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Two Theories of Gravitation

Physics knows two major theories of gravitation:
the classical Newtonian one (NG, 17th century) and
Einstein’s general relativity (GR, 20th century).

Both theories rely on PDEs connecting the matter content of a
gravitating system to its gravitational variables:

Newtonian PDE Relativistic PDE (Einstein)
AU = 4nGp Ric—}Rg= 3707

p: matter density T: energy-momentum tensor
U: gravitational potential g, Ric, R: geometric variables

G: Gravitational constant, c: speed of light
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Two Theories of Gravitation ctd.

Both theories have their advantages and disadvantages:

Newtonian Theory

very accurate "in every day life"
INACCURATE for high speeds

comparably LITTLE effort for
computations

centuries of experience/
fairly EASY to interpret/model

Relativistic Theory

very accurate in "every day life
ACCURATE for high speeds

comparably LARGE effort for
computations

relative lack of experience/
fairly HARD to interpret/model
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Idea/Aim

Learn from our physical/mathematical knowledge of Newtonian gravity
to gain
— a better understanding of relativistic gravitating systems
their geodesics
their asymptotic behavior
equipotential surfaces
local and total mass
local and total center of mass
the Newtonian limit

— a better intuition for GR
— new methods for proofs in GR

vV vy vy VvYyy

v
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Setting

We specialize to the following (rather general) setting of

Physical Systems

@ isolated

@ static

@ finite extension of source

Mathematical Models

@ asymptotically flat

@ timelike Killing vector,
hypersurface-orthogonal

@ matter tensor has
spatially compact support

v

GR = geometrodynamics
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— static GR = geometrostatics
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Contents

ﬂ Geometrostatic Systems

e Geometric and Physical Properties
@ Equipotential Surfaces
@ Uniqueness Properties

e Mass and Center of Mass
@ Pseudo-Newtonian Gravity
@ Newtonian Limit
@ Mass
@ Center of Mass
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Reminder: Formal Structure of GR

A relativistic system consists of
@ a space-time 4-manifold M*
@ a symmetric matter tensor field T
@ a Lorentzian metric %

satisfying the Einstein equations

1 87G

41 4 4

Ric— - *R% =77
1C 3 8 C4

with gravitational constant G, speed of light c.

Carla Cederbaum (Tiibingen) Geometrostatics



3+1 Decomposition: Initial Value Problem Approach

Theorem (Choquet-Bruhat et al.)

The Einstein equations can be reformulated as a well-posed hyperbolic
initial value problem (for suitable matter models).

Remarks:
@ involves (non-canonical) 3+1 decomposition
@ involves choice of coordinates (lapse and shift)
@ gives rise to phenomena like gravitational waves
@ |VP approach is used in numerical simulations
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Geometrostatic Systems

Static General Relativity

Definition
A relativistic system (M*,%,,,,, T"*) is called static if it possesses a
global timelike Killing vector field X that is hypersurface-orthogonal:

4V(QX5) =0 and X[Q4V5 X’Y] =0

Frobenius: hypersurface-orthogonality <+ integrability of distribution X+
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Lapse and 3-Metric

Proposition

Generic static spacetimes can be canonically decomposed into
M* =R x M?,
4g = _N222d2 + 3g,

with induced Riemannian metric 3¢ and lapse function

N :=4/—%(X,X) > 0;

X is the hypersurface-orthogonal timelike Killing vector and dt := X°.

v
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Static Geometry: the Facts

@ All time-slices (M?,%) are isometric.

@ They are embedded into (M* = R x M3, %) with vanishing second
fundamental form.

@ The lapse function N : M? — R* is independent of “time”.

@ The matter tensor induces time-independent matter variables
p (matter density) and S (stress tensor).

= We think of a static spacetime as a tuple (M?3,%, N, p, S).
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What Are the Main Equations?

Static general relativity is governed by the

Static Metric Equations

3
AN = —47TGN<,0~I— E)

4rG
N 3Ric = 3V2N+LN<p3g+
c c

on M3.
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What Are the Main Equations?

Vacuum static general relativity is governed by the
Vacuum Static Metric Equations

AN = 0
N3Ric = VN

on M3.
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_________________GeometostalicSystems |
Wave-Harmonic Coordinates and Regularity

The static metric equations form an elliptic system of PDEs in
wave-harmonic coordinates:

Definition
Local coordinates x' on M? are called wave-harmonic if they satisfy
‘Ox =0

with respect to g = —N?c?dr* + %.

Theorem (Muller zum Hagen)

Any solution of the static metric equations is real analytic with respect
to local wave-harmonic coordinates (for suitable matter models).
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Asymptotic Flatness

Theorem (Kennefick & O’Murchadha)

Asymptotically Euclidean solutions of the static metric equations with
compactly supported matter and N — 1 as r — oo are automatically
asymptotically Schwarzschildean:

_ mG 3 2mG ) l
1__+O( ) and glj_(1+ o )6lj+o(r2)

rc?

in asymptotically flat wave-harmonic coordinates.

Remark: m is the ADM-mass of .
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Geometrostatic Systems

Geometrostatics

Definition (Geometrostatic Systems)

A geodesically complete asymptotically flat solution (M3,%, N, p, S) of
the static metric equations with compactly supported p and S and
N —lasr— xiscalled a

geometrostatic system.

Remarks:
@ asymptotic flatness is defined in weighted Sobolev spaces

@ definition can be extended to include black hole solutions
@ name stresses the geometric viewpoint taken
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Formal Analogy to Newton

Newtonian Geometrostatics
AU = 4nG x matter AN = 471G x N/c* x matter
Ric = 0 SRic = 3V2N/N + matter
U = —mG/r+ 0% N = 1-—mG/ré® + 072
dy = O 3g,-j = (l + 2mG/rcz) 0jj
—i—(’)(r*z)

Question: How similar is U to N physically/geometrically?
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e Geometric and Physical Properties
@ Equipotential Surfaces
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Equipotential Surtaces
Physical Interpretation

From definition:

e (M?,%) is a time-slice, i.e. the status of a static system at any
point of time in the eyes of the chosen “observer” X

@ N describes how to measure time in order to “see” staticity.

New focus/interpretation:
@ The level sets of N relate to the dynamics of test bodies!

Carla Cederbaum (Tiibingen) Geometrostatics 18
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Equipotential Surfaces in Newtonian Gravity

A surface ¥ c R3 is an equipotential surface in NG if it is a level set of
the Newtonian potential U.

® Fact 1: _TeSt bOdIeS_ ) test body restricted to >
constrained to equipotential — =
surfaces are not accelerated.

@ Fact 2: Level sets of U are the
only surfaces.

no acceleration
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Equipotential Surfaces in Geometrostatics

Definition (Mimicking Newtonian Gravity, C.)

A timelike curve in (R x M3 % = —N?c%d> + %) is called a constrained

test body if it is a critical point of the time functional

b
T = / [i(r)| dr

among all timelike curves of the form u(7) = (¢#(7),x(7)) with x(7) € X.

A surface ¥ ¢ M3 is called an equipotential surface in (M?3,%, N) if the
spatial component x(7) of every constrained test body is a geodesic in
> with respect to the induced 2-metric.

Carla Cederbaum (Tiibingen) Geometrostatics
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Equipotential Surfaces
The Role of the Level Sets of N

Theorem (C.)

A hypersurface ¥ C M? is an equipotential surface in (°%, N) if and only
if N = constony, i.e. iff ¥ is a level set of N.

Proof: Calculus of variations with Lagrange multipliers.
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Equipotential Surtaces
Newtonian Gravity Versus Geometrostatics

Newtonian Geometrostatic
levels of U are the only levels of N are the only
equipotential surfaces equipotential surfaces

So: the level sets of U, N have the same phyS|caI interpretation!
— definition of force F (on test bodies); F = md
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Uniqueness in Newtonian Gravity

Newton’s Equation

AU = 41Gp in R?
Uu — 0 asr — oo

is
@ an elliptic PDE (Poisson equation)

@ with "Dirichlet boundary conditions" at co
— formally modelled by weighted Sobolev spaces

@ uniquely solvable in suitably chosen function spaces
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Uniqueness of N in Geometrostatics

Y. Choquet-Bruhat’s famous on the Cauchy problem implies

Corollary (C.)

The equipotential surfaces (and the Lorentzian metric) of a static
gravitational system are in fact independent of the lapse function N.

In other words, if (R x M?,%) is a static as. flat solution of Einstein’s
equation, then it is uniquely characterized by its induced 3-metric 3.

Proof: The constraint equations reduce to *R = 0 in our case (K = 0).
Equipotential surfaces only depend on . O
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Geometric and Physical Properties Uniqueness Properties

Uniqueness of N ctd.

Theorem (C.)

Let( N) and (%, N) solve the static vacuum Einstein equations with
N,N — 1 asr — oo and suppose that % is non-flat. ThenN = N.

Proof: (vacuum part here, remainder follows from elliptic theory)

@ Levels of N, N are each the only equipotential surfaces
= N = f o N for some functionf : R — R.

Carla Cederbaum (Tiibingen) Geometrostatics
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Geometric and Physical Properties Uniqueness Properties

Uniqueness of N ctd.

Theorem (C.)

Let( N) and (%, N) solve the static vacuum Einstein equations with
N,N — 1 asr — oo and suppose that % is non-flat. ThenN = N.

Proof: (vacuum part here, remainder follows from elliptic theory)

@ Levels of N, N are each the only equipotential surfaces
= N = f o N for some functionf : R — R.

0=3AN=3A(foN)=f"oN [PgradN |3, +f" o N ’AN so that
~—~

0
" =0 and thus N = aN + 3 with a, 8 € R.
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Geometric and Physical Properties Uniqueness Properties

Uniqueness of N ctd.

Theorem (C.)

Let( N) and (%, N) solve the static vacuum Einstein equations with
N,N — 1 asr — oo and suppose that % is non-flat. ThenN = N.

Proof: (vacuum part here, remainder follows from elliptic theory)

@ Levels of N, N are each the only equipotential surfaces
= N = f o N for some functionf : R — R.

0=3AN=3A(foN)=f"oN [PgradN |3, +f" o N ’AN so that
~—~

0
" =0 and thus N = aN + 3 with a, 8 € R.

@ 3V2N = N3Ric = (aN + ) Ric = a *V2N + 33Ric = 3V2N + 8 3Ric

and *Ric # 0 gives 3 = 0.
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Geometric and Physical Properties Uniqueness Properties

Uniqueness of N ctd.

Theorem (C.)

Let( N) and (%, N) solve the static vacuum Einstein equations with
N,N — 1 asr — oo and suppose that % is non-flat. ThenN = N.

Proof: (vacuum part here, remainder follows from elliptic theory)

@ Levels of N, N are each the only equipotential surfaces
= N = f o N for some functionf : R — R.

0=3AN=3A(foN)=f"oN [PgradN |3, +f" o N ’AN so that
~—~

=0
" =0 and thus N = aN + 3 with a, 8 € R.

@ 3V2N = N3Ric = (aN + ) Ric = a *V2N + 33Ric = 3V2N + 8 3Ric
and *Ric # 0 gives 3 = 0.

@ Finally NN\N »lasr—oo=a=1=N=N. O

Carla Cederbaum (Tubingen)
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Uniqueness Properties
Newtonian Gravity Versus Geometrostatics

Newtonian Geometrostatic

For given matter and Galilei For given matter and metric,
coordinates (i.e. flat metric), N is unique.

U is unique.

@ U, N have very similar uniqueness properties
@ justifies name “static potential” used in the literature
@ can also be proved with purely analytic methods

@ and with a 3-geodesic method combined with an open-closed
argument

Carla Cederbaum (Tibingen) Geometrostatics
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Even More: Uniqueness of %

Theorem (C.)

3% is unique for given N and prescribed wave-harmonic asymptotically
flat coordinates.

Proof: Asymptotic analysis in weighted Sobolev spaces using the static
metric equations. Properties of homogeneous harmonic polynomials.

@ For given coordinates, N and % are “dual’.

@ Geometrostatic systems have 4 degrees of freedom
— plausibility check for Bartnik’s conjecture on mass

Carla Cederbaum (Tiibingen) Geometrostatics 28
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Pseudo-Newtonian Gravity
Pseudo-Newtonian Gravity

Definition (Pseudo-Newtonian System)
Let (M3,%, N, p,S) be a geometrostatic system. Let

U = czlogN
- N23g=e2U/"23g

and call U the associated pseudo-Newtonian potential and
(M3,~,U, p,S) the associated pseudo-Newtonian system.

Carla Cederbaum (Tibingen) Geometrostatics
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Mass and Center of Mass Pseudo-Newtonian Gravity

Pseudo-Newtonian Equations

Proposition

(M?,3%,N, p,S) satisfies the static metric equations iff (M>,~, U, p, S)
satisfies the pseudo-Newtonian equations

1) TtrS

2 87G
Ric = —dU®dU+ —2 (S—"uS7).
C C

AU

In vacuum, these read

NU =

TRic =

0
2 U dU.
C

Carla Cederbaum (Tiibingen) Geometrostatics
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Mass and Center of Mass Pseudo-Newtonian Gravity

Pseudo-Newtonian Fall-Off

Proposition
U and v inherit the fall-off

mG 1 1
U= —T—FO(’_—Z) and %1_5’]4_0(’,_2)

in asymptotically flat v-harmonic coordinates.

@ Coordinates are harmonic w.r.t. v iff they are wave-harmonic.
@ m = ADM-mass of %

Carla Cederbaum (Tibingen) Geometrostatics
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Formal Analogy to Newton

Newtonian Pseudo-Newtonian
IANU = 476G x p TAU = 4nG x matter
‘Ric = 0 TRic = 2¢*dU®dU
+c~* matter
U = —mG/r+0@F?) U = —mG/r+0(?)
05 = 0 v o= &+ 00

Formally: ¢ — oo = equations converge (if variables converge)
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Newtonian Limit
Newtonian Limit

Ehlers constructed Frame Theory encompassing GR and NG

ghTT

A=0: NG A

Carla Cederbaum (Tiibingen) Geometrostatics 35



Newtonian Limit
Newtonian Limit

Ehlers constructed Frame Theory encompassing GR and NG
— Frame Theory allows rigorous definition of Newtonian Limit

ghTT
e GR
theory of
1nterest
A=0: NC A

Carla Cederbaum (Tiibingen) Geometrostatics
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Mass and Center of Mass Newtonian Limit

Newtonian Limit

Ehlers constructed Frame Theory encompassing GR and NG
— Frame Theory allows rigorous definition of Newtonian Limit
— Rendall, Olyinyk, etc. showed existence of converging families

ghTT
e GR
}
theory of
1nterest
2
A=0: NC A

Carla Cederbaum (Tiibingen) Geometrostatics
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Newtonian Limit
Newtonian Limit ctd.

Theorem (C.)
Using Ehlers’ Frame Theory, one finds that in the Newtonian limit

@ the pseudo-Newtonian potential U(c) converges
to the Newtonian potential U and

@ the metric (c) converges to the flat metric .

Remarks:
@ in suitable asymptotically flat coordinates
@ in suitably chosen weighted Sobolev spaces
@ for families with a Newtonian limit
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Newtonian Limit
Difficulties

@ Definition of staticity in Frame Theory
(Killing vector fields, hypersurface-orthogonality)

@ Definitions of U, ~ in Frame Theory
@ Definition of a (uniform, C') Newtonian Limit
@ Handling coordinate dependence

Carla Cederbaum (Tiibingen) Geometrostatics
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Physical Properties and the Newtonian Limit

@ How do physical properties behave under the Newtonian limit
along a family of pseudo-N. systems that has a Newtonian limit?

@ Can we stretch the analogy between Newtonian and
pseudo-Newtonian theories further?

Carla Cederbaum (Tiibingen) Geometrostatics
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Mass
The Mass of a Newtonian System

@ The mass of a system with density p is defined as
my 1= /pdV.
R3
@ By AU = 47 Gp and the divergence theorem rewrite
1 1 oU
R3 c C ac

where C is any compact domain with dC smooth and suppp C C.

@ Here: dV volume measure, do surface measure of 9C, v outer unit normal to 0C
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Mass
The Mass of a Newtonian System Revisited

Quasilocal Newtonian Mass

For a Newtonian system with potential U and a smooth surface ¥ c R3
with outer unit normal v define

1 ou
mN(E) = ﬁ Ed(f
E v
This proves the classical
Total Mass Theorem
If ¥ encloses supp p, then my (%) = my. J
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Mass
The Pseudo-Newtonian Mass

In this spirit, we define

Definition (Quasilocal Pseudo-Newtonian Mass)

Let (v, U) be as before. Let all geometric notions refer to . For any
smooth surface ¥ ¢ M? define

1 ou
mpN(E) = m Eda
b

Here, v is the ~-outer unit normal to and do is the ~-surface measure on X.

i 1 U g i
The integral - [; G, do is well-known as the Komar-mass.
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Mass
The Newtonial Limit of Mass

Just as in the Newtonian setting, we have

Theorem (Pseudo-Newtonian Total Mass Theorem, C.)

If > encloses the support of the matter, then mpy (%) = mapy (’¢). In
particular, mpy is independent of ¥ and can be calculated "locally".

Proof: Recall U = —mG/r 4+ O(r~2) with m = mapy(’¢) and use suitable
weighted Sobolev spaces. O

Theorem (Newtonian Limit of Mass Theorem, C.)
For any sequence of space-times with a Newtonian limit,

mapym(c) = mpy(c) — my as ¢ — oo.

Proof: U(¢) — U and y(c¢) — ¢ as ¢ — oo, see above. O
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Center of Mass
The CoM of a Newtonian System

@ The center of mass (CoM) of a system with density p is defined as

1
Iv:i=— [ pXdV
my
R3

w.r.t. Galilei coordinates (x').
@ For X enclosing supp p, we can rewrite

4WGmNZN:/<g—[V]f—U%> do
Y

using Green’s formula.

Carla Cederbaum (Tiibingen) Geometrostatics
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Center of Mass
The CoM of a Newtonian System Revisited

Definition (Quasi-local Newtonian CoM)
For a Newtonian system with potential U define

- 1 ou ox
Ww(E) = A7 Gmy / (5’“— U%) 40,
5

where v is the outer unit normal to X.

Newtonian CoM Theorem
If ¥ encloses supp p, then Zy(3) = Zy. If X is a level set of U, then

1 ou J
=—— | —Xdo.
47 Gmy ov
Yu

-

IN
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Center of Mass
The Pseudo-Newtonian CoM

Definition (Quasilocal Pseudo-Newtonian CoM)

Let (v, U) be as before. Take all geometric notions w.r.t. v and use
v-harmonic coordinates: "Ax’ = 0. Then we define

- 1 ou ox
ZPN(E) = m/ <$X— U%) do.
%

Here, v and o are the outer unit normal to and surface measure on X w.r.t. ~,
respectively.

Remark: y-harmonic coordinates are also wave-harmonic.

Carla Cederbaum (Tiibingen) Geometrostatics 47




Center of Mass
Facts on the Pseudo-Newtonian CoM

Again, we can prove theorems similar to the Newtonian one:
1st Pseudo-Newtonian CoM Theorem, C.

Zen = Zpn(2)

is independent of the specific surface 3 enclosing the support of the
matter and can be calculated "locally”. If 3 is a level set of U, then

— Xdo.
ZPN 47erpN/ rao
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Center of Mass
Facts on the Pseudo-Newtonian CoM ctd.

2nd Pseudo-Newtonian CoM Theorem, C.

The (pseudo-Newtonian) CoM 7 can be read off the asymptotics of U:
- |
U— mG  mGZ-X +0(5).

r r3 r

This expression transforms adequately under change of asymptotically
flat v-harmonic coordinates.

v

Proof: theory of weighted Sobolev spaces, regularity arguments.
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Center of Mass
Faster Fall-Off

Faster Fall-Off Theorem
Letk € Np, 1 < p < o0,d <0withd ¢ Z, and f € C¥(R?). Assume
fe WP and Af € Wi,

Then there exists a harmonic rescaled polynomial p of degree d < [4]
1 k+27p
with f —p € V5.

@ In O-notation: f = O(r~*1), Af = O(r2) = f —p = O

@ Example: U —5U = O(r72),°A(U — 5U) = O(r—) gives
U-SU=7-%/r+0().

@ This is also used to show uniqueness of 3% given N and for a
different proof of the uniqueness of N given %.

Carla Cederbaum (Tiibingen) Geometrostatics 50



Center of Mass
Facts on the Pseudo-Newtonian CoM ctd.

3rd Pseudo-N. CoM Theorem, C.

This CoM coincides with the CoM given
by a foliation by spheres of constant
mean curvature (Huisken & Yau,
Metzger) and with the ADM center of
mass:

ZpN = Zcmc = Zapum-

y

Proof: Uses Huang’s result Zcyc = Zapu and asymptotics proved
above.
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Center of Mass
The Newtonian Limit of the Pseudo-Newtonian CoM

Newtonian Limit of Pseudo-Newtonian CoM Theorem

The Newtonian limit of the pseudo-Newtonian CoM and therefore also
of the CMC center of mass is the CoM of the Newtonian limit along any
sequence of space-times with a Newtonian limit:

Zeme(¢) = Zapm(c) = Zpn(c) — Zyv as ¢ — oo.
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Center of Mass
Generalizations: other spacelike slices in static GR

@ graphs over {r = 0}-slice
» with Christopher Nerz:
» asymptotic decay becomes more delicate
» global notion of CoM can break down even in Schwarzschild slices

@ general asymptotically flat slices (e.g. boosted ones)
@ general asymptotically hyperbolic slices

Carla Cederbaum (Tiibingen) Geometrostatics
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Center of Mass
Possible Applications of Geometrostatics

@ Static n-Body Problem?
@ Bartnik’s Static Metric Extension Conjecture?

Carla Cederbaum (Tiibingen) Geometrostatics
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Summary

AU = 47Gp

@ static Newtonian Gravity
with potential U
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Mass and Center of Mass Center of Mass

Summary

4
AN = LZGNX matter
C

N3Ric = 3V?N + N x matter

AU = 4rG x matter

TRic = ¢ *(2dU @ dU + matter)

Carla Cederbaum (Tubingen)
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@ static Newtonian Gravity
with potential U

@ Geometrostatics (%, N)
or equivalently
pseudo-Newtonian
Gravity (v, U)
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Mass and Center of Mass Center of Mass

Summary

test body restricted to X

no acceleration

B

Carla Cederbaum (Tubingen)
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@ static Newtonian Gravity
with potential U

@ Geometrostatics (g, N)
or equivalently
pseudo-Newtonian
Gravity (v, U)

@ equipotential surfaces

55



iz
Summary

@ static Newtonian Gravity
with potential U

@ Geometrostatics (g, N)
or equivalently
pseudo-Newtonian
Gravity (v, U)

@ equipotential surfaces

@ mass as surface integral

Q’IQ

1
mpy ‘= _G
P

Theorem J

mpN = MADM

Carla Cederbaum (Tibingen) Geometrostatics
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Mass and Center of Mass Center of Mass

Summary
. 1 @ static Newtonian Gravity
o AnGmpy with potential U
x /(5155— U@) do @ Geometrostatics (g, N)
v ov

or equivalently
pseudo-Newtonian

Theorem Gravity (v, U)
U= _ LB ol J @ equipotential surfaces

@ mass as surface integral
Theorem J @ expressions for CoM

> = =
ZPN = ZcMC = ZADM

Carla Cederbaum (Tibingen) Geometrostatics
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Mass and Center of Mass Center of Mass

Summary
@ static Newtonian Gravity
with potential U
Theorem P .
@ Geometrostatics (g, N)
Ule) — .
or equivalently
W) = 0 pseudo-Newtonian
S p——— Graylty (%.U) f
2ol = 2y J @ equipotential surfaces

@ mass as surface integral
@ expressions for CoM
@ Newtonian limit.
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Mass and Center of Mass

Thank you for your attention!

U = const
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