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Abstract. In the first part Busemann concavity as non-negative curvature is
introduced and a bi-Lipschitz splitting theorem is shown. Furthermore, if the
Hausdorff measure of a Busemann concave space is non-trivial then the space
is doubling and satisfies a Poincaré condition and the measure contraction
property. Using a comparison geometry variant for general lower curvature
bounds k ∈ R, a Bonnet-Myers theorem can be proven for spaces with lower
curvature bound k > 0.

In the second part the notion of uniform smoothness known from the theory
of Banach spaces is applied to metric spaces. It is shown that Busemann
functions are (quasi-)convex. This implies the existence of a weak soul. In the
end properties are developed to further dissect the soul.

In order to understand the influence of curvature on the geometry of a space it
helps to develop a synthetic notion. Via comparison geometry sectional curvature
bounds can be obtained by demanding that triangles are thinner or fatter than the
corresponding comparison triangles. The two classes are called CAT (κ)- and resp.
CBB(κ)-spaces. We refer to the book [BH99] and the forthcoming book [AKP] (see
also [BGP92, Ots97]). Note that all those notions imply a Riemannian character of
the metric space. In particular, the angle between two geodesics starting at a com-
mon point is well-defined. Busemann investigated a weaker notion of non-positive
curvature which also applies to normed spaces [Bus55, Section 36]. A similar idea
was developed by Pedersen [Ped52] (see also [Bus55, (36.15)]). Pedersen’s condition
is better suited for the study of Hilbert geometries, see [KS58]. In [Oht07a] Ohta
studied an even weaker convexity notion, called L-convexity which can be seen as
a relaxed form of Busemann’s non-positive curvature assumption.

In the recent years a synthetic notion of a lower bound on the Ricci curvature
was defined by Lott–Villani [LV09] and Sturm [Stu06]. Surprisingly, their condition
includes also Finsler manifolds [Oht09, Oht13]. The notion of lower curvature bound
in the sense of Alexandrov, i.e. CBB(κ)-spaces, is compatible with this Ricci bound
[Pet11, GKO13]. However, by now there is no known sectional curvature analogue
for Finsler manifolds which is compatible to Ohta’s Ricci curvature bounds and
thus the synthetic Ricci bounds.

In this note we present two approaches towards a sectional curvature-type con-
dition. The first is the “converse” of Busemann’s non-positive curvature condition.
This condition implies a bi-Lipschitz splitting theorem, uniqueness of tangent cones
and if the space admits a non-trivial Hausdorff measure then it satisfies doubling
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and Poincaré conditions, and even the measure contraction property. This approach
rather focuses on the generalized angles formed by two geodesics. Using ideas from
comparison geometry one can easily define general lower curvature bounds and
prove a Bonnet-Myers theorem if the lower bound is positive.

The second approach can be seen as a dual to the theory of uniformly convex
metric spaces which were studied in [Oht07a, Kuw13, Kel14]. We call this condition
uniform smoothness. This rather weak condition is only powerful in the large as
any compact Finsler manifold is 2-uniformly smooth, see [Oht08, Corollary 4.4].
Nevertheless, if the space is unbounded then Busemann functions associated to
rays are (quasi-)convex and the space has a weak soul. In order to match the
theory in the smooth setting we try to develop further assumptions which imply
existence of a retractions onto the soul and a more local curvature assumption in
terms of Gromov’s characterization of non-negative curvature [Gro91].

1. Preliminaries

Throughout this manuscript let (X, d) be a proper geodesic metric space, i.e.
(X, d) is a complete metric space such that every bounded closed subset is compact
and for every x, y ∈ X there is a continuous map γ : [0, 1] → X with γ(0) = x,
γ(1) = y and

d(γ(t), γ(s)) = |t− s|d(x, y).

The map γ will be called a (constant speed) geodesic connecting x and y which is
parametrized by [0, 1]. We say that a continuous curve γ : I → X defined on some
interval I ⊂ R is locally geodesic if for all t ∈ I there is an interval It ⊂ I with
t ∈ int It such that γ restricted to It is a constant speed geodesic.

We say that (X, d) is non-branching if for all geodesics γ, η : [0, 1] → X with
γ
∣∣
[0,t]

= η
∣∣
[0,t]

for some t ∈ (0, 1) implies γ ≡ η. Note that this is equivalent to the
following: for all geodesics γ, η : [0, 1] → X with γ(0) = η(0) and γ(t) = η(t) for
some t ∈ (0, 1) it holds γ(t) = η(t) for all t ∈ [0, 1]. In other words two geodesics
starting at the same point and intersecting in the middle must agree.

The latter condition is easily seen to be stronger than non-branching. To prove
the equivalence of the two conditions note that whenever γ(0) = η(0) and γ(t) =
η(t) for some geodesics γ and η and some t ∈ (0, 1) then we may construct a new
curve η̃ by first traversing γ on [0, t] and then traversing η on [t, 1]. The resulting
curve η̃ is a geodesic that agrees with γ on [0, t] so that non-branching implies
η
∣∣
[t,1]

= η̃
∣∣
[t,1]

= γ
∣∣
[t,1]

. Reversing the direction of γ and η also shows that γ and η
agree on [0, t].

1.1. Notions of convexity. A function f : X → R is said to be (geodesically)
convex if t 7→ f(γ(t)) is convex for all geodesics γ : [0, 1]→ X, i.e.

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

We say that f is p-convex if fp is convex. Furthermore, f is concave if −f is
convex, and if f is both convex and concave then it is said to be affine. The
limiting notion p → ∞ is usually called quasi-convex. More precisely, we say that
a function f : X → R is said to be quasi-convex if

f(γ(t)) ≤ max{f(γ(0)), f(γ(1))}.
It is said to be strictly quasi-convex if the inequality is strict whenever γ(0) 6= γ(1).
Furthermore, we say f is properly quasi-convex if the inequality is strict whenever
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f restricted to γ is non-constant. Note that any p-convex function is automatically
properly quasi-convex. As above quasi-concavity of f is just quasi-convexity of −f ,
and f is said to be monotone if it is both quasi-convex and quasi-concave.

One may obtain a variety of quasi-convex functions as follows: Let h : R→ R be
a non-decreasing function. Then h◦f is quasi-convex for any quasi-convex function
f . Furthermore, if h is strictly increasing then h ◦ f is strictly quasi-convex if f is
strictly quasi-convex.

Remark. In [BP83] it is suggested to use the terminology peaklessness for proper
quasi-convexity and weak peaklessness for quasi-convexity. However, this terminol-
ogy does not seem to be frequently used in the literature. Because we only obtain
quasi-convex functions we stay with the better known term of quasi-convexity.

A subset C of X is said to be convex if for all geodesics γ : [0, 1] → X with
γ(0), γ(1) ∈ C it holds γ(t) ∈ C for t ∈ (0, 1). If, in addition, γ(t) ∈ intC whenever
γ is non-constant and t ∈ (0, 1) then C is said to be strictly convex. A stronger
notion, called totally geodesic, is obtained by requiring that C also contains all local
geodesics, i.e. if γ : [a, b]→ X is locally geodesic with γ(a), γ(b) ∈ C then γ(t) ∈ C
for t ∈ (a, b).

As is well-known a function f : X → R is (strictly) convex if the epigraph
{(x, t) ∈ X × R | t ≥ f(x)} is (strictly) convex in the product space (X × R, d̃)

where d̃((x, t), (y, s)) =
√
d(x, y)2 + |t− s|2. In a similar way f is quasi-convex if

the sublevel Cs = f−1((−∞, s]) are totally geodesic. Furthermore, if f is strictly
convex then each Cs is strictly convex.

In general strict convexity of the sublevels of f is not related to strict quasi-
convexity of f . However, one can always construct a quasi-convex function out of
an exhaustive non-decreasing family of closed convex sets as follows. Under some
additional assumptions on the family the function is also strictly quasi-convex if
the sublevels are strictly convex. In the following for two closed subsets A ⊂ B of
X denote by intB A the relative interior of A in the metric space (B, d).

Lemma 1.1. Assume (Cs)s∈I , I ⊂ R∪{−∞}, is a non-decreasing family of closed
convex sets with ∪s∈ICs = X. Then the function f : X → R defined by

f(x) = inf{arctan s ∈ R |x ∈ Cs}
is quasi-convex. If, in addition, I is connected and the following properties hold:
(1)

⋂
s∈I Cs contains at most one element,

(2)
⋂
s′>s

Cs′ = Cs

and
(3)

⋃
s′<s

Cs′ = intCs,

then f is continuous and strictly quasi-convex iff each Cs is strictly convex.

Proof. Choose distinct points x, y ∈ X and let m be a midpoint of x and y. By
exchanging x and y if necessary we may also assume f(x) ≤ f(y). If f(y) < a then
x, y ∈ Ctan a. By convexity of Ctan a we must have m ∈ Ctan a and hence f(m) < a.
This shows f(m) ≤ f(y) = max{f(x), f(y)}.

Assume (Cs)s∈I satisfies properties (1), (2) and (3). We make the following
observations: As x and y are distinct, property (1) shows f(y) > −π2 . Furthermore,
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property (2) shows −π2 < f(z) ≤ arctan s if and only if z ∈ Cs. Thus x, y ∈
Ctan f(y).

If f strictly quasi-convex then f(γ(t)) < f(y) for any geodesic γ connecting x any
y. Thus by property (3) we see γ(t) ∈ intCtan f(y). Since Ctan f(y) ⊂ Cs whenever
x, y ∈ Cs we must have γ(t) ∈ intCs implying strict convexity of Cs.

We show the converse: Assume each Cs is strictly convex. Then any midpoint
m of x and y must be in the interior of Ctan f(y). Property (3) implies that there
is an s < tan f(y) such that m ∈ Cs. Thus f(m) ≤ s < f(y) proving strict
quasi-convexity of f .

It remains to show that f is continuous: Let xn → x. Set t1 = lim infn→∞ f(xn)
and t2 = lim supn→∞ f(xn). Assume by contradiction f(x) < t1 or t2 < f(x). In
the first case t1 > −π2 and x ∈ ∂Ctan t1 by property (2). However, x must be in
the interior of Ctan t1 by property (3) which shows f(x) ≤ t1. If t2 < f(x) then
x /∈ Ctan t for all t ∈ (t2, f(x)) by definition of f . Note tan t ∈ I by connectedness
of I. If, by contradiction, f(xn) < f(x) − ε < f(x) then property (3) shows
x ∈ Ctan(f(x)−ε) which is not possible. Hence f(x) ≤ t2. In conclusion we see that
f(x) = t1 = t2, i.e. f is continuous. �

Note that all properties above are necessary to show that f is strictly quasi-
convex. Indeed, the following family of strictly convex closed intervals in R given
by

C1
s =

{
[−s, s] s < 1

[−(s+ 1), s+ 1] s ≥ 1

satisfies properties (1) and (2) but not property (3). Similarly,

C2
s =

{
[−s, s] s ≤ 1

[−(s+ 1), s+ 1] s > 1

satisfies properties (1) and (3) but property (2). Finally, let φ : R → (0,∞) be an
increasing homeomorphism. Then

C3
s = (−∞, φ(s)]

satisfies property (2) and (3) but not property (1). In either case the induced
functions fi, i = 1, 2, 3, are constant on some open interval and cannot be strictly
quasi-convex. In particular, they are not strictly quasi-convex. One may replace
the intervals by geodesic balls resp. horoballs of the same radius if the metric space
has strictly convex geodesic balls and resp. strictly convex horoballs to get more
general examples.

1.2. Busemann functions. A central tool to study the structure of spaces with
certain generalized curvature bounds are Busemann function associated to rays.
Here a ray γ : [0,∞)→ X is an isometric embedding of the half line, i.e.

d(γ(t), γ(s)) = |t− s| s, t ≥ 0.

Definition 1.2 (Busemann function). Given a ray γ : [0,∞) → X we define the
Busemann function bγ : X → R as follows

bγ(x) = lim
t→∞

t− d(γ(t), x).



SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES 5

Note that the right hand side is non-decreasing in t so that the limit is well-
defined.

In case γ : R → X is a line we define γ± : [0,∞) → X by γ±(t) = γ(±t). One
can show that

bγ+ + bγ− ≤ 0.

We say a ray η : [0,∞)→ X is asymptotic to γ if there is sequence tn →∞ and
unit speed geodesics ηn : [0, d(η(0), γ(tn))] → X from η(0) to γ(tn) such that ηn
converges uniformly on compact subsets to η. It is not difficult to see that

bγ(η(t)) = t+ bγ(η(0)) t ≥ 0.

If (X, d) is a proper metric space then for any x ∈ X we can select a subsequence
of geodesics (ηn)n∈N connecting x and γ(tn) such that (ηnk)k∈N converges to a ray
η starting at x which is asymptotic to γ.

A line η : R → X is said to be bi-asymptotic to the line γ : R → X if η± is
asymptotic to γ±. We say that η is parallel to γ if the shifted lines η(s) : t 7→ η(t+s)
are bi-asymptotic to γ. It is not clear whether every bi-asymptotic line η to γ is
also parallel to γ. Note, that if (X, d) is non-branching then it suffices to show that
bγ+ restricted to η is affine. Assuming Busemann concavity this is indeed the case,
see Lemma 2.10 below.

1.3. Gromov-Hausdorff convergence. Given two subsets A and B of a metric
space (Z, dZ) the Hausdorff distance d(H)

Z of A and B is defined as

d
(H)
Z (A,B) = inf{ε > 0 |A ⊂ Bε, B ⊂ Aε}

where Aε = ∪x∈ABε(x) and Bε = ∪x∈BBε(x). Let (X, dX) and (Y, dY ) be two
metric spaces. We say that a metric space (Z, dZ) together with two maps iX :
X → Z and iY : Y → Z is a metric coupling of (X, dX) and (Y, dY ) if iX and iY
are isometric embeddings, i.e. for all xi ∈ X and yi ∈ Y it holds

dZ(iX(x1), iX(x2)) = dX(x1, x2)

dZ(iY (y1), iY (y2)) = dY (y1, y2).

Then the Gromov-Hausdorff distance of (X, dX) and (Y, dY ) is defined as

dGH((X, dX), (Y, dY )) = inf d
(H)
Z (iX(X), iY (Y ))

where the infimum is taken over all metric couplings of (X, dX) and (Y, dY ). Note
that dGH is zero iff the completions of (X, dX) and (Y, dY ) are isometric. Thus dGH
induces a metric on the equivalence classes of isometric complete metric spaces. One
may restrict the metric couplings further if a certain point is supposed to be pre-
served. More precisely, let (X, dX , x) and (Y, dY , y) be pointed metric spaces. Then
a metric coupling is a triple ((Z, dZ , z), iX , iY ) such that iX and iY are isomet-
ric embeddings with iX(x) = iY (y) = z. The Gromov-Hausdorff distance is then
defined as above.

In general this convergence is rather strong in case of non-compact/unbounded
spaces. A weaker notion is given by the pointed Gromov-Hausdorff convergence.
More precisely, we say that a sequence (Xn, dn, xn) converges to the pointed metric
space (X, d, x) in the pointed Gromov-Hausdorff topology if for each r > 0

dGH((Bnr (xn), dn), (Br(x), d))→ 0
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where Bnr (xn) and Br(x) are the usual balls of radius r with respect to dn and resp.
d.

2. Busemann concavity

In this section we define a form of non-negative curvature which is similar to
Busemann’s notion of non-positive curvature. As it turns out this notion is not
new. It appeared already in the study of Hilbert geometry as “has defined curva-
ture” [KS58] and in a paper of Kann [Kan61] who studied two dimensional G-spaces
of positive curvature which is defined via an additional quadratic term. Note that
Kann’s definition differs from the definition in terms of comparison geometry pre-
sented below.

Definition 2.1 (Busemann concave). A geodesic metric space (X, d) is said to
be Busemann concave if for any three point x, y1, y2 ∈ X and any geodesics γx,yi
connecting x and yi the function

t 7→ d(γx,y1(t), γx,y2(t))

t

is non-increasing on [0, 1].

Busemann concavity implies that the space is non-branching. One readily verifies
that any strictly convex Banach space is Busemann concave. Below we give further
examples.

It is possible to define Busemann concavity in terms of comparison geometry.
More precisely, let 4(x̃ỹ1ỹ2) be a comparison triangle in R2 with side lengths
d(x, y1), d(x, y2) and d(y1, y2). Then Busemann concavity is equivalent to requiring

d(γx,y1(t), γx,y2(t)) ≥ dR2(γ̃x̃,ỹ1(t), γ̃x̃,ỹ2(t))

for all t ∈ [0, 1]. With the help of this, it is possible to define spaces with lower
bound k on the curvature for general k ∈ R. Note that for k > 0 the existence of a
comparison triangle is implicitly assumed, see also Section 2.5.

Using the triangle comparison definition for Alexandrov spaces and the Topono-
gov comparison theorem for Riemannian manifolds we obtain the following.

Lemma 2.2. Every Alexandrov space with sectional curvature bounded below by k
has Busemann curvature bounded below by k. Furthermore, a Riemannian manifold
has sectional curvature bounded below k if and only if it has Busemann curvature
bounded below by k.

Remark. Similar to the argument in [FLS07] the existence of angles implies that a
metric space with Busemann curvature bounded below by k ∈ R is an Alexandrov
space with the same lower curvature bound. We leave it to the reader to work out
the details.

In contrast to Busemann convexity it is not clear whether it suffices to check the
property above only for midpoints, i.e.

d(mx,y1 ,mx,y2) ≥ 1

2
d(y1, y2).

Note that similar to Busemann convexity, Busemann concavity is not stable un-
der Gromov-Hausdorff convergence. Nevertheless, a weaker property is preserved.
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Definition 2.3. A function σ : X × X × [0, 1] is called a geodesic bicombing if
σxy(0) = x, σxy(1) = y and d(σxy(t), σxy(t′)) = |t − t′|d(x, y) for all x, y ∈ X and
t, t′ ∈ [0, 1]. We say the bicombing is closed if (xn, yn)→ (x, y) implies σxnyn(t)→
σxy(t) for all t ∈ [0, 1].

Definition 2.4 (weak Busemann concavity). A metric space (X, d) is said to be
weakly Busemann concave if there is a closed geodesic bicombing σ such that for
all x, y, z ∈ X it holds

t 7→ d(σxy(t), σxz(t))

t
is non-increasing.

Remark. This property resembles Kleiner’s notion of often convex spaces [KL97],
resp. the notion of convex bicombings [DL14].

It is easy to see that any Banach space is weakly Busemann concave. The
corresponding geodesic bicombing is given by straight lines. In a future work we
try to give generalizations of Theorem 2.14 and Proposition 2.5 using only weak
Busemann concavity.

Below it is shown that tangent cones of Busemann concave spaces are uniquely
defined. If the space is doubling or admits a doubling measure then one can adjust
the proofs of [LD11] to show that the tangent cones are (locally compact) Carnot
groups away from a thin set, i.e. a set which has zero measure for every doubling
measure. We refer to [LD11] for necessary definitions of Carnot groups.

The following shows that the only Busemann concave Carnot groups are Banach
spaces with strictly convex norm. As Busemann concavity is not stable under
Gromov-Hausdorff convergence this is not sufficient to conclude that almost all
tangent cones are Banach spaces.

Proposition 2.5. Any finite dimensional Busemann concave Carnot group equipped
with Carnot–Caratheodory metric d must be a Banach space with strictly convex
norm.

Proof. Let V1 ∈ TX be a horizontal vector and η1, η2 : (−ε, ε) → X be tangent to
V1 at η1(0) = η2(0). Now define the delated curves

ηiλ(t) = δλ(ηi(t)).

Then by invariance it holds d(η1
λ(t), η2

λ(t)) = λd(η1(t), η2(t)). Together with Buse-
mann concavity we get for λ > 1

d

(
η1
λ

(
t

λ

)
, η2
λ

(
t

λ

))
≥ d(η1(t), η2(t)).

As η1 and η2 are both tangent to V1, their Pansu differential is also V1. In particular,
it holds

ηiλ

(
t

λ

)
→ exp(tV1).

But this implies that d
(
η1
λ

(
t
λ

)
, η2
λ

(
t
λ

))
→ 0 and thus d(η1(t), η2(t)) = 0.

To conclude, we just need to note that any k-step Carnot group with k > 1 has
distinct geodesics which are tangent to the same horizontal vector. Thus X must
be a rank 1 Carnot group, i.e. a Banach space. Strict convexity of the norm follows
as otherwise Busemann concavity cannot hold. �
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Remark (Asymmetric metrics). In principle it is possible to define Busemann con-
cavity also for asymmetric metrics. In order to prove Propositions 2.9 and 2.23 one
needs the concavity property between any two forward resp. backward geodesics
starting at a fixed point x ∈ X. The proof of the splitting theorem requires minor
adjustments taking care of the asymmetry of the distance.

2.1. Constructions and examples. A whole family of Busemann concave spaces
is obtained by products of Busemann concave spaces.

Lemma 2.6. If (Xi, di)i∈I are Busemann concave spaces for some finite index set
I ⊂ N and F is a strictly convex norm on R|I| then X = ×i∈IXi equipped with the
metric d((xi)i∈I , (yi)i∈I) = F ((d(xi, yi))i∈I) is Busemann concave.

Remark. (1) It is possible to allow for countably infinite index sets. The obtained
space is then an extended metric space, i.e. the metric may be infinite.

(2) If F is not strictly convex or some factors are only weakly Busemann concave
then their product is weakly Busemann concave.

Proof. If F is strictly convex then geodesics inX are obtained as “product geodesics”.
Thus

d((γi(t))i∈I , (γ
′

i(t))i∈I) = F ((d(γi(t), γ
′

i(t))i∈I)

≥ tF (d(γi(1), γ
′

i(1))i∈I)

= td((γi(1))i∈I , (γ
′

i(1))i∈I).

�

Remark (Berwald spaces). Using Jacobi fields it is possible to show that Berwald
spaces with flag curvature bounded below by k ∈ R satisfy the corresponding Buse-
mann comparison result locally until the conjugate radius is reached. In [KK06]
it was shown that in the class Berwald spaces non-positive flag-curvature is equiv-
alent to Busemann convexity. In the current setting we were not able to “invert”
the inequalities to show the same for non-negative flag curvature and obtain global
Busemann concavity. Note, however, that any simply connected non-negatively
curved Berwald space which does not contain a higher rank symmetric factor can
be exactly described [Sza81]. More precisely, they are metric products as above and
each factor is either flat or a Riemannian manifold of non-negative curvature (see
[Kel15]). Thus a deeper understanding of higher rank symmetric spaces and their
Riemannian and Berwald structures would allow to characterize non-negatively
curved Berwald spaces in terms of Busemann concavity.

Recall that the (Euclidean) cone Con(X) of a metric space (X, d) is the set
X× [0,∞) where the points (x, 0) are identified and the metric on Con(X) is given
by

d((x, r), (y, s))2 = r2 + s2 − 2rs cos(min{π, d(x, y)}).
Lemma 2.7. Assume (X, d) has diameter bounded by π. Then the Euclidean cone
over Con(X) is Busemann concave iff (X, d) has Busemann curvature bounded
below by 1.

Remark. (1) The bound π ensures that there is a comparison triangle. By Theorem
2.29 this bound always holds if the space (X, d) is not 1-dimensional.

(2) More generally, one can define general k-cones Conk(X), called spherical
suspension for k = 1 and elliptical cone for k = −1, see [BGP92, Section 4.3]
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and [BH99, Definition 5.6]. A similar proof would show that they have Busemann
curvature bounded below by k iff X has Busemann curvature bounded below by 1
and diameter at most π.

Proof. Let x1, x2 and x3 be points in X and m1 and m2 the t-midpoints of (x1, x3)
and resp. (x2, x3). The curvature bound of X translates to

d(m1,m2) ≥ dS2(m̃1, m̃2)

where m̃1 and m̃2 are the t-midpoints in the comparison triangle whose existence is
ensured by the bound on the diameter. Then cos(d(m1,m2)) ≤ cos(dS2(m̃1, m̃2)).

Now let (xi, ri) be three point in Con(X) and (m1, s1) and (m2, s2) be the
corresponding t-midpoints. With the help of the comparison space we obtain

t2d((x1, r1), (x2, r2))2 = t2dR3((x̃1, r1), (x̃2, r2))2

= dR3((m̃1, s1), (m̃2, s2))2

= s2
1 + s2

2 − 2s1s2 cos(dS2(m̃1, m̃2))

≤ s2
1 + s2

2 − 2s1s2 cos(d(m1,m2))

= d((m1, s1), (m2, s2))2.

Assuming conversely that Con(X) is Busemann concave we see that cos(d(m1,m2)) ≤
cos(dS2(m̃1, m̃2)). As the diameter of X is at most π, monotonicity of cosine on
[0, π] implies the required comparison

d(m1,m2) ≥ dS2(m̃1, m̃2).

�

An open problem is whether quotients via isometry actions of Busemann concave
spaces are still Busemann concave. The current proofs in the Alexandrov setting
rely heavily on the notion of angle which is not present in the current setting. This
would also imply that any non-negatively curved Berwald space whose connection
does not have a higher rank symmetric factor is Busemann concave.

2.2. Busemann functions, lines and a splitting theorem. For non-negatively
curved Riemannian manifolds the existence of a line implies that the space splits,
i.e. there is a metric spaces X ′ such that X is isometric/diffeomorphic to X ′×R. A
key point of the splitting theorem is the existence of a unique line ηx through every
x ∈ X which is parallel to a given line γ. This is usually done by showing that the
Busemann functions bγ± are affine and the rays asymptotic to γ± can be glued to
lines. In this section we show more directly that the gluing property holds and that
the space also splits into a product. However, it is not clear whether the Busemann
functions associated to lines are affine or whether their level sets are convex.

First the following useful lemma.

Lemma 2.8. Let γ+ : [0,∞)→ X be a ray then it holds

lim
t→∞

d(x, γ(t))

t
= 1.

Proof. By definition bγ(x) is the limit of the non-decreasing bounded sequence
t− d(x, γ(t)). Thus

0 = lim
t→∞

t− d(x, γ(t))

t
= 1− lim

t→∞

d(x, γ(t))

t
.

�
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The following proposition shows that moving in the ray direction induces a nat-
ural expansion. In case of a line one may also move in the opposite direction to
show that this movement is an isometry, see Lemma 2.12 below.

Proposition 2.9. Let γ : [0,∞)→ X be a ray, and η and ξ be rays asymptotic to
γ that are generated by the same sequence tn →∞. Then it holds

d(η(t), ξ(s)) ≤ d(η(t+ a), ξ(s+ a))

for all t, s, a ≥ 0.

Proof. From the assumption there are sequences (ηn)n∈N and (ξn)n∈N where ηn
and resp. ξn are geodesics from η(0) to γ(tn) and resp. ξ(0) to γ(tn) such that
for any t ≥ 0 it holds ηn(t) → η(t) and ξn(t) → ξ(t). Now fix s, t, a ≥ 0 and set
bn = d(η(0), γ(tn)) and cn = d(ξ(0), γ(tn)). Define geodesics η̄n(r) = ηn(bn − r)
and ξ̄n(r) = ξn(cn − r). Also define b̄n = bn − t and c̄n = cn − s and note that
b̄n, c̄n > 0 for sufficiently large n.

By Busemann concavity applied the hinge formed by η̄n and ξ̄n with contraction
factor λn = 1− a/̄bn we have

d(η̄n(λnb̄n), ξ̄n(λnc̄n)) ≥ λnd(η̄n(b̄n), ξ̄n(c̄n))

= λnd(ηn(t), ξn(s)).

Note that

η̄n(λnb̄n) = ηn(t+ a)

ξ̄n(λnc̄n) = ξn

(
s+

c̄n
b̄n
a

)
.

By Lemma 2.8 we have c̄n
b̄n
→ 1 so that ξ̄n(λnc̄n)→ ξ(s+ a) and hence

d(η(t), ξ(s)) ≤ d(η(t+ a), ξ(s+ a)).

�

We will now prove the splitting theorem in a sequence of lemmas. Assume in the
following that (X, d) is Busemann concave and contains a line γ : R→ X. Denote
by η±x the rays asymptotic to γ± and let

ηx(t) =

{
η+
x (t) t ≥ 0

η−x (−t) t ≤ 0.

Lemma 2.10. The Busemann functions bγ± are affine when restricted to ηx. Fur-
thermore, ηx is a line bi-asymptotic to γ.

Proof. We only need to prove that

bγ+(η−x (s)) = bγ+(x)− s

for s ≥ 0. Indeed, this will show that bγ+ is affine on ηx. A similar argument also
works for bγ− .

From the previous lemma we have

d(η−x (s), γ(t)) ≥ d(η−x (0), γ(t+ s)).

Thus
t− d(η−x (s), γ(t)) ≤ t+ s− d(x, γ(t+ s))− s.
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Taking the limit as t→∞ we obtain

bγ+(η−x (s)) ≤ bγ+(x)− s.
But then

s ≤ bγ+(x)− bγ+(η−x (s)) ≤ d(x, η−(s)) = s

and thus bγ+(η−x (s)) = bγ+(x)− s.
This also implies that for t, s ≥ 0 it holds

bγ+(η+
x (t))− bγ+(η−x (s)) = s+ t

≤ d(η−x (s), η+
x (t))

≤ d(η−x (s), x) + d(x, η+
x (t)) = s+ t.

Therefore, ηx is a line bi-asymptotic to γ. �

Lemma 2.11. Through each point there is exactly one line parallel to γ.

Proof. By non-branching there is at most one bi-asymptotic line through each x.
Indeed, assume η is a line through x such that bγ+ is affine along η and let η̃ be a ray
which is asymptotic to γ+. Then it is easy to see that bγ+ is affine on η′ = η− ∪ η̃
and thus d(η−(t), η̃(s)) = t + s. But then by non-branching assumption we must
have η = η′. The same argument also show that η is the unique line bi-asymptotic
to γ that starts at η(t) for any t ∈ R. Hence η is parallel to γ. �

Lemma 2.12. For any x, y ∈ X and t, s, a ∈ R it holds

d(ηx(t+ a), ηy(s+ a)) = d(ηx(t), ηy(s)).

Proof. Observe that uniqueness of the lines ηx and ηy through x and resp. y implies
that for any tn → ∞ the sequences (ηn)n∈N and (ξn)n∈N connecting x and γ(tn)
and resp. y and γ(tn) converge to η and resp. ξ. Thus we can apply Preposition
2.9 either with the ray γ+ or with the ray γ− to conclude

d(η(t), ξ(s)) = d(η(t+ a), ξ(s+ a)).

�

This means that moving along the lines induces an isometry. In particular, all
level sets of bγ+ are isometric with isometry generated by moving along the parallel
lines.

Corollary 2.13. Assume (X, d) is a proper Busemann concave metric space. If
through every point x ∈ X there is a line connecting x with some fixed x0 then (X, d)
is homogeneous, i.e. for every x, y ∈ X there is an isometry gxy ∈ Isom(X, d) such
that gxy(x) = y.

We are now able to prove the bi-Lipschitz splitting theorem.

Theorem 2.14 (Splitting Theorem). Let (X, d) a proper Busemann concave space
and assume X contains a line γ : R → X. Then through every x ∈ X there is a
unique line η parallel to γ and (X, d) is bi-Lipschitz to a metric space (X ′ × R, d̃)

where d̃ is a product metric.

Remark. The proof shows that X ′ is a subset of X but it is not clear whether it can
be chosen to be convex/totally geodesic. In case X ′ is totally geodesic the product
metric d̃ on X ′ × R can be chosen such that (X ′ × R, d̃) is Busemann concave.
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Proof. We claim that (X, d) is bi-Lipschitz to (X ′ × R, d̃) where X ′ = b−1
γ+(0) and

d̃((x, t), (y, s)) = d(x, y) + |t− s|.

This is obviously a product metric on X ′ × R. Now let Ψ : X → (R → X) assign
to each x ∈ X the unique line ηx parallel to γ such that bγ+(ηx(0)) = 0. We claim
that the map

Ψ(x) = (ηx(0), bγ+(x))

is a bi-Lipschitz homeomorphism between (X, d) and (X ′ × R, d̃). Note that Ψ is
obviously bijective, so that for simplicity of notation we identify X and (X ′ × R)
set-wise and assume (x, t), (y, s) are points living in X.

Using the triangle inequality of d we get

d((x, t), (y, s)) ≤ d((x, t), (x, s))+d((x, s), (y, s)) = |t−s|+d(x, y) = d̃((x, t), (y, s)).

which implies that Ψ−1 is 1-Lipschitz.
We claim that d(x, y) + |t − s| ≤ 3d((x, t), (y, s)). This would imply that Ψ is

3-Lipschitz and finish the proof.
To show the claim note that bγ+ is 1-Lipschitz so that

|t− s| = |bγ+(x, t)− bγ+(y, s)| ≤ d((x, t), (y, s))

and from triangle inequality

d(x, y) ≤ d((x, t), (y, s)) + d((y, s), (y, t)

= d((x, t), (y, s)) + |t− s|.

Combining the inequalities above we obtain

d(x, y) + |t− s| ≤ d((x, t), (y, s)) + 2|t− s| ≤ 3d((x, t), (y, s)).

Note that it is possible to change d̃ by any metric product of (X ′, d) and (R, |·−·|)
as any two norms on R2 are bi-Lipschitz with Lipschitz constants only depending
on the two norms. In particular, if X ′ was convex w.r.t. d then one may choose
the L2-product so that X ′ ×2 R is Busemann concave. �

If the Hausdorff measure is non-trivial and the space is “Riemannian-like”, then
it is possible to show that X ′ is indeed convex and (X, d) is isometric to the L2-
product of X ′ and the real line.

Corollary 2.15. Assume, in addition, that Hn is non-trivial and (X, d,Hn) is
infinitesimally Hilbertian then (X, d) is isometric to X ′ ×2 R.

Proof. This follows from the proof of Gigli’s splitting theorem for RCD-spaces
[Gig13]. Just note that the “gradient flow” of the Busemann function is just the
isometry induced by moving along the lines and this isometry also preserves the
Hausdorff measure. Using [Gig13, Theorem 5.23] one shows that X ′ is totally
geodesic. Furthermore, L2-products of infinitesimally Hilbertian Busemann concave
spaces are also infinitesimally Hilbertian (compare with [Gig13, Theorem 6.1]). �

As mentioned above if (X, d) is Busemann concave and angles are well-defined
then (X, d) is an Alexandrov space. In Gigli’s proof of the splitting theorem, point-
wise angles are replaced by “smoothed” angles. More precisely, instead of looking at
two intersecting geodesic in X one can look at intersecting geodesics in the Wasser-
stein space P2(X). If the geodesics are pointwise absolutely continuous measures
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then being infinitesimally Hilbertian shows that there is a notion of angle. Thus
one might ask.

Problem 2.16. Assume (X, d,Hn) is an infinitesimally Hilbertian Busemann con-
cave metric measure space and Hn is non-trivial. Is (X, d) a non-negatively curved
Alexandrov space?

2.3. Tangent cones. Let Γx be the set of maximal unit speed geodesics starting
at x. The pre-tangent cone T̂xX at X is defined as the set Γx × [0,∞) such that
the points (γ, 0) are identified. On T̂xM we define the metric dx as follows: Given
geodesics γ, η ∈ Γx there is an interval I = [0, a] such that γ, η are both defined on
I. Then define a metric dx on T̂xX by

dx((γ, s), (η, t)) = sup
r∈[0,1],max{rs,rt}≤a

d(γ(rs), η(rt))

r
.

Lemma 2.17. If (X, d) is Busemann concave then dx is a well-defined metric on
T̂xX. Furthermore, it holds dx((γ, λs), (η, λt)) = λdx((γ, s), (η, t)).

Proof. dx is obviously non-negative and symmetric. The function r 7→ d(γ(sr),η(tr))
r

is non-increasing by Busemann concavity so that the supremum in the definition
of dx is actually a limit w.r.t. r → 0. This also implies that the triangle inequality
holds. Also note that dx((γ, s), (η, t)) = 0 implies that d(γ(rs), η(rt)) = 0 so that
γ(rs) = η(rt). As γ and η are unit speed geodesics starting at x we must have s = t
so that either s = t = 0 or γ ≡ η, i.e. dx is definite. �

It is possible to define an exponential map directly from the pre-tangent cone:
Let Ux ⊂ T̂xX be such that (γ, t) ∈ Ux iff γ(t) is defined. Then we define the
exponential map expx : Ux → X by

expx(γ, t) = γ(t).

Note that by definition, expx is onto. By Busemann concavity and the defini-
tion of dx it is not difficult to show that expx is 1-Lipschitz, i.e. dx(v, w) ≥
d(expx(v), expx(w)).

Definition 2.18 (Tangent cone). The tangent cone (TxX, dx) at x is defined as
the metric completion of (T̂xX, dx).

The tangent cone (TxX, dx) is not necessarily the (pointed) Gromov-Hausdorff
limit of the blow ups (X, 1

λd, x) at x. Indeed, if (X, d) is compact and the tangent
cone at some point is not locally compact then it cannot be the Gromov-Hausdorff
limit of blow ups. An example is given by

Kp
c =

{
(xi) ∈ `p |

∑
cixpi ≤ 1

}
where c > 1 and p ∈ (1,∞). The set Kp

c is a compact convex subset of `p, but the
tangent cones at points (xi) with 0 <

∑
cixpi < 1 are isometry to `p. However, if

the blow-ups are precompact then their limit is uniquely given by the tangent cone.

Lemma 2.19. If {(X, 1
λd, x)}λ∈(0,1] is precompact then the limit as λ → 0 exists

in the pointed Gromov-Hausdorff topology and equals (TxX, dx, 0x).

More generally, if the tangent cone (TxM,dx) is locally compact we obtain the
following.
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Lemma 2.20. If (TxX, dx) is locally compact then for each r > 0 the sequence
{(Br(x), 1

λd, x)}λ∈(0,1] is precompact with respect to the pointed Gromov-Hausdorff
topology. In particular, (TxX, dx, 0x) is the (unique) pointed Gromov-Hausdorff
limit of {(X, 1

λd, x)}λ∈(0,1] as λ→ 0.

Proof. By scale invariance of TxX any bounded subset is precompact. Let Ur be
all (γ, t) ∈ Ux with t ≤ r. One can define a scaled exponential map expλx(γ, t) =
γ(λt). Then expλx maps (Ur, dx) onto (Bλr (x), 1

λd) and is 1-Lipschitz where Bλr (x)

is the ( 1
λd)-ball of radius r with center x. By assumption Ur is bounded and thus

precompact in (TxX, dx). Therefore, for each ε > 0 there is an N(ε) <∞ such that
Ur can be covered by N(ε) dx-balls of radius ε with center in Ur.

We claim that that Bλr can be covered by at most N(ε) ( 1
λd)-balls of radius ε.

Indeed, let {v1, . . . , vN(ε)} be the centers of the dx-balls of radius ε. This means
for all v ∈ Ur it holds inf

N(ε)
i=1 dx(v, vi) ≤ ε. Set xi = expλx vi. As expλx is onto for

each x′ ∈ Bλr (x) there is a v ∈ (expλx)−1(x′). Combining this with the 1-Lipschitz
property we obtain

inf
i=1,...,N(ε)

d(x′, xi) = inf
i=1,...,N(ε)

d(expλx(v), expλx(vi))

≤ inf
i=1,...,N(ε)

λdx(v, vi) ≤ λε.

Hence, {Bλε (xi)}N(ε)
i=1 covers Bλr (x). By definition diamUr,diamBλr ≤ 2r so that

Gromov’s precompactness theorem implies that {(Bλr (x), 1
λd)} is precompact. To-

gether with the previous lemma we see that the limit has to be (clUr, dx) =
(BTxMr (0x), dx). �

Corollary 2.21. If (X, d) is a complete Busemann concave (locally) doubling met-
ric space then (TxX, dx) is locally compact and the unique limit of the blowups
(X, 1

λd, x)λ∈(0,ε].

By [LD11] it can be shown that for topologically and measure-theoretically al-
most all points x ∈ X the tangent cone (TxM,dx) is a finite dimensional Carnot
group. However, the limit does not have to be Busemann concave so that Proposi-
tion 2.5 cannot be applied. Nevertheless, the results above show that a homogeneous
tangent cone is necessarily both weakly Busemann concave and the homothetic con-
traction is affine. Both should imply that it has to be a Banach space. This, in
particular, would imply that Busemann concave spaces are metric generalizations
of Finsler manifolds.

2.4. Hausdorff measure, doubling and Poincaré. The Hausdorff measure is
a natural measure associated to a metric space. For finite dimensional Alexandrov
spaces it is known that there is an integer n such that the n-dimensional Hausdorff
measure is non-trivial, i.e. non-zero and locally finite [BGP92]. Furthermore, if
the space is non-negatively curved then this measure is doubling. For general
Busemann concave spaces, we currently cannot show that the Hausdorff measure
is non-trivial if the space is finite dimensional w.r.t. to any meaningful dimension
definition. However, we will show that if the Hausdorff measure is non-trivial then
it is doubling and satisfies a (1, 1)-Poincaré inequality. Furthermore, it also satisfies
the measure contraction property which is a (very) weak form of non-negative Ricci
curvature. It is likely that further analysis shows that Busemann concavity implies
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that the space satisfies CD(0, n), i.e. Busemann concave spaces have non-negative
n-dimensional Ricci curvature in the sense of Lott-Sturm-Villani.

Let δ > 0 and S be a subset of X. Define

Hnδ (S) = Cn inf

{∑
i∈N

(
1

2
diamUi)

n |S ⊂
⋃
i∈N

Ui,diamUi < δ

}
where Cn is a constant such that Hn equals the Lebesgue measure on Rn when
(X, d) = (Rn, dEuclid). Note that Hnδ (S) is decreasing in δ so that we can define the
n-dimensional Hausdorff measure of S as follows

Hn(S) = sup
δ>0
Hnδ (S) = lim

δ→0
Hnδ (S).

From the definition it follows that Hn is an outer measure. Furthermore, one can
show that each Borel set of X is Hn-measurable and thus Hn is a Borel measure.

Note that we have the following: if for some n it holdsHn(S) <∞ thenHn′(S) =

0 for all n′ > n. Also if Hn(S) > 0 then Hn′(S) = ∞ for all 0 < n′ < n. In
particular, for each S there is at most one n with 0 < Hn(S) < ∞. Therefore, we
can assign to each bounded set a number called Hausdorff dimension

dimH S = inf{n ∈ [0,∞) |Hn(S) = 0}
= sup{n ∈ [0,∞) |Hn(S) =∞}

with conventions inf ∅ = ∞ and sup∅ = 0. Now denote the local Hausdorff
dimension at x by

dimH X(x) = inf
x∈U open

dimH U.

Given points x, y ∈ X we can choose a geodesic γxy connecting x and y such
that for any t ∈ [0, 1] the map

Φ : (y, x, t) 7→ γxy(t)

is a measurable function. Without loss of generality it is possible to choose Φ in a
symmetric way, i.e. Φ(y, x, t) = Φ(x, y, 1− t).

Let Ω be some subset of X and define Ωt = Φ(Ω, x, t). Denote its inverse by
g : Ωt → Ω. Note that this map is onto and Busemann concavity implies it is
t−1-Lipschitz. Let {Ui}i∈N be a δ-cover of Ωt then {g(Ui)}i∈N is a t−1δ-cover of Ω.
Furthermore, it holds ∑

(diam g(Ui))
n ≤ 1

tn

∑
(diamUi)

n

and hence

Hnt−1δ(Ω) ≤ 1

tn
Hnδ (Ωt).

Taking the limit as δ → 0 on both sides we see that

(2.1) Hn(Ω) ≤ 1

tn
Hn(Ωt).

Note that this implies that if Hn(Br(x)) <∞ then Hn(Ω) <∞ for all bounded
Ω. Indeed, there is a t > 0 depending only on Ω, x and r such that Ωt = Φ(Ω, x, t) ⊂
Br(x).



SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES 16

Lemma 2.22. In a Busemann concave space (X, d) the Hausdorff dimension of
bounded open subsets is equal to a fixed number n ∈ [0,∞]. In particular, dimH X(x) ≡
const.

Proof. Let Ω,Ω′ be two bounded subsets with non-empty interior. Then there is
an x ∈ Ω, x′ ∈ Ω′ and r, t > 0 such that Ωt ⊂ Br(x

′) ⊂ Ω′ and Ω
′

t ⊂ Br(x) ⊂ Ω

where Ωt = Φ(Ω, x′, t) and Ω
′

t = Φ(Ω′, x, t). Hence, by 2.1 it holds

Hn(Ω) ≤ 1

tn
Hn(Ω

′
)

and

Hn(Ω′) ≤ 1

tn
H(Ω).

Now it is easy to see that dimH Ω = dimH Ω′ and that this number equals the local
Hausdorff dimension at x. �

In case the Hausdorff dimension is finite, it is still not clear if the corresponding
measure is non-trivial, i.e. 0 < Hn(Br(x)) < ∞ for some x ∈ X and r > 0.
However, if the n-dimensional Hausdorff measure is non-trivial, then the space
enjoys nice properties.

Proposition 2.23. Assume (X, d) is a complete Busemann concave metric space
admitting a non-trivial Hausdorff measure. Then (X, d,Hn) satisfies the measure
contraction property MCP (0, n), the Bishop-Gromov volume comparison BG(0, n)
and a (weak) (1, 1)-Poincaré inequality. In particular, Hn is a doubling measure
with doubling constant 2n.

Remark. We refer to [Oht07b] for the exact definition of the measure contraction
property and to [BB11, HKST15] for definitions of Poincaré and doubling conditions
and their influence on the geometry and analysis of metric spaces.

Proof. Since Φ is measurable we can apply [Oht07b, Lemma 2.3].
The Bishop-Gromov volume comparison and the doubling property follows once

we notice that Ω = BR(x) implies that Ω r
R
⊂ Br(x). Equation 2.1 then implies

Hn(BR(x))

Hn(Br(x)).
≤ Rn

rn
=
V0,n(R)

V0,n(r)
for 0 < r < R.

In particular, r 7→ Hn(Br(x))
V0,n(r) is non-increasing.

A standard argument implies that a weak (1, 1)-Poincaré inequality holds (see
e.g. [Hua10, Lemma 3.3]), i.e. it holds∫

Br(x)

|u− uBr(x)|dHn ≤ 2n+1r

∫
B3r(x)

gudHn

where gu is a weak upper gradient of u.
We sketch the argument given in [Hua10, Lemma 3.3]: It suffices to assume

u ∈ Lip(X, d) and gu = lipu where lipu is the local Lipschitz constant of u. Set
B = Br(x) and uB = 1

Hn(B)

∫
B
udHn. Then for every geodesic γyz : [0, 1] → X

connecting y, z ∈ Br(x) it holds

|u(y)− u(z)| ≤ d(y, z)

∫ 1

0

gu(γyz(t))dt.
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Thus ∫
B

|u− uB |dHn ≤ 1

Hn(B)

∫
B

∫
B

|u(y)− u(z)|dHn(z)dHn(y)

≤ 2r

Hn(B)

∫
B

∫
B

∫ 1

0

gu(γyz(t))dtdHn(z)dHn(y)

≤ 4r

Hn(B)

∫
B

∫
B

∫ 1

1
2

gu(γyz(t))dtdHn(z)dHn(y)

where the last inequality follows by choosing the geodesics γyz in a symmetric way.
Note that the measure contraction property implies∫

B

f(γxy(t))dHn(y) ≤ 1

tn

∫
Btr(x)

f(z)Hn(z)

for all non-negative f ∈ L∞loc(X,Hn) and t ∈ (0, 1], see [Oht07b, Equations (2.2)].
Therefore, we obtain∫

B

|u− uB |dHn ≤ 4r

Hn(B)

∫
B

∫ 1

1
2

∫
B2r(y)

gu(γyz(t))dHn(z)dtdHn(y)

≤ 4r

Hn(B)

∫
B

∫ 1

1
2

1

tn

∫
B2tr(y)

gu(w)dHn(w)dtdHn(y)

≤ 4r

Hn(B)

∫
B

∫ 1

1
2

1

tn

∫
B3r(x)

gu(w)dHn(w)dtdHn(y)

≤ 2n+1r

∫
B3r(x)

gudHn.

�

Remark. In order to prove the Bishop inequality it remains to show that

lim
r→0

Hn(Br(x))

rn
= ωn

where ωn = V0,n(1). This holds at points where the (blow-up) tangent space is
isometric to an n-dimensional normed space as the Hausdorff measure of balls equals
the volume of the n-dimensional Euclidean balls of same radius and the pointed
Gromov-Hausdorff convergence is compatible with the measured Gromov-Hausdorff
convergence if the reference measures are non-collapsing Hausdorff measures of the
same dimension.

2.5. Bonnet-Myers theorem. Throughout this section we assume that geodesics
are parametrized by arc length, i.e. they are unit speed geodesics. This will simplify
some of the proofs below.

Recall a fact on triangles in S2: Let a, b, c ∈ (0, π] with a+b+c ≤ 2π. Then there
is a triangle formed by unit speed geodesics γ̃, η̃, ξ̃ of length a, b, c with γ̃0 = η̃0,
γ̃a = ξ̃0 and η̃b = ξ̃c. Furthermore, if a = b ≥ π

2 and a+ b+ c = 2π then

dS2(γ̃π
2
, η̃π

2
) = π

and γ̃0 = η̃0 is a midpoint of the pair (γ̃π
2
, η̃π

2
). The proof of the Bonnet-Myers

theorem relies heavily on this rigidity.
We say that the complete geodesic metric space (X, d) has Busemann curvature

bounded below by 1 if for all unit speed geodesics γ, η, ξ in X of length a, b, c with
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γ0 = η0, γa = ξ0 and ηb = ξc such that there is a corresponding comparison triangle
in S2 of length a, b, c ≥ 0 then it holds

d(γta, ηtb) ≥ dS2(γ̃ta, η̃tb)

for all t ∈ [0, 1].
Using a slightly different notion of positive curvature Kann [Kan61] obtained a

Bonnet-Myers theorem for two dimensional G-spaces which are positively curved
in his sense. Note that his proof heavily relies on the notion of two dimensionality
as well as local extendability of geodesics. The proof of the Bonnet-Myers theorem
below is inspired by the one for MCP (K,N)-spaces [Oht07b, Section 4]. The main
idea is to replace the density estimates by length estimates. However, the technique
is quite different and some steps are easier to prove in the current setting.

Before we start we need the following characterization of non-branching spaces
that are not 1-dimensional: A non-branching geodesic metric space is said to be
not 1-dimensional if for any unit speed geodesic γ : [0, a]→ X and ε > 0 there is a
y ∈ Ba(γ0) with d(γa, y) < ε but y /∈ γ[0,a].

Lemma 2.24. Assume (X, d) is non-branching and not 1-dimensional. Then for
all unit speed geodesics γ : [0, a] → X and b ∈ (0, a) there is z ∈ ∂Bb(γ0) with
y 6= γb.

Proof. Choose ε = a−b
2 and y ∈ Ba(γ0) as in the definition of not 1-dimensional.

Let η : [0, d(γ0, y)]→ X be a unit speed geodesic connecting γ0 and y. The choice
of ε shows b < d(γ0, y). Since (X, d) is non-branching we see that γb 6= ηb so that
we may choose z = ηb. �

For non-branching 1-dimensional spaces one gets the following rigidity. We leave
the details to the interested reader, compare also with [Bus55, Theorem (9.6)].

Lemma 2.25. If (X, d) is 1-dimensional and non-branching then it is isometric to
a closed connected interval I ⊂ X or a circle S1

λ of length λ > 0.

Before proving the main theorem of this section we need the following technical
lemmas.

Lemma 2.26. Assume (X, d) has Busemann curvature bounded below by 1. If γ, η :
[0, π − a] → X are two unit speed geodesics starting at x ∈ X with d(γπ

2
, ηπ

2
) < π

and a ∈ (0, π2 ] then for any s ∈ [a, π2 ] it holds d(γπ−s, ηπ−s) < 2s.

Proof. Not first that

lim sup
s→π

2

-
d(x, γπ−s) + d(x, ηπ−s) + d(γπ−s, ηπ−s) < 2π.

Thus
lim sup
s→π

2
−

(d(γπ−s, ηπ−s)− 2s) < 0.

In particular, for s sufficiently close to π
2 it holds d(γπ−s, ηπ−s) < 2s.

Assume the statement was not true. Then there is a largest s0 ∈ [a, π2 ) with
d(γπ−s0 , ηπ−s0) = 2s0. The assumptions imply that there is a comparison triangle
of the triangle formed by (x, γπ−s0 , ηπ−s0) such that for some unit speed geodesics
γ̃, η̃ : [0, π − s0]→ S2 it holds d(γπ−s0 , ηπ−s0) = d(γ̃π−s0 , η̃π−s0) and

d(γt, ηt) ≥ dS2(γ̃t, η̃t) for t ∈ [0, π − s0].
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However, the comparison triangle satisfies

dS2(γ̃π
2
, η̃π

2
) = π

which would contradict the assumption d(γπ
2
, ηπ

2
) < π. �

Lemma 2.27. Assume (X, d) is not 1-dimensional and has Busemann curvature
bounded below by 1. Then for ε > 0 and all unit speed geodesics γ, η : [0, π−s]→ X
with s ∈ (0, π2 ) there is a unit speed geodesic ηε : [0, π − sε] → X such that sε ≥ s,
d(ηπ−s, η

ε
π−sε) < ε and

d(γπ
2
, ηεπ

2
) < π.

Proof. If d(γπ
2
, ηπ

2
) < π then we can choose ηε = η. Assume d(γπ

2
, ηπ

2
) = π. Since

(X, d) is not 1-dimensional there is a sequence of points (yn)n∈N in Bπ−s(x) such
that yn → ηπ−s and yn 6= η(π−sn) where sn = π−d(x, yn). Let ηn : [0, π−sn]→ X
be a unit speed geodesic connecting x and yn. Note by non-branching ηnπ

2
6= ηπ

2
.

We claim that d(γπ
2
, ηnπ

2
) < π. Indeed, equality would imply that x is a mid-

point of both (γπ
2
, ηπ

2
) and (γπ

2
, ηnπ

2
) which is not possible by the non-branching

assumption. �

In the following we write diam∅ = 0. Thus diamA = 0 implies that A contains
at most one element.

Corollary 2.28. Assume (X, d) is not 1-dimensional and has Busemann curvature
bounded below by 1. If γ, η are as in the lemma above then

d(γπ−s, ηπ−s) ≤ 2s

for s ∈ [0, π2 ]. In particular, diam ∂Bπ−s(x) ≤ 2s for s ∈ [0, π2 ].

Proof. Assume first s > 0. Using Lemma 2.27 we find a sequence of unit speed
geodesics ηn : [0, π−sn]→ X with sn ≥ s, ηnπ−sn → ηπ−s and d(γπ

2
, ηnπ

2
) < π. Thus

we can apply Lemma 2.26 to γ|[0,π−sn] and ηn and get

d(γπ−sn , η
n
π−sn) < 2sn.

Since sn → s we see that

d(γπ−s, ηπ−s) = lim
n→∞

d(γπ−sn , η
n
π−sn) ≤ lim

n→∞
2sn = 2s.

The case s = 0 is obtain via approximation. �

Combining the results we are able to prove the following theorem.

Theorem 2.29 (Bonnet-Myers Theorem). Assume (X, d) is non-branching and
has Busemann curvature bounded below by 1. If (X, d) is not 1-dimensional then
the diameter of X is at most π.

Remark. By scaling one sees that diamX ≤ π√
k
if the space has Busemann curva-

ture bounded below by k > 0.

Proof. Let y ∈ X be such that d(x, y) = diamX and γ be a unit speed geodesic
connecting x and y. Assume by contradiction diamX > π. Corollary 2.28 shows
∂Bπ(x) = {γπ}. However, by Lemma 2.24 there is a z ∈ ∂Bπ(x) with z 6= γπ which
is a contradiction. �



SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES 20

By the same arguments it is possible to show that if (X, d) is not 1-dimensional
then for all unit speed geodesics γ : [0, a]→ X and η : [0, b]→ X starting at x with
a, b ∈ [0, π), a+ b ≥ π the triangle formed by (x, γa, ηb) has circumference at most
2π with strict inequality unless d(γta, ηtb) = π where ta + tb = π. In particular,
given three points in X there is always a corresponding comparison triangle in S2.

Using this we can prove the following along the lines of [Oht07c, Section 5]: if
d(x, x∗) = π for some x, x∗ ∈ X then for any z ∈ X it holds

d(x, z) + d(z, x∗) = π

and there is a unique unit speed geodesic γ connecting x and x∗ such that γ(d(x, z)) =
z. This implies that if X is compact then it is homeomorphic to a suspension of the
space (∂Bπ

2
(x), d). We leave the details to the interested reader. An alternative

proof can be done along the lines of [Ket15]. For this note that Euclidean cone
Con(X) is Busemann concave. If diamX = π then Con(X) contains a line and by
Theorem 2.14 it splits so that X must be homeomorphic to a spherical suspension.
As in the proof of the splitting theorem, it is not clear whether ∂Bπ

2
(x) is totally

geodesic.

3. Uniformly smooth spaces

In this section we define a form global non-negative curvature via a “smoothness”
assumption on the metric. Indeed, any Riemannian manifold whose distance is
uniformly smooth (see below) must have non-negative sectional curvature on all
planes spanned by tangent vectors which are tangent to a ray. However, locally the
distance is C∞ and automatically uniformly smooth.

The notion is inspired by the theory of Banach spaces: Uniform smoothness of
the norm implies that Busemann functions are well-defined and linear. In particular
they are given as duals of the corresponding vector which represents the ray. In this
section we want to use uniform smoothness to show that Busemann functions are
quasi-convex. A stronger condition, called p-uniformly convex, will give convexity.
From this one can obtain by an argument of Cheeger–Gromoll [CG72] that such
a space is an exhaustion of convex sets and can be retracted to a compact totally
geodesic subspace, i.e. a variant of the soul theorem. Note, however, in the smooth
setting this retract can have a non-empty boundary, so that the compact retract
should rather be called a weak soul.

In the end of this section we try to give a local version of non-negative curvature
inspired by Gromov’s characterization of non-negative curvature in terms of inward
equidistant movements of convex hypersurfaces, see [Gro91].

3.1. Uniform smoothness and convexity of Busemann functions.

Definition 3.1 (Uniform smoothness). A geodesic metric space is said to be uni-
formly smooth if there is an non-decreasing function ρ : (0,∞)→ [0,∞) such that
ρ(ε)
ε → 0 as ε→ 0 and for all x, y, z ∈ X with

d(y, z) ≤ εmin{d(x, y), d(x, z)}

it holds
d(x,m) ≥ (1− ρ(ε)) min{d(x, y), d(x, z)}

whenever m is a midpoint of y and z.
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We leave it to the interested reader to show that this is equivalent to the usual
definition of uniform smoothness in case X is a Banach space. A stronger variant
is the so-called p-uniform smoothness for p ∈ (1, 2].

Definition 3.2 (p-uniform smoothness). A geodesic metric space is said to be
p-uniformly smooth if there is a C > 0 such that for all x, y, z ∈ X it holds

d(x,m)p ≥ 1

2
d(x, y)p +

1

2
d(x, z)p − C

4
d(y, z)p

whenever m is a midpoint of y and z.

Note that by Clarkson’s inequality every Lp-space is p′-uniformly smooth for
p′ = min{p, 2}. Furthermore, the dual of a q-uniformly convex Banach space is
p-uniformly smooth with 1

p + 1
q = 1.

The following was proved by Ohta [Oht08, Theorem 4.2].

Lemma 3.3. Any Berwald space of non-negative flag curvature is 2-uniformly
smooth.

However, as every Berwald space of non-negative flag curvature is affinely equiv-
alent to a Riemannian manifold of non-negative curvature [Sza81, Sza06], one can
obtain most topological and geometric properties directly from the affinely equiva-
lent Riemannian manifold (see [Kel15]).

It is not difficult to show that p-uniform smoothness implies uniform smoothness.
Indeed, one has

d(x,m)p ≥ (1− ρ̃)A

whereA = 1
2d(x, y)p+ 1

2d(x, z)p andA 4
C ρ̃ = d(y, z)p. BecauseA ≥ min{d(x, y), d(x, z)}p,

we have
d(x,m) ≥ (1− ρ) min{d(x, y), d(x, z)}

where ρ = min{1, ρ̃}. Thus we may choose

ρ(ε) = min{C
4
εp, 1}

to conclude.
An integral part of the soul theorem is the following function which we call

Cheeger–Gromoll function (w.r.t. x0 ∈ X)

bx0
(x) = sup bγ(x)

where the supremum is taken over all rays starting at x0.

Proposition 3.4. Assume (X, d) is uniformly smooth. Then any Busemann func-
tion bγ associated to a ray γ is quasi-convex. In particular, all Cheeger–Gromoll
functions are quasi-convex.

Proof. Fix distinct points x, y ∈ X and assume x, y /∈ γ([t,∞)) for some large t.
Let εt = d(x,y)

min{d(x,γt),d(y,γt)} and m be a midpoint of x and y. Then by uniform
smoothness it holds

t− d(m, γt) ≤ t− (1− ρ(εt)) min{d(x, γt), d(y, γt)}.

= max{t− d(x, γt), t− d(y, γt)}+
ρ(εt)

εt
d(x, y).
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Note t→∞ implies εt → 0 so that the rightmost term converges to zero. But then

bγ(m) = lim
t→∞

t− d(m, γt)

≤ lim
t→∞

max{t− d(x, γt), t− d(y, γt)}

= max{bγ(x), bγ(y)}.
Since the Cheeger–Gromoll functions are suprema of quasi-convex functions they
are quasi-convex as well. �

Proposition 3.5. Assume (X, d) is p-uniformly smooth. Then Busemann function
bγ associated to any ray γ is convex. In particular, all Cheeger–Gromoll functions
are convex.

Proof. Fix distinct point x, y ∈ X and assume x, y /∈ γ([t,∞)). Then

t− d(m, γt)
p

tp−1
≤ 1

2

(
t− d(x, γt)

p

tp−1

)
+

1

2

(
t− d(y, γt)

p

tp−1

)
+
C

4

d(x, y)p

tp−1
.

Note that the limit of the rightmost term converges to 0 as t→∞ and by Lemma
2.8

lim
t→∞

t− d(z, γt)
p

tp−1
= lim
t→∞

t− d(z, γt) = bγ(z)

for any z ∈ X. Combining these gives

bγ(m) ≤ 1

2
bγ(x) +

1

2
bγ(y).

Since the Cheeger–Gromoll functions are suprema of convex functions they are
convex as well. �

Remark. By the same arguments the functions

b̃x0
(x) = lim sup

t→∞
sup

y∈∂Bt(x0)

t− d(x, y)

b̂x0
(x) = lim sup

yn→∞
d(x0, yn)− d(x, yn)

are both quasi-convex or resp. both convex.

Corollary 3.6. Assume (X, d) is locally compact and p-uniformly smooth and
geodesics in (X, d) can be extended locally. Then for any embedding line γ : R→ X

bγ+ + bγ− = 0.

In particular, bγ+ is affine. If, in addition, (X, d) is non-branching then X is
homeomorphic to b−1

γ+(0)× R.

Proof. Let η : [0, 1] → X is a geodesic and set f = bγ+ + bγ− . Convexity implies
that t 7→ f(η(t)) achieves its maximum at 0 or 1 if it is not constant. So assume
f(η(1)) < 0. From the assumption we can extend η beyond η(1) such that η̃ :
[0, 1 + ε]→ X is a local geodesics agreeing with η on [0, 1]. Let a ∈ [0, 1) such that
η̃
∣∣
[a,1+ε]

is a geodesic. Then

max
t∈[a,1+ε]

f(η̃(t)) = f(η(1)) = 0.

However, this implies that f(η̃) is constant on [a, 1 + ε]. But then f(η) also attains
its maximum at t = a implying that f(η(t)) = 0 for all t ∈ [0, 1].
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The equality shows that we may glue the asymptotic rays. Assume now that
(X, d) is non-branching then there is at most one pair of asymptotic rays which
can be glued together at a fixed point. In particular, for every x ∈ X there are
unique line ηx parallel to γ such that x ∈ ηx and ηx(bγ+(x)) = x. Note also that
ηη(t) = ηη(s) for s, t ∈ R.

Let Ξ = {ηx |x ∈ X} ⊂ Lip(R, X). By local compactness we can show that
Ψ : Ξ → b−1

γ+(0) defined by Ψ(ηx) = ηx(0) is a homeomorphism. In particular, the
assignment x 7→ (ηx(0), bγ+(x)) is a homeomorphism betweenX and b−1

γ+(0)×R. �

Remark. Without local extendibility the result might be wrong. Indeed, if X is the
product of a filled triangle and the real line then there exist two convex functions
such that their sum is non-positive and somewhere negative, and they sum up to
zero at the line formed by a vertex of the triangle. However, if we assume that
(X, d) is Busemann concave then one can use the fact that

bγ±(η(0)) = bη∓(γ(0))

to show affinity of the Busemann function. We leave the details to the interested
reader.

The following is an analogue of the case of standard Busemann functions. The
result also holds for b̃x0

and b̂x0
.

Lemma 3.7. Assume (X, d) is locally compact and unbounded. Then for any x ∈ X
there is a ray γx : [0,∞)→ X emanating from x such that

bx0(γx(t)) = bx0(x) + t.

Proof. This is true for bγx0 where γx0 is a ray emanating from x0. From the
definition there is a sequence (γnx0

) of rays emanating from x0 such that bx0
(x) =

limn→∞ bγnx0 (x). Let γnx be the rays emanating from x with bγnx0 (γnx (t)) = bγnx0 (x)+t.
By local compactness we can assume γnx0

→ γx0
and γnx → γx. Thus

bx0(x) + t = lim
n→∞

bγnx0 (x) + t

= lim
n→∞

bγnx0
(γnx (t))

= bγx0 (γx(t)) ≤ bx0
(γx(t)).

However, bx0
is 1-Lipschitz implying |bx0

(γx(t))−bx0
(x)| ≤ t and thus the inequality

above is an equality. �

Theorem 3.8. Any uniformly smooth locally compact metric space (X, d) admits
a quasi-convex exhaustion function b : X → R with compact sublevels such that
S = b−1(min b) has empty interior.

Proof. Let b = bx0
for some x0 ∈ X. The fact that Sx0

has empty interior follows
from the lemma above. Indeed, let x ∈ Sx0

. There is a ray γx emanating from x
with b(γx(t)) = b(x) + t. Assume γx(t) ∈ Sx0 then

min b = b(γx(t)) = b(x) + t = min b+ t

which can only hold if t = 0. Therefore, intSx = ∅. �

We call Sx0
a weak soul as there is no way to dissect it further without an

intrinsic notion of boundary (see also below).

Corollary 3.9. If, in addition, b is strictly quasi-convex then S is a single point.
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Proof. Let x, y ∈ Sx0
be two point and γ : [0, 1] → Sx0

be a geodesic connecting
x and y. By strict quasi-convexity we have b(γt) ≤ max{b(x), b(y)} with strict
inequality if x 6= y. But that case cannot happen because b(x), b(y) = min b. �

Strict quasi-convexity of b implies that the sublevel sets are strictly convex. For
Alexandrov spaces we can show the converse.

Proposition 3.10. Assume (M,d) is an Alexandrov space of non-negative curva-
ture. Then Cs is strictly convex (for some s > min b) if and only if b is strictly
quasi-convex on Cs.

Remark. It is well possible that b is not strictly quasi-convex outside of Cs. An
example is given as follows: glue the half cylinder [0,∞) × Sn−1 and the lower
hemisphere Sn1

2

along their boundaries which are isometric to Sn−1. Then b is up
to a constant the distance from the south pole and is not strictly (quasi-)convex
outside of the hemisphere.

Proof. Obviously strict quasi-convexity of b on Cs implies strict convexity of Cs.
Assume instead Cs is strictly convex. We will use the rigidity of the distance from
the boundary proven by [Yam12]. From Corollary 3.15 below we have (b)|Cs =
s − bCs where bCs(x) = d(x, ∂Cs). If bCs was not strictly quasi-convex then there
is a non-constant geodesic γ in Cs such that bCs is constant along γ. The rigidity
result in [Yam12, Proposition 2.1] shows that there is a non-constant geodesic η :
[0, 1]→ ∂Cs which is impossible by strict convexity of Cs. �

The above actually gives a more general characterization: a closed convex set
C in an Alexandrov space of non-negative curvature is strictly convex iff bC(·) =
d(·, ∂C) is strictly quasi-convex on C.

3.2. An application of the technique in the smooth setting. In this section
we apply the technique above in the smooth setting. We show that if a Finsler
manifold with non-negative flag curvature has vanishing tangent curvature along
a geodesic η then any Busemann function is convex along η. This can be used to
simplify the proof of orthogonality of certain tangent vectors in [Lak14] and avoid
a complicated Toponogov-like theorem proved in [KOT12]. In order to avoid a
lengthy introduction, we refer the reader to [Oht08] for the notation used in this
section. The focus will be on the proof of uniform smoothness of the distance
[Oht08, Theorem 4.2, Corollary 4.4].

Note that in the Finsler setting a (forward) geodesic refers to an constant-speed
auto-parallel curve γ : [0, 1] → M such that dF (γ0, γ1) = F (γ̇0) where dF is the
asymmetric metric induced by the Finsler structure F . Assuming smoothness of
γ : [0, 1]→M , this is equivalent to

dF (γt, γs) = (s− t)dF (γ0, γ1)

for 1 ≥ s ≥ t ≥ 0.

Lemma 3.11. Let (M,F ) be a connected forward geodesically complete C∞-Finsler
manifold. Assume (M,F ) has non-negative flag curvature and for all x ∈ M the
norms Fx are 2-uniformly smooth for some constant S ≥ 1. If η : [0, 1] → M is a
(forward) geodesic with T = 0 on TηM then

d2(x, ηt) ≥ (1− t)d2(x, η0) + td2(x, η1)− (1− t)tS2d2(η0, η1).
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Proof. We only sketch the argument as the calculations are exactly those of [Oht08,
Proof of Theorem 4.2]. The only time the assumption T ≥ −δ is applied is for
estimating

gT (r)(D
T
UU, T ) = gT (r)(D

U
UU, T )− TT (r)(v)

where T (r) ∈ Tη0M and v = η̇0
F (η̇0) . Since DU

UU(r) = 0 and T = 0 on Tη0M we
see that gT (r)(D

T
UU, T ) = 0. In particular, it is possible to choose δ = 0. Then

following the calculation we obtain the result via [Oht08, Corollary 4.4]. �

Along the lines of the proof of Proposition 3.5 we immediately obtain the fol-
lowing corollary.

Corollary 3.12. Let (M,F ) be as above. Then any Busemann function associated
to a ray γ : [0,∞)→M is convex along η, i.e. t 7→ bγ(η(t)) is convex on [0, 1].

The next result was proved in [Lak14, Lemma 4.8] for closed forward geodesics,
i.e. a map η : S1 →M such that η is locally geodesic. Note that we do not need the
reversibility assumption of the closed geodesic [Lak14, Theorem 1.2]. The author
wonders whether T = 0 on TηM would imply that the reversed η̃ : t 7→ η(1− t) is
a geodesic loop as well. This would be the case if T = 0 in a neighborhood U of η,
i.e. M is Berwaldian in U .

Corollary 3.13. Let (M,F ) be as above and assume η : [0, 1]→M is a (forward)
geodesic loop, i.e. η is locally (forward) geodesic such that η0 = η1. Then for any
ray γ : [0,∞)→M with γ0 = η0 it holds

gγ̇0(γ̇0, η̇0) ≤ 0 and gγ̇0(γ̇0, η̇1) ≥ 0.

In particular, if η is a (forward) closed geodesic then gγ̇0(γ̇0, η̇0) = 0.

Proof. This is a direct consequence of the first variation formula and the convexity
of the Busemann function. Indeed, by the first variation formula (see [BCS00,
Exercise 5.2.4]) and uniqueness of geodesics between γ0 and γt we have

lim
s→0+

d(ηs, γt)− d(η0, γt)

d(η0, ηs)
= −gγ̇0(γ̇0,

η̇0

F (η̇0)
)

and

lim
s→1−

d(ηs, γt)− d(η0, γt)

d(η1, ηs)
= gγ̇0(γ̇0,

−η̇1

F (−η̇1)
).

Now convexity of the Busemann function bγ associated to γ implies that

bγ(ηs) ≤ bγ(η0) = 0.

However, we have

d(η0, γt)− d(ηs, γt) = t− d(ηs, γt) ≤ bγ(γs)

which immediately shows that gγ̇0(γ̇0, η̇0) ≤ 0. A similar argument shows gγ̇0(γ̇0,−η̇1) ≤
0.

If γ is a closed geodesic then also η̇0 = η̇1 so that

0 ≥ gγ̇0(γ̇0, η̇0) = gγ̇0(γ̇0, η̇1) ≥ 0.

�
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3.3. A strong deformation retract onto a weak soul. Having a weak soul
shows that all geodesic loops starting in Sx0 must stay in Sx0 . Thus if all loops
starting at some x ∈ Sx0 are homotopic to a geodesic loop starting at x then the
fundamental group of X and Sx0

are the same. In general, it is not clear how to use
a similar argument for higher homotopy groups. If Sx0

was a strong deformation
retract of X then the all fundamental group would agree.

Throughout this section we assume that (X, d) is a locally compact and uniformly
smooth. Note that this implies that closed bounded sets are compact. We want
to give a condition which implies that each sublevel of bx0

is a strong deformation
retract of X.

The first result is just a reformulation of [CG72, Proposition 1.3]. The only
ingredient used in their proof is the fact that the sublevels of bx0

are closed and
totally geodesic.

Lemma 3.14. The sublevel sets Cs = b−1
x0

([0, s]) are compact and the boundaries
have the following form: Let 0 < s < t then

∂Cs = {x ∈ Ct | d(x, ∂Ct) = t− s}.

Proof. Note by definition bx0(γ(t)) = t for any ray starting at x0. In particular, bx0

is unbounded when restricted to such a ray. Now suppose that sublevels of bx0
are

not compact. Then there is an s and a sequence xn →∞ with bx0
(xn) ≤ s. Let γn

be a geodesic connecting x0 and xn. By local compactness there is a subsequence
of (γn) converging to a ray γ starting at x0. As Cs = b−1

x0
([0, s]) is closed convex,

γn and γ lie entirely in Cs. This, however, implies that bx0(γ(t)) ≤ s which is a
contradiction.

To see that second claim, note bx0
is 1-Lipschitz so that x ∈ ∂Cs and y ∈ Ct

with d(x, y) < t− s implies bx0
(y) < t. �

The following shows that bx0
can be described in a local manner. It can be used

to show that a certain notion of positive curvature means that the weak soul Sx0

consists only of a single point, see Proposition 3.29 below.

Corollary 3.15. For each r > m where m = min bx0
define the function bCr :

Cr → [0, r −m] by
bCr (x) = d(x, ∂Cr).

Then bCr is quasi-concave and it holds

bx0
(x) = r − bCr (x)

for x ∈ Cr.

Proof. If x ∈ ∂Cs for s ≤ r then bx0(x) = s. Thus the lemma implies

bx0(x) = r − (r − s) = r − bCr (x).

It remains to show that b−1
x0

(s) = ∂Cs. Let x ∈ b−1
x0

(s). By Lemma 3.7 there is a
ray γx emanating from x such that

bx0
(γx(t)) = bx0

(x) + t.

Since γx(r − s) ∈ ∂Cr we obtain d(x, ∂Cr) ≤ r − s. As bx0
is 1-Lipschitz this must

be an equality so that the previous lemma implies x ∈ ∂Cs. �



SECTIONAL CURVATURE-TYPE CONDITIONS ON METRIC SPACES 27

Corollary 3.16. Assume (X, d) is non-branching and let As be the set of points x ∈
∂Cs such that d(x, Sx0) = s −min bx0 . Then Ar,s = ∪r≤r′≤sAr′ is homeomorphic
to As × [0, 1] for all r, s > min bx0 . Furthermore, there is a continuous map Φr :
Ar → Sx0

.

Proof. We only indicate the proof as the construction is similar to the one above:
The ray γ given by Lemma 3.7 can be extended backwards to a ray starting in
Sx0

. More precisely, let γ′ be a unit speed geodesic connecting yx and x where yx
is a foot point of x in Sx0 . Because d(x, Sx0) = bx0(x) − min bx0 , γ ∪ γ′ is a ray
emanating from yx. By non-branching and compactness of Sx0 we see that there is
exactly one y ∈ Sx0

with d(x, y) = d(x, Sx0
). Furthermore, the assignment x 7→ yx

is continuous.
Furthermore, note that γ′ intersects each Ar with min bx0

< r ≤ s in exactly one
point. This shows that Ar,s is homeomorphic to As × [0, 1]. �

In general it is not true that As = ∂Cs. Indeed, assume X is a space which
is obtained by gluing a flat half-strip {(x, y) ∈ R2 |x ∈ [−1, 1], y ≥ 0} and half a
disk {(x, y) ∈ R2 |x2 + y2 ≤ 1.y ≤ 0}. Then for any p ∈ X it holds b−1

p (min bp) =

{(0,−1)} and ∪s≥min bpAs = {(0, y) ∈ R2 | y ≥ −1} which corresponds to the ray
starting at the “south pole” of the disk. However, ∂Cs = {(x, y) ∈ X | y = ys} for
some ys depending on s and p.

The following result shows that for a subclass with nice gradient flow behavior
there is a non-expansive deformation retract. Note, however, it is expected that
only Riemannian-like metric space have such property (see [OS12]). For a general
overview of gradient flows on metric spaces we refer to [AGS08]. In the setting of
Alexandrov spaces the non-expansiveness was shown in [PP94, Lyt06].

Proposition 3.17. Assume (X, d) is p-uniformly smooth and gradient flows of
convex functions exist and are non-expansive. Then there is a strong deformation
retract F : X × [0, 1] → X onto Sx0 such that Ft is a contraction onto a sublevel
set of bx0

. In particular, F1 : X → Sx0
is a contraction.

Remark. Note that only convexity of bx0
is needed. More generally, a slight adjust-

ment of proof works if bx0
is p-convex. It is unclear whether quasi-convexity of bx0

would be sufficient.

Proof. If bx0
is convex so is brx0

= max{bx0
, r}. Denote the gradient flows of brx0

by
Φrt : X → X. As the definition is local we see that for x ∈ X with bx0(x) > r ≥ r′

there is a trx ∈ (0,∞) such that Φrt (x) = Φr
′

t (x) for t ∈ [0, trx]. More precisely, the
equality fails once bx0

(Φrt (x)) ≤ r. Similarly, one can show that Φrt restricted to Cr
is the identify. Note that any r ≥ min bx0

is reached in finite time. Furthermore,
Φrt is constant on Cr.

For any x, y ∈ X and t ≥ max{trx, try} it holds
Φrt (x) = Φrtx(x)

Φrt (y) = Φrty (y).

Non-expansiveness implies

d(Φrt (x),Φrt (y)) ≤ d(x, y).

Define now
Fr(x) = lim

t→∞
Φrt (x).
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Since each x reaches Cr in finite time, the map is well-defined. Furthermore, we see
that Fr is non-expansive and maps X onto Cr. Also note that Fr is the identify on
Cr.

Let φ : [0, 1)→ [min bx0
,∞) be a homeomorphism. We claim that the following

map F : X × [0, 1]→ X satisfies the required properties:

F (x, s) =

{
Fφ(1−s)(x) s > 0

x s = 0.

It suffices to show that (xn, sn) → (x, 0) implies F (xn, sn) → x. This follows
because there is an r > 0 such that xn, x ∈ Cr. Since tn = φ(1− sn) → ∞ we see
that for large n it holds tn ≥ r and thus

F (xn, sn) = Ftn(xn) = xn → x.

�

For non-Riemannian-like metric spaces the above construction does not work.
However, if we assume that locally projections onto convex sets are unique then it
is still possible to construction a strong deformation retract. Such an assumption
would imply a local weak upper curvature bound which is not satisfied on Alexan-
drov spaces. Indeed, Petrunin gave an example of an Alexandrov space which
contains a convex set without such a property [Pet13]. As this is not published
anywhere else here a short construction: Let X be the doubling of the (convex)
region F = {(x, y) ∈ R2 | y ≥ x2}. Now let A be the (doubling) of F intersected
with the ball with center (0,−1) passing through (1, 1). This set is convex in X.
Every point on the boundary of F outside of A has two projection points onto A.

Definition 3.18 (strict convexity radius). The (strict) convexity radius ρ(x) of a
point x in a metric space (X, d) is the supremum of all r ≥ 0 such that the closed
ball B̄s(x) is (strictly) convex for all s ∈ (0, r].

Definition 3.19 (injectivity radius). The injectivity radius i(x) of a point x ∈ X
is the supremum of all r ≥ 0 such that for all y ∈ Br(x) there is only one geodesic
connecting x and y.

Lemma 3.20. Assume (X, d) has strict convexity radius locally bounded away from
zero. Then the injectivity radius is locally bounded away from zero.

Remark. The lemma shows that if (X, d) was in addition also a weak Busemann
G-space then it is actually a Busemann G-space (see below).

Proof. Choose some large ball BR(x0) such that ρ(x) ≥ ε for all x ∈ BR(x0) and
ε ≤ R

4 . We claim that i(x) ≥ 2ε. Indeed, let y ∈ B2ε(x) for x ∈ BR
4

(x0) and set
2d = d(x, y) < 2ε. Then Bd(x) ∩ Bd(y) = ∅, and B̄d(x) ∩ B̄d(y) is non-empty
and consists entirely of midpoints of x and y. However, if there were two distinct
points m,m′ ∈ B̄d(x) ∩ B̄d(y) then their midpoint would be in Bd(x) ∩ Bd(y)
which is a contradiction. This implies that midpoints in BR(x0) are unique. Local
compactness immediately gives uniqueness of the geodesics. �

Lemma 3.21. Assume (X, d) is locally compact and has strict convexity radius
locally bounded away from zero. Let C be a compact convex subset of X then there
is an ε > 0 such that any point y in the ε-neighborhood Cε of C has a unique point
yC ∈ C such that d(y, yC) = d(y, C).
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Proof. For every x0 ∈ X and R > 0 there is an ε > 0 such that ρ(x), i(x) ≥ 2ε
for all x ∈ BR(x0). Assume C ⊂ BR

2
(x0) and ε < R

2 . We claim that Cε has the
required property.

Let y ∈ Cε. Since C is compact, there is at least one such yC ∈ C with d(y, yC) =

d(y, C). Assume there are two distinct yC , y
′

C ∈ C with d(y, yC) = d(y, y
′

C) =

d(y, C) = ε′ < ε. From the definition we have yC , y
′

C ∈ ∂Bε′(y). Assume m
is the midpoint of yC and y

′

C . Since ρ(y) ≥ ε′, B̄ε′(y) is strictly convex. Thus
m ∈ intBε′(y). However, this implies d(m, y) < d(y, C) which is a contradiction as
convexity of C shows m ∈ C. �

Corollary 3.22. Assume there is a convex set C ′ with C ⊂ C ′ ⊂ Cε. Then the
projection induces a strong deformation retract of C ′ onto C.

Proof. Denote the closest point projection by p : C ′ → C. As the geodesic γ :
[0, 1]→ X connecting x and p(x) is unique we may define a map P : C ′×[0, 1]→ C ′

by
P (x, t) = γt.

Note that P (x, 0) = x, P (x, 1) = p(x) and by convexity of C ′ we also have
P (x, t) ∈ C ′ for all (x, t) ∈ C ′ × [0, 1]. Furthermore, local compactness together
with local uniqueness of the geodesics shows that P is continuous and thus a strong
deformation retract. �

Theorem 3.23. Assume (X, d) has strict convexity radius locally bounded away
from zero and there a quasi-convex continuous function b : X → [0,∞) with compact
sublevels. Then for any r > 0 the sets Cr = b−1([0, r]) are strong deformation
retracts of (X, d). In particular, X retracts onto the weak soul S.

Proof. The construction is similar to [CG72, Section 2]. By the above lemma any
point x ∈ Cs admits a unique projection point f ts,r(x) ∈ C(1−t)s+tr if s ≥ r and
|s − r| ≤ ε(b, s) where ε is given as above by choosing R such that Cs ⊂ BR

2
(x0).

Note that s 7→ ε(b, s) is uniformly bounded away from zero on [0,M ] for all M > 0.
Now define s0 = r and sn+1 = sn + 1

2ε(b, sn). We claim that sn → ∞ as
n→∞. Indeed, if sn → s <∞ then ε(b, sn)→ 0 which is a contradiction because
ε(b, sn) ≥ ε(b,M) whenever sn ≤M .

Let t ∈ [r,∞). We define a family of functions (f tn : Csn → Csn)n∈N as follows:
Set f t0 = id and

f tn+1 =


f tn ◦ f0

sn,sn−1
t ≤ sn−1

fλsn,sn−1
t ∈ [sn−1, sn] with λ = t−sn−1

sn−sn−1

id t ≥ sn.

One can verify that f tn+1 is continuous. Furthermore, let m ≤ n then

f tn = f tm on Csm , t ≥ sm
and

f tn(x) = x if (x, t) ∈ Csm × [sm,∞).

Now let φ : [0, 1)→ [r,∞) be an increasing homeomorphism. Then define

F (x, t) =

{
limn→∞ f

φ(t)
n (x) t < 1

x t = 1.
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Note that F is continuous on X × [0, 1). So let (xn, tn)→ (x, 1) then xn, x ∈ Csm
for some large m. As tn → 1 we have sm ≤ φ(tn) for n ≥ n0 and thus

F (xn, tn) = fφ(tn)
m (xn) = xn → x = fφ(1)

m (x) = F (x, 1).

This shows that F is a strong deformation retract because f0
n(Csn) = Cr. �

3.4. Towards a soul on uniformly smooth spaces. To complete the soul the-
orem along the lines of Cheeger–Gromoll one needs a proper notion of intrinsic
boundary. We say that geodesics in (X, d) can be locally extended if for all geodesics
γ : [0, 1] → X there is a local geodesic γ̃ : [−ε, 1] → X agreeing on [0, 1] with γ.
In the smooth setting, x ∈ ∂M would imply that there is a geodesic starting at x
such that −γ̇x 6= TxM . In particular, γ cannot be extended beyond x.

Definition 3.24 (geodesic boundary). The geodesic boundary ∂gC of subset C ⊂ X
is the set of all x ∈ C such that there is a geodesic in C that cannot be locally
extended in C.

Remark. The notion differs from the boundary of Alexandrov spaces. Indeed, if
the singular set is dense then the geodesic boundary is dense as well.

The following is a replacement for the notion of closed manifold.

Definition 3.25 (weak Busemann G-space). A geodesic metric space is a weak
Busemann G-space if its geodesics can be locally extended in a unique way. In
particular, ∂gX = ∅.

Unique extendability implies non-branching. The Heisenberg group equipped
with a left-invariant Carnot–Caratheodory metric is a weak Busemann G-space
which is not a (strong) Busemann G-space. See [Bus55] for more on Busemann
G-spaces. From Lemma 3.20 we immediately see that.

Lemma 3.26. A weak Busemann G-space with strict convexity radius locally bounded
away from zero is a Busemann G-space.

By [CG72, Theorem 1.6] the geodesic boundary above agrees with the boundary
of open convex subsets if (X, d) is a Riemannian manifold. Their proof also works
for Finsler manifolds. In the current setting this is almost true.

Lemma 3.27. If (X, d) is a weak Busemann G-space and C = cl(intC) is convex
then

∂C = cl ∂gC.

Proof. The inclusion ∂gC ⊂ ∂C follows from local extendability and the fact that
C = cl(intC).

Let x ∈ ∂C then there are yn ∈ intC and zn ∈ X\C such that yn, zn → x.
Furthermore, there is a geodesic γn : [0, 1] → X connecting yn and zn. Observe
that for any ε > 0 and sufficiently large n it holds γn(t) ∈ Bε(x).

By convexity of C there is a t0 > 0 such that γn([0, t0]) ⊂ C and γn((t0, 1]) ⊂
(X\C). But this means γn(t0) ∈ ∂gC proving the claim. �

Definition 3.28 (Gromov non-negative curvature). A weak Busemann G-space is
said to be non-negatively curved in the sense of Gromov if for all closed convex sets
C the functions

bC : x 7→ d(x, ∂gC)
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are quasi-concave on C, i.e. the superlevels of bC : C → [0,∞) are convex. If bC
is strictly quasi-concave at x0, then we say the space has positive curvature in the
sense of Gromov at x0. If it holds for all x0 ∈ X then we just say (X, d) has positive
curvature in the sense of Gromov. Furthermore, we say it has strong non-negative
(positive) curvature in the sense of Gromov if bC is convex (strictly convex).

Remark. (1) In Gromov’s terminology [Gro91, p.44] this means that the inward
equidistant sets (∂C)−ε of the convex hypersurface ∂C remain convex.

(2) If C = cl(intC) then bC(x) = d(x, ∂C) by the lemma above.
(3) The opposite curvature bound is usually called Pedersen convex, resp. Ped-

ersen non-positive/negative curvature [Ped52, Bus55, (36.15)]. This property says
that the r-neighborhood of convex sets remain convex. It is sometimes called “has
convex capsules”. Note that this characterization was rediscovered by Gromov
[Gro91, p.44] as “the outward equidistant sets (∂C)ε of a convex convex hypersur-
face ∂C remain convex”.

Note that Gromov non-negative curvature is rather weak. It is trivially satis-
fied on weak Busemann G-spaces whose only closed convex subset with non-trivial
boundary are geodesic. Indeed, an example is given by Heisenberg group, see
[MR05].

The author wonders if it is possible to define non-negative curvature in the sense
of Gromov only in terms of (local/global) properties of the metric not relying on
sets.

Assume in the following that (X, d) is proper, non-branching, uniformly smooth
and non-negatively curved in the sense of Gromov. Furthermore, we assume x0 ∈ X
is fixed and Cr = b−1

x0
((−∞, r]) are the sublevels of the Cheeger–Gromoll function

(see above).

Proposition 3.29. If (X, d) has positive curvature in the sense of Gromov then
Sx0

is a point.

Proof. Let s > min bx0
. Then Corollary 3.15 shows that bx0

and s − bCs agree on
Cs. Positive curvature shows that bCs is strictly quasi-concave so by Corollary 3.9
the set Sx0

must be a point. �

Now we want to show that one can successively reduce Sx0
. For such a reduction

we need to assume that the geodesic boundary does not behave too badly. For this
recall that a set A is nowhere dense in a closed subset B if its closure in B has
empty interior w.r.t. B.

Definition 3.30 (non-trivial boundary). A metric space is said to have non-trivial
boundary property if for all non-trivial closed convex set C the geodesic boundary
∂gC is nowhere dense in C.

By [CG72, Theorem 1.6] any Riemannian manifold satisfies the non-trivial bound-
ary property.

Lemma 3.31. Assume (X, d) has non-trivial boundary property and non-negative
curvature in the sense of Gromov. Then for any closed convex set C the set S =
b−1
C (max bC) is a closed convex subset without interior w.r.t. C. We call S the weak
soul of C.
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If the Cheeger–Gromoll function bx0
is seen as minus of the renormalized dis-

tance from the boundary at infinity then uniform smoothness implies Gromov non-
negative curvature in the (very) large. Corollary 3.15 shows that the weak soul
of Sx0

actually agrees with the weak soul of the sublevel set thus justifying the
terminology.

Given a convex exhaustion function b, one can now start with X and obtain a
weak soul C0 = Sx0 . This set admits a weak soul C1 as well. Repeatedly applying
the lemma shows that there is a flag of closed convex set C0 ⊃ C1 ⊃ · · · . In order
to show that this procedure eventually ends we need the following.

Definition 3.32 (topological dimension). A metric space (X, d) is said to have
topological dimension n, denoted by dimtopX = n, if every open cover (Uα)α∈I of
X admits a cover (Vβ)β∈J such that for all β ∈ J there is an α ∈ I with Vβ ⊂ Uα
and each x ∈ X is contained in at most n sets Vβ .

Lemma 3.33. Let C be convex and S its weak soul. Then

1 + dimtop S ≤ dimtop C.

If S contains a geodesic then dimtop S > 0.

Proof. This follows along the lines of Corollary 3.16. Indeed, look at the sets
Ar ⊂ ∂Cr such that

d(x, S) = r for all x ∈ Ar
where Cr = b−1

C ([r,∞)).
Then as in Corollary 3.16 one can show that sets Ar × [0, 1] is homeomorphic to

a subset of C. In particular, it holds

1 + dimtopAr = dimtopAr × [0, 1]

≤ dimtop C.

Also observe that there is a continuous map of Ar onto S so that dimtopAr ≥
dimtop S.

The last statement follows as an embedded line has topological dimension 1. �

Corollary 3.34. Any finite dimensional, proper, non-branching, uniformly smooth
metric space (X, d) of non-negative curvature in the sense of Gromov and non-
trivial boundary property admits a closed convex set S such that ∂gS = ∅. We call
S a soul of X.

Note that the construction of the deformation retracts also works inside of convex
sets when replacing the Cheeger–Gromoll exhaustion bx0

by bC . Thus we may
summarize the results above as follows.

Theorem 3.35. Assume (X, d) is uniformly smooth, strong non-negatively curved
in the sense of Gromov and has strict convexity radius locally bounded away from
zero. Then there is a strong deformation retract onto a closed convex set S with
∂gS = ∅.

Note that by Lemma 3.26 and [Ber77] the assumptions imply that (X, d) is finite
dimensional.
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