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Spherical distributions: Schoenberg (1938) revisited
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Abstract
An m-dimensional random vectorX is said to have a spherical distribution if and only if its char-

acteristic function is of the form�(‖t‖), wheret ∈ Rm, ‖.‖ denotes the usual Euclidean norm,
and� is a characteristic function onR. A more intuitive description is that the probability density
function ofX is constant on spheres. The class�m of these characteristic functions� is fundamental
in the theory of spherical distributions onRm. An important result, which was originally proved by
Schoenberg (Ann. Math. 39(4) (1938) 811–841), is that the underlying characteristic function� of a
spherically distributed randomm-vectorXbelongs to�∞ if and only if the distribution ofX is a scale
mixture of normal distributions.A proof in the context of exchangeability has been given by Kingman
(Biometrika 59 (1972) 492–494). Using probabilistic tools, we will give an alternative proof in the
spirit of Schoenberg we think is more elegant and less complicated.
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1. Introduction

The class of spherical probability distributions can be defined in a number of equivalent
ways (see, e.g.,[4,6,7]). We use a definition in terms of characteristic functions, that is, the
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randomm-vectorX is said to have a spherical distribution if and only if the corresponding
characteristic function�(t), t ∈ Rm, is a function of‖t‖ only. The class of all characteristic
functions� onR such that�(‖t‖) is a characteristic function is denoted by�m. If � ∈ �k

for all k, we say that� ∈ �∞. Notice that�1 ⊃ �2 ⊃ · · · ⊃ �∞.
In the theory of spherical distributions, a key role is played by the random vectorU that

is uniformly distributed on the unit sphereSm−1 in Rm. We denote this byU ∼ U(Sm−1).
Let O(m) denote the group of orthogonalm × m matrices. Because the distribution of
U is invariant under orthogonal transformations, we know thatEeit

′U = Eeit
′CU for all

C ∈ O(m), t ∈ Rm. Therefore, this characteristic function is invariant under the action of
the group of all orthogonalm × mmatrices, and hence it depends ont via the function‖t‖,
where‖ · ‖ denotes the usual Euclidean norm. So, we can writeEeit

′U = �m(‖t‖). Let�m

denote the area ofSm−1 and d�m its surface element, then

�m(‖t‖) = 1

�m

∫
Sm−1

eit
′u d�m(u)

= 1

�m

∫
Sm−1

ei‖t‖um d�m(u),

where we have used the fact that�m(‖t‖) = �m(‖C′t‖) for all C ∈ O(m) and in particular
for C = (c1, c2, . . . , cm−1, ‖t‖−1t), where the columns of this matrix are chosen to be
mutually orthogonal and have unit length. Hence, it can be written

�m(‖t‖) = 1

�m

fm(‖t‖), (1)

where

fm(r) =
∫

Sm−1
eirum d�m(u)

and

�m = fm(0).

It is well-known that

d�m = (1− t2)(m−3)/2 dt d�m−1

and

�m = fm(0) = 2�m/2

�(m/2)
,

see, e.g.,[10]. It hence follows from (1) that

�m(r) = �(m/2)√
��((m − 1)/2)

∫ 1

−1
eirt (1− t2)(m−3)/2 dt . (2)

Schoenberg[11] gave the following representation for characteristic functions in�m.We
give a short proof.
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Theorem 1 (Schoenberg[11]). The random m-vector X has a spherical distribution with
characteristic function�(t) = �(‖t‖) if and only if

�(‖t‖) =
∫ ∞

0
�m(‖t‖y)dQ(y) (3)

for some probability measure Q on[0, ∞) (Q is in fact the probability distribution of‖X‖).

Proof. AssumeX has a spherical distribution with characteristic function�(t) = �(‖t‖).
LetU be uniformly distributed on the unit sphereSm, independent ofX. First note that

�(‖t‖) = �(t) = E�(‖t‖U) = E Eei‖t‖U ′X = E�m(‖t‖‖X‖)
=

∫ ∞

0
�m(‖t‖y)dQ(y),

where we have used the fact that�(t) is constant on unit spheres, that is�(t) = �(‖t‖u)

for all uwith ‖u‖ = 1.
Conversely, the right-hand side of (3) is the characteristic function of a spherical distribu-

tion onRm. This is easily seen if we defineX=RU whereR�0 has probability distribution
Q, andU ∼ U(Sm−1) independent ofR, because

∫ ∞

0
�m(‖t‖y)dQ(y) = E�m(‖t‖R) = E EeiRt ′U = Eeit

′(RU),

which is the characteristic function ofX =RU . Its distribution is obviously invariant under
orthogonal transformations.�

The class�∞ is the topic of the next section. We will give an alternative proof of the
well-known result that a characteristic function� belongs to�∞ if and only if it is the char-
acteristic function corresponding to a scale mixture of normal distributions. An important
element in this proof is the behaviour of�m(r

√
m) asm → ∞. Pointwise convergence of

�m(r
√

m) has been pointed out to Schoenberg by J. von Neumann (see[11, footnote 12]):

lim
m→∞ �m(r

√
m) = e−r2/2; (4)

Hartman and Wintner[8] attributed this result to Laplace, see their footnote 13. However,
global uniform convergence of�m(r

√
m) is needed, that is, (4) must hold uniformly for

all real values ofr. This global uniform convergence is a key element in the proof, yet it is
not easy to establish. Schoenberg’s proof is quite complex and is organized in the form of
three lemmas[11, Lemmas 1–3]. We will prove global uniform convergence of�m(r

√
m)

by using probabilistic tools, which makes the proof, as we think, shorter, more elegant, and
less complicated.

2. The class�∞

More formally, we focus on the following theorem.
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Theorem 2 (Schoenberg[11]). The elements� : R → [−1,1] of�∞ can be represented
as

�(t) =
∫ ∞

0
e−t2y2/2 dQ(y), (5)

where Q is a probability measure on[0, ∞).

A proof in the context of exchangeability has been given by Kingman[9] and a slightly
adapted version of this proof can be found in Fang et al.[7]. The proof we will give uses the
basic ideas of Schoenberg[11], however, the crucial step of global uniform convergence of
�m(r

√
m) is proved by applyingmoremodern probabilistic tools.While it took Schoenberg

quite some effort to establish global uniform convergence of�m(r
√

m), our argument is
relatively short and, as we think, more transparent.
Donoghue[5, pp. 201–206]already presented a simplified proof of the required global

convergence, but it is still rather complicated and technical. Chapter 5 of Berg et al.[2] is
dedicated to an abstract form of Schoenberg’s theorem and generalizations. They used the
concept of a Schoenberg triple. Their approach also leads to a simplification.

Proof. First, we will show that� ∈ �m for all m. Let Y be a random variable that is
distributed according to the probability measureQ, and letX1, ..., Xm be random variables
that are conditionally independent givenY, each with conditional distribution givenY that
isN(0, Y 2), i = 1, ..., m. DefineX = (X1, . . . , Xm)′, thenX is spherically distributed on
Rm and for its characteristic function we obtain, lettingt ∈ Rm,

Eeit
′X = E E(eit

′X|Y )

= Ee−‖t‖2Y 2/2 =
∫ ∞

0
e−‖t‖2y2/2 dQ(y)

= �(‖t‖).
Hence,� ∈ �m for allm. In terms of integrals the derivation above reads as follows:

Eeit
′X ≡

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp


i

m∑
j=1

tjXj


 g(x1, . . . , xm)dx1 · · ·dxm.

The probability density functiong is given by

g(x1, . . . , xm) =
∫ ∞

0

m∏
j=1

h(xj |y)dQ(y),

where

h(x|y) = (2�y2)−
1
2 exp

(
− x2

2y2

)
.

Now we use∫ ∞

−∞
exp

(
itj xj

)
h(xj |y)dxj = exp

(
−1
2
t2j y2

)
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for j = 1, . . . , m. By Fubini’s theorem we now obtain

Eeit
′X =

∫ ∞

0
exp

(
−1
2
‖t‖2y2

)
dQ(y).

Second,we have to prove that we can find such a representation for any� ∈ �∞. Suppose
� ∈ �m for allm, then we can write

�(t) =
∫ ∞

0
�m(ty

√
m)dFm(y) (6)

for some probability distribution functionFm on [0, ∞). If we let m → ∞ in (6), it
is tempting to exploit (4) to arrive at the representation (5). However, to apply Helly’s
well-known convergence theorem for distribution functions (see, e.g.,[1, Theorem 8.2.1]),
pointwise convergence of�m(r

√
m) is not sufficient. Because the interval of integration in

(6) is infinite, we need global uniform convergence of�m(r
√

m). As we already stated in
section 1, Schoenberg[11] proved that�m(r

√
m) → e−r2/2 uniformly onR asm → ∞.

We shall give an alternative proof for this fact.
By making the transformationt = x/

√
m in (2), it is easy to see that�m(r

√
m), as a

function ofr, is the characteristic function corresponding to the probability density function

qm(x) = �(m/2)√
�m�((m − 1)/2)

(
1− x2

m

)(m−3)/2
I(−√

m,
√

m)(x).

On account of Stirling’s formula we know that

lim
m→∞

�(m/2)

�((m − 1)/2)
√

m/2
= 1.

Moreover,

lim
m→∞

(
1− x2

m

)(m−3)/2
= e−x2/2 for all x.

Therefore,qm(x) → q∞(x)=(2�)−1/2e−x2/2 for all x, asm → ∞, wherewe immediately
recognize the standard normal distribution. We now want to apply Scheffé’s lemma.

Lemma 1 (Scheffe’s lemma). Let� be ameasure(not necessarily finite) on a space(�,B)

and let p andpn be probability densities w.r.t.�. If pn → p a.e.[�], then

sup
E∈B

∣∣∣∣
∫

E

p d� −
∫

E

pn d�

∣∣∣∣ = 1

2

∫
|p − pn|d� → 0.

For a proof of this lemma see, for example, Billingsley[3, p. 224]. It follows from
Lemma 1 that

lim
m→∞

∫
|qm(x) − q∞(x)|dx = 0.
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If we define�∞(r) = e−r2/2, the characteristic function corresponding toq∞(x), then we
have

|�m(r
√

m) − �∞(r)| =
∣∣∣∣
∫
eirxqm(x)dx −

∫
eirxq∞(x)dx

∣∣∣∣
�

∫
|qm(x) − q∞(x)| dx. (7)

It now follows that�m(r
√

m) → �∞(r) uniformly in r. Following the same reasoning as
Schoenberg[11], we have, according to Helly’s theorem, that there exists a subsequence
Fmk

of Fm such thatFmk
→ F weakly, whereF is a probability distribution function. Now

we write

�(t) =
∫ ∞

0
(�m(ty

√
m) − e−t2y2/2)dFm(y) +

∫ ∞

0
e−t2y2/2 dFm(y).

Asm → ∞, we obtain from (7) that∣∣∣∣
∫ ∞

0
(�m(ty

√
m) − e−t2y2/2)dFm(y)

∣∣∣∣ �
∫ ∞

−∞
|qm(x) − q∞(x)| dx → 0,

and, fromFmk
→ F weakly, that

∫ ∞

0
e−t2y2/2 dFmk

(y) →
∫ ∞

0
e−t2y2/2 dF(y).

Putting things together, we find

�(t) =
∫ ∞

0
e−t2y2/2 dF(y). �
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