

1. Setup

Static isolated general relativistic systems have been studied from a number of perspectives including their regularity, compactification and asymptotic considerations, symmetry classifications, construction of explicit solutions etc. They serve as models of static stars and black holes. Here, we present a new geometric approach to the study of static isolated systems and their physical properties for which we suggest the name **geometrostatics** [C1,C2].

Static space-times are Lorentzian space-times possessing a timelike Killing vector field X - i. e. $\nabla_{(\alpha} X_{\beta)} =$ 0 - that is hypersurface-orthogonal, i. e. $X_{\alpha} \nabla_{\beta} X_{\gamma} = 0$. They generically possess a 3+1-decomposition with vanishing shift vector. In this *canonical* decomposition, the *canonical* lapse function is timeindependent and coincides with the Lorentzian length of the time-like Killing vector field. The spacelike time-slices orthogonal to the time-like Killing vector field are isometric and have vanishing extrinsic curvature. Their induced Riemannian metric is time-independent. We will subsequently identify all canonical time-slices (M^3, g) .

Generic static space-times (M^4, ds^2) can be canonically decomposed via X = d

$$M^4 = \mathbb{R} \times M^3$$
 and $ds^2 = -N^2 c^2 dt^2 + g$

with induced Riemannian metric g and lapse function $N := \frac{1}{c} \sqrt{-ds^2(\partial_t, \partial_t)}$

Here, c is the speed of light. Outside the support of the matter variables, Einstein's equations reduce to the Vacuum Static Metric Equations

 N^{g} Ric = ${}^{g}\nabla^{2}N$ and ${}^{g}\Delta N = 0$

Here, ^gRic is the Ricci curvature tensor of the metric $g, {}^g \Delta N$ is the curvilinear Lapla curvilinear Hessian (symmetric second covariant derivatives) of N.

2. Regularity and Asymptotics

It is useful to study the system (1) in wave-harmonic coordinates, i. e. local coordinates (x^i) on (M^3, g) satisfying

$$s^2 \Box x^i = 0,$$

where $ds^2 \square$ is the d'Alembert or wave operator with respect to $ds^2 = -N^2 c^2 dt^2 + q$. In wave-harmonic coordinates, the vacuum static metric equations (1) are *elliptic* and therefore have locally real analytic solutions (g_{ij}, N) [MzH]. We consider static space-times that are asymptoti**cally flat** in the sense that the Riemannian manifold (M^3, g) consists of a compact set $K \subset M^3$ and one (or several) asymptotically flat ends $E \subset M^3$. On the end E, there are global coordinates (x^i) such that

$$g_{ij} = \delta_{ij} + \mathcal{O}\left(\frac{1}{r}\right)$$
 and $N = 1 + \mathcal{O}\left(\frac{1}{r}\right)$

where $r := \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}$. In other words, the Riemannian metric is asymptotically Euclidean and the lapse function decays like in Minkowski.

The Geometry of Static Spacetimes

Carla Cederbaum Duke University / Albert Einstein Institute

Static asymptotically flat space-times satisfying the (vacuum) static metric equations (1) automatically asymptotically decay like the spherically symmetric Schwarzschild solutions [KM]

$$T = 1 - \frac{mG}{rc^2} + \mathcal{O}\left(\frac{1}{r^2}\right)$$
 and $g_{ij} = \left(1 + \frac{2mG}{rc^2}\right)\delta_{ij} + \mathcal{O}\left(\frac{1}{r^2}\right)$ (4)

in wave-harmonic asymptotically flat coordinates. Here, G is the gravitational constant, c the speed of light, and m is the ADM-mass of the slice (M^3, g) .

3. Pseudo-Newtonian Gravity

The asymptotic decay (4) of the lapse function N resembles the asymptotic decay of the Newtonian potential U in the classical Newtonian theory of gravity. The similarity becomes more prominent if we make a change of variables (which is frequently used in the literature):

$$\gamma := N^2 g$$
 and $U := c$

We suggest to call these new variables pseudo-Newtonian potential U and pseudo-Newtonian**metric** γ , respectively [C1,C2]. The vacuum static metric equations (1) transform into the **vacuum** pseudo-Newtonian equations

$$^{\gamma}\operatorname{Ric} = \frac{2}{c^4} dU \times dU \quad \text{and} \quad ^{\gamma} \Delta U = 0.$$
 (6)

The asymptotic decay (4) can be transformed accordingly. Comparing these equations and decay conditions to the governing equation of vacuum static Newtonian Gravity, $\Delta U = 0$ and the well-known decay for the Newtonian potential, we obtain

Newtonian Gravity	Pseuc
$^{\delta}$ Ric = 0	$\gamma_{\rm Ric} =$
$^{\delta}\!$	$\gamma \Delta U =$
$U = -\frac{mG}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$	U = -
$\delta_{ij} = \delta_{ij}$	$g_{ij} = \delta$

Here, δ denotes the flat background metric of Newtonian Gravity. As we work in three spatial dimensions, the equation $\delta Ric = 0$ is equivalent to δ being the flat background metric of Newtonian physics and can thus be added to the ordinary vacuum Newtonian equation $^{\partial}\Delta U = 0$. In the pseudo-Newtonian variables (γ, U) , static space-times thus resemble static Newtonian gravitating systems even more than in the geometrostatic variables (q, N).

4. Newtonian Limit

On a formal level, the vacuum pseudo-Newtonian equations (6) converge to the vacuum Newtonian equation(s) ${}^{\delta}\text{Ric} = 0$ and ${}^{\delta}\!\Delta U = 0$ as $c \to \infty$. This can be made rigorous with the help of Ehlers' frame theory [E]. In Ehlers' frame theory, General Relativity and Newtonian Gravity (or rather Newton-Cartan Theory) appear as disjoint regimes of a common framework parametrized by $\lambda := c^{-2}$ or $\lambda := 0$ in the Newtonian case. The Lorentzian metric ds^2 as well as the Newtonian potential then appear as derived variables of two tensor fields g, h and an affine connection Γ . The Newtonian limit is hence not defined for a single relativistic system but for a whole family of systems. The choice of this family is by no means unique as the figure below illustrates.

Frame theory is a geometric (coordinate invariant) theory which has not yet been widely studied. We suggest notions of Killing vectors, staticity, pseudo-Newtonian metric/potential, and asymptotic flatness within frame theory [C1]. With these notions, we prove the following theorem in [C1].

$$\partial_t$$
 into

$$\overline{t}) > 0.$$

(1) acian and
$${}^{g}\nabla^{2}N$$
 the

 $c^2 \log N$

(5)

do-Newtonian Gravity

 $=\frac{2}{a^4}dU \times dU$ $-\frac{mG}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$ $\delta_{ij} + \mathcal{O}\left(\frac{1}{r^2c^4}\right)$

Theorem 1. Let $(M^3, g(\lambda), N(\lambda))$ be a family possessing a Newtonian limit (M^3, δ, U_N) as $\lambda \to 0$. Then the pseudo-Newtonian variables behave such that

as $c \to \infty$ in wave-harmonic/Galilean coordinates (x^i) .

5. Mass and Center of Mass

ADM-center of mass to the affirmative [C1].

Theorem 2. Let $(M^3, g(\lambda), N(\lambda))$ be a family of static spacetimes possessing a Newtonian limit (M^3, δ, U_N) as $\lambda \to 0$. Then the ADM-mass $m_{ADM}(\lambda)$ and the ADMcenter of mass $\vec{z}_{ADM}(\lambda)$ converge to the Newtonian mass $m_{ADM}(0) = m_N$ and center of mass $\vec{z}_{ADM}(0) = \vec{z}_N$ as $\lambda \to 0$. The latter convergence assumes the use of waveharmonic/Galilean coordinates. Moreover, the CMC-center of mass [HY] coincides with the ADM-center of mass and thus converges to the Newtonian center of mass, too.

This theorem relies on our definition of pseudo-Newtonian mass and center of mass [C1]: **Definition 1.** Let (M^3, γ, U) be a pseudo-Newtonian system. Let Σ be a closed 2-surface in M^3 . Let ν be the γ -outer unit normal to and $d\sigma$ is the γ -surface measure on Σ . We define the **pseudo-**Newtonian mass and the pseudo-Newtonian center of mass of Σ by

$$n_{PN}(\Sigma) := \frac{1}{4\pi G} \int_{\Sigma} \frac{\partial U}{\partial \nu} \, d\sigma$$

a result on the Newtonian limit of mass and center of mass [C1].

$$U = -$$

Theorem 3. On any surface Σ enclosing the support of the matter, we have

 $m_{PN}(\Sigma) = m_{ADN}$

We have thus localized ADM-mass and center of mass in the static setting.

For more results on geometrostatic systems, for example a discussion of test body behavior and of photon spheres, please see [C1].

[C1] C. Cederbaum, The Newtonian Limit of Geometrostatics. PhD thesis, FU Berlin (2011). [C2] C. Cederbaum, Geometrostatics: the geometry of static space-times. Proceedings of General Relativity and Gravitation, 100 years after Einstein in Prague (to appear 2013). [E] J. Ehlers, *The Newtonian Limit of General Relativity*. in: Classical Mechanics and Relativity: Relationship and Consistency, Bibliopolis (1989), pp. 95-106. [HY] G. Huisken & S.-T. Yau, Definition of Center of Mass for Isolated Physical Systems and Unique Foliations by Stable Spheres with Constant Mean Curvature. Invent. Math. 124 (1996), pp. 281-311.

[KM] D. Kennefick and N. Ó Murchadha, Weakly decaying asymptotically flat static and stationary solutions to the Einstein equations. Class. Quantum Grav. 12 nr. 1 (1995), pp. 149ff. [MzH] H. Müller zum Hagen, On the analyticity of static vacuum solutions of Einstein's equations. Proc. Camb. Phil. Soc. 67 (1970), pp. 415-421.

$$\gamma_{ij}(\lambda) \to \gamma_{ij}(0) = \delta_{ij}$$

 $U(\lambda) \to U(0) = U_N$

How do physical properties behave along the Newtonian limit? Does, for example, ADM-mass converge to Newtonian mass as $\lambda \to 0$? We can answer this question – and the corresponding question for the

and
$$\vec{z}_{PN}(\Sigma) := \frac{1}{4\pi G m_{PN}} \int_{\Sigma} \left(\frac{\partial U}{\partial \nu} \vec{x} - U \frac{\partial \vec{x}}{\partial \nu} \right) d\sigma$$
 (9)

where \vec{x} is the vector of asymptotically flat wave-harmonic (or γ -harmonic) coordinates.

By the Laplace equation in (1), both m_{PN} and \vec{z}_{PN} are in fact independent of Σ if the surface Σ encloses the support of the matter. Abbreviating $\vec{z} := \vec{z}_{PN}$, we obtain an improvement of (4) as well as

$$\frac{mG}{r} - \frac{mG\,\vec{z}\cdot\vec{x}}{r^3} + \mathcal{O}\left(\frac{1}{r^3}\right),\tag{10}$$

$$M \quad and \quad \vec{z}_{PN}(\Sigma) = \vec{z}_{ADM} = \vec{z}_{CMC} \tag{11}$$

6. References