Expositiones
Mathematicae

Spherical distributions: Schoenberg (1938) revisited

A.G.M. Steerneman, F. van Perlo-ten Kleij*
Department of Econometrics, University of Groningen, Landleven 5, P.O. Box 800, 9700AV Groningen, Netherlands

Received 24 May 2004; received in revised form 26 August 2004

Abstract

An m-dimensional random vector X is said to have a spherical distribution if and only if its characteristic function is of the form $\phi(\|t\|)$, where $t \in \mathbb{R}^{m},\|\cdot\|$ denotes the usual Euclidean norm, and ϕ is a characteristic function on \mathbb{R}. A more intuitive description is that the probability density function of X is constant on spheres. The class Φ_{m} of these characteristic functions ϕ is fundamental in the theory of spherical distributions on \mathbb{R}^{m}. An important result, which was originally proved by Schoenberg (Ann. Math. 39(4) (1938) 811-841), is that the underlying characteristic function ϕ of a spherically distributed random m-vector X belongs to Φ_{∞} if and only if the distribution of X is a scale mixture of normal distributions. A proof in the context of exchangeability has been given by Kingman (Biometrika 59 (1972) 492-494). Using probabilistic tools, we will give an alternative proof in the spirit of Schoenberg we think is more elegant and less complicated.

© 2005 Elsevier GmbH . All rights reserved.
MSC 2000: primary 60E05; 60E10; 62E10; 62H05; secondary 42A61; 60F05; 60F15
Keywords: Spherical distribution; Characteristic function; Normal distribution

1. Introduction

The class of spherical probability distributions can be defined in a number of equivalent ways (see, e.g., $[4,6,7]$). We use a definition in terms of characteristic functions, that is, the

[^0]random m-vector X is said to have a spherical distribution if and only if the corresponding characteristic function $\psi(t), t \in \mathbb{R}^{m}$, is a function of $\|t\|$ only. The class of all characteristic functions ϕ on \mathbb{R} such that $\phi(\|t\|)$ is a characteristic function is denoted by Φ_{m}. If $\phi \in \Phi_{k}$ for all k, we say that $\phi \in \Phi_{\infty}$. Notice that $\Phi_{1} \supset \Phi_{2} \supset \cdots \supset \Phi_{\infty}$.

In the theory of spherical distributions, a key role is played by the random vector U that is uniformly distributed on the unit sphere S^{m-1} in \mathbb{R}^{m}. We denote this by $U \sim \mathscr{U}\left(S^{m-1}\right)$. Let $\mathcal{O}(m)$ denote the group of orthogonal $m \times m$ matrices. Because the distribution of U is invariant under orthogonal transformations, we know that $E \mathrm{e}^{\mathrm{it} t^{\prime} U}=E \mathrm{e}^{\mathrm{i} t^{\prime} C U}$ for all $C \in \mathcal{O}(m), t \in \mathbb{R}^{m}$. Therefore, this characteristic function is invariant under the action of the group of all orthogonal $m \times m$ matrices, and hence it depends on t via the function $\|t\|$, where $\|\cdot\|$ denotes the usual Euclidean norm. So, we can write $E \mathrm{e}^{\mathrm{it} t^{\prime} U}=\Omega_{m}(\|t\|)$. Let ω_{m} denote the area of S^{m-1} and $\mathrm{d} \omega_{m}$ its surface element, then

$$
\begin{aligned}
\Omega_{m}(\|t\|) & =\frac{1}{\omega_{m}} \int_{S^{m-1}} \mathrm{e}^{\mathrm{i} t^{\prime} u} \mathrm{~d} \omega_{m}(u) \\
& =\frac{1}{\omega_{m}} \int_{S^{m-1}} \mathrm{e}^{\mathrm{i}\|t\| u_{m}} \mathrm{~d} \omega_{m}(u),
\end{aligned}
$$

where we have used the fact that $\Omega_{m}(\|t\|)=\Omega_{m}\left(\left\|C^{\prime} t\right\|\right)$ for all $C \in \mathcal{O}(m)$ and in particular for $C=\left(c_{1}, c_{2}, \ldots, c_{m-1},\|t\|^{-1} t\right)$, where the columns of this matrix are chosen to be mutually orthogonal and have unit length. Hence, it can be written

$$
\begin{equation*}
\Omega_{m}(\|t\|)=\frac{1}{\omega_{m}} f_{m}(\|t\|) \tag{1}
\end{equation*}
$$

where

$$
f_{m}(r)=\int_{S^{m-1}} \mathrm{e}^{\mathrm{i} r u_{m}} \mathrm{~d} \omega_{m}(u)
$$

and

$$
\omega_{m}=f_{m}(0)
$$

It is well-known that

$$
\mathrm{d} \omega_{m}=\left(1-t^{2}\right)^{(m-3) / 2} \mathrm{~d} t \mathrm{~d} \omega_{m-1}
$$

and

$$
\omega_{m}=f_{m}(0)=\frac{2 \pi^{m / 2}}{\Gamma(m / 2)}
$$

see, e.g., [10]. It hence follows from (1) that

$$
\begin{equation*}
\Omega_{m}(r)=\frac{\Gamma(m / 2)}{\sqrt{\pi} \Gamma((m-1) / 2)} \int_{-1}^{1} \mathrm{e}^{\mathrm{i} r t}\left(1-t^{2}\right)^{(m-3) / 2} \mathrm{~d} t \tag{2}
\end{equation*}
$$

Schoenberg [11] gave the following representation for characteristic functions in Φ_{m}. We give a short proof.

Theorem 1 (Schoenberg [11]). The random m-vector X has a spherical distribution with characteristic function $\psi(t)=\phi(\|t\|)$ if and only if

$$
\begin{equation*}
\phi(\|t\|)=\int_{0}^{\infty} \Omega_{m}(\|t\| y) \mathrm{d} Q(y) \tag{3}
\end{equation*}
$$

for some probability measure Q on $[0, \infty)(Q$ is in fact the probability distribution of $\|X\|)$.
Proof. Assume X has a spherical distribution with characteristic function $\psi(t)=\phi(\|t\|)$. Let U be uniformly distributed on the unit sphere S^{m}, independent of X. First note that

$$
\begin{aligned}
\phi(\|t\|) & =\psi(t)=E \psi(\|t\| U)=E E \mathrm{e}^{\mathrm{i}\|t\| U^{\prime} X}=E \Omega_{m}(\|t\|\|X\|) \\
& =\int_{0}^{\infty} \Omega_{m}(\|t\| y) \mathrm{d} Q(y),
\end{aligned}
$$

where we have used the fact that $\psi(t)$ is constant on unit spheres, that is $\psi(t)=\psi(\|t\| u)$ for all u with $\|u\|=1$.

Conversely, the right-hand side of (3) is the characteristic function of a spherical distribution on \mathbb{R}^{m}. This is easily seen if we define $X=R U$ where $R \geqslant 0$ has probability distribution Q, and $U \sim \mathscr{U}\left(S^{m-1}\right)$ independent of R, because

$$
\int_{0}^{\infty} \Omega_{m}(\|t\| y) \mathrm{d} Q(y)=E \Omega_{m}(\|t\| R)=E E \mathrm{e}^{\mathrm{i} R t^{\prime} U}=E \mathrm{e}^{\mathrm{i} t^{\prime}(R U)}
$$

which is the characteristic function of $X=R U$. Its distribution is obviously invariant under orthogonal transformations.

The class Φ_{∞} is the topic of the next section. We will give an alternative proof of the well-known result that a characteristic function ϕ belongs to Φ_{∞} if and only if it is the characteristic function corresponding to a scale mixture of normal distributions. An important element in this proof is the behaviour of $\Omega_{m}(r \sqrt{m})$ as $m \rightarrow \infty$. Pointwise convergence of $\Omega_{m}(r \sqrt{m})$ has been pointed out to Schoenberg by J. von Neumann (see [11, footnote 12]):

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \Omega_{m}(r \sqrt{m})=\mathrm{e}^{-r^{2} / 2} \tag{4}
\end{equation*}
$$

Hartman and Wintner [8] attributed this result to Laplace, see their footnote 13. However, global uniform convergence of $\Omega_{m}(r \sqrt{m})$ is needed, that is, (4) must hold uniformly for all real values of r. This global uniform convergence is a key element in the proof, yet it is not easy to establish. Schoenberg's proof is quite complex and is organized in the form of three lemmas [11, Lemmas 1-3]. We will prove global uniform convergence of $\Omega_{m}(r \sqrt{m})$ by using probabilistic tools, which makes the proof, as we think, shorter, more elegant, and less complicated.

2. The class Φ_{∞}

More formally, we focus on the following theorem.

Theorem 2 (Schoenberg [11]). The elements $\phi: \mathbb{R} \rightarrow[-1,1]$ of Φ_{∞} can be represented as

$$
\begin{equation*}
\phi(t)=\int_{0}^{\infty} \mathrm{e}^{-t^{2} y^{2} / 2} \mathrm{~d} Q(y) \tag{5}
\end{equation*}
$$

where Q is a probability measure on $[0, \infty)$.
A proof in the context of exchangeability has been given by Kingman [9] and a slightly adapted version of this proof can be found in Fang et al. [7]. The proof we will give uses the basic ideas of Schoenberg [11], however, the crucial step of global uniform convergence of $\Omega_{m}(r \sqrt{m})$ is proved by applying more modern probabilistic tools. While it took Schoenberg quite some effort to establish global uniform convergence of $\Omega_{m}(r \sqrt{m})$, our argument is relatively short and, as we think, more transparent.

Donoghue [5, pp. 201-206] already presented a simplified proof of the required global convergence, but it is still rather complicated and technical. Chapter 5 of Berg et al. [2] is dedicated to an abstract form of Schoenberg's theorem and generalizations. They used the concept of a Schoenberg triple. Their approach also leads to a simplification.

Proof. First, we will show that $\phi \in \Phi_{m}$ for all m. Let Y be a random variable that is distributed according to the probability measure Q, and let X_{1}, \ldots, X_{m} be random variables that are conditionally independent given Y, each with conditional distribution given Y that is $\mathscr{N}\left(0, Y^{2}\right), i=1, \ldots, m$. Define $X=\left(X_{1}, \ldots, X_{m}\right)^{\prime}$, then X is spherically distributed on \mathbb{R}^{m} and for its characteristic function we obtain, letting $t \in \mathbb{R}^{m}$,

$$
\begin{aligned}
E \mathrm{e}^{\mathrm{i} t^{\prime} X} & =E E\left(\mathrm{e}^{\mathrm{i} t^{\prime} X} \mid Y\right) \\
& =E \mathrm{e}^{-\|t\|^{2} Y^{2} / 2}=\int_{0}^{\infty} \mathrm{e}^{-\|t\|^{2} y^{2} / 2} \mathrm{~d} Q(y) \\
& =\phi(\|t\|)
\end{aligned}
$$

Hence, $\phi \in \Phi_{m}$ for all m. In terms of integrals the derivation above reads as follows:

$$
E \mathrm{e}^{\mathrm{i} t^{\prime} X} \equiv \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \exp \left(\mathrm{i} \sum_{j=1}^{m} t_{j} X_{j}\right) g\left(x_{1}, \ldots, x_{m}\right) \mathrm{d} x_{1} \cdots \mathrm{~d} x_{m}
$$

The probability density function g is given by

$$
g\left(x_{1}, \ldots, x_{m}\right)=\int_{0}^{\infty} \prod_{j=1}^{m} h\left(x_{j} \mid y\right) \mathrm{d} Q(y),
$$

where

$$
h(x \mid y)=\left(2 \pi y^{2}\right)^{-\frac{1}{2}} \exp \left(-\frac{x^{2}}{2 y^{2}}\right)
$$

Now we use

$$
\int_{-\infty}^{\infty} \exp \left(\mathrm{i} t_{j} x_{j}\right) h\left(x_{j} \mid y\right) \mathrm{d} x_{j}=\exp \left(-\frac{1}{2} t_{j}^{2} y^{2}\right)
$$

for $j=1, \ldots, m$. By Fubini's theorem we now obtain

$$
E \mathrm{e}^{\mathrm{i} t^{\prime} X}=\int_{0}^{\infty} \exp \left(-\frac{1}{2}\|t\|^{2} y^{2}\right) \mathrm{d} Q(y)
$$

Second, we have to prove that we can find such a representation for any $\phi \in \Phi_{\infty}$. Suppose $\phi \in \Phi_{m}$ for all m, then we can write

$$
\begin{equation*}
\phi(t)=\int_{0}^{\infty} \Omega_{m}(t y \sqrt{m}) \mathrm{d} F_{m}(y) \tag{6}
\end{equation*}
$$

for some probability distribution function F_{m} on $[0, \infty)$. If we let $m \rightarrow \infty$ in (6), it is tempting to exploit (4) to arrive at the representation (5). However, to apply Helly's well-known convergence theorem for distribution functions (see, e.g., [1, Theorem 8.2.1]), pointwise convergence of $\Omega_{m}(r \sqrt{m})$ is not sufficient. Because the interval of integration in (6) is infinite, we need global uniform convergence of $\Omega_{m}(r \sqrt{m})$. As we already stated in section 1, Schoenberg [11] proved that $\Omega_{m}(r \sqrt{m}) \rightarrow \mathrm{e}^{-r^{2} / 2}$ uniformly on \mathbb{R} as $m \rightarrow \infty$. We shall give an alternative proof for this fact.

By making the transformation $t=x / \sqrt{m}$ in (2), it is easy to see that $\Omega_{m}(r \sqrt{m})$, as a function of r, is the characteristic function corresponding to the probability density function

$$
q_{m}(x)=\frac{\Gamma(m / 2)}{\sqrt{\pi m} \Gamma((m-1) / 2)}\left(1-\frac{x^{2}}{m}\right)^{(m-3) / 2} I_{(-\sqrt{m}, \sqrt{m})}(x)
$$

On account of Stirling's formula we know that

$$
\lim _{m \rightarrow \infty} \frac{\Gamma(m / 2)}{\Gamma((m-1) / 2) \sqrt{m / 2}}=1
$$

Moreover,

$$
\lim _{m \rightarrow \infty}\left(1-\frac{x^{2}}{m}\right)^{(m-3) / 2}=\mathrm{e}^{-x^{2} / 2} \quad \text { for all } x
$$

Therefore, $q_{m}(x) \rightarrow q_{\infty}(x)=(2 \pi)^{-1 / 2} \mathrm{e}^{-x^{2} / 2}$ for all x, as $m \rightarrow \infty$, where we immediately recognize the standard normal distribution. We now want to apply Scheffé's lemma.

Lemma 1 (Scheffe's lemma). Let λ be a measure (not necessarily finite) on a space (Ω, \mathscr{B}) and let p and p_{n} be probability densities w.r.t. λ. If $p_{n} \rightarrow p$ a.e. [λ], then

$$
\sup _{E \in \mathscr{B}}\left|\int_{E} p \mathrm{~d} \lambda-\int_{E} p_{n} \mathrm{~d} \lambda\right|=\frac{1}{2} \int\left|p-p_{n}\right| \mathrm{d} \lambda \rightarrow 0 .
$$

For a proof of this lemma see, for example, Billingsley [3, p. 224]. It follows from Lemma 1 that

$$
\lim _{m \rightarrow \infty} \int\left|q_{m}(x)-q_{\infty}(x)\right| \mathrm{d} x=0
$$

If we define $\Omega_{\infty}(r)=\mathrm{e}^{-r^{2} / 2}$, the characteristic function corresponding to $q_{\infty}(x)$, then we have

$$
\begin{align*}
\left|\Omega_{m}(r \sqrt{m})-\Omega_{\infty}(r)\right| & =\left|\int \mathrm{e}^{\mathrm{i} r x} q_{m}(x) \mathrm{d} x-\int \mathrm{e}^{\mathrm{i} r x} q_{\infty}(x) \mathrm{d} x\right| \\
& \leqslant \int\left|q_{m}(x)-q_{\infty}(x)\right| \mathrm{d} x \tag{7}
\end{align*}
$$

It now follows that $\Omega_{m}(r \sqrt{m}) \rightarrow \Omega_{\infty}(r)$ uniformly in r. Following the same reasoning as Schoenberg [11], we have, according to Helly's theorem, that there exists a subsequence $F_{m_{k}}$ of F_{m} such that $F_{m_{k}} \rightarrow F$ weakly, where F is a probability distribution function. Now we write

$$
\phi(t)=\int_{0}^{\infty}\left(\Omega_{m}(t y \sqrt{m})-\mathrm{e}^{-t^{2} y^{2} / 2}\right) \mathrm{d} F_{m}(y)+\int_{0}^{\infty} \mathrm{e}^{-t^{2} y^{2} / 2} \mathrm{~d} F_{m}(y)
$$

As $m \rightarrow \infty$, we obtain from (7) that

$$
\left|\int_{0}^{\infty}\left(\Omega_{m}(t y \sqrt{m})-\mathrm{e}^{-t^{2} y^{2} / 2}\right) \mathrm{d} F_{m}(y)\right| \leqslant \int_{-\infty}^{\infty}\left|q_{m}(x)-q_{\infty}(x)\right| \mathrm{d} x \rightarrow 0
$$

and, from $F_{m_{k}} \rightarrow F$ weakly, that

$$
\int_{0}^{\infty} \mathrm{e}^{-t^{2} y^{2} / 2} \mathrm{~d} F_{m_{k}}(y) \rightarrow \int_{0}^{\infty} \mathrm{e}^{-t^{2} y^{2} / 2} \mathrm{~d} F(y)
$$

Putting things together, we find

$$
\phi(t)=\int_{0}^{\infty} \mathrm{e}^{-t^{2} y^{2} / 2} \mathrm{~d} F(y)
$$

Acknowledgements

The authors would like to thank an anonymous referee for suggestions for improvement of the presentation and for the Refs. [2,5].

References

[1] R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972.
[2] C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Graduate Texts in Mathematics, vol. 100, Springer, Berlin, Heidelberg, New York.
[3] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[4] S. Cambanis, S. Huang, G. Simons, On the theory of elliptically contoured distributions, J. Multivariate Anal. 11 (1981) 368-385.
[5] W.F. Donoghue Jr., Distributions and Fourier Transforms, Academic Press, New York, 1969.
[6] M.L. Eaton, A characterization of spherical distributions, J. Multivariate Anal. 20 (1986) 272-276.
[7] K.T. Fang, S. Kotz, K.W. Ng, Symmetric Multivariate and Related Distributions, Chapman \& Hall, London, 1990.
[8] P.H. Hartman, A. Wintner, On the spherical approach to the normal distribution law, Amer. J. Math. 62 (1940) 759-779.
[9] J.F.C. Kingman, On random sequences with spherical symmetry, Biometrika 59 (1972) 492-494.
[10] C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, vol. 17, Springer, Berlin, Heidelberg, New York, 1966.
[11] I.J. Schoenberg, Metric spaces and completely monotone functions, Ann. Math. 39 (4) (1938) 811-841.

[^0]: * Corresponding author. Tel.: +31503633671.

 E-mail addresses: a.g.m.steerneman@eco.rug.nl (A.G.M. Steerneman), f.van.perlo-ten.kleij@eco.rug.nl (F. van Perlo-ten Kleij).

