The Geometry of Static Spacetimes in General Relativity

Carla Cederbaum

Tübingen University

Geometry Seminar @ Stanford December 2, 2013

Two Theories of Gravitation

Physics knows two major theories of gravitation: the classical Newtonian one (NG, 17th century) and Einstein's general relativity (GR, 20th century).

Both theories rely on PDEs connecting the matter content of a gravitating system to its gravitational variables:

Newtonian PDE

 $\triangle U = 4\pi G\rho$

 ρ : matter density *U*: gravitational potential Relativistic PDE (Einstein)

$$\operatorname{Ric} -\frac{1}{2}\operatorname{Rg} = \frac{8\pi G}{c^4}T$$

T: energy-momentum tensor

g, Ric, R: geometric variables

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

G: Gravitational constant, c: speed of light

Two Theories of Gravitation ctd.

Both theories have their advantages and disadvantages:

Newtonian Theory

very accurate "in every day life"

INACCURATE for high speeds

comparably LITTLE effort for computations

centuries of experience/ fairly EASY to interpret/model

Relativistic Theory

very accurate in "every day life"

ACCURATE for high speeds

comparably LARGE effort for computations

relative lack of experience/ fairly HARD to interpret/model

< ロ > < 同 > < 回 > < 回 >

Idea/Aim

Learn from our physical/mathematical knowledge of Newtonian gravity to gain

- ightarrow a better understanding of relativistic gravitating systems
 - their geodesics
 - their asymptotic behavior
 - equipotential surfaces
 - Iocal and total mass
 - local and total center of mass
 - the Newtonian limit
- $\rightarrow \,$ a better intuition for GR
- ightarrow new methods for proofs in GR

A B b 4 B b

Setting

We specialize to the following (rather general) setting of

Physical Systems

- isolated
- static

finite extension of source

Mathematical Models

- asymptotically flat
- timelike Killing vector, hypersurface-orthogonal
- matter tensor has spatially compact support

 $GR = geometrodynamics \rightarrow$

static GR = geometrostatics

Contents

Geometrostatic Systems

2 Geometric and Physical Properties

- Equipotential Surfaces
- Uniqueness Properties

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

Reminder: Formal Structure of GR

A relativistic system consists of

- a space-time 4-manifold M⁴
- a symmetric matter tensor field T
- a Lorentzian metric ⁴g

satisfying the Einstein equations

$${}^{4}\mathrm{Ric} - \frac{1}{2} {}^{4}\mathrm{R} {}^{4}g = \frac{8\pi G}{c^{4}} T$$

with gravitational constant G, speed of light c.

3+1 Decomposition: Initial Value Problem Approach

Theorem (Choquet-Bruhat et al.)

The Einstein equations can be reformulated as a well-posed hyperbolic initial value problem (for suitable matter models).

Remarks:

- involves (non-canonical) 3+1 decomposition
- involves choice of coordinates (lapse and shift)
- gives rise to phenomena like gravitational waves
- IVP approach is used in numerical simulations

< 回 > < 回 > < 回 >

Static General Relativity

Definition

A relativistic system $(M^4, {}^4g_{\mu\nu}, T^{\mu\nu})$ is called static if it possesses a global timelike Killing vector field *X* that is hypersurface-orthogonal:

$${}^{4}
abla_{(\alpha}X_{eta)} = 0$$
 and $X_{[\alpha}{}^{4}
abla_{eta}X_{\gamma]} = 0$

Frobenius: hypersurface-orthogonality \leftrightarrow integrability of distribution X^{\perp}

A B b 4 B b

Lapse and 3-Metric

Proposition

Generic static spacetimes can be canonically decomposed into $M^4 = \mathbb{R} \times M^3$,

$$^{4}g = -N^{2}c^{2}dt^{2} + {}^{3}g,$$

with induced Riemannian metric ³g and lapse function

$$N:=\sqrt{-{}^4\!g(X,X)}>0;$$

X is the hypersurface-orthogonal timelike Killing vector and $dt := X^b$.

Static Geometry: the Facts

- All time-slices $(M^3, {}^3g)$ are isometric.
- They are embedded into $(M^4 = \mathbb{R} \times M^3, {}^4g)$ with vanishing second fundamental form.
- The lapse function $N: M^3 \to \mathbb{R}^+$ is independent of "time".
- The matter tensor induces time-independent matter variables ρ (matter density) and *S* (stress tensor).

 \Rightarrow We think of a static spacetime as a tuple $(M^3, {}^3g, N, \rho, S)$.

What Are the Main Equations?

Static general relativity is governed by the

Static Metric Equations

$${}^{3} \triangle N = \frac{4\pi G}{c^{2}} N \left(\rho + \frac{^{3} \text{tr}S}{c^{2}} \right)$$

 $N {}^{3} \text{Ric} = {}^{3} \nabla^{2} N + \frac{4\pi G}{c^{2}} N \left(\rho {}^{3} g + \frac{2}{c^{2}} \left(S - \frac{^{3} \text{tr}S}{2} {}^{3} g \right) \right)$

on M^3 .

< ロ > < 同 > < 回 > < 回 >

What Are the Main Equations?

Vacuum static general relativity is governed by the

Vacuum Static Metric Equations ${}^{3}\Delta N = 0$ $N {}^{3}\text{Ric} = {}^{3}\nabla^{2}N$

on M^3 .

< ロ > < 同 > < 回 > < 回 >

Wave-Harmonic Coordinates and Regularity

The static metric equations form an elliptic system of PDEs in wave-harmonic coordinates:

Definition

Local coordinates xⁱ on M³ are called wave-harmonic if they satisfy

$${}^{4}\Box x^{i} = 0$$

with respect to ${}^4g = -N^2c^2dt^2 + {}^3g$.

Theorem (Müller zum Hagen)

Any solution of the static metric equations is **real analytic** with respect to local wave-harmonic coordinates (for suitable matter models).

・ロン ・四 ・ ・ ヨン ・ ヨン

Asymptotic Flatness

Theorem (Kennefick & O'Murchadha)

Asymptotically Euclidean solutions of the static metric equations with compactly supported matter and $N \rightarrow 1$ as $r \rightarrow \infty$ are automatically asymptotically Schwarzschildean:

$$N = 1 - \frac{mG}{rc^2} + O(\frac{1}{r^2})$$
 and ${}^3g_{ij} = (1 + \frac{2mG}{rc^2})\,\delta_{ij} + O(\frac{1}{r^2})$

in asymptotically flat wave-harmonic coordinates.

Remark: *m* is the ADM-mass of ${}^{3}g$.

Geometrostatics

Definition (Geometrostatic Systems)

A geodesically complete asymptotically flat solution $(M^3, {}^3g, N, \rho, S)$ of the static metric equations with compactly supported ρ and S and $N \rightarrow 1$ as $r \rightarrow \infty$ is called a

geometrostatic system.

Remarks:

- asymptotic flatness is defined in weighted Sobolev spaces
- definition can be extended to include black hole solutions
- name stresses the geometric viewpoint taken

Formal Analogy to Newton

Newtonian

 ${}^{\delta} \triangle U = 4\pi G \times \text{matter}$ ${}^{\delta} \text{Ric} = 0$

$$U = -mG/r + \mathcal{O}(r^{-2})$$

$$\delta_{ij} = \delta_{ij}$$

Geometrostatics

$${}^{3} \triangle N = 4\pi G \times N/c^{2} \times \text{matter}$$

 ${}^{3} \text{Ric} = {}^{3} \nabla^{2} N/N + \text{matter}$

$$N = 1 - mG/rc^{2} + \mathcal{O}(r^{-2})$$

$$^{3}g_{ij} = (1 + 2mG/rc^{2}) \delta_{ij}$$

$$+ \mathcal{O}(r^{-2})$$

Question: How similar is U to N physically/geometrically?

Contents

Geometrostatic Systems

Geometric and Physical Properties Equipotential Surfaces Uniqueness Properties

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

A .

∃ >

Physical Interpretation

From definition:

- $(M^3, {}^3g)$ is a time-slice, i.e. the status of a static system at any point of time in the eyes of the chosen "observer" X
- N describes how to measure time in order to "see" staticity.

New focus/interpretation:

The level sets of N relate to the dynamics of test bodies!

A B F A B F

Equipotential Surfaces in Newtonian Gravity

A surface $\Sigma \subset \mathbb{R}^3$ is an equipotential surface in NG if it is a level set of the Newtonian potential U.

- Fact 1: Test bodies constrained to equipotential surfaces are not accelerated.
- Fact 2: Level sets of *U* are the only surfaces.

Equipotential Surfaces

Equipotential Surfaces in Geometrostatics

Definition (Mimicking Newtonian Gravity, C.)

A timelike curve in $(\mathbb{R} \times M^3, {}^4g = -N^2c^2dt^2 + {}^3g)$ is called a constrained test body if it is a critical point of the time functional

$$\mathcal{T}(\mu) := \int\limits_{a}^{b} \left|\dot{\mu}(au)
ight| d au$$

among all timelike curves of the form $\mu(\tau) = (t(\tau), x(\tau))$ with $x(\tau) \in \Sigma$.

A surface $\Sigma \subset M^3$ is called an equipotential surface in $(M^3, {}^3g, N)$ if the spatial component $x(\tau)$ of every constrained test body is a geodesic in Σ with respect to the induced 2-metric.

イロト イポト イヨト イヨト

The Role of the Level Sets of *N*

Theorem (C.)

A hypersurface $\Sigma \subset M^3$ is an equipotential surface in $({}^3g, N)$ if and only if $N \equiv \text{const}$ on Σ , i.e. iff Σ is a level set of N.

Proof: Calculus of variations with Lagrange multipliers.

.

Newtonian Gravity Versus Geometrostatics

Newtonian

levels of *U* are the only equipotential surfaces

Geometrostatic

levels of *N* are the only equipotential surfaces

So: the level sets of *U*, *N* have the same physical interpretation! \rightarrow definition of force \vec{F} (on test bodies); $\vec{F} = m\vec{a}$

(4) (5) (4) (5)

Contents

Geometrostatic Systems

Geometric and Physical Properties Equipotential Surfaces

Uniqueness Properties

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

A .

.∃ ▶ ∢

Uniqueness in Newtonian Gravity

Newton's Equation

$$egin{array}{rcl} \Delta U &=& 4\pi G
ho & ext{ in } \mathbb{R}^3 \ U & o & 0 & ext{ as } r o \infty \end{array}$$

is

an elliptic PDE (Poisson equation)

$\bullet\,$ with "Dirichlet boundary conditions" at $\infty\,$

- \rightarrow formally modelled by weighted Sobolev spaces
- uniquely solvable in suitably chosen function spaces

4 A N

Uniqueness of *N* in Geometrostatics

Y. Choquet-Bruhat's famous • theorem on the Cauchy problem implies

Corollary (C.)

The equipotential surfaces (and the Lorentzian metric) of a static gravitational system are in fact independent of the lapse function N.

In other words, if $(\mathbb{R} \times M^3, {}^4g)$ is a static as. flat solution of Einstein's equation, then it is uniquely characterized by its induced 3-metric 3g .

Proof: The constraint equations reduce to ${}^{3}R = 0$ in our case ($K \equiv 0$). Equipotential surfaces only depend on ${}^{4}g$.

Theorem (C.)

Let $({}^{3}g, N)$ and $({}^{3}g, \widetilde{N})$ solve the static vacuum Einstein equations with $N, \widetilde{N} \to 1$ as $r \to \infty$ and suppose that ${}^{3}g$ is non-flat. Then $N \equiv \widetilde{N}$.

Proof: (vacuum part here, remainder follows from elliptic theory)

- Levels of N, \widetilde{N} are each the only equipotential surfaces $\Rightarrow \widetilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.
- $0 = {}^{3} \triangle \widetilde{N} = {}^{3} \triangle (f \circ N) = f'' \circ N \parallel^{3} \operatorname{grad} N \parallel^{2}_{3g} + f' \circ N \overset{3}{\bigtriangleup} N$ so that

f'' = 0 and thus $\widetilde{N} = \alpha N + \beta$ with $\alpha, \beta \in \mathbb{R}$.

- ${}^{3}\nabla^{2}\widetilde{N} = \widetilde{N} {}^{3}\text{Ric} = (\alpha N + \beta) {}^{3}\text{Ric} = \alpha {}^{3}\nabla^{2}N + \beta {}^{3}\text{Ric} = {}^{3}\nabla^{2}\widetilde{N} + \beta {}^{3}\text{Ric}$ and ${}^{3}\text{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \widetilde{N} \to 1$ as $r \to \infty \Rightarrow \alpha = 1 \Rightarrow N \equiv \widetilde{N}$.

Theorem (C.)

Let $({}^{3}g, N)$ and $({}^{3}g, \widetilde{N})$ solve the static vacuum Einstein equations with $N, \widetilde{N} \to 1$ as $r \to \infty$ and suppose that ${}^{3}g$ is non-flat. Then $N \equiv \widetilde{N}$.

Proof: (vacuum part here, remainder follows from elliptic theory)

• Levels of N, \widetilde{N} are each the only equipotential surfaces $\Rightarrow \widetilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.

•
$$0 = {}^{3} \triangle \widetilde{N} = {}^{3} \triangle (f \circ N) = f'' \circ N \|{}^{3} \operatorname{grad} N\|_{3g}^{2} + f' \circ N \underbrace{{}^{3} \triangle N}_{=0}$$
 so that

f'' = 0 and thus $\widetilde{N} = \alpha N + \beta$ with $\alpha, \beta \in \mathbb{R}$.

- ${}^{3}\nabla^{2}\widetilde{N} = \widetilde{N} {}^{3}\text{Ric} = (\alpha N + \beta) {}^{3}\text{Ric} = \alpha {}^{3}\nabla^{2}N + \beta {}^{3}\text{Ric} = {}^{3}\nabla^{2}\widetilde{N} + \beta {}^{3}\text{Ric}$ and ${}^{3}\text{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \widetilde{N} \to 1$ as $r \to \infty \Rightarrow \alpha = 1 \Rightarrow N \equiv \widetilde{N}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Theorem (C.)

Let $({}^{3}g, N)$ and $({}^{3}g, \widetilde{N})$ solve the static vacuum Einstein equations with $N, \widetilde{N} \to 1$ as $r \to \infty$ and suppose that ${}^{3}g$ is non-flat. Then $N \equiv \widetilde{N}$.

Proof: (vacuum part here, remainder follows from elliptic theory)

• Levels of N, \widetilde{N} are each the only equipotential surfaces $\Rightarrow \widetilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.

•
$$0 = {}^{3} \triangle \widetilde{N} = {}^{3} \triangle (f \circ N) = f'' \circ N \|{}^{3} \operatorname{grad} N\|_{3g}^{2} + f' \circ N \underbrace{{}^{3} \triangle N}_{=0}$$
 so that

f'' = 0 and thus $\widetilde{N} = \alpha N + \beta$ with $\alpha, \beta \in \mathbb{R}$.

- ${}^{3}\nabla^{2}\widetilde{N} = \widetilde{N} {}^{3}\text{Ric} = (\alpha N + \beta) {}^{3}\text{Ric} = \alpha {}^{3}\nabla^{2}N + \beta {}^{3}\text{Ric} = {}^{3}\nabla^{2}\widetilde{N} + \beta {}^{3}\text{Ric}$ and ${}^{3}\text{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \widetilde{N} \to 1$ as $r \to \infty \Rightarrow \alpha = 1 \Rightarrow N \equiv \widetilde{N}$.

・ロト ・四ト ・ヨト・

Theorem (C.)

Let $({}^{3}g, N)$ and $({}^{3}g, \widetilde{N})$ solve the static vacuum Einstein equations with $N, \widetilde{N} \to 1$ as $r \to \infty$ and suppose that ${}^{3}g$ is non-flat. Then $N \equiv \widetilde{N}$.

Proof: (vacuum part here, remainder follows from elliptic theory)

• Levels of N, \widetilde{N} are each the only equipotential surfaces $\Rightarrow \widetilde{N} = f \circ N$ for some function $f : \mathbb{R} \to \mathbb{R}$.

•
$$0 = {}^{3} \triangle \widetilde{N} = {}^{3} \triangle (f \circ N) = f'' \circ N \|{}^{3} \operatorname{grad} N\|_{3g}^{2} + f' \circ N \underbrace{{}^{3} \triangle N}_{=0}$$
 so that

f'' = 0 and thus $\widetilde{N} = \alpha N + \beta$ with $\alpha, \beta \in \mathbb{R}$.

- ${}^{3}\nabla^{2}\widetilde{N} = \widetilde{N} {}^{3}\text{Ric} = (\alpha N + \beta) {}^{3}\text{Ric} = \alpha {}^{3}\nabla^{2}N + \beta {}^{3}\text{Ric} = {}^{3}\nabla^{2}\widetilde{N} + \beta {}^{3}\text{Ric}$ and ${}^{3}\text{Ric} \neq 0$ gives $\beta = 0$.
- Finally $N, \widetilde{N} \to 1$ as $r \to \infty \Rightarrow \alpha = 1 \Rightarrow N \equiv \widetilde{N}$.

Newtonian Gravity Versus Geometrostatics

Newtonian

For given matter and Galilei coordinates (i.e. flat metric), *U* is unique.

Geometrostatic

For given matter and metric, *N* is unique.

- U, N have very similar uniqueness properties
- justifies name "static potential" used in the literature
- can also be proved with purely analytic methods
- and with a 3-geodesic method combined with an open-closed argument

Even More: Uniqueness of ³g

Theorem (C.)

 ${}^{3}g$ is unique for given N and prescribed wave-harmonic asymptotically flat coordinates.

Proof: Asymptotic analysis in weighted Sobolev spaces using the static metric equations. Properties of homogeneous harmonic polynomials.

- For given coordinates, N and ${}^{3}g$ are "dual".
- Geometrostatic systems have 4 degrees of freedom
 → plausibility check for Bartnik's conjecture on mass

A (10) A (10) A (10)

Contents

Geometrostatic Systems

2 Geometric and Physical Properties
 • Equipotential Surfaces
 • Uniqueness Properties

3

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

A 10

Pseudo-Newtonian Gravity

Definition (Pseudo-Newtonian System)

Let $(M^3, {}^3g, N, \rho, S)$ be a geometrostatic system. Let

$$U := c^2 \log N$$

$$\gamma := N^{2/3}g = e^{2U/c^2/3}g$$

and call U the associated pseudo-Newtonian potential and $(M^3, \gamma, U, \rho, S)$ the associated pseudo-Newtonian system.

A (10) A (10)

Pseudo-Newtonian Equations

Proposition

 $(M^3, {}^3g, N, \rho, S)$ satisfies the static metric equations iff $(M^3, \gamma, U, \rho, S)$ satisfies the pseudo-Newtonian equations

$$\gamma \triangle U = 4\pi G \left(\frac{\rho}{e^{2c^{-2}U}} + \frac{\gamma \operatorname{tr} S}{c^2} \right)$$

$$\gamma \operatorname{Ric} = \frac{2}{c^4} dU \otimes dU + \frac{8\pi G}{c^4} \left(S - \gamma \operatorname{tr} S \gamma \right)$$

In vacuum, these read

$${}^{\gamma} \triangle U = 0$$

$${}^{\gamma} \text{Ric} = \frac{2}{c^4} dU \otimes dU.$$

Pseudo-Newtonian Fall-Off

Proposition

U and γ inherit the fall-off

$$U = -\frac{mG}{r} + \mathcal{O}(\frac{1}{r^2})$$
 and $\gamma_{ij} = \delta_{ij} + \mathcal{O}(\frac{1}{r^2})$

in asymptotically flat γ -harmonic coordinates.

Coordinates are harmonic w.r.t. *γ* iff they are wave-harmonic.
 m = ADM-mass of ³g

A D A D A D A

Formal Analogy to Newton

Newtonian

$$\delta \Delta U = 4\pi G \times \rho$$

 $\delta \operatorname{Ric} = 0$

$U = -mG/r + \mathcal{O}(r^{-2})$ $\delta_{ij} = \delta_{ij}$

Pseudo-Newtonian $\gamma \Delta U = 4\pi G \times \text{matter}$ $\gamma \text{Ric} = 2c^{-4} dU \otimes dU$ $+c^{-4} \text{matter}$ $U = -mG/r + \mathcal{O}(r^{-2})$ $\gamma_{ii} = \delta_{ii} + \mathcal{O}(r^{-2})$

・ロト ・ 四ト ・ ヨト ・ ヨト …

Formally: $c \rightarrow \infty \Rightarrow$ equations converge (if variables converge)

3

Contents

Geometrostatic Systems

2 Geometric and Physical Properties
 • Equipotential Surfaces
 • Uniqueness Properties

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

4 A N

→ ∃ →

Ehlers constructed Frame Theory encompassing GR and NG

 \rightarrow Frame Theory allows rigorous definition of Newtonian Limit \rightarrow Rendall, Olyinyk, etc. showed existence of converging families

Ehlers constructed Frame Theory encompassing GR and NG \rightarrow Frame Theory allows rigorous definition of Newtonian Limit \rightarrow Rendall, Olyinyk, etc. showed existence of converging families

イロト イ理ト イヨト イヨト

Ehlers constructed Frame Theory encompassing GR and NG \rightarrow Frame Theory allows rigorous definition of Newtonian Limit \rightarrow Rendall, Olyinyk, etc. showed existence of converging families

A (10) A (10) A (10)

Newtonian Limit ctd.

Theorem (C.)

Using Ehlers' Frame Theory, one finds that in the Newtonian limit

- the pseudo-Newtonian potential U(c) converges to the Newtonian potential U and
- the metric $\gamma(c)$ converges to the flat metric δ .

Remarks:

- in suitable asymptotically flat coordinates
- in suitably chosen weighted Sobolev spaces
- for families with a Newtonian limit

A B b 4 B b

Difficulties

- Definition of staticity in Frame Theory (Killing vector fields, hypersurface-orthogonality)
- Definitions of U, γ in Frame Theory
- Definition of a (uniform, C^1) Newtonian Limit
- Handling coordinate dependence

< 回 > < 回 > < 回 >

Physical Properties and the Newtonian Limit

- How do physical properties behave under the Newtonian limit along a family of pseudo-N. systems that has a Newtonian limit?
- Can we stretch the analogy between Newtonian and pseudo-Newtonian theories further?

Contents

Equipotential Surfaces

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

4 A N

∃ >

The Mass of a Newtonian System

• The mass of a system with density ρ is defined as

$$m_N := \int_{\mathbb{R}^3} \rho \, dV.$$

• By $\triangle U = 4\pi G \rho$ and the divergence theorem rewrite

$$m_N = \int_{\mathbb{R}^3} \rho \, dV = \int_C \rho \, dV = \frac{1}{4\pi G} \int_C \triangle U \, dV = \frac{1}{4\pi G} \int_{\partial C} \frac{\partial U}{\partial \nu} \, d\sigma$$

where *C* is any compact domain with ∂C smooth and supp $\rho \subset C$.

• Here: dV volume measure, $d\sigma$ surface measure of ∂C , ν outer unit normal to ∂C

The Mass of a Newtonian System Revisited

Quasilocal Newtonian Mass

For a Newtonian system with potential U and a smooth surface $\Sigma \subset \mathbb{R}^3$ with outer unit normal ν define

$$m_N(\Sigma) := rac{1}{4\pi G} \int\limits_{\Sigma} rac{\partial U}{\partial
u} \, d\sigma.$$

This proves the classical

Total Mass Theorem

If Σ encloses supp ρ , then $m_N(\Sigma) = m_N$.

伺下 イヨト イヨ

The Pseudo-Newtonian Mass

In this spirit, we define

Definition (Quasilocal Pseudo-Newtonian Mass)

Let (γ, U) be as before. Let all geometric notions refer to γ . For any smooth surface $\Sigma \subset M^3$ define

$$m_{PN}(\Sigma) := rac{1}{4\pi G} \int\limits_{\Sigma} rac{\partial U}{\partial
u} \, d\sigma.$$

Here, ν is the γ -outer unit normal to and $d\sigma$ is the γ -surface measure on Σ .

The integral $\frac{1}{4\pi G} \int_{S_{res}} \frac{\partial U}{\partial v} d\sigma$ is well-known as the Komar-mass.

・ロ・ ・ 四・ ・ ヨ・ ・

Mass

The Newtonial Limit of Mass

Just as in the Newtonian setting, we have

Theorem (Pseudo-Newtonian Total Mass Theorem, C.)

If Σ encloses the support of the matter, then $m_{PN}(\Sigma) = m_{ADM}({}^{3}g)$. In particular, m_{PN} is independent of Σ and can be calculated "locally".

Proof: Recall $U = -mG/r + O(r^{-2})$ with $m = m_{ADM}({}^{3}g)$ and use suitable weighted Sobolev spaces.

Theorem (Newtonian Limit of Mass Theorem, C.)

For any sequence of space-times with a Newtonian limit,

 $m_{ADM}(c) = m_{PN}(c) \rightarrow m_N \text{ as } c \rightarrow \infty.$

Proof: $U(c) \rightarrow U$ and $\gamma(c) \rightarrow \delta$ as $c \rightarrow \infty$, see above.

イロト イポト イヨト イヨト

Contents

Geometrostatic Systems

2 Geometric and Physical Properties
 • Equipotential Surfaces
 • Uniqueness Properties

Mass and Center of Mass

- Pseudo-Newtonian Gravity
- Newtonian Limit
- Mass
- Center of Mass

The CoM of a Newtonian System

• The *center of mass* (CoM) of a system with density ρ is defined as

$$\vec{z}_N := \frac{1}{m_N} \int\limits_{\mathbb{R}^3} \rho \, \vec{x} \, dV$$

w.r.t. Galilei coordinates (x^i) .

• For Σ enclosing supp ρ , we can rewrite

$$4\pi G m_N \vec{z}_N = \int_{\Sigma} \left(\frac{\partial U}{\partial \nu} \vec{x} - U \frac{\partial \vec{x}}{\partial \nu} \right) \, d\sigma$$

using Green's formula.

The CoM of a Newtonian System Revisited

Definition (Quasi-local Newtonian CoM)

For a Newtonian system with potential U define

$$ec{z}_N(\Sigma) := rac{1}{4\pi G m_N} \int\limits_{\Sigma} \left(rac{\partial U}{\partial
u} ec{x} - U \, rac{\partial ec{x}}{\partial
u}
ight) \, d\sigma,$$

where ν is the outer unit normal to Σ .

Newtonian CoM Theorem

If Σ encloses supp ρ , then $\vec{z}_N(\Sigma) = \vec{z}_N$. If Σ is a level set of U, then

$$ec{z}_N = rac{1}{4\pi Gm_N} \int\limits_{\Sigma_U} rac{\partial U}{\partial
u} ec{x} d\sigma.$$

The Pseudo-Newtonian CoM

Definition (Quasilocal Pseudo-Newtonian CoM)

Let (γ, U) be as before. Take all geometric notions w.r.t. γ and use γ -harmonic coordinates: $\gamma \triangle x^i = 0$. Then we define

$$ec{z}_{PN}(\Sigma) := rac{1}{4\pi G m_{PN}} \int\limits_{\Sigma} \left(rac{\partial U}{\partial
u} ec{x} - U \, rac{\partial ec{x}}{\partial
u}
ight) \, d\sigma.$$

Here, ν and σ are the outer unit normal to and surface measure on Σ w.r.t. $\gamma,$ respectively.

Remark: γ -harmonic coordinates are also wave-harmonic.

A (10) A (10)

Facts on the Pseudo-Newtonian CoM

Again, we can prove theorems similar to the Newtonian one:

1st Pseudo-Newtonian CoM Theorem, C.

$$\vec{z}_{PN} := \vec{z}_{PN}(\Sigma)$$

is independent of the specific surface Σ enclosing the support of the matter and can be calculated "locally". If Σ is a level set of U, then

$$ec{z}_{PN} = rac{1}{4\pi G m_{PN}} \int\limits_{\Sigma_U} rac{\partial U}{\partial
u} ec{x} \, d\sigma.$$

.

Facts on the Pseudo-Newtonian CoM ctd.

2nd Pseudo-Newtonian CoM Theorem, C.

The (pseudo-Newtonian) CoM \vec{z} can be read off the asymptotics of U:

$$U = -\frac{mG}{r} - \frac{mG\vec{z}\cdot\vec{x}}{r^3} + \mathcal{O}(\frac{1}{r^3}).$$

This expression transforms adequately under change of asymptotically flat γ -harmonic coordinates.

Proof: theory of weighted Sobolev spaces, regularity arguments.

Faster Fall-Off

Faster Fall-Off Theorem

Let $k \in \mathbb{N}_0$, $1 , <math>\delta < 0$ with $\delta \notin \mathbb{Z}$, and $f \in C^{\infty}(\mathbb{R}^3)$. Assume

$$f\in W^{k+2,p}_{\delta+1}$$
 and ${}^{\delta}\!\!\bigtriangleup f\in W^{k,p}_{\delta-2}.$

Then there exists a harmonic rescaled polynomial p of degree $d \leq \lceil \delta \rceil$ with $f - p \in V_{\delta}^{k+2,p}$.

- In \mathcal{O} -notation: $f = \mathcal{O}(r^{-l+1}), \Delta f = \mathcal{O}(r^{-l-2}) \Rightarrow f p = \mathcal{O}(r^{-l})$
- Example: $U {}^{S}U = \mathcal{O}(r^{-2}), {}^{\delta} \triangle (U {}^{S}U) = \mathcal{O}(r^{-5})$ gives $U {}^{S}U = \vec{z} \cdot \vec{x}/r^{3} + \mathcal{O}(r^{-3}).$
- This is also used to show uniqueness of ³g given N and for a different proof of the uniqueness of N given ³g.

ヘロト ヘ回ト ヘヨト ヘヨト

Facts on the Pseudo-Newtonian CoM ctd.

3rd Pseudo-N. CoM Theorem, C.

This CoM coincides with the CoM given by a foliation by spheres of constant mean curvature (Huisken & Yau, Metzger) and with the ADM center of mass:

 $\vec{z}_{PN} = \vec{z}_{CMC} = \vec{z}_{ADM}.$

A (10) A (10) A (10)

Proof: Uses Huang's result $\vec{z}_{CMC} = \vec{z}_{ADM}$ and asymptotics proved above.

The Newtonian Limit of the Pseudo-Newtonian CoM

Newtonian Limit of Pseudo-Newtonian CoM Theorem

The Newtonian limit of the pseudo-Newtonian CoM and therefore also of the CMC center of mass is the CoM of the Newtonian limit along any sequence of space-times with a Newtonian limit:

$$\vec{z}_{CMC}(c) = \vec{z}_{ADM}(c) = \vec{z}_{PN}(c) \rightarrow \vec{z}_N \text{ as } c \rightarrow \infty.$$

Generalizations: other spacelike slices in static GR

- graphs over $\{t = 0\}$ -slice
 - with Christopher Nerz:
 - asymptotic decay becomes more delicate
 - global notion of CoM can break down even in Schwarzschild slices
- general asymptotically flat slices (e.g. boosted ones)
- general asymptotically hyperbolic slices

Possible Applications of Geometrostatics

- Static *n*-Body Problem?
- Bartnik's Static Metric Extension Conjecture?

A .

→ ∃ →

$$\triangle U = 4\pi G\rho$$

- static Newtonian Gravity with potential *U*
- Geometrostatics $({}^{3}g, N)$ or equivalently pseudo-Newtonian Gravity (γ, U)
- equipotential surfaces
- mass as surface integral

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- expressions for CoM
- Newtonian limit.

$${}^{3} \triangle N = \frac{4\pi G}{c^{2}} N \times \text{matter}$$

 $N^{3} \text{Ric} = {}^{3} \nabla^{2} N + N \times \text{matter}$

$$\gamma \bigtriangleup U = 4\pi G \times \text{matter}$$

 $\gamma \text{Ric} = c^{-4} (2dU \otimes dU + \text{matter})$

- static Newtonian Gravity with potential *U*
- Geometrostatics $({}^3g, N)$ or equivalently pseudo-Newtonian Gravity (γ, U)
- equipotential surfaces
- mass as surface integral

- expressions for CoM
- Newtonian limit.

- static Newtonian Gravity with potential *U*
- Geometrostatics (³g, N) or equivalently pseudo-Newtonian Gravity (γ, U)
- equipotential surfaces
- mass as surface integral

- expressions for CoM
- Newtonian limit.

$$m_{PN} := rac{1}{4\pi G} \int\limits_{\Sigma} rac{\partial U}{\partial
u} \, d\sigma$$

Theorem

 $m_{PN} = m_{ADM}$

- static Newtonian Gravity with potential *U*
- Geometrostatics (³g, N) or equivalently pseudo-Newtonian Gravity (γ, U)
- equipotential surfaces
- mass as surface integral

- expressions for CoM
- Newtonian limit.

$$egin{array}{rcl} ec{z}_{PN} & := & rac{1}{4\pi G m_{PN}} \ & imes & \int \limits_{\Sigma} \left(rac{\partial U}{\partial
u} \, ec{x} - U rac{\partial ec{x}}{\partial
u}
ight) d\sigma \end{array}$$

Theorem

$$U = -\frac{mG}{r} - \frac{mG\vec{z}\vec{x}}{r^3} + \mathcal{O}(\frac{1}{r^3})$$

Theorem

 $\vec{z}_{PN} = \vec{z}_{CMC} = \vec{z}_{ADM}$

- static Newtonian Gravity with potential *U*
- Geometrostatics $({}^3\!g, N)$ or equivalently pseudo-Newtonian Gravity (γ, U)
- equipotential surfaces
- mass as surface integral

- expressions for CoM
- Newtonian limit.

- static Newtonian Gravity with potential U
- Geometrostatics (³g, N) or equivalently pseudo-Newtonian Gravity (γ, U)
- equipotential surfaces
- mass as surface integral

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- expressions for CoM
- Newtonian limit.

Thank you for your attention!

э

イロト イヨト イヨト イヨト