollary has important applications in information theory
as shown in part 2 of this Appendix.
Note that we have used the mean ergodic theorem and have shown

L1-convergence in (Z.21) and (Z.22), whereas usually a.e.-convergence
is proved by means of Birkhoff’s ergodic theorem and Doob’s martingale

theorem, which we did not need hers.

References: Adler 59613, Ash E965], Bauer E963], Breiman E957],
Feinstein [1954), [1958], Gray and Ornstein [1979] ,
Khinchin [1957), Kierfer [198f], McMillan [1957],
Parthasarathy [1961], Praffelhuber [1971], Shannon [1948],
Wolfowitz 59643.
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-~ - van der Waerden III/14
- - UWeyl 1Iv/13
- - Uwiener V/16
time of mean recurrence III/14
t -information XI/2
T ~invariant set IV/13a

topological dynamical system (= TDS) I1/1

entropy (= t-entropy) XII/2

vity) II1/9, IX/15
-~ generator XII/12a
~ group D/1
~ k-shift XII/12a
~ subshift XII/12a
total set B/3
trace Y/10
transinformation Z/10
transition matrix 1I1I/7
-~ probability II/5, II/12

uniform entropy XIII/1, XIII/6
uniformly ergodic IV/1B, w/1
uniform structure XIII/6
uniguely ergodic IV/30

unit ball B/1

- circle D/2

Urysohn's lemma A/

variation (of a function) 1v/23

v ¥ —glgebra 2/21

w8 —partition XII/44

weak Bernoulli system XII/1B
weakly continuous channel 2/14
- mixing IX/3

weak operator topology B/3
~ % pperator topology 1V/2
- topolooy B/1

~ * topology B/2

weighting function XI/13
word Z/7

ergodicity (= topological transiti-

sy




zero element IV/1C
zero-two-law X/6, X/B
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