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Setting

We work in the setting of isolated gravitating systems

modeled in
Newton’s theory of
gravity (NG)
Einstein’s general
relativity (GR)

These model stars, galaxies, or (in GR) black holes.
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Aim

Better understand their:
definition
local and total mass
local and total center of mass
Newtonian limit c→∞
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Setup in Newtonian gravity (NG) Mass and CoM in NG

Mass and center of mass in NG
A Newtonian gravitating system is described by its matter density

ρ : R3 → [0,∞) .

It is isolated if ρ decays “fast enough” for r →∞.
Its (total) mass is defined as

m :=

∫
R3

ρ dV.

Its (total) center of mass (CoM) is defined as

~z :=
1
m

∫
R3

ρ~x dV

w. r. t. Euclidean coordinates (xi) or position vector ~x.
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Setup in Newtonian gravity (NG) Mass and CoM in NG

Sufficient fall-off

By theorem on dominated convergence (Lebesgue integration):
Sufficient fall-off for convergence of mass m =

∫
R3 ρ dV:

ρ = O
(

1
r3+ε

)
, ε > 0.

Sufficient fall-off for convergence of mass~z := 1
m

∫
R3 ρ~x dV:

ρ = O
(

1
r4+ε

)
, ε > 0.
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Setup in Newtonian gravity (NG) Mass and CoM in NG

Sufficient fall-off ctd.

Alternatively, use indefinite Riemann integrals in spherical polars:
Split ρ =: ρsymm + ρanti.
Observe that ρsymm does not contribute to~z:

lim
R→∞

∫
BR(0)

ρsymm(~x )~x dV(~x ) = lim
R→∞

R∫
0

∫
S2

ρsymm(r~η ) ~η dσ(~η) r3 dr = ~0.

Only ρanti contributes to~z.
Thus, ρ should be asymptotically symmetric.
Corresponds to “Regge-Teitelboim conditions” in general relativity.
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Setup in Newtonian gravity (NG) Mass and CoM in NG

Critical fall-off: What happens when ρ = O( 1
r4 )?

If ρ = 1
r4 then~z = ~0 converges.

If ρ = 1
r4

(
|~a|+ ~a·~z

r

)
≥ 0 for ~a 6= ~0 then

∫
R3

ρ~x dV ≈ lim
R→∞

R∫
1
r

dr · 4π
3
~a diverges logarithmically.

If ρ = 1
r4

(
|~a|+ sin(r) ~a·~z

r

)
≥ 0 for ~a 6= ~0 then

~z =
1
m

∫
R3

ρ~x dV =
2π2

3m
~a gives a prescribed center of mass.
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Setup in Newtonian gravity (NG) The Newtonian potential

Reminder: the Newtonian potential

Newtonian gravity (NG) is governed by

Newton’s equation

4U = 4πGρ in R3

where
U is the Newtonian potential
ρ is the matter density
G is Newton’s gravitational constant
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Setup in Newtonian gravity (NG) The Newtonian potential

Asymptotic behavior
It is well-known that

Theorem
Suitably isolated systems (solutions of Newton’s equation) satisfy

U = −mG
r
− mG~z ·~x

r3 +O2

(
1
r3

)
in canonical coordinates, where m is the Newtonian mass and~z ∈ R3 is
the Newtonian center of mass (CoM).

The critical order ρ = O
( 1

r4

)
corresponds to the critical order

U = −mG
r

+O2

(
1
r2

)
.
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Setup in general relativity (GR) Modeling

Formal structure of GR

A relativistic gravitating system/spacetime consists of
a spacetime 4-manifold M4

a symmetric (0, 2)-matter tensor field T

a Lorentzian metric 4g

satisfying the Einstein equations

4Ric− 1
2

4R 4g =
8πG
c4 T

with gravitational constant G, speed of light c.
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Setup in general relativity (GR) Modeling

Most important example: Schwarzschild spacetime

Lorentzian metric:

4g = − SN2dt2 + Sg

Timeslice metric:

Sgij = (1 +
mG
2rc2 )4 δij

Lapse function:

SN =
1− mG

2rc2

1 + mG
2rc2

Figure : Timeslice of
Schwarzschild source: AllenMcC,

wikipedia.org/wiki/Schwarzschild_metric
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Setup in general relativity (GR) Modeling

3+1 decomposition: making it physical

t=1

t=0

t
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Setup in general relativity (GR) Modeling

3+1 decomposition

Theorem (Choquet-Bruhat et al. 1952)
The Einstein equations can be reformulated as a well-posed hyperbolic
initial value problem (for suitable matter models).

Remarks:
involves (non-canonical) 3+1 decomposition, constraint equations
involves choice of coordinates (lapse and shift)
gives rise to phenomena like gravitational waves
IVP approach is used in numerical simulations
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Setup in general relativity (GR) Modeling

Timeslices

The initial data for the Choquet-Bruhat initial value problem is a
timeslice {t = 0}.
It is represented by a 3-dimensional Riemannian manifold (M3, g),
together with a second fundamental form (0, 2)-tensor K on M3.
g,K satisfy constraint equations induced by Einstein’s equation.
For simplicity, we will ignore K from now on.

t=1

t=0

t
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Setup in general relativity (GR) Boundary conditions

Asymptotically Schwarzschildean ends

An asymptotically Schwarzschildean (AS) end is
a three-dimensional Riemannian manifold (M3, g)

diffeomorphic to R3 \ B1(0)

satisfying fall-off conditions as |~x| =: r →∞
formulated as deviation from the (spatial) Schwarzschild metric

Sgij =

(
1 +

mG
2rc2

)4

δij,

with m the mass parameter.
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Setup in general relativity (GR) Boundary conditions

Summary: the role of AS ends in GR

In GR, asymptotically Schwarzschildean ends appear as models of

t=1

t=0

t

Figure : timeslices

(spacelike) timeslices
the exterior regions of
isolated gravitating
systems, e.g.

I stars or
I black holes.
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Setup in general relativity (GR) Boundary conditions

Summary: the role of AS ends in GR

In GR, asymptotically Schwarzschildean ends appear as models of

Figure : isolated system

(spacelike) timeslices
the exterior regions of
isolated gravitating
systems, e.g.

I stars or
I black holes.
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Setup in general relativity (GR) Boundary conditions

Summary: the role of AS ends in GR

In GR, asymptotically Schwarzschildean ends appear as models of

Figure : a star

(spacelike) timeslices
the exterior regions of
isolated gravitating
systems, e.g.

I stars or
I black holes.
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Setup in general relativity (GR) Boundary conditions

Summary: the role of AS ends in GR

In GR, asymptotically Schwarzschildean ends appear as models of

Figure : a black hole

(spacelike) timeslices
the exterior regions of
isolated gravitating
systems, e.g.

I stars or
I black holes.
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Setup in general relativity (GR) Boundary conditions

Asymptotic charts: other representation

Figure : AS coordinate chart
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Setup in general relativity (GR) Boundary conditions

Mass in GR

The (total) mass of an asymptotically Schwarzschildean end
(timeslice) is given by the parameter m.
In GR, there is a more general definition of mass by
Arnowitt-Deser-Minner ’68 called mADM, using surface integrals
w. r. t. the asymptotic coordinates.
Here, mADM = m.
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Setup in general relativity (GR) Center of mass
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Setup in general relativity (GR) Center of mass

Definitions of center of mass in GR

CoM is a difficult concept:

Figure : Timeslice of Schwarzschild

Several definitions of CoM in the literature:
Definition à la ADM: Regge-Teitelboim ’74, Beig-Ó Murchadha ’86.
Geometric definition by Huisken-Yau ’96.
Several others (Schoen, Corvino-Wu, Wang-Yau,. . . ).
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Setup in general relativity (GR) Center of mass

Huisken-Yau definition of CoM

Theorem (Huisken-Yau 1996)
In any asymptotically
Schwarzschildean Riemannian end
with mass m > 0, there exists a
unique foliation near infinity by
stable spheres of constant mean
curvature (CMC). � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1 r

H=const

“Precise” asymptotic condition: gij = Sgij +O4( 1
r2 ).

Assumptions improved by Metzger, Huang, Nerz, . . .
C.-Nerz: abstract center of mass
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Setup in general relativity (GR) Center of mass

Huisken-Yau definition of CoM ctd.

Theorem (Huisken-Yau 1996 ctd.)
Euclidean center~zH of ΣH and (total) center~zHuisken−Yau are defined as

~zH :=

∮
xi(ΣH)

~x dσ, ~zHuisken−Yau := lim
H→0

~zH.
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Setup in general relativity (GR) Center of mass

Huisken-Yau definition of CoM ctd.

Theorem (Huisken-Yau 1996 ctd.)
Euclidean center~zH of ΣH and (total) center~zHuisken−Yau are defined as

~zH :=

∮
xi(ΣH)

~x dσ, ~zHuisken−Yau := lim
H→0

~zH.

C.-Nerz: coordinatization of abstract CoM w. r. t. chosen chart
near infinity
coincides with other notions of CoM by Regge-Teitelboim, Beig-Ó
Murchadha, Schoen, Wang-Yau, . . .
[Huang, Eichmair-Metzger, Nerz, . . . ]
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Setup in general relativity (GR) Counter-example to Huisken-Yau definition

However:

Theorem (C.-Nerz 2014)
The total CoM limit

~zHuisken−Yau := lim
H→0

~zH

does not always converge under the assumptions of Huisken-Yau.
It does however converge under the stronger assumption

gij = Sgij +O
(

1
r2+ε

)
for any ε > 0.

Different explicit counter-examples to Huisken-Yau assertion.
All coinciding center of mass definitions also diverge.
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Setup in general relativity (GR) Counter-example to Huisken-Yau definition

C.-Nerz counter-example

Pick graph function

t = T(~x) = sin(ln r) +
~a ·~x

r
, ~a 6= ~0.
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Setup in general relativity (GR) Counter-example to Huisken-Yau definition

Remarks

Counter-example satisfies the (vacuum) constraint equations.
Other counter-example related to motion in spacetime,
simplified by Chan-Tam to conformally flat example

gij =

(
1 +

4mG
rc2 + sin(ln r)

mG~a ·~x
r3c2

)
δij, ~a 6= ~0.

Same critical order of decay as (critical) Newtonian example!
Can also prescribe a freely chosen CoM at the critical order.
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Newtonian limit

Ehlers constructed Frame Theory (FT) encompassing GR and NG
→ Frame Theory allows rigorous definition of Newtonian Limit c→∞.
→ Rendall, Oliynyk, . . . showed existence of converging families.

g,h,T ,Γ

GR

λλ = 0: NG
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Newtonian limit Newtonian limit

Static Newtonian limit
In the static (non-dynamical) setting:

Theorem (C. 2011)
One can define “staticity” and asymptotic decay in FT.
One can define local and total mass in static FT coinciding with
ADM and Newtonian mass, respectively.
One can define local and total CoM in static FT coinciding with
Huisken-Yau and Newtonian CoM, respectively.
Static AS spacetimes converge to static isolated Newtonian
systems in the Newtonian limit as c→∞.
Then mass and CoM are continuous w. r. t. the Newtonian limit:

lim
c→∞

mADM(c) → mNewtonian,

lim
c→∞

~zHuisken−Yau(c) → ~zNewtonian.
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Newtonian limit Newtonian limit

Strategy of proof

Rewrite static GR in “pseudo-Newtonian variables”.
Rewrite Newtonian mass as surface integral by divergence thm:

m =

∫
R3

ρ dV =

∫
C

ρ dV =
1

4πG

∫
C

4U dV =
1

4πG

∫
∂C

∂U
∂ν

dσ

where C is any compact domain with ∂C smooth and supp ρ ⊂ C.
Mimic this in pseudo-Newtonian gravity.
Repeat with center of mass.
Define Killing vector fields etc. consistently in frame theory.
Analyze continuity in the right function spaces.

Remark: Theorem is consistent with counter-examples of C.-Nerz.
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Newtonian limit Newtonian limit

Thank you for your attention!

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1 r

H=const
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