Mass in Newtonian gravity and general relativity

Carla Cederbaum

University of Tübingen

Colloquium @ Monash August 28, 2014

Carla Cederbaum (Tübingen)

Mass in NG and GF

We work in the setting of isolated gravitating systems

These model stars, galaxies, or (in GR) black holes.

Better understand their:

- definition
- local and total mass
- local and total center of mass
- Newtonian limit $c \to \infty$

э

A B F A B F

Contents

The Newtonian potential

Setup in general relativity (GR)

- Modeling
- Boundary conditions
- Center of mass
- Counter-example to Huisken-Yau definition

Newtonian limit

Newtonian limit

Contents

Newtonian limit

• A Newtonian gravitating system is described by its matter density

 $\rho: \mathbb{R}^3 \to [0,\infty).$

- It is isolated if ρ decays "fast enough" for $r \to \infty$.
- Its (total) mass is defined as

$$m := \int_{\mathbb{R}^3} \rho \, dV.$$

• Its (total) center of mass (CoM) is defined as

$$\vec{z} := \frac{1}{m} \int_{\mathbb{R}^3} \rho \, \vec{x} \, dV$$

• A Newtonian gravitating system is described by its matter density

 $\rho: \mathbb{R}^3 \to [0,\infty)$.

• It is isolated if ρ decays "fast enough" for $r \to \infty$.

• Its (total) mass is defined as

$$m := \int_{\mathbb{R}^3} \rho \, dV.$$

• Its (total) center of mass (CoM) is defined as

$$\vec{z} := \frac{1}{m} \int_{\mathbb{R}^3} \rho \, \vec{x} \, dV$$

• A Newtonian gravitating system is described by its matter density

 $\rho: \mathbb{R}^3 \to [0,\infty)$.

- It is isolated if ρ decays "fast enough" for $r \to \infty$.
- Its (total) mass is defined as

$$m:=\int_{\mathbb{R}^3}\rho\,dV.$$

• Its (total) center of mass (CoM) is defined as

$$\vec{z} := \frac{1}{m} \int \rho \, \vec{x} \, dV$$

$$\mathbb{R}^3$$

• A Newtonian gravitating system is described by its matter density

 $\rho: \mathbb{R}^3 \to [0,\infty).$

- It is isolated if ρ decays "fast enough" for $r \to \infty$.
- Its (total) mass is defined as

$$m:=\int_{\mathbb{R}^3}\rho\,dV.$$

• Its (total) center of mass (CoM) is defined as

$$\vec{z} := \frac{1}{m} \int_{\mathbb{R}^3} \rho \, \vec{x} \, dV$$

Sufficient fall-off

By theorem on dominated convergence (Lebesgue integration):

• Sufficient fall-off for convergence of mass $m = \int_{\mathbb{R}^3} \rho \, dV$:

$$\rho = \mathcal{O}\left(\frac{1}{r^{3+\varepsilon}}\right), \varepsilon > 0.$$

• Sufficient fall-off for convergence of mass $\vec{z} := \frac{1}{m} \int_{\mathbb{R}^3} \rho \vec{x} dV$:

$$\rho = \mathcal{O}\left(\frac{1}{r^{4+\varepsilon}}\right), \varepsilon > 0.$$

Sufficient fall-off

By theorem on dominated convergence (Lebesgue integration):

• Sufficient fall-off for convergence of mass $m = \int_{\mathbb{R}^3} \rho \, dV$:

$$\rho = \mathcal{O}\left(\frac{1}{r^{3+\varepsilon}}\right), \varepsilon > 0.$$

• Sufficient fall-off for convergence of mass $\vec{z} := \frac{1}{m} \int_{\mathbb{R}^3} \rho \vec{x} dV$:

$$\rho = \mathcal{O}\left(\frac{1}{r^{4+\varepsilon}}\right), \varepsilon > 0.$$

A B F A B F

Sufficient fall-off ctd.

Alternatively, use indefinite Riemann integrals in spherical polars:

• Split
$$\rho =: \rho_{symm} + \rho_{anti}$$
.

• Observe that ρ_{symm} does not contribute to \vec{z} :

$$\lim_{R\to\infty}\int\limits_{B_R(0)}\rho_{symm}(\vec{x}\,)\,\vec{x}\,dV(\vec{x}\,)=\lim_{R\to\infty}\int\limits_{0}^{R}\int\limits_{\mathbb{S}^2}\rho_{symm}(r\vec{\eta}\,)\,\vec{\eta}\,d\sigma(\vec{\eta})\,r^3\,dr=\vec{0}.$$

- Only ρ_{anti} contributes to \vec{z} .
- Thus, ρ should be asymptotically symmetric.
- Corresponds to "Regge-Teitelboim conditions" in general relativity.

< 回 > < 三 > < 三 >

Critical fall-off: What happens when $\rho = O(\frac{1}{r^4})$?

• If
$$\rho = \frac{1}{r^4}$$
 then $\vec{z} = \vec{0}$ converges.
• If $\rho = \frac{1}{r^4} \left(|\vec{a}| + \frac{\vec{a} \cdot \vec{z}}{r} \right) \ge 0$ for $\vec{a} \ne \vec{0}$ then

$$\int_{\mathbb{R}^3} \rho \vec{x} \, dV \approx \lim_{R \to \infty} \int_{-\infty}^{R} \frac{1}{r} \, dr \cdot \frac{4\pi}{3} \vec{a} \quad \text{diverges logarithmically.}$$
• If $\rho = \frac{1}{r^4} \left(|\vec{a}| + \sin(r) \frac{\vec{a} \cdot \vec{z}}{r} \right) \ge 0$ for $\vec{a} \ne \vec{0}$ then

$$\vec{z} = \frac{1}{m} \int_{\mathbb{R}^3} \rho \vec{x} dV = \frac{2\pi^2}{3m} \vec{a}$$
 gives a prescribed center of mass.

Carla Cederbaum (Tübingen)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Critical fall-off: What happens when $\rho = O(\frac{1}{r^4})$?

• If
$$\rho = \frac{1}{r^4}$$
 then $\vec{z} = \vec{0}$ converges.
• If $\rho = \frac{1}{r^4} \left(|\vec{a}| + \frac{\vec{a} \cdot \vec{z}}{r} \right) \ge 0$ for $\vec{a} \ne \vec{0}$ then

$$\int_{\mathbb{R}^3} \rho \vec{x} dV \approx \lim_{R \to \infty} \int_{-\infty}^{R} \frac{1}{r} dr \cdot \frac{4\pi}{3} \vec{a} \quad \text{diverges logarithmically.}$$

• If $\rho = \frac{1}{r^4} \left(|\vec{a}| + \sin(r) \frac{\vec{a} \cdot \vec{z}}{r} \right) \ge 0$ for $\vec{a} \neq \vec{0}$ then

$$\vec{z} = \frac{1}{m} \int_{\mathbb{R}^3} \rho \vec{x} dV = \frac{2\pi^2}{3m} \vec{a}$$
 gives a prescribed center of mass.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Critical fall-off: What happens when $\rho = O(\frac{1}{r^4})$?

• If
$$\rho = \frac{1}{r^4}$$
 then $\vec{z} = \vec{0}$ converges.
• If $\rho = \frac{1}{r^4} \left(|\vec{a}| + \frac{\vec{a} \cdot \vec{z}}{r} \right) \ge 0$ for $\vec{a} \ne \vec{0}$ then

$$\int_{\mathbb{R}^3} \rho \vec{x} dV \approx \lim_{R \to \infty} \int_{-\infty}^{R} \frac{1}{r} dr \cdot \frac{4\pi}{3} \vec{a} \quad \text{diverges logarithmically.}$$
• If $\rho = \frac{1}{r^4} \left(|\vec{a}| + \sin(r) \frac{\vec{a} \cdot \vec{z}}{r} \right) \ge 0$ for $\vec{a} \ne \vec{0}$ then
 $\vec{z} = \frac{1}{m} \int_{\mathbb{R}^3} \rho \vec{x} dV = \frac{2\pi^2}{3m} \vec{a} \quad \text{gives a prescribed center of mass.}$

э

イロト イヨト イヨト イヨト

Contents

The Newtonian potential

Setup in general relativity (GR)

- Modeling
- Boundary conditions
- Center of mass
- Counter-example to Huisken-Yau definition

Newtonian limit

Newtonian limit

- N

Reminder: the Newtonian potential

Newtonian gravity (NG) is governed by

Newton's equation

$$\triangle U = 4\pi G\rho \qquad \text{in } \mathbb{R}^3$$

where

- U is the Newtonian potential
- ρ is the matter density
- G is Newton's gravitational constant

Asymptotic behavior

It is well-known that

Theorem

Suitably isolated systems (solutions of Newton's equation) satisfy

$$U = -\frac{mG}{r} - \frac{mG\vec{z}\cdot\vec{x}}{r^3} + \mathcal{O}_2\left(\frac{1}{r^3}\right)$$

in canonical coordinates, where *m* is the Newtonian mass and $\vec{z} \in \mathbb{R}^3$ is the Newtonian center of mass (CoM).

The critical order $\rho = \mathcal{O}\left(\frac{1}{r^4}\right)$ corresponds to the critical order

$$U = -\frac{mG}{r} + \mathcal{O}_2\left(\frac{1}{r^2}\right)$$

A (10) A (10)

Modeling

Contents

Counter-example to Huisken-Yau definition

Newtonian limit

- N

Formal structure of GR

A relativistic gravitating system/spacetime consists of

- a spacetime 4-manifold M⁴
- a symmetric (0, 2)-matter tensor field T
- a Lorentzian metric ⁴g

satisfying the Einstein equations

$${}^{4}\mathrm{Ric} - \frac{1}{2} {}^{4}\mathrm{R} {}^{4}g = \frac{8\pi G}{c^{4}} T$$

with gravitational constant G, speed of light c.

Modeling

Most important example: Schwarzschild spacetime

I orentzian metric:

$${}^4g = -{}^5N^2dt^2 + {}^5g$$

Timeslice metric:

$${}^{S}g_{ij} = (1 + \frac{mG}{2rc^2})^4 \,\delta_{ij}$$

Lapse function:

$$^{S}N = \frac{1 - \frac{mG}{2rc^2}}{1 + \frac{mG}{2rc^2}}$$

Figure : Timeslice of Schwarzschild source: AllenMcC,

wikipedia.org/wiki/Schwarzschild metric

< ロ > < 同 > < 回 > < 回 >

3+1 decomposition: making it physical

э

Modeling

3+1 decomposition

Theorem (Choquet-Bruhat et al. 1952)

The Einstein equations can be reformulated as a well-posed hyperbolic initial value problem (for suitable matter models).

Remarks:

- involves (non-canonical) 3+1 decomposition, constraint equations
- involves choice of coordinates (lapse and shift)
- gives rise to phenomena like gravitational waves
- IVP approach is used in numerical simulations

A B b 4 B b

Timeslices

- The initial data for the Choquet-Bruhat initial value problem is a timeslice {t = 0}.
- It is represented by a 3-dimensional Riemannian manifold (M^3, g) , together with a second fundamental form (0, 2)-tensor K on M^3 .
- *g*, *K* satisfy constraint equations induced by Einstein's equation.
- For simplicity, we will ignore *K* from now on.

Contents

- Boundary conditions
- Center of mass
- Counter-example to Huisken-Yau definition

Newtonian limit

Newtonian limit

- N

Asymptotically Schwarzschildean ends

An asymptotically Schwarzschildean (AS) end is

- a three-dimensional Riemannian manifold (M^3, g)
- diffeomorphic to $\mathbb{R}^3 \setminus B_1(0)$
- satisfying fall-off conditions as $|\vec{x}| =: r \to \infty$
- formulated as deviation from the (spatial) Schwarzschild metric

$$\delta g_{ij} = \left(1 + \frac{mG}{2rc^2}\right)^4 \,\delta_{ij}$$

with m the mass parameter.

In GR, asymptotically Schwarzschildean ends appear as models of

Figure : timeslices

- (spacelike) timeslices
- the exterior regions of isolated gravitating systems, e.g.
 - stars or
 - black holes.

< 回 > < 三 > < 三 >

In GR, asymptotically Schwarzschildean ends appear as models of

Figure : isolated system

- (spacelike) timeslices
- the exterior regions of isolated gravitating systems, e.g.
 - stars or
 - black holes.

A (10) A (10) A (10)

In GR, asymptotically Schwarzschildean ends appear as models of

- (spacelike) timeslices
- the exterior regions of isolated gravitating systems, e.g.
 - stars or
 - black holes.

< 同 ト < 三 ト < 三 ト

In GR, asymptotically Schwarzschildean ends appear as models of

Figure : a black hole

- (spacelike) timeslices
- the exterior regions of isolated gravitating systems, e.g.
 - stars or
 - black holes.

A I > A = A A

Asymptotic charts: other representation

Figure : AS coordinate chart

э

Mass in GR

- The (total) mass of an asymptotically Schwarzschildean end (timeslice) is given by the parameter *m*.
- In GR, there is a more general definition of mass by Arnowitt-Deser-Minner '68 called *m_{ADM}*, using surface integrals w. r. t. the asymptotic coordinates.
- Here, $m_{ADM} = m$.

< 回 > < 三 > < 三 >

Contents

- Modeling
- Boundary conditions
- Center of mass
- Counter-example to Huisken-Yau definition

Newtonian limit

Newtonian limit

(4) The (b)

Definitions of center of mass in GR

CoM is a difficult concept:

Figure : Timeslice of Schwarzschild

Several definitions of CoM in the literature:

- Definition à la ADM: Regge-Teitelboim '74, Beig-Ó Murchadha '86.
- Geometric definition by Huisken-Yau '96.
- Several others (Schoen, Corvino-Wu, Wang-Yau,...).

Huisken-Yau definition of CoM

Theorem (Huisken-Yau 1996)

In any asymptotically Schwarzschildean Riemannian end with mass m > 0, there exists a unique foliation near infinity by stable spheres of constant mean curvature (CMC).

- "Precise" asymptotic condition: $g_{ij} = {}^{S}g_{ij} + \mathcal{O}_4(\frac{1}{r^2})$.
- Assumptions improved by Metzger, Huang, Nerz, ...
- C.-Nerz: abstract center of mass

Huisken-Yau definition of CoM ctd.

Theorem (Huisken-Yau 1996 ctd.)

Euclidean center \vec{z}_H of Σ_H and (total) center $\vec{z}_{Huisken-Yau}$ are defined as

$$\vec{z}_H := \oint_{x^i(\Sigma_H)} \vec{x} d\sigma, \quad \vec{z}_{Huisken-Yau} := \lim_{H \to 0} \vec{z}_H.$$

Huisken-Yau definition of CoM ctd.

Theorem (Huisken-Yau 1996 ctd.)

Euclidean center \vec{z}_H of Σ_H and (total) center $\vec{z}_{Huisken-Yau}$ are defined as

$$\vec{z}_H := \oint_{x^i(\Sigma_H)} \vec{x} \, d\sigma, \quad \vec{z}_{Huisken-Yau} := \lim_{H \to 0} \vec{z}_H.$$

- C.-Nerz: coordinatization of abstract CoM w.r.t. chosen chart near infinity
- coincides with other notions of CoM by Regge-Teitelboim, Beig-Ó Murchadha, Schoen, Wang-Yau, ...
 [Huang, Eichmair-Metzger, Nerz, ...]

Contents

Setup in general relativity (GR)

- Modeling
- Boundary conditions
- Center of mass
- Counter-example to Huisken-Yau definition

Newtonian limit

Newtonian limit

- The second sec

However:

Theorem (C.-Nerz 2014)

The total CoM limit

$$\vec{z}_{Huisken-Yau} := \lim_{H \to 0} \vec{z}_H$$

does not always converge under the assumptions of Huisken-Yau. It does however converge under the stronger assumption

$$g_{ij} = {}^{S}g_{ij} + \mathcal{O}\left(\frac{1}{r^{2+\varepsilon}}\right)$$

for any $\varepsilon > 0$.

- Different explicit counter-examples to Huisken-Yau assertion.
- All coinciding center of mass definitions also diverge.

< ロ > < 同 > < 回 > < 回 >

C.-Nerz counter-example

Pick graph function

$$t = T(\vec{x}) = \sin(\ln r) + \frac{\vec{a} \cdot \vec{x}}{r}, \quad \vec{a} \neq \vec{0}.$$

э

イロト イヨト イヨト イヨト

Remarks

- Counter-example satisfies the (vacuum) constraint equations.
- Other counter-example related to motion in spacetime,
- simplified by Chan-Tam to conformally flat example

$$g_{ij} = \left(1 + \frac{4mG}{rc^2} + \sin(\ln r)\frac{mG\vec{a}\cdot\vec{x}}{r^3c^2}\right)\delta_{ij}, \quad \vec{a}\neq\vec{0}.$$

- Same critical order of decay as (critical) Newtonian example!
- Can also prescribe a freely chosen CoM at the critical order.

Contents

Newtonian limit

Newtonian limit

Newtonian limit

Ehlers constructed Frame Theory (FT) encompassing GR and NG

< 回 > < 三 > < 三 >

Newtonian limit

Ehlers constructed Frame Theory (FT) encompassing GR and NG \rightarrow Frame Theory allows rigorous definition of Newtonian Limit $c \rightarrow \infty$.

< ロ > < 同 > < 回 > < 回 >

Newtonian limit

Ehlers constructed Frame Theory (FT) encompassing GR and NG \rightarrow Frame Theory allows rigorous definition of Newtonian Limit $c \rightarrow \infty$. \rightarrow Rendall, Oliynyk, ... showed existence of converging families.

Static Newtonian limit

In the static (non-dynamical) setting:

Theorem (C. 2011)

- One can define "staticity" and asymptotic decay in FT.
- One can define local and total mass in static FT coinciding with ADM and Newtonian mass, respectively.
- One can define local and total CoM in static FT coinciding with Huisken-Yau and Newtonian CoM, respectively.
- Static AS spacetimes converge to static isolated Newtonian systems in the Newtonian limit as c → ∞.
- Then mass and CoM are continuous w. r. t. the Newtonian limit:

$$\lim_{c \to \infty} m_{ADM}(c) \to m_{Newtonian},$$
$$\lim_{c \to \infty} \vec{z}_{Huisken-Yau}(c) \to \vec{z}_{Newtonian}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Strategy of proof

- Rewrite static GR in "pseudo-Newtonian variables".
- Rewrite Newtonian mass as surface integral by divergence thm:

$$m = \int_{\mathbb{R}^3} \rho \, dV = \int_C \rho \, dV = \frac{1}{4\pi G} \int_C \triangle U \, dV = \frac{1}{4\pi G} \int_{\partial C} \frac{\partial U}{\partial \nu} \, d\sigma$$

where *C* is any compact domain with ∂C smooth and supp $\rho \subset C$.

- Mimic this in pseudo-Newtonian gravity.
- Repeat with center of mass.
- Define Killing vector fields etc. consistently in frame theory.
- Analyze continuity in the right function spaces.

Remark: Theorem is consistent with counter-examples of C.-Nerz.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

э

・ロト ・ 四ト ・ ヨト ・ ヨト