Carla Cederbaum

A GEOMETRIC BOUNDARY VALUE PROBLEM RELATED TO THE STATIC VACUUM
EQUATIONS IN GENERAL RELATIVITY

The Schwarzschild spacetime is one of if not the most important example of a
spacetime in Mathematical General Relativity. It describes the static, vacuum
exterior region of a spherically symmetric, isolated star or black hole. The n + 1-
dimensional Schwarzschild spacetime of mass m € R is given by

1
(1) g = —uZ,dt* + EdTQ + 2 dQ?,
2m
(2) U = Uy (1) =4/ 1 — o

on the spacetime manifold R x (r,,,00) x S*~! | where d2? denotes the canonical
metric on St and 7, := 0 for m < 0 and 7, = (2m)ﬁ for m > 0. This
definition applies whenever n > 3.

The Schwarzschild spacetime is known to be rigid in various ways:

e DBirkhoff’s theorem [1] asserts that the Schwarzschild spacetime is the only
spherically symmetric Lorentzian spacetime (£, g) which solves the vac-
uum Einstein equations SRic = 0.

e The static vacuum black hole uniqueness theorem asserts that the Schwarz-
schild spacetime is the only asymptotically flat spacetime (£"*!, g) with
“black hole inner boundary” which is “static” and solves the vacuum
Einstein equations fRic = 0. Here, being static means that (L"*! g) =
(R x M™, g = —u?dt? + g), where (M", g) is an asymptotically Euclidean
Riemannian manifold and u: M™ — R is a function with v — 1 near in-
finity. Static vacuum black hole uniqueness was proved by many authors
under a variety of assumptions, in particular by Bunting and Masood-
ul-Alam [2] for n = 3, using a very elegant method. Gibbons, Ida, and
Shiromizu [6] and Hwang [7] generalized this method to n > 3 for spin
manifolds. In this context, the definition of a black hole inner boundary
is that OM consists of finitely many compact components with vanishing
mean curvature, H = 0, such that © = 0 on OM, and such that the normal
derivative v(u) has a sign on OM.

e Analogously, the static vacuum photon sphere uniqueness theorem asserts
that the Schwarzschild spacetime is the only asymptotically flat spacetime
(L") g) with “photon sphere inner boundary” which is static and solves
the vacuum Einstein equations Ric = 0. Here, a photon sphere inner
boundary is defined as a timelike umbilic hypersurface P < (L"*1,g) on
which 4 = const, see [4]. Static vacuum photon sphere uniqueness was
proved by the author and Galloway [5] for n = 3, relying on the method
suggested by Bunting and Masood-ul-Alam [2].

1



The goal of this talk was to show that the Schwarzschild spacetime is indeed
rigid in a much more general way [3]. Before we discuss the main rigidity theorem,
let us briefly recall the symmetry reduced Einstein vacuum equation for static

spacetimes (R™ x M™, g = —u?dt? + g), the so-called static vacuum equations
(3) uRic = V3u,
(4) Au=0

on M™ which follow directly from plugging the special form of g into the vacuum
Einstein equations Ric = 0. Here, Ric denotes the Ricci tensor of g. A straightfor-
ward consequence obtained by tracing (3) is that the scalar curvature of (M™, g)
vanishes, which we denote as R = 0. These equations are used in [2, 6, 7, 4, 5].
If not discussing vacuum but matter models with non-negative energy density,
one finds R > 0 — at least in the so-called “Riemannian” case. This condition
is related to the dominant energy condition in General Relativity. The rigidity
theorem we prove does not assume (3) and neither R = 0, only (4) and R > 0.

Theorem 1 (Rigidity of Schwarzschild manifold). Assume n > 3 and let M™ be a
smooth, connected, n-dimensional manifold with non-empty, possibly disconnected,
smooth, compact inner boundary OM = 0{212;’_1. Let g be a smooth Riemannian
metric on M™. Assume that (M™, g) has non-negative scalar curvature R > 0 and
that it is geodesically complete up to its inner boundary OM. Assume in addition
that (M™, g) is asymptotically isotropic with one end of mass m € R.

Furthermore, assume that the inner boundary OM is umbilic in (M™,g), and
that each component 2?71 has constant mean curvature H; with respect to the
outward pointing unit normal v;. Assume that there exists a function u: M™ — R
with w > 0 away from OM which is smooth and harmonic on (M"™,g), so that
Au=0. We ask that u is such that u|gn-1 =: u; is constant on each X' and u
is asymptotically isotropic of the same mass m.

Finally, we assume that for each i = 1,...,1, we are either in the semi-static
horizon case

(5) Hi = 0, U; = 0, Z/Z(U) 75 0,

or we are in the true CMC case with H; > 0, u; > 0, and such that there exist
constants ¢; > Z—:% so that

(6) Ra- = ciH7;27

i

n—2

(7) 2w(u); = (ci — 1) Hiu;,

n —

where Ry, denotes the scalar curvature of Z?fl with respect to its induced metric
o; and vi(u)|gn-1 =: v(u); denotes the normal derivative of u.

Then m > 0 and (M™,g) is isometric to a suitable portion of the spatial
Schwarzschild manifold of mass m ((ry,,00) x S*~1 g, = u—lzdr2 +7r2dQ?). More-
over, u coincides with the restriction of u, (up to the isometry).

In Theorem 1, the asymptotic isotropy conditions are defined as follows:
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Definition 2. We say that (M™,g) is asymptotically isotropic with one end of
mass m € R, if M™ is diffeomorphic to R™ \ ball outside a compact set, and with
respect to the coordinates (y*) induced by this diffeomorphism, we have

1
snfl)

4
m \ -3
(8) gij = (1 + 25"7*2) 5ij + O
as s == /(y)2+- + (y")2 — oo. We say that a function u: M™ — R is
asymptotically isotropic of mass m if, with respect to the same diffeomorphism
and coordinates described above, we have

(9) u=1-—

as s — Q.

+ O

gn—2 5"—1)

We remark that Theorem 1 recovers the static vacuum black hole uniqueness
theorem in all dimensions (and dropping the spin assumption in [7, 6] and recov-
ers and generalizes the static vacuum photon sphere uniqueness theorem to all
dimenions.

Sketch of Proof of Theorem 1. In the talk, we gave a sketch of the proof of
Theorem 1 by pictures. For more details, please see [3].

The first step is to extend (M™,g) across each true CMC inner boundary
component Z?_l by gluing a suitable, explicitly constructed Riemannian mani-
fold (M}, g;) into (M™,g) across 2?71 in a Cb! fashion. The glue-in manifolds
(M, g;) are constructed such that they give rise to new inner boundary com-
ponents which are totally geodesic semi-static horizons, i.e. satisfy (5). Also by
construction, (M, g;) has vanishing scalar curvature. We will also extend the
harmonic function u by gluing it to a (positive multiple of a) g;-harmonic function
u;: M — R with Cblregularity across the gluing surface 2?71, in a manner
that u; > 0 away from the new horizon boundary. This is possible because of
the constraint conditions (6), (7). The described argument reduces Theorem 1 to
the case where there are only semi-static horizon boundary components, see also

Figure 1.

The glue-in manifolds (M}, g;) are defined as
1 2

r
10 i:=:44447d 2 —-504,
(10 g w;(r)? " +ri20

2,
(11) wi(r) :=4/1— o
on M := ((2u;) =3 ;) xS7 1 where r; is the scalar curvature radius of (X', o;)
given by R, =: % and p; > 0 is a suitably chosen mass. This glue-in

strategy generalizes that used in [5] to higher dimensions and possibly non-round
inner boundary (X77', ;). See [3] for more properties of the manifolds (M}, g;).
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glue in

FIGURE 1. Gluing in a suitable, explicitly constructed Riemann-
ian manifold (M, g;) into each inner boundary component E?‘l.
The new boundary components are totally geodesic semi-static

horizons.

As a second step, we adapt [2, 7, 6] and double the extended manifold con-
structed above across its umbilic, semi-static horizon boundary (again with C'+1-
regularity across the doubling surfaces) to obtain a new Riemannian manifold
(M ™. ¢ ) which is geodesically complete and has two asymptotically isotropic ends
of the same ADM-mass m as (M™,g), see Figure 2. We denote the original part
M" C M™ as M+ and the new copy as M~. At the same time, we extend the
function u to M™ by

u(p) ifpe Mt

12 U:M"—R:p— —
(12) B P {—u(p) iftpe M~

and observe that @ is smooth away from the gluing surfaces and C'''! across the
gluing surfaces. Also, u is harmonic with respect to g, ﬂ(ﬁ") = (-1,1), and
4% — 1 as r — oo in M7 is also asymptotically isotropic of mass m. This dou-
bling construction first employed by Bunting and Masood-ul-Alam [2] works even
though we do not assume the static vacuum equations (3), (4).

double

FiGURE 2. Doubling the extended manifold to a geodesically
complete one across the totally geodesic boundary.
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The third step consists in performing the conformal transformation and one
point insertion method from [2, 7, 6] and ensuring that it makes no use of (3).
More precisely, we conformally transform (M™,g) to M™ := M" via

_ (1+a\
(13) gr:( 5 ) g.

Exploiting that uw is harmonic with respect to g and the fact that we chose the
magical Yamabe power, we find that R > 0. Under this conformal transform, the
original asymptotically isotropic end M then transforms into an asymptotically
isotropic end M of vanishing ADM-mass m = 0, see Figure 3. The asymptotics
of & and § of the doubled end allows to insert a point p., in a C*! fashion so
that we obtain a geodesically complete manifold (JT/I\QO = M"U {Poo},Goo). This
manifold satisfies the assumptions of the rigidity case of the positive mass theorem
[9, 10], except the regularity assumptions across the finitely many gluing hyper-
surfaces and the point p... To remedy this problem, we appeal to McFeron and
Székelyhidi [8]. This shows that (M 2 Jso) is globally isometric to Euclidean space.

conformal

doubled

“~._ insertpoint .-~
SRR

F1GURE 3. Conformal transformation and one-point insertion to a
geodesically complete Riemannian manifold with vanishing ADM-
mass and non-negative scalar curvature.

In order to conclude that (M™, g) must have been isometric to a portion of
Schwarzschild (M,’}L,ﬁm), we proceed as follows: First, recall that each boundary
component XI""! < (M™, g) is closed and umbilic. As g is conformally equivalent
to g and g is isometric to §, we find that the image of £7~ ' < (R",§) is a closed,
totally umbilic hypersurface and thus necessarily a round sphere and thus in par-
ticular a topological sphere by standard arguments. Second, we know that ]/W\QLO
is diffeomorphic to R™ and thus M™ diffeomorphic to R™ \ {0}. From topological
considerations, this shows that the boundary dM must have been connected.



Now, let us consider the picture in (R™,4): A standard computation shows that

the conformal factor ¢ := (#)_1 is harmonic with respect to g and thus with
respect to § outside the round sphere image of X"~!. The boundary value of ¢
on the round sphere image is a constant by construction, and ¢ tends to 1 near
infinity. Thus by the maximum principle and standard facts on Green’s functions,
we find that ¢ is the conformal factor of Schwarzschild of mass m. Because of the
boundary data assumptions (5), (6), (7), respectively, m > 0.

This finishes the sketch of the proof of Theorem 1.
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