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Two Theories of Gravitation
Physics knows two major theories of gravitation:
the classical Newtonian one (NG, 17th century) and
Einstein’s general relativity (GR, 20th century).

Both theories rely on PDEs connecting the matter content of a
gravitating system to its gravitational variables:

Newtonian PDE
4U = 4πGρ

ρ: matter density
U: gravitational potential

Relativistic PDE (Einstein)

Ric− 1
2 R g = 8πG

c4 T

T: energy-momentum tensor
g,Ric,R: geometric variables

G: Gravitational constant, c: speed of light
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Two Theories of Gravitation ctd.

Both theories have their advantages and disadvantages:

Newtonian Theory
very accurate "in every day life"

INACCURATE for high speeds

comparably LITTLE effort for
computations

centuries of experience/
fairly EASY to interpret/model

Relativistic Theory
very accurate in "every day life"

ACCURATE for high speeds

comparably LARGE effort for
computations

relative lack of experience/
fairly HARD to interpret/model
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Idea/Aim

Learn from our physical/mathematical knowledge of Newtonian gravity
to gain
→ a better understanding of relativistic gravitating systems

I their geodesics
I their asymptotic behavior
I equipotential surfaces
I local and total mass
I local and total center of mass
I the Newtonian limit

→ a better intuition for GR
→ new methods for proofs in GR
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Setting

We specialize to the following (rather general) setting of

Physical Systems

isolated

static

finite extension of source

Mathematical Models

asymptotically flat

timelike Killing vector,
hypersurface-orthogonal

matter tensor has
spatially compact support

GR = geometrodynamics → static GR = geometrostatics
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Geometrostatic Systems

Reminder: Formal Structure of GR

A relativistic system consists of
a space-time 4-manifold M4

a symmetric matter tensor field T

a Lorentzian metric 4g

satisfying the Einstein equations

4Ric− 1
2

4R 4g =
8πG
c4 T

with gravitational constant G, speed of light c.
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Geometrostatic Systems

3+1 Decomposition: Initial Value Problem Approach

Theorem (Choquet-Bruhat et al.)
The Einstein equations can be reformulated as a well-posed hyperbolic
initial value problem (for suitable matter models).

Remarks:
involves (non-canonical) 3+1 decomposition
involves choice of coordinates (lapse and shift)
gives rise to phenomena like gravitational waves
IVP approach is used in numerical simulations
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Geometrostatic Systems

Static General Relativity

Definition
A relativistic system (M4, 4gµν ,Tµν) is called static if it possesses a
global timelike Killing vector field X that is hypersurface-orthogonal:

4∇(αXβ) = 0 and X[α
4∇β Xγ] = 0

Frobenius: hypersurface-orthogonality↔ integrability of distribution X⊥

Carla Cederbaum (Tübingen) Geometrostatics 9



Geometrostatic Systems

Lapse and 3-Metric

Proposition
Generic static spacetimes can be canonically decomposed into
M4 = R×M3,

4g = −N2c2dt2 + 3g,

with induced Riemannian metric 3g and lapse function

N :=
√
−4g(X,X) > 0;

X is the hypersurface-orthogonal timelike Killing vector and dt := Xb.
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Geometrostatic Systems

Static Geometry: the Facts

All time-slices (M3, 3g) are isometric.
They are embedded into (M4 = R×M3, 4g) with vanishing second
fundamental form.
The lapse function N : M3 → R+ is independent of “time”.
The matter tensor induces time-independent matter variables
ρ (matter density) and S (stress tensor).

⇒We think of a static spacetime as a tuple (M3, 3g,N, ρ, S).
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Geometrostatic Systems

What Are the Main Equations?

Static general relativity is governed by the

Static Metric Equations

34N =
4πG
c2 N

(
ρ+

3trS
c2

)
N 3Ric = 3∇2N +

4πG
c2 N

(
ρ 3g +

2
c2

(
S−

3trS
2

3g
))

on M3.

Carla Cederbaum (Tübingen) Geometrostatics 12



Geometrostatic Systems

What Are the Main Equations?

Vacuum static general relativity is governed by the

Vacuum Static Metric Equations
34N = 0

N 3Ric = 3∇2N

on M3.
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Geometrostatic Systems

Wave-Harmonic Coordinates and Regularity

The static metric equations form an elliptic system of PDEs in
wave-harmonic coordinates:

Definition
Local coordinates xi on M3 are called wave-harmonic if they satisfy

4� xi = 0

with respect to 4g = −N2c2dt2 + 3g.

Theorem (Müller zum Hagen)
Any solution of the static metric equations is real analytic with respect
to local wave-harmonic coordinates (for suitable matter models).
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Geometrostatic Systems

Asymptotic Flatness

Theorem (Kennefick & O’Murchadha)
Asymptotically Euclidean solutions of the static metric equations with
compactly supported matter and N → 1 as r →∞ are automatically
asymptotically Schwarzschildean:

N = 1− mG
rc2 +O(

1
r2 ) and 3gij = (1 +

2mG
rc2 ) δij +O(

1
r2 )

in asymptotically flat wave-harmonic coordinates.

Remark: m is the ADM-mass of 3g.
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Geometrostatic Systems

Geometrostatics

Definition (Geometrostatic Systems)
A geodesically complete asymptotically flat solution (M3, 3g,N, ρ, S) of
the static metric equations with compactly supported ρ and S and
N → 1 as r →∞ is called a

geometrostatic system.

Remarks:
asymptotic flatness is defined in weighted Sobolev spaces
definition can be extended to include black hole solutions
name stresses the geometric viewpoint taken
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Geometrostatic Systems

Formal Analogy to Newton

Newtonian

δ4U = 4πG×matter
δRic = 0

U = −mG/r +O(r−2)

δij = δij

Geometrostatics

34N = 4πG× N/c2 ×matter
3Ric = 3∇2N/N + matter

N = 1− mG/rc2 +O(r−2)
3gij =

(
1 + 2mG/rc2) δij

+O(r−2)

Question: How similar is U to N physically/geometrically?
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Geometric and Physical Properties Equipotential Surfaces
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Geometric and Physical Properties Equipotential Surfaces

Physical Interpretation

From definition:
(M3, 3g) is a time-slice, i.e. the status of a static system at any
point of time in the eyes of the chosen “observer” X

N describes how to measure time in order to “see” staticity.

New focus/interpretation:
The level sets of N relate to the dynamics of test bodies!
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Geometric and Physical Properties Equipotential Surfaces

Equipotential Surfaces in Newtonian Gravity

A surface Σ ⊂ R3 is an equipotential surface in NG if it is a level set of
the Newtonian potential U.

Fact 1: Test bodies
constrained to equipotential
surfaces are not accelerated.
Fact 2: Level sets of U are the
only surfaces. ������
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test body restricted to Σ

Σ

no acceleration

B
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Geometric and Physical Properties Equipotential Surfaces

Equipotential Surfaces in Geometrostatics

Definition (Mimicking Newtonian Gravity, C.)
A timelike curve in (R×M3, 4g = −N2c2dt2 + 3g) is called a constrained
test body if it is a critical point of the time functional

T (µ) :=

b∫
a

|µ̇(τ)| dτ

among all timelike curves of the form µ(τ) = (t(τ), x(τ)) with x(τ) ∈ Σ.

A surface Σ ⊂ M3 is called an equipotential surface in (M3, 3g,N) if the
spatial component x(τ) of every constrained test body is a geodesic in
Σ with respect to the induced 2-metric.
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Geometric and Physical Properties Equipotential Surfaces

The Role of the Level Sets of N

Theorem (C.)
A hypersurface Σ ⊂ M3 is an equipotential surface in (3g,N) if and only
if N ≡ const on Σ, i.e. iff Σ is a level set of N.

Proof: Calculus of variations with Lagrange multipliers.
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Geometric and Physical Properties Equipotential Surfaces

Newtonian Gravity Versus Geometrostatics

Newtonian
levels of U are the only
equipotential surfaces

Geometrostatic
levels of N are the only
equipotential surfaces

So: the level sets of U, N have the same physical interpretation!
→ definition of force ~F (on test bodies); ~F = m~a
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Geometric and Physical Properties Uniqueness Properties
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Geometric and Physical Properties Uniqueness Properties

Uniqueness in Newtonian Gravity

Newton’s Equation

4U = 4πGρ in R3

U → 0 as r →∞

is
an elliptic PDE (Poisson equation)
with "Dirichlet boundary conditions" at∞
→ formally modelled by weighted Sobolev spaces
uniquely solvable in suitably chosen function spaces
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Geometric and Physical Properties Uniqueness Properties

Uniqueness of N in Geometrostatics

Y. Choquet-Bruhat’s famous theorem on the Cauchy problem implies

Corollary (C.)
The equipotential surfaces (and the Lorentzian metric) of a static
gravitational system are in fact independent of the lapse function N.

In other words, if (R×M3, 4g) is a static as. flat solution of Einstein’s
equation, then it is uniquely characterized by its induced 3-metric 3g.

Proof: The constraint equations reduce to 3R = 0 in our case (K ≡ 0).
Equipotential surfaces only depend on 4g.
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Geometric and Physical Properties Uniqueness Properties

Uniqueness of N ctd.

Theorem (C.)

Let (3g,N) and (3g, Ñ) solve the static vacuum Einstein equations with
N, Ñ → 1 as r →∞ and suppose that 3g is non-flat. Then N ≡ Ñ.

Proof: (vacuum part here, remainder follows from elliptic theory)
Levels of N, Ñ are each the only equipotential surfaces
⇒ Ñ = f ◦ N for some function f : R→ R.
0 = 34Ñ = 34(f ◦ N) = f ′′ ◦ N ‖3gradN‖2

3g + f ′ ◦ N 34N︸︷︷︸
=0

so that

f ′′ = 0 and thus Ñ = αN + β with α, β ∈ R.
3∇2Ñ = Ñ 3Ric = (αN + β) 3Ric = α 3∇2N + β 3Ric = 3∇2Ñ + β 3Ric
and 3Ric 6= 0 gives β = 0.
Finally N, Ñ → 1 as r →∞⇒ α = 1⇒ N ≡ Ñ.
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Geometric and Physical Properties Uniqueness Properties
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Levels of N, Ñ are each the only equipotential surfaces
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Geometric and Physical Properties Uniqueness Properties
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Geometric and Physical Properties Uniqueness Properties

Newtonian Gravity Versus Geometrostatics

Newtonian
For given matter and Galilei
coordinates (i.e. flat metric),
U is unique.

Geometrostatic
For given matter and metric,
N is unique.

U, N have very similar uniqueness properties
justifies name “static potential” used in the literature
can also be proved with purely analytic methods
and with a 3-geodesic method combined with an open-closed
argument
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Geometric and Physical Properties Uniqueness Properties

Even More: Uniqueness of 3g

Theorem (C.)
3g is unique for given N and prescribed wave-harmonic asymptotically
flat coordinates.

Proof: Asymptotic analysis in weighted Sobolev spaces using the static
metric equations. Properties of homogeneous harmonic polynomials.

For given coordinates, N and 3g are “dual”.
Geometrostatic systems have 4 degrees of freedom
→ plausibility check for Bartnik’s conjecture on mass
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Mass and Center of Mass Pseudo-Newtonian Gravity
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Mass and Center of Mass Pseudo-Newtonian Gravity

Pseudo-Newtonian Gravity

Definition (Pseudo-Newtonian System)
Let (M3, 3g,N, ρ, S) be a geometrostatic system. Let

U := c2 log N

γ := N2 3g = e2U/c2 3g

and call U the associated pseudo-Newtonian potential and
(M3, γ,U, ρ, S) the associated pseudo-Newtonian system.
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Mass and Center of Mass Pseudo-Newtonian Gravity

Pseudo-Newtonian Equations

Proposition
(M3, 3g,N, ρ, S) satisfies the static metric equations iff (M3, γ,U, ρ, S)
satisfies the pseudo-Newtonian equations

γ4U = 4πG
(

ρ

e2c−2U
+

γ trS
c2

)
γRic =

2
c4 dU ⊗ dU +

8πG
c4 (S− γ trS γ) .

In vacuum, these read

γ4U = 0
γRic =

2
c4 dU ⊗ dU.
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Mass and Center of Mass Pseudo-Newtonian Gravity

Pseudo-Newtonian Fall-Off

Proposition
U and γ inherit the fall-off

U = −mG
r

+O(
1
r2 ) and γij = δij +O(

1
r2 )

in asymptotically flat γ-harmonic coordinates.

Coordinates are harmonic w.r.t. γ iff they are wave-harmonic.
m = ADM-mass of 3g
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Mass and Center of Mass Pseudo-Newtonian Gravity

Formal Analogy to Newton

Newtonian

δ4U = 4πG× ρ
δRic = 0

U = −mG/r +O(r−2)

δij = δij

Pseudo-Newtonian

γ4U = 4πG×matter
γRic = 2c−4 dU ⊗ dU

+c−4 matter

U = −mG/r +O(r−2)

γij = δij +O(r−2)

Formally: c→∞⇒ equations converge (if variables converge)
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Mass and Center of Mass Newtonian Limit
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Mass and Center of Mass Newtonian Limit

Newtonian Limit

Ehlers constructed Frame Theory encompassing GR and NG
→ Frame Theory allows rigorous definition of Newtonian Limit
→ Rendall, Olyinyk, etc. showed existence of converging families

g,h,T ,Γ

GR

λλ = 0: NG
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Mass and Center of Mass Newtonian Limit

Newtonian Limit ctd.

Theorem (C.)
Using Ehlers’ Frame Theory, one finds that in the Newtonian limit

the pseudo-Newtonian potential U(c) converges
to the Newtonian potential U and
the metric γ(c) converges to the flat metric δ.

Remarks:
in suitable asymptotically flat coordinates
in suitably chosen weighted Sobolev spaces
for families with a Newtonian limit
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Mass and Center of Mass Newtonian Limit

Difficulties

Definition of staticity in Frame Theory
(Killing vector fields, hypersurface-orthogonality)
Definitions of U, γ in Frame Theory
Definition of a (uniform, C1) Newtonian Limit
Handling coordinate dependence
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Mass and Center of Mass Newtonian Limit

Physical Properties and the Newtonian Limit

How do physical properties behave under the Newtonian limit
along a family of pseudo-N. systems that has a Newtonian limit?

Can we stretch the analogy between Newtonian and
pseudo-Newtonian theories further?
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Mass and Center of Mass Mass
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Mass and Center of Mass Mass

The Mass of a Newtonian System

The mass of a system with density ρ is defined as

mN :=

∫
R3

ρ dV.

By 4U = 4πGρ and the divergence theorem rewrite

mN =

∫
R3

ρ dV =

∫
C

ρ dV =
1

4πG

∫
C

4U dV =
1

4πG

∫
∂C

∂U
∂ν

dσ

where C is any compact domain with ∂C smooth and supp ρ ⊂ C.
Here: dV volume measure, dσ surface measure of ∂C, ν outer unit normal to ∂C
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Mass and Center of Mass Mass

The Mass of a Newtonian System Revisited

Quasilocal Newtonian Mass
For a Newtonian system with potential U and a smooth surface Σ ⊂ R3

with outer unit normal ν define

mN(Σ) :=
1

4πG

∫
Σ

∂U
∂ν

dσ.

This proves the classical

Total Mass Theorem
If Σ encloses supp ρ, then mN(Σ) = mN .
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Mass and Center of Mass Mass

The Pseudo-Newtonian Mass

In this spirit, we define

Definition (Quasilocal Pseudo-Newtonian Mass)
Let (γ,U) be as before. Let all geometric notions refer to γ. For any
smooth surface Σ ⊂ M3 define

mPN(Σ) :=
1

4πG

∫
Σ

∂U
∂ν

dσ.

Here, ν is the γ-outer unit normal to and dσ is the γ-surface measure on Σ.

The integral 1
4πG

∫
S∞

∂U
∂ν dσ is well-known as the Komar-mass.
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Mass and Center of Mass Mass

The Newtonial Limit of Mass

Just as in the Newtonian setting, we have

Theorem (Pseudo-Newtonian Total Mass Theorem, C.)
If Σ encloses the support of the matter, then mPN(Σ) = mADM(3g). In
particular, mPN is independent of Σ and can be calculated "locally".

Proof: Recall U = −mG/r +O(r−2) with m = mADM(3g) and use suitable
weighted Sobolev spaces.

Theorem (Newtonian Limit of Mass Theorem, C.)
For any sequence of space-times with a Newtonian limit,

mADM(c) = mPN(c)→ mN as c→∞.

Proof: U(c)→ U and γ(c)→ δ as c→∞, see above.
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Mass and Center of Mass Center of Mass
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Mass and Center of Mass Center of Mass

The CoM of a Newtonian System

The center of mass (CoM) of a system with density ρ is defined as

~zN :=
1

mN

∫
R3

ρ~x dV

w.r.t. Galilei coordinates (xi).
For Σ enclosing supp ρ, we can rewrite

4πG mN~zN =

∫
Σ

(
∂U
∂ν

~x− U
∂~x
∂ν

)
dσ

using Green’s formula.
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Mass and Center of Mass Center of Mass

The CoM of a Newtonian System Revisited

Definition (Quasi-local Newtonian CoM)
For a Newtonian system with potential U define

~zN(Σ) :=
1

4πGmN

∫
Σ

(
∂U
∂ν

~x− U
∂~x
∂ν

)
dσ,

where ν is the outer unit normal to Σ.

Newtonian CoM Theorem
If Σ encloses supp ρ, then~zN(Σ) =~zN . If Σ is a level set of U, then

~zN =
1

4πGmN

∫
ΣU

∂U
∂ν

~x dσ.
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Mass and Center of Mass Center of Mass

The Pseudo-Newtonian CoM

Definition (Quasilocal Pseudo-Newtonian CoM)
Let (γ,U) be as before. Take all geometric notions w.r.t. γ and use
γ-harmonic coordinates: γ4xi = 0. Then we define

~zPN(Σ) :=
1

4πGmPN

∫
Σ

(
∂U
∂ν

~x− U
∂~x
∂ν

)
dσ.

Here, ν and σ are the outer unit normal to and surface measure on Σ w.r.t. γ,
respectively.

Remark: γ-harmonic coordinates are also wave-harmonic.
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Mass and Center of Mass Center of Mass

Facts on the Pseudo-Newtonian CoM

Again, we can prove theorems similar to the Newtonian one:

1st Pseudo-Newtonian CoM Theorem, C.

~zPN :=~zPN(Σ)

is independent of the specific surface Σ enclosing the support of the
matter and can be calculated "locally". If Σ is a level set of U, then

~zPN =
1

4πGmPN

∫
ΣU

∂U
∂ν

~x dσ.
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Mass and Center of Mass Center of Mass

Facts on the Pseudo-Newtonian CoM ctd.

2nd Pseudo-Newtonian CoM Theorem, C.
The (pseudo-Newtonian) CoM~z can be read off the asymptotics of U:

U = −mG
r
− mG~z ·~x

r3 +O(
1
r3 ).

This expression transforms adequately under change of asymptotically
flat γ-harmonic coordinates.

Proof: theory of weighted Sobolev spaces, regularity arguments.
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Faster Fall-Off

Faster Fall-Off Theorem
Let k ∈ N0, 1 < p <∞, δ < 0 with δ /∈ Z, and f ∈ C∞(R3). Assume

f ∈ Wk+2,p
δ+1 and δ4f ∈ Wk,p

δ−2.

Then there exists a harmonic rescaled polynomial p of degree d ≤ dδe
with f − p ∈ Vk+2,p

δ .

In O-notation: f = O(r−l+1),4f = O(r−l−2)⇒ f − p = O(r−l)

Example: U − SU = O(r−2), δ4(U − SU) = O(r−5) gives
U − SU =~z ·~x/r3 +O(r−3).

This is also used to show uniqueness of 3g given N and for a
different proof of the uniqueness of N given 3g.
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Facts on the Pseudo-Newtonian CoM ctd.

3rd Pseudo-N. CoM Theorem, C.
This CoM coincides with the CoM given
by a foliation by spheres of constant
mean curvature (Huisken & Yau,
Metzger) and with the ADM center of
mass:

~zPN =~zCMC =~zADM.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

1 r

H=const

Proof: Uses Huang’s result~zCMC =~zADM and asymptotics proved
above.
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The Newtonian Limit of the Pseudo-Newtonian CoM

Newtonian Limit of Pseudo-Newtonian CoM Theorem
The Newtonian limit of the pseudo-Newtonian CoM and therefore also
of the CMC center of mass is the CoM of the Newtonian limit along any
sequence of space-times with a Newtonian limit:

~zCMC(c) =~zADM(c) =~zPN(c) → ~zN as c→∞.
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Generalizations: other spacelike slices in static GR

graphs over {t = 0}-slice
I with Christopher Nerz:
I asymptotic decay becomes more delicate
I global notion of CoM can break down even in Schwarzschild slices

general asymptotically flat slices (e.g. boosted ones)
general asymptotically hyperbolic slices

Carla Cederbaum (Tübingen) Geometrostatics 53



Mass and Center of Mass Center of Mass

Possible Applications of Geometrostatics

Static n-Body Problem?
Bartnik’s Static Metric Extension Conjecture?

Carla Cederbaum (Tübingen) Geometrostatics 54



Mass and Center of Mass Center of Mass

Summary

4U = 4πGρ

static Newtonian Gravity
with potential U

Geometrostatics (3g,N)
or equivalently
pseudo-Newtonian
Gravity (γ,U)

equipotential surfaces
mass as surface integral
expressions for CoM
Newtonian limit.
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Summary

34N =
4πG
c2 N ×matter

N3Ric = 3∇2N + N ×matter

γ4U = 4πG×matter
γRic = c−4(2dU ⊗ dU + matter)

static Newtonian Gravity
with potential U

Geometrostatics (3g,N)
or equivalently
pseudo-Newtonian
Gravity (γ,U)

equipotential surfaces
mass as surface integral
expressions for CoM
Newtonian limit.
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Summary
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r

test body restricted to Σ

Σ

no acceleration

B

static Newtonian Gravity
with potential U

Geometrostatics (3g,N)
or equivalently
pseudo-Newtonian
Gravity (γ,U)

equipotential surfaces
mass as surface integral
expressions for CoM
Newtonian limit.
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Mass and Center of Mass Center of Mass

Summary

mPN :=
1

4πG

∫
Σ

∂U
∂ν

dσ

Theorem
mPN = mADM

static Newtonian Gravity
with potential U

Geometrostatics (3g,N)
or equivalently
pseudo-Newtonian
Gravity (γ,U)

equipotential surfaces
mass as surface integral
expressions for CoM
Newtonian limit.
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Mass and Center of Mass Center of Mass

Summary

~zPN :=
1

4πGmPN

×
∫
Σ

(
∂U
∂ν

~x− U
∂~x
∂ν

)
dσ

Theorem
U = −mG

r −
mG~z·~x

r3 +O( 1
r3 )

Theorem
~zPN =~zCMC =~zADM

static Newtonian Gravity
with potential U

Geometrostatics (3g,N)
or equivalently
pseudo-Newtonian
Gravity (γ,U)

equipotential surfaces
mass as surface integral
expressions for CoM
Newtonian limit.
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Mass and Center of Mass Center of Mass

Summary

Theorem
U(c) → U

γ(c) → δ

mPN(c) → mN

~zPN(c) → ~zN

static Newtonian Gravity
with potential U

Geometrostatics (3g,N)
or equivalently
pseudo-Newtonian
Gravity (γ,U)

equipotential surfaces
mass as surface integral
expressions for CoM
Newtonian limit.
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Thank you for your attention!
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r

U = const

BU
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