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A geometric boundary value problem related to the static vacuum
equations in General Relativity

The Schwarzschild spacetime is one of if not the most important example of a
spacetime in Mathematical General Relativity. It describes the static, vacuum
exterior region of a spherically symmetric, isolated star or black hole. The n+ 1-
dimensional Schwarzschild spacetime of mass m ∈ R is given by

g := −u2
mdt

2 +
1

u2
dr2 + r2 dΩ2,(1)

um := um(r) :=

√
1− 2m

rn−2
(2)

on the spacetime manifold R× (rm,∞)× Sn−1 , where dΩ2 denotes the canonical

metric on Sn−1 and rm := 0 for m ≤ 0 and rm := (2m)
1

n−2 for m > 0. This
definition applies whenever n ≥ 3.

The Schwarzschild spacetime is known to be rigid in various ways:

• Birkhoff’s theorem [1] asserts that the Schwarzschild spacetime is the only
spherically symmetric Lorentzian spacetime (Ln+1, g) which solves the vac-
uum Einstein equations Ric = 0.
• The static vacuum black hole uniqueness theorem asserts that the Schwarz-

schild spacetime is the only asymptotically flat spacetime (Ln+1, g) with
“black hole inner boundary” which is “static” and solves the vacuum
Einstein equations Ric = 0. Here, being static means that (Ln+1, g) =
(R×Mn, g = −u2dt2 + g), where (Mn, g) is an asymptotically Euclidean
Riemannian manifold and u : Mn → R+ is a function with u→ 1 near in-
finity. Static vacuum black hole uniqueness was proved by many authors
under a variety of assumptions, in particular by Bunting and Masood-
ul-Alam [2] for n = 3, using a very elegant method. Gibbons, Ida, and
Shiromizu [6] and Hwang [7] generalized this method to n ≥ 3 for spin
manifolds. In this context, the definition of a black hole inner boundary
is that ∂M consists of finitely many compact components with vanishing
mean curvature, H = 0, such that u = 0 on ∂M , and such that the normal
derivative ν(u) has a sign on ∂M .
• Analogously, the static vacuum photon sphere uniqueness theorem asserts

that the Schwarzschild spacetime is the only asymptotically flat spacetime
(Ln+1, g) with “photon sphere inner boundary” which is static and solves
the vacuum Einstein equations Ric = 0. Here, a photon sphere inner
boundary is defined as a timelike umbilic hypersurface Pn ↪→ (Ln+1, g) on
which u ≡ const, see [4]. Static vacuum photon sphere uniqueness was
proved by the author and Galloway [5] for n = 3, relying on the method
suggested by Bunting and Masood-ul-Alam [2].
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The goal of this talk was to show that the Schwarzschild spacetime is indeed
rigid in a much more general way [3]. Before we discuss the main rigidity theorem,
let us briefly recall the symmetry reduced Einstein vacuum equation for static
spacetimes (Rn ×Mn, g = −u2dt2 + g), the so-called static vacuum equations

uRic = ∇2u,(3)

4u = 0(4)

on Mn which follow directly from plugging the special form of g into the vacuum
Einstein equations Ric = 0. Here, Ric denotes the Ricci tensor of g. A straightfor-
ward consequence obtained by tracing (3) is that the scalar curvature of (Mn, g)
vanishes, which we denote as R = 0. These equations are used in [2, 6, 7, 4, 5].

If not discussing vacuum but matter models with non-negative energy density,
one finds R ≥ 0 — at least in the so-called “Riemannian” case. This condition
is related to the dominant energy condition in General Relativity. The rigidity
theorem we prove does not assume (3) and neither R = 0, only (4) and R ≥ 0.

Theorem 1 (Rigidity of Schwarzschild manifold). Assume n ≥ 3 and let Mn be a
smooth, connected, n-dimensional manifold with non-empty, possibly disconnected,
smooth, compact inner boundary ∂M =

.∪Ii=1Σn−1
i . Let g be a smooth Riemannian

metric on Mn. Assume that (Mn, g) has non-negative scalar curvature R ≥ 0 and
that it is geodesically complete up to its inner boundary ∂M . Assume in addition
that (Mn, g) is asymptotically isotropic with one end of mass m ∈ R.

Furthermore, assume that the inner boundary ∂M is umbilic in (Mn, g), and
that each component Σn−1

i has constant mean curvature Hi with respect to the
outward pointing unit normal νi. Assume that there exists a function u : Mn → R
with u > 0 away from ∂M which is smooth and harmonic on (Mn, g), so that
4u = 0. We ask that u is such that u|Σn−1

i
≡: ui is constant on each Σn−1

i and u

is asymptotically isotropic of the same mass m.
Finally, we assume that for each i = 1, . . . , I, we are either in the semi-static

horizon case

Hi = 0, ui = 0, νi(u) 6= 0,(5)

or we are in the true CMC case with Hi > 0, ui > 0, and such that there exist
constants ci >

n−2
n−1 so that

Rσi
= ciH

2
i ,(6)

2ν(u)i =

(
ci −

n− 2

n− 1

)
Hiui,(7)

where Rσi
denotes the scalar curvature of Σn−1

i with respect to its induced metric
σi and νi(u)|Σn−1

i
≡: ν(u)i denotes the normal derivative of u.

Then m > 0 and (Mn, g) is isometric to a suitable portion of the spatial
Schwarzschild manifold of mass m ((rm,∞)×Sn−1, gm := 1

u2 dr
2 +r2 dΩ2). More-

over, u coincides with the restriction of um (up to the isometry).

In Theorem 1, the asymptotic isotropy conditions are defined as follows:
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Definition 2. We say that (Mn, g) is asymptotically isotropic with one end of
mass m ∈ R, if Mn is diffeomorphic to Rn \ ball outside a compact set, and with
respect to the coordinates (yi) induced by this diffeomorphism, we have

gij =
(

1 +
m

2sn−2

) 4
n−2

δij +O2(
1

sn−1
)(8)

as s :=
√

(y1)2 + · · ·+ (yn)2 → ∞. We say that a function u : Mn → R is
asymptotically isotropic of mass m if, with respect to the same diffeomorphism
and coordinates described above, we have

u = 1− m

sn−2
+O2(

1

sn−1
)(9)

as s→∞.

We remark that Theorem 1 recovers the static vacuum black hole uniqueness
theorem in all dimensions (and dropping the spin assumption in [7, 6] and recov-
ers and generalizes the static vacuum photon sphere uniqueness theorem to all
dimenions.

Sketch of Proof of Theorem 1. In the talk, we gave a sketch of the proof of
Theorem 1 by pictures. For more details, please see [3].

The first step is to extend (Mn, g) across each true CMC inner boundary
component Σn−1

i by gluing a suitable, explicitly constructed Riemannian mani-

fold (Mn
i , gi) into (Mn, g) across Σn−1

i in a C1,1 fashion. The glue-in manifolds
(Mn

i , gi) are constructed such that they give rise to new inner boundary com-
ponents which are totally geodesic semi-static horizons, i.e. satisfy (5). Also by
construction, (Mn

i , gi) has vanishing scalar curvature. We will also extend the
harmonic function u by gluing it to a (positive multiple of a) gi-harmonic function
ui : M

n
i → R with C1,1-regularity across the gluing surface Σn−1

i , in a manner
that ui > 0 away from the new horizon boundary. This is possible because of
the constraint conditions (6), (7). The described argument reduces Theorem 1 to
the case where there are only semi-static horizon boundary components, see also
Figure 1.

The glue-in manifolds (Mn
i , gi) are defined as

gi :=
1

ui(r)2
dr2 +

r2

r2
i

σi,(10)

ui(r) :=

√
1− 2µi

rn−2
,(11)

onMn
i := ((2µi)

1
n−2 , ri)×Σn−1

i , where ri is the scalar curvature radius of (Σn−1
i , σi)

given by Rσi
=: (n−2)(n−1)

r2i
and µi > 0 is a suitably chosen mass. This glue-in

strategy generalizes that used in [5] to higher dimensions and possibly non-round
inner boundary (Σn−1

i , σi). See [3] for more properties of the manifolds (Mn
i , gi).
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glue in

Figure 1. Gluing in a suitable, explicitly constructed Riemann-
ian manifold (Mn

i , gi) into each inner boundary component Σn−1
i .

The new boundary components are totally geodesic semi-static
horizons.

As a second step, we adapt [2, 7, 6] and double the extended manifold con-
structed above across its umbilic, semi-static horizon boundary (again with C1,1-
regularity across the doubling surfaces) to obtain a new Riemannian manifold

(M̃n, g̃ ) which is geodesically complete and has two asymptotically isotropic ends
of the same ADM-mass m as (Mn, g), see Figure 2. We denote the original part

Mn ⊂ M̃n as M̃+ and the new copy as M̃−. At the same time, we extend the

function u to M̃n by

ũ : M̃n → R : p 7→

{
u(p) if p ∈ M̃+

−u(p) if p ∈ M̃−
(12)

and observe that ũ is smooth away from the gluing surfaces and C1,1 across the

gluing surfaces. Also, ũ is harmonic with respect to g̃, ũ(M̃n) = (−1, 1), and

±ũ → 1 as r → ∞ in M̃± is also asymptotically isotropic of mass m. This dou-
bling construction first employed by Bunting and Masood-ul-Alam [2] works even
though we do not assume the static vacuum equations (3), (4).

double

Figure 2. Doubling the extended manifold to a geodesically
complete one across the totally geodesic boundary.
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The third step consists in performing the conformal transformation and one
point insertion method from [2, 7, 6] and ensuring that it makes no use of (3).

More precisely, we conformally transform (M̃n, g̃ ) to M̂n := M̃n via

ĝ :=

(
1 + ũ

2

)− 4
n−2

g̃.(13)

Exploiting that ũ is harmonic with respect to g̃ and the fact that we chose the

magical Yamabe power, we find that R̂ ≥ 0. Under this conformal transform, the

original asymptotically isotropic end M̃+ then transforms into an asymptotically

isotropic end M̂n of vanishing ADM-mass m̂ = 0, see Figure 3. The asymptotics
of ũ and g̃ of the doubled end allows to insert a point p∞ in a C1,1 fashion so

that we obtain a geodesically complete manifold (M̂n
∞ := M̂n ∪ {p∞}, ĝ∞). This

manifold satisfies the assumptions of the rigidity case of the positive mass theorem
[9, 10], except the regularity assumptions across the finitely many gluing hyper-
surfaces and the point p∞. To remedy this problem, we appeal to McFeron and

Székelyhidi [8]. This shows that (M̂n
∞, ĝ∞) is globally isometric to Euclidean space.

conformal

C1,1 C1,1

m

m

doubled
insert point

m = 0

Figure 3. Conformal transformation and one-point insertion to a
geodesically complete Riemannian manifold with vanishing ADM-
mass and non-negative scalar curvature.

In order to conclude that (Mn, g) must have been isometric to a portion of

Schwarzschild (M̃n
m, g̃m), we proceed as follows: First, recall that each boundary

component Σn−1
i ↪→ (Mn, g) is closed and umbilic. As g is conformally equivalent

to ĝ and ĝ is isometric to δ, we find that the image of Σn−1
i ↪→ (Rn, δ) is a closed,

totally umbilic hypersurface and thus necessarily a round sphere and thus in par-

ticular a topological sphere by standard arguments. Second, we know that M̂n
∞

is diffeomorphic to Rn and thus M̂n diffeomorphic to Rn \ {0}. From topological
considerations, this shows that the boundary ∂M must have been connected.
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Now, let us consider the picture in (Rn, δ): A standard computation shows that

the conformal factor ϕ :=
(

1+ũ
2

)−1
is harmonic with respect to ĝ and thus with

respect to δ outside the round sphere image of Σn−1. The boundary value of ϕ
on the round sphere image is a constant by construction, and ϕ tends to 1 near
infinity. Thus by the maximum principle and standard facts on Green’s functions,
we find that ϕ is the conformal factor of Schwarzschild of mass m. Because of the
boundary data assumptions (5), (6), (7), respectively, m > 0.

This finishes the sketch of the proof of Theorem 1.
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