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1. Setup

Static isolated general relativistic systems have been studied from a number of perspectives including
their regularity, compactification and asymptotic considerations, symmetry classifications, construction
of explicit solutions etc. They serve as models of static stars and black holes. Here, we present a new
geometric approach to the study of static isolated systems and their physical properties for which we
suggest the name geometrostatics [C1,C2].
Static space-times are Lorentzian space-times possessing a timelike Killing vector fieldX – i. e.∇(αXβ) =
0 – that is hypersurface-orthogonal, i. e. X[α∇βXγ] = 0. They generically possess a 3 + 1-decomposition
with vanishing shift vector. In this canonical decomposition, the canonical lapse function is time-
independent and coincides with the Lorentzian length of the time-like Killing vector field. The spacelike
time-slices orthogonal to the time-like Killing vector field are isometric and have vanishing extrinsic
curvature. Their induced Riemannian metric is time-independent. We will subsequently identify all
canonical time-slices (M3, g).

Generic static space-times (M4, ds2) can be canonically decomposed via X = ∂t into

M4 = R×M3 and ds2 = −N2c2dt2 + g

with induced Riemannian metric g and lapse function N := 1
c

√
−ds2(∂t, ∂t) > 0.
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Here, c is the speed of light. Outside the support of the matter variables, Einstein’s equations reduce to
the Vacuum Static Metric Equations

N gRic = g∇2N and g4N = 0 (1)

Here, gRic is the Ricci curvature tensor of the metric g, g4N is the curvilinear Laplacian and g∇2N the
curvilinear Hessian (symmetric second covariant derivatives) of N .

2. Regularity and Asymptotics

It is useful to study the system (1) in wave-harmonic coordinates, i. e. local coordinates (xi) on
(M3, g) satisfying

ds2�xi = 0, (2)

where ds
2
� is the d’Alembert or wave operator with respect to ds2 = −N2c2dt2 + g.

In wave-harmonic coordinates, the vacuum static metric equations (1) are elliptic and therefore have
locally real analytic solutions (gij, N) [MzH]. We consider static space-times that are asymptoti-

cally flat in the sense that the Riemannian manifold (M3, g) consists of a compact set K ⊂ M3 and
one (or several) asymptotically flat ends E ⊂M3. On the end E, there are global coordinates (xi) such
that

gij = δij +O
(

1

r

)
and N = 1 +O

(
1

r

)
(3)

where r :=
√

(x1)2 + (x2)2 + (x3)2. In other words, the Riemannian metric is asymptotically Euclidean
and the lapse function decays like in Minkowski.
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Static asymptotically flat space-times satisfying the (vacuum) static metric equations (1) automatically
asymptotically decay like the spherically symmetric Schwarzschild solutions [KM]

N = 1− mG

rc2
+O

(
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r2

)
and gij =

(
1 +

2mG

rc2

)
δij +O

(
1

r2

)
(4)

in wave-harmonic asymptotically flat coordinates. Here, G is the gravitational constant, c the speed of
light, and m is the ADM-mass of the slice (M3, g).

3. Pseudo-Newtonian Gravity

The asymptotic decay (4) of the lapse function N resembles the asymptotic decay of the Newtonian
potential U in the classical Newtonian theory of gravity. The similarity becomes more prominent if we
make a change of variables (which is frequently used in the literature):

γ := N2 g and U := c2 logN (5)

We suggest to call these new variables pseudo-Newtonian potential U and pseudo-Newtonian
metric γ, respectively [C1,C2]. The vacuum static metric equations (1) transform into the vacuum
pseudo-Newtonian equations

γRic =
2

c4
dU × dU and γ4U = 0. (6)

The asymptotic decay (4) can be transformed accordingly. Comparing these equations and decay condi-
tions to the governing equation of vacuum static Newtonian Gravity, 4U = 0 and the well-known decay
for the Newtonian potential, we obtain

Newtonian Gravity Pseudo-Newtonian Gravity

δRic = 0 γRic = 2
c4
dU × dU

δ4U = 0 γ4U = 0

U = −mGr +O
(

1
r2

)
U = −mGr +O

(
1
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)
δij = δij gij = δij +O

(
1
r2c4

)
Here, δ denotes the flat background metric of Newtonian Gravity. As we work in three spatial dimen-
sions, the equation δRic = 0 is equivalent to δ being the flat background metric of Newtonian physics
and can thus be added to the ordinary vacuum Newtonian equation δ4U = 0. In the pseudo-Newtonian
variables (γ, U), static space-times thus resemble static Newtonian gravitating systems even more than
in the geometrostatic variables (g,N).

4. Newtonian Limit

On a formal level, the vacuum pseudo-Newtonian equations (6) converge to the vacuum Newtonian
equation(s) δRic = 0 and δ4U = 0 as c→∞. This can be made rigorous with the help of Ehlers’ frame
theory [E]. In Ehlers’ frame theory, General Relativity and Newtonian Gravity (or rather Newton-Cartan
Theory) appear as disjoint regimes of a common framework parametrized by λ := c−2 or λ := 0 in the
Newtonian case. The Lorentzian metric ds2 as well as the Newtonian potential then appear as derived
variables of two tensor fields g, h and an affine connection Γ. The Newtonian limit is hence not defined
for a single relativistic system but for a whole family of systems. The choice of this family is by no
means unique as the figure below illustrates.

.

g, h, T,Γ

GR

λλ = 0: NG

g, h, T,Γ
GR

interest
theory of

λλ = 0: NC .

Frame theory is a geometric (coordinate invariant) theory which has not yet been widely studied. We
suggest notions of Killing vectors, staticity, pseudo-Newtonian metric/potential, and asymptotic flatness
within frame theory [C1]. With these notions, we prove the following theorem in [C1].

Theorem 1. Let (M3, g(λ), N(λ)) be a family possessing a Newtonian limit (M3, δ, UN )
as λ→ 0. Then the pseudo-Newtonian variables behave such that

γij(λ) → γij(0) = δij (7)

U(λ) → U(0) = UN (8)

as c→∞ in wave-harmonic/Galilean coordinates (xi).

5. Mass and Center of Mass

How do physical properties behave along the Newtonian limit? Does, for example, ADM-mass converge
to Newtonian mass as λ → 0? We can answer this question – and the corresponding question for the
ADM-center of mass to the affirmative [C1].

Theorem 2. Let (M3, g(λ), N(λ)) be a family of static spacetimes possessing a New-
tonian limit (M3, δ, UN ) as λ → 0. Then the ADM-mass mADM (λ) and the ADM-
center of mass ~zADM (λ) converge to the Newtonian mass mADM (0) = mN and center
of mass ~zADM (0) = ~zN as λ → 0. The latter convergence assumes the use of wave-
harmonic/Galilean coordinates. Moreover, the CMC-center of mass [HY] coincides with
the ADM-center of mass and thus converges to the Newtonian center of mass, too.

This theorem relies on our definition of pseudo-Newtonian mass and center of mass [C1]:

Definition 1. Let (M3, γ, U) be a pseudo-Newtonian system. Let Σ be a closed 2-surface in M3.
Let ν be the γ-outer unit normal to and dσ is the γ-surface measure on Σ. We define the pseudo-
Newtonian mass and the pseudo-Newtonian center of mass of Σ by

mPN (Σ) :=
1

4πG

∫
Σ

∂U

∂ν
dσ and ~zPN (Σ) :=

1

4πGmPN

∫
Σ

(
∂U

∂ν
~x− U ∂~x

∂ν

)
dσ (9)

where ~x is the vector of asymptotically flat wave-harmonic (or γ-harmonic) coordinates.

By the Laplace equation in (1), both mPN and ~zPN are in fact independent of Σ if the surface Σ
encloses the support of the matter. Abbreviating ~z := ~zPN , we obtain an improvement of (4) as well as
a result on the Newtonian limit of mass and center of mass [C1].

U = −mG
r
− mG~z ·~x

r3
+O

(
1

r3

)
, (10)

Theorem 3. On any surface Σ enclosing the support of the matter, we have

mPN (Σ) = mADM and ~zPN (Σ) = ~zADM = ~zCMC (11)

We have thus localized ADM-mass and center of mass in the static setting.

For more results on geometrostatic systems, for example a discussion of test body behavior and of photon
spheres, please see [C1].

6. References

[C1] C. Cederbaum, The Newtonian Limit of Geometrostatics. PhD thesis, FU Berlin (2011).

[C2] C. Cederbaum, Geometrostatics: the geometry of static space-times. Proceedings of General
Relativity and Gravitation, 100 years after Einstein in Prague (to appear 2013).

[E] J. Ehlers, The Newtonian Limit of General Relativity. in: Classical Mechanics and Relativity:
Relationship and Consistency, Bibliopolis (1989), pp. 95-106.

[HY] G. Huisken & S.-T. Yau, Definition of Center of Mass for Isolated Physical Systems and
Unique Foliations by Stable Spheres with Constant Mean Curvature. Invent. Math. 124 (1996),
pp. 281-311.
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