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Abstract. In this paper we investigate the relationship between a general
existence of transport maps of optimal couplings with absolutely continuous
first marginal and the property of the background measure called essentially
non-branching introduced by Rajala–Sturm (Calc.Var.PDE 2014). In partic-
ular, it is shown that the qualitative non-degeneracy condition introduced by
Cavalletti–Huesmann (Ann. Inst. H. Poincaré Anal. Non Linéaire 2015)
implies that any essentially non-branching metric measure space has a unique
transport maps whenever the initial measure is absolutely continuous. This
generalizes a recently obtained result by Cavalletti–Mondino (Commun. Con-
temp. Math. 2017) on essentially non-branching spaces with the measure
contraction condition MCP(K,N).

In the end we prove a measure rigidity result showing that any two essen-
tially non-branching, qualitatively non-degenerate measures on a fixed metric
spaces must be mutually absolutely continuous. This result was obtained un-
der stronger conditions by Cavalletti–Mondino (Adv.Math. 2016). It applies,
in particular, to metric measure spaces with generalized finite dimensional
Ricci curvature bounded from below.
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1. Introduction

In the theory of optimal transport one of the first questions one asks is whether
an optimal coupling πopt that minimizes the functional

π 7→
∫
c(x, y)dπ(x, y)

among all π with fixed marginals (p1)∗π = µ and (p2)∗π = ν can be written as
a coupling induced by a transport map, i.e. whether there is a measurable map
T : M → M such that π = (id×T )∗µ. On sufficiently nice spaces this result can
be deduced from Rademacher’s Theorem, the (weak) differential structure and the
exponential map whenever µ is absolutely continuous, see Brenier [Bre91] in the
Euclidean setting, McCann [McC01] on Riemannian manifolds, Ambrosio–Rigot
[AR04] and Figalli–Rigot [FR10] on a sub-class of sub-Riemannian manifolds and
also Bertrand [Ber08] on Alexandrov spaces.

A first proof for non-smooth non-branching spaces with generalized Ricci cur-
vature bounded from below was obtained by Gigli [Gig12]. He showed that the
non-existence of a transport map would imply that two disjoint parts of a Wasser-
stein geodesic whose initial densities with respect to the background measure m are
bounded would overlap at intermediate times. This, however, cannot happen for
non-branching spaces (compare Lemma 2.9 below).

Consequently, Gigli’s idea was adapted to essentially non-branching spaces with
generalized Ricci curvature bounded from below (see [RS14, GRS16, CM17]). Here
essentially non-branching is a weak version of the non-overlapping property de-
scribed above, i.e. it prohibits that initially disjoint parts of a Wasserstein geodesic
overlap at intermediate times whenever the initial and final measures are absolutely
continuous.

Both Gigli–Rajala–Sturm [GRS16] and Cavalletti–Mondino [CM17] had to prove
that there are absolutely continuous interpolations along which a corresponding
interpolation inequality holds.

Rather than using density bounds of intermediate measures, Cavalletti–Huesmann
[CH15] showed that if not too much mass is lost in a uniform way when trans-
ported towards a fixed point (compare Definition 5.1), then, together with the
non-overlapping property implied by non-branching property, the non-existence of
transport maps would yield a contradiction.

Whereas the interpolation inequality implied density bounds, Cavalletti–Huesmann’s
approach only relied on an “easier to measure” quantity. In this paper we want to
combine this approach with the one of Cavalletti–Mondino [CM17]. The difficulty
is that an arbitrary interpolation might only “see” part of the interpolation points.
We avoid this by proving the following:

– at finitely many fixed times {ti}ni=1 there are absolutely continuous inter-
polations µtn � m (see first part of Theorem 4.10 and Corollary 4.11)

– at a fixed time t the interpolation µt “sees” m-almost every possible inter-
polation point Γt (see second part of Theorem 4.10)

Whereas the first part gives us the non-overlapping if the space is essentially non-
branching, the second part makes sure that the set-wise interpolation Γt does not
contain a set of positive m-measure that is not seen by the interpolation µt.

The remaining parts follow along the line of Cavalletti–Huesmann [CH15], more
precisely, if the background measure is qualitatively non-degenerate, i.e. there is a
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function f : (0, 1) → (0,∞) with lim supt→0 f(t) > 1
2 such that for all Borel set A

and all x ∈ X it holds m(At,x) ≥ f(t)m(A) where At,x = {γt | γ0 ∈ A, γ1 = x}, then
– every optimal coupling between µ0 � m and µ1 =

∑
λiδxi

is induced by a
transport map (Lemma 5.4 and Corollary 5.6)

– any cp-cyclically monotone set Γ satisfies a qualitative non-degeneracy con-
dition, i.e. m(Γt) ≥ f(t)m(Γ0) (Lemma 5.7)

– every optimal coupling between µ0 � m and µ1 is induced by a transport
map (Theorem 5.8).

As it turns out the general existence of transport maps implies not only uniqueness
of the optimal coupling, but also unique geodesics between almost all points coupled
via the optimal transport, see Lemma 3.4. This in return gives uniqueness of the
interpolation measures. Furthermore, only assuming that any optimal coupling
between an absolutely continuous measure and another measure is induced by a
transport map already implies that the space must be essentially non-branching
(Proposition 3.6). We call spaces with such an a priori existence of transport maps
spaces having good transport behavior (GTB)p, see Definition 3.1.

We may summarize one of the results of this note as follows.

Theorem (see Proposition 3.6 and Theorem 5.8). Let (M,d,m) be a metric mea-
sure space and assume m is qualitatively non-degenerate then for fixed p ∈ (1,∞)
the following properties are equivalent:

(i) (M,d,m) is p-essentially non-branching, i.e. any p-optimal dynamical cou-
pling π ∈ P(Geo[0,1](M,d)) with (e0)∗σ, (e1)∗σ � m is concentrated on a
set of non-branching geodesics.

(ii) for every µ0, µ1 ∈ Pp(M) with µ0 � m there is a unique p-optimal dynami-
cal coupling σ ∈ Pp(Geo[0,1](M,d)) between µ0 and µ1 and for this coupling
σ the p-optimal coupling (e0, e1)∗σ is induced by a transport map and every
interpolation µt = (et)∗σ, t ∈ [0, 1), is absolutely continuous, i.e. µt � m.

It is well-known that on smooth spaces, there is an abundance of measures
satisfying all but the last property of the second statement in the theorem above,
in particular, they have the good transport behavior (GTB)p.

We call the last property of the second statement in the theorem above strong
interpolation property (sIP)p. Note that if two reference measures m1 and m2 have
the strong interpolation property and µ0 � m1 and µ1 � m2 then the interpolation
(et)∗σ must be absolutely continuous with respect to both m1 and m2 implying m1

and m2 cannot be mutually singular. This property can be used to obtain the
following measure rigidity theorem.

Theorem (Measure Rigidity). Let p ∈ (1,∞). Then any two measures on a com-
plete separable metric space (M,d) which are p-essentially non-branching and qual-
itatively non-degenerate must be mutually absolutely continuous.

Under a more involved inversion property and a stronger qualitative non-degeneracy
with lim supt→0 f(t) = 1 such a statement was obtained by Cavalletti–Mondino
[CM16].

By [RS14, AGS14] the statement applies in particular to spaces with finite di-
mensional Ricci curvature bounded from below.

Corollary. If both (M,d,m1) and (M,d,m2) are RCD∗(K,N)-spaces with N ∈
[1,∞) then m1 and m2 must be mutually absolutely continuous.
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A slightly different kind of measure rigidity of the background measure m for
metric measure spaces satisfying the RCD(K,N)-condition with N ∈ [1,∞) was
obtain independently by Gigli–Pasqualetto [GP16] and by Mondino and the author
[KM17] using the weak converse of Rademacher’s theorem proven in [DPR16].

The section dealing with the measure rigidity theorem (Section 6) only relies on
few properties which are restated in the beginning of that section and can be read
independently of the rest of this note. We also present a proof of the rigidity theorem
that relies on a bounded density property and applies to strong CDp(K,∞)-spaces
with the strong interpolation property, see Theorem 6.5.

2. Preliminaries

Throughout this paper we always assume that (M,d,m) is a geodesic metric
measure space, i.e. (M,d) is a complete separable geodesic metric space and m is
measure on M which is finite on bounded sets. It is proper if every closed bounded
set B ⊂M is compact.

Selection Dichotomy and Disintegration Theorem. We present two technical
results which help to classify couplings that are induced by a transport map. The
first can be obtained by combining the Measurable Selection Theorem and Lusin’s
Theorem. This form of the selection dichotomy was used by Cavalletti–Huesmann
[CH15] to select p-optimal couplings that overlap at the initial measure.

In the following for a set Γ ⊂ M ×M we let Γ(x) = {y ∈ M | (x, y) ∈ Γ}. We
say a map T : M →M is a selection of Γ if (x, T (x)) ∈ Γ for all x ∈ p1(Γ).

Theorem 2.1 (Selection Dichotomy of Sets). Assume µ is a probability measure
on M and Γ ⊂ M ×M a Borel set with µ(p1(Γ)) = 1. Then exactly one of the
following holds:

(i) For µ-almost all x ∈ M the set Γ(x) contains exactly one element. Fur-
thermore, if π ∈ P(M × M) with suppπ ⊂ Γ and (p1)∗π = µ then
π = (id×T )∗µ for a µ-measurable selection T : M → M of Γ. In particu-
lar, T is unique up to µ-measure zero and π is unique among all measures
π̃ ∈ P(M ×M) which are concentrated in Γ and have first marginal µ.

(ii) There are a compact set K ⊂ suppµ with µ(K) > 0 and two µ-measurable
selections T1, T2 : M →M of Γ which are continuous when restricted to K
and T1(K) ∩ T2(K) = ∅. Furthermore, if the function

ϕΓ(x) =

{
sup(x,y)∈Γ d(x, y)− inf(x,y)∈Γ d(x, y) x ∈ p1(Γ)

0 otherwise.

is positive on a set of positive µ-measure then K can be chosen such that
for some δ > 0

sup
(x,y1)∈K×T1(K)

d(x, y1) + δ ≤ inf
(x,y2)∈K×T2(K)

d(x, y2).

Proof. It is easy to see that the conditions are mutually exclusive. Indeed, the
measures (id×T1)∗µ and (id×T2)∗µ are distinct and concentrated in Γ.

By the Measurable Selection Theorem there is a µ-measurable map T such that
(x, T (x)) ∈ Γ for all x ∈ p1(Γ). Using Lusin’s Theorem one can show that there is
a Borel set Ω ⊂M of full µ-measure such that

graphΩ T := {(x, T (x) |x ∈ Ω}
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is a Borel subset of M ×M . Thus Γ
′

= Γ\ graphΩ T is a Borel set and there is a
µ-measurable selection S : M → M with (x, S(x)) ∈ Γ

′
for all x ∈ p1(Γ

′
). Since

p1(Γ
′
) is µ-measurable, we can redefine S outside of p1(Γ

′
) and assume T (x) = S(x)

for all x ∈M\p1(Γ
′
).

If µ(p1(Γ
′
)) = 0 then µ(p1(Γ

′
) ∩ Ω) = 0 and thus S(x) = T (x) for µ-almost all

x ∈M . In particular, the first case holds.
Otherwise, by Lusin’s Theorem there is a compact set K1 ⊂ suppµ∩ p1(Γ′)∩Ω

with µ(K1) > 0 such that T and S are continuous on K1 and S(x) 6= T (x) for
x ∈ K1. Thus for sufficiently small r > 0 and a fixed x0 ∈ K1, it holds

T (x) 6= S(x′) for all x, x′ ∈ B̄r(x0) ∩K1.

In case µ({ϕΓ > 0}) = 0 we can choose K = B̄r(x0) ∩K1, T1 = T and T2 = S and
conclude.

If µ({ϕΓ > 0}) > 0 then there are ε > 0 and a compact set K2 ⊂ suppµ with
µ(K2) > 0 and ϕsuppπ(x) > ε for all x ∈ K2. Note also that the sets

Γ+ = {(x, y) ∈ Γ |x ∈ K2, d(x, y) ≥ sup
(x,y′)∈Γ

d(x, y′)− ε

2
}

Γ− = {(x, y) ∈ Γ |x ∈ K2, d(x, y) ≤ inf
(x,y′)∈Γ

d(x, y′) +
ε

2
}

are non-empty Borel subsets of Γ with p1(Γ+) = p1(Γ−) = K2. Thus there are two
µ-measurable selections T+ and T− with (x, T±(x)) ∈ Γ± for all x ∈ K2. As above
we may assume that T± agree with T outside of K2.

Choose another compact K3 ⊂ K2 such that the maps T± are continuous on
K3. In particular, for some x0 ∈ K3 and sufficiently small r > 0 it holds

d(x, T−(x′)) + δ ≤ d(x, T+(x′′)) for all x, x′, x′′ ∈ B̄r(x0) ∩K3.

To conclude observe that the compact set K = B̄r(x0)∩K3 and the maps T1 = T−

and T2 = T+ satisfy the last part of the second statement. �

Note that in general the second possibility of the Selection Dichotomy above
does not say anything about the relationship of the measures (id×Ti)∗µ and a
fixed measure π ∈ P(M ×M) with (p1)∗π = µ and suppπ ⊂ Γ. More precisely,
in general, (Ti)∗µ might be singular with respect to (p2)∗π, or more generally, it is
possible that (Ti)∗µ⊥m even if (p2)∗π � m.

The following lemma is a more general version of the Selection Dichotomy and
can be extracted from Gigli’s work [Gig12, Proof of Theorem 3.3]. It shows that
any measure π, regarded as a generalized transport map

∫
δx ⊗ µxdµ(x), is either

already induced by a transport map, i.e. µx = δT (x), or can be decomposed into (at
least) two partial transport with target transport on a compact set K of positive
µ-measure. We give a simpler proof relying on the Selection Dichotomy for Sets.

First, recall the the statement of the Disintegration Theorem. Let (X, d) and
(Y, d) be two complete separable metric spaces. Denote the Borel σ-algebra of X
and Y by B(X) and resp. B(Y ).

Definition 2.2 (Disintegration over S). Let σ a probability measure on X, S :
X → Y a Borel map and $ = S∗σ. An assignment σ : B(X)× Y → [0, 1], denoted
(B, y) 7→ σy(B), is called a disintegration of σ over S if

(1) σy(·) is a probability measure on X for all y ∈ Y.
(2) y 7→ σy(B) is $-measurable for all Borel sets B ∈ B(X).
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(3) σy(S−1(y)) = 1 for all y ∈ Y
and it holds

σ(C ∩ S−1(B)) =

∫
C

σy(B)d$(y).

Regarding the assignment y 7→ σy = σy(·) as a map from Y to P(X) we abbreviate
this as

σ =

∫
σyd$(y).

Remark. (1) A disintegration of σ over S as above is usually called a disintegration
of σ which is strongly consistent with S.

(2) If π ∈ P(M ×M) for some complete separable metric space M with µ =
(p1)∗π, then any disintegration π =

∫
πxdµ(x) must satisfy suppπx ⊂ {x}×M and

hence πx = δx ⊗ µx for a measure µx ∈ P(M).

The following theorem can be deduced from the general Disintegration Theorem
[Fre06, Section 452].

Lemma 2.3 (Disintegration Theorem). For every σ ∈ P(X) and every Borel map
S : X → Y there exists a disintegration σ·(·) of σ over S which is almost everywhere
uniquely defined, i.e. for any disintegration σ̃·(·) of σ over S it holds σy(·) = σ̃y(·)
for S∗σ-almost all y ∈ Y .

The theorem allows us to say that up to a µ-null set σ =
∫
σxdµ is the disinte-

gration of σ over S.

Theorem 2.4 (Selection Dichotomy for Measures). Let π be a probability measure
on M ×M and µ = (p1)∗π. Then exactly one of the following holds:

(i) There is a µ-measurable map T : M →M such that π(graphT ) = 1.
(ii) There are a compact set K ⊂ M and two closed bounded sets A1, A2 ⊂ M

with A1 ∩A2 = ∅ such that

π(K ×A1), π(K ×A2) > 0.

Furthermore, there are two measures π1, π2 ∈ P(M ×M) with 1
µ(K)µ

∣∣
K

=

(p1)∗π1 = (p1)∗π2 and π1, π2 � π such that π1 and π2 have disjoint support.

Remark. (1) The construction shows that for some ε > 0 it holds

(A1)ε ∩ (A2)ε = ∅

where Aε =
⋃
x∈ABε(x) for a set A ⊂M . Furthermore, it is possible to choose K,

A1 and A2 such that for some δ > 0

sup
(x,y1)∈K×A1

d(x, y1) + δ ≤ inf
(x,y2)∈K×A2

d(x, y2).

(2) If π =
∫
δx ⊗ µxdµ(x) is the disintegration over p1 and π is not induced by

a map then for µ-almost all x ∈ K the measure µx is not a delta measure. Indeed,
for µ-almost all x ∈ K it holds

µx = µx
∣∣
A1

+ µx
∣∣
A2

+ µx
∣∣
M\(A1∪A2)

and the choice of K shows that µx
∣∣
A1

and µx
∣∣
A2

are non-trivial for µ-almost all
x ∈ K.
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Proof. We apply Theorem 2.1 to Γ = suppπ. If the first option of the dichotomy
holds then π = (id×T )∗µ and thus π(graphT ) = 1.

Otherwise let K, T1 and T2 as in the second possibility of Theorem 2.1. We may
restrict K further and assume supp(µ

∣∣
K

) = K.
We claim that for all ε > 0 and i = 1, 2 it holds

π(K × (Ti(K))ε) > 0.

Indeed, note that π
∣∣
K

= π(· ∩ (K × M)) 6= 0, so that (x, T1(x)), (x, T2(x)) ∈
supp(π

∣∣
K

) = suppπ ∩ (K ×M). Because BM×Mε (x, y) ⊂ Bε(x)×Bε(y) for i = 1, 2
it holds

0 < π
∣∣
K

(BM×Mε (x, Ti(x)))

≤ π((Bε(x) ∩K)×Bε(T (x)))

≤ π(K ×Bε(T (x))) ≤ π(K × (Ti(K))ε).

Since T1 and T2 are continuous on K and K is compact there is an ε > 0 such that

(T1(K))2ε ∩ (T2(K))2ε = ∅.

Choosing A1 = cl(T1(K))ε and A1 = cl(T2(K))ε gives first part of the claim.
To obtain the second part, note that there are a δ > 0 and compactK ′ of positive

µ-measure such that

µx(A1), µx(A2) ∈ (δ, 1− δ) for all x ∈ K ′.

Restricting K ′ again, assume K ′ = supp(µ
∣∣
K′

) and define two non-trivial measures
π1, π2 ∈ P(M ×M) as follows

π1 =
1

µ(K ′)

∫
K′

1

µx(A1)
δx ⊗ µx

∣∣
A1
dµ(x)

π2 =
1

µ(K ′)

∫
K′

1

µx(A2)
δx ⊗ µx

∣∣
A2
dµ(x).

It is easy to see that π1, π2 � π and 1
µ(K′)µ

∣∣
K′

= (p1)∗π1 = (p1)∗π2 which proves
the claim. �

For completeness we present the following more general form of the Selection
Dichotomy.

Corollary 2.5 (General Selection Dichotomy). Assume (X, d) and (Y, d) are com-
plete separable metric spaces. Let σ be a measure on X and S : X → Y a Borel
map. Then exactly one of the following holds:

(i) There is a measurable map T : Y → X such that S(T (y)) = y and T∗$ = σ
where $ = S∗σ. In particular, the disintegration of σ via S is given by

σ =

∫
δT (y)d$(y).

(ii) There are a compact set K ⊂ X with σ(K) > 0 and two closed bounded
sets A1, A2 ⊂ X with A1 ∩A2 = ∅ such that

σx
∣∣
Ai
6= 0, x ∈ K, i = 1, 2.

In particular, for $-almost all x ∈ K the measures σx are not delta mea-
sures.
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Proof. Just note that the proofs above did not rely on the product structure of
M ×M and that p1 is a projection. Thus replace M ×M by X and p1 by S we
can follow the proofs above line by line. �

Wasserstein spaces on geodesic spaces. Let (X, d) be a complete, separable
metric space. A map γ : [0, 1]→ X satisfying

d(γt, γs) = |t− s|d(γ0, γ1) for t, s ∈ [0, 1]

is called a geodesic connecting γ0 and γ1. Note that our terminology implies that
any geodesic is the curve of minimal length between its endpoints. Denote by
Geo[0,1](X, d) the set of geodesics. On Geo[0,1](X, d) there are natural evaluation
maps et : Geo[0,1](M,d) → M , t ∈ [0, 1], defined by et : γ 7→ γt. Denote the
length of a geodesic γ by `(γ) := d(γ0, γ1) and define a restriction map restrs,t :
Geo[0,1](M,d)→ Geo[0,1](M,d) for all 0 ≤ s, t ≤ 1 by

(restrs,tγ)(r) = γs+(t−s)r.

We say the metric space (X, d) is a geodesic metric space if between each x, y ∈ X
there is a geodesic connecting x and y, i.e. (e0, e1)(Geo[0,1](X, d)) = X ×X.

In the following we introduce the main concepts used from the theory of optimal
transport. For a comprehensive introduction we refer the reader to Villani’s book
[Vil08]. As we rely on the strict convexity of r 7→ |r|p we assume throughout this
note that p ∈ (1,∞).

Recall that (M,d) is a complete separable geodesic metric space. Let P(M) be
the set of probability measures on M and for a fixed x0 ∈M let

Pp(M) =

{
µ ∈ P(M) |

∫
d(x, x0)pdµ(x)

}
the space of probability measures with finite p-th moment. On Pp(M) we define
the p-Wasserstein metric Wp as follows

Wp(µ0, µ1) =

(
inf

π∈Π(µ0,µ1)

∫
d(x, y)pdπ(x, y)

) 1
p

where Π(µ0, µ1) is the set of π ∈ P(M ×M) with (p1)∗π = µ0 and (p2)∗π = µ1.
This defines a complete metric on Pp(M) with a topology which is strictly stronger
than the subspace topology induced by Pp(M) ⊂ P(M) unless (M,d) is bounded.
We call the convergence induced by the subspace topology weak convergence.

One can show that for each µ0, µ1 ∈ Pp(M) there is a πopt ∈ Π(µ0, µ1) such that

Wp(µ0, µ1) =

(∫
d(x, y)pdπopt(x, y)

) 1
p

.

In this case we say πopt is a p-optimal coupling. Let Optp(µ0, µ1) denote the set of
all p-optimal couplings between µ0 and µ1. A general measure π ∈ P(M ×M) is
said to be p-optimal if it is a p-optimal coupling between (e0)∗π and (e1)∗π.

Since (M,d) is geodesic it is possible to show that (Pp(M),Wp) is geodesic as
well. Just note that (x, y) 7→ (e0, e1)−1(x, y) ⊂ Geo[0,1](M,d) is a measurable
closed-valued map and any measurable selection T will lift a coupling π to a dy-
namical coupling σ = T∗π ∈ P(Geo[0,1](M,d)) between two measures µ0 and µ1. If
π is p-optimal then we say σ ∈ P(Geo[0,1](M,d)) is a p-optimal dynamical coupling.
Now one may readily verify that t 7→ (et)∗σ is a geodesic connecting (e0)∗σ and
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(e1)∗σ. Denote the set of p-optimal dynamical couplings between µ0 and µ1 by
OptGeop(µ0, µ1).

Also note that each geodesic t 7→ µt in Pp(M) is induced by a measure σ ∈
P(Geo[0,1](M,d)) such that (et)∗σ = µt. In this case it is easy to see that (et, es)∗σ
is a p-optimal coupling between µt and µs.

Recall that disintegrating a dynamical coupling σ over (e0, e1) : Geo[0,1](M,d)→
M ×M shows that

σ =

∫
σx,ydπ(x, y)

where π = (e0, e1)∗σ and (x, y) 7→ σx,y is a measurable assignment of dynamical
couplings between δx and δy. Similarly, we can disintegrate σ over e0 to obtain
σ =

∫
σx0dµ0(x0) such that for µ0-almost all x0 ∈ M the probability measure

σx0 is a dynamical coupling between δx0 and a probability measure µx0 with π =∫
δx0
⊗µx0

dµ(x0). Furthermore, if σ is p-optimal then σx0
is p-optimal for µ0-almost

all x0 ∈M .
The following is the well-known restriction property of optimal couplings, see

[Vil08]. Compare the following notation also the concept push-forward via a plan,
see e.g. [AGS14, Definition 2.1].

Lemma 2.6. Assume µ0, µ1 ∈ Pp(M), p ∈ (1,∞), and σ is a p-optimal dynamical
coupling between µ0 and µ1. Then for f : M×M → [0,∞) with λ =

∫
fdπ ∈ (0,∞)

the measure
σf = λ−1

∫
σx,yf(x, y)dπ(x, y)

is a p-optimal coupling between µf0 and µf1 where

µf0 = (p1)∗σf

µ1
1 = (p2)∗σf .

Furthermore, if, in addition f ≤ 1,
∫
fdπ ∈ (0, 1) and σ̃f is another p-optimal

dynamical coupling between µf0 and µf1 then

σ̃ = λσ̃f + (1− λ)σ1−f

is also a p-optimal coupling between µ0 and µ1.

Remark. (1) If f is a function depending only on the first coordinate then µf0 =
λ−1fµ0.

(2) If Γ ⊂M ×M is Borel set with σ(Γ) > 0 then we write σΓ = σχΓ
= 1

π(Γ)σ
∣∣
Γ̂

where Γ̂ = (e0, e1)−1(Γ).

Proof. The first part follows from the restriction property of optimal transport and
the second from linearity of the cost functional

σ 7→
∫
d(γ0, γ1)pdσ(γ)

and the fact that σ̃ is still a dynamical coupling between µ0 and µ1. �

It is easy to see that whenever there are two distinct p-optimal couplings π1

and π2 between µ0 and µ1 then there are at least two distinct p-optimal dynamical
couplings σ1 and σ2 between µ0 and µ1. By convexity this would actually give a
continuum of p-optimal (dynamical) couplings. If, however, the dynamical coupling
is unique we get the following for restrictions of the endpoints.
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Corollary 2.7. Let µ0 and µ1 be two measures in Pp(M), p ∈ (1,∞). If there is a
unique p-optimal dynamical coupling σ between µ0 and µ1 then for any f ∈ L∞(π)

the p-optimal dynamical coupling σf is unique between µf0 and µf1 .

Proof. Note that σf = σcf for all c > 0. Thus if f ∈ L∞(π) then it is possible to
replace f by 1

‖f‖∞ f and assume without loss of generality f ≤ 1 and
∫
fdm ∈ (0, 1).

Thus the dynamical coupling σ̃ := λσ̃f + (1− λ)σ1−f is p-optimal between µ0 and
µ1 whenever σ̃f is p-optimal between µf0 and µf1 . Furthermore, if σ̃f is distinct
from σf then σ̃ is also distinct from σ proving the claim. �

Non-branching geodesics. Given a set Γ ⊂ M ×M we frequently use the fol-
lowing abbreviations

Γ̂ = (e0, e1)−1(Γ)

and for t, s ∈ [0, 1]

Γt = et(Γ̂)

Γt,s = (et, es)(Γ̂).

Thus Γ̂ is the set of geodesics with endpoints (x, y) ∈ Γ and Γt is the set of t-
midpoints, where z is a t-midpoint of x and y if γt = z for a geodesic connecting x
and y.

For a set A ⊂M and x ∈M we also use the abbreviation

At,x = {γt | for some γ ∈ Geo[0,1](M,d) with γ0 ∈ A and γ1 = x}.

Let L be a subset of geodesics, then we denote by L−1 the set of reversed geodesics,
i.e.

L−1 = {t 7→ γ1−t | γ ∈ L}.
Similarly, let Γ−1 = {(y, x) | (x, y) ∈ Γ}. It is easy to see that (Γ−1)∧ = (Γ̂)−1.

Definition 2.8 (non-branching set). A set of geodesics L ⊂ Geo[0,1](M,d) is non-
branching to the right if for all γ, η ∈ L with restr0,tγ = restr0,tη for some t ∈ (0, 1]
it holds γ ≡ η. Similarly, L is non-branching to the left if L−1 is non-branching to
the right. Furthermore, L is non-branching if it is both non-branching to the left
and to the right.

Remark. Non-branching to the left is the same as Rajala–Sturm’s non-branching
condition [RS14, Section 2.2]. This lack of symmetry is irrelevant in their study
as essentially non-branching is a symmetric condition when one changes initial and
final points (see below).

The following is well-known and follows from strict convexity of r 7→ rp and the
triangle inequality [CH15, Kel17].

Lemma 2.9. Let p ∈ (1,∞) and assume for γ, η ∈ Geo[0,1](M,d) it holds

dp(γ0, γ1) + dp(η0, η1) ≤ dp(γ0, η1) + dp(η0, γ1).

Then γt = ηt for some t ∈ (0, 1) implies `(γ) = `(η) and if (M,d) is, in addition,
non-branching then γ ≡ η.

Finally recall some properties of Wasserstein geodesics on essential non-branching
spaces. We collect results which can be deduced from [RS14, CM16]. The reader
may consult the appendix for a proof of Theorem 2.11 and Corollary 2.12.
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Definition 2.10 (p-essentially non-branching). A metric measure space (M,d,m)
is p-essentially non-branching if for all µ0, µ1 ∈ Pp(M), , p ∈ (1,∞), with µ0, µ1 �
m, any optimal dynamical coupling σ ∈ OptGeop(µ0, µ1) is concentrated on a
set of non-branching geodesics, i.e. there is a measurable non-branching set L ⊂
Geo[0,1](M,d) such that σ(L) = 1. For brevity we say a measure m is p-essentially
non-branching if (M,d,m) is a metric measure space which is p-essentially non-
branching.

Remark. The property essentially non-branching introduced in [RS14] is equivalent
to the property 2-essentially non-branching.

Theorem 2.11. Assume (M,d,m) is a p-essentially geodesic measure space for
some p ∈ (1,∞). Then for every p-optimal dynamical coupling σ ∈ P(Geo[0,1](M,d))
with (e0)∗σ, (e1)∗σ � m the following holds:

(i) For each t ∈ (0, 1) there is a Borel map Tt : M → Geo[0,1](M,d) such that
the disintegration of σ over et

σ =

∫
δTt(x)dµt(x)

where µt = (et)∗σ.
(ii) For each t ∈ (0, 1) there is a measurable set of geodesics L ⊂ Geo[0,1](M,d)

with σ(L) = 1 and whenever γt = ηt for γ, η ∈ L then γ ≡ η.
(iii) For all disjoint Borel sets Γ(1),Γ(2) ⊂M×M of positive (e0, e1)∗σ-measure

the t-midpoints of the restricted geodesics s 7→ (es)∗σΓ(i) , i = 1, 2, are
mutually singular, i.e.

(et)∗σΓ(1)⊥(et)∗σΓ(2) .

Corollary 2.12. Assume (M,d,m) is p-essentially non-branching for some p ∈
(1,∞). Then for each geodesic t 7→ µt in Pp(M) connecting µ0, µ1 � m and t ∈
(0, 1) the geodesics s 7→ µst and s 7→ µt+s(1−t) are the unique geodesics connecting
µ0 and µt and respectively µt and µ1. Furthermore, the (unique) p-optimal couplings
of (µt, µ0) and (µt, µ1) are induced by transport maps Tt,0, Tt,1 : M →M .

3. Spaces with good transport behavior

In this section we study spaces where we assume a priori that every optimal
coupling is induced by a transport map whenever its first marginal is absolutely
continuous. It turns out that such spaces are already essentially non-branching.
Throughout this section assume p ∈ (1,∞).

Definition 3.1 (Good transport behavior). A metric measure space (M,d,m) has
good transport behavior (GTB)p if for all µ, ν ∈ Pp(M) with µ � m any optimal
transport plan between µ and ν is induced by a map.

Remark. The condition was used in a recent work by F. Galaz-García, A. Mondino,
G. Sosa and the author [GGKMS17] in order to study the orbit structure of groups
acting isometrically on metric measure spaces with (GTB)p. In particular, it can
be used to exclude isometries with too large fixed point set, see also [Sos16, Lemma
4.1].

Proposition 3.2. The following spaces have (GTB)p:
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(i) Essentially non-branching MCP(K,N)-spaces for p = 2, K ∈ R, and N ∈
[1,∞). In particular, this includes essentially non-branching CD∗(K ′, N ′)-
spaces, essentially non-branching CD(K,N)-spaces, and RCD∗(K′,N′)-spaces,
see [GRS16, CM17].

(ii) Non-branching, qualitatively non-degenerate spaces for all p ∈ (1,∞), see
[CH15] and Definition 5.1 below.

(iii) Any (local) doubling measure m on (Rn, ‖ · ‖Euclid) or more generally on a
Riemannian manifold, see [GM96].

The last example shows that there is an abundance of spaces with good transport
behavior. However, we will show that the existence of transport maps prevents too
much branching and excludes therefore normed spaces whose norm is not strictly
convex. Note that the main theorem of this note extends the list above to p-
essentially non-branching, qualitatively non-degenerate spaces, see Theorem 5.8.

The first two lemmas were proved in a slightly different form in [GGKMS17].
Recall that for Γ ⊂M ×M and s, t ∈ [0, 1] we define Γs,t := (es, et)

(
(e0, e1)−1Γ

)
.

Lemma 3.3. Let Γ ⊂ M × M be a cp-cyclically monotone set. Then for any
s, t ∈ [0, 1] the set Γs,t is cp-cyclically monotone.

Proof. Choose (xis, x
i
t) ∈ Γs,t, i = 1, . . . , n, and note that there are geodesics γ(i) ∈

Γ̂, i = 1, . . . , n, with (γ
(i)
s , γ

(i)
t ) = (x

(i)
s , x

(i)
t ). By assumption

n⋃
i=1

{(γ(i)
0 , γ

(i)
1 )} ⊂ Γ

is cp-cyclically monotone and hence

σ =
1

n

∑
δγ(i)

is a p-optimal dynamical coupling. Observe that
n⋃
n=1

{(γ(i)
s , γ

(i)
t )} = supp(es, et)∗σ

is cp-cyclically monotone because (es, et)∗σ is p-optimal. Since
⋃n
n=1{(γ

(i)
s , γ

(i)
t )} ⊂

Γs,t this shows that Γs,t is cp-cyclically monotone. �

Recall that for a subset Γ ⊂M ×M we define for x ∈M
Γ(x) = {y ∈M | (x, y) ∈ Γ}.

Lemma 3.4 ([GGKMS17, Lemma 4.5]). A metric measure space (M,d,m) has
(GTB)p if and only if for every cp-cyclically monotone Γ, the set Γ(x) contains at
most one point for m-almost all x ∈M .

In particular, if (M,d,m) has (GTB)p then for any closed cp-cyclically monotone
set Γ and m-almost all x ∈M there exists a unique geodesic connecting x and Γ(x),
whenever the set Γ(x) is non-empty.

Remark. The lemma applies in particular to the cp-superdifferential ∂cpϕ of cp-
concave functions ϕ.

Proof. The first part follows from the Selection Dichotomy for Sets (Theorem 2.1)
and the fact that the support Γ = suppπ of a p-optimal coupling π is cp-cyclically
monotone. Indeed, the second possibility of the Selection Dichotomy applied to Γ
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and µ = (p1)∗π would imply that there is a compact set K ⊂ p1(Γ) and two maps
T1, T2 : K → M with T1(x) 6= T2(x) for x ∈ K and {T1(x), T2(x)} ⊂ Γ(x) for
x ∈ p1(Γ) and that for µ0 = 1

µ(K)µ
∣∣
K

the following coupling

1

2
((id×T1)µ0 + (id×T1)µ0)

is p-optimal and not induced by a transport map. Therefore, either of the conditions
implies that µ0 cannot be absolutely continuous with respect m.

To prove the last statement suppose (M,d,m) has (GTB)p and observe that by
the previous lemma whenever γ is a geodesic connecting x and y ∈ Γ(x) then
γt ∈ Γ0,t(x).

LetDt = {x ∈M |Γ0,t(x) 6= ∅} and note thatDt ⊂ Dt′ whenever 0 ≤ t′ ≤ t ≤ 1.
Let (tn)n∈N be dense in (0, 1] with t1 = 1 and choose a measurable set Ωn ⊂ D1

of full m-measure in D1 such that Γ0,tn(x) is single-valued for all x ∈ Ωn. Then
Ω = ∩n∈NΩn also has fullm-measure inD1. Let γ and η be two geodesics connecting
x ∈ Ω and y ∈ Γ0,1(x). If γ and η were distinct then there is an open interval
I ⊂ (0, 1) such that γs 6= ηs for all s ∈ I. In particular, there is an n > 0 such
that tn ∈ I. Hence γtn 6= ηtn and Γ0,tn(x) is not single-valued. However, this is a
contradiction as x ∈ Ω ⊂ Ωn implies that Γ0,tn(x) is single-valued. �

Lemma 3.5. Let ϕ be a cp-concave function and (x0, x1), (y0, y1) ∈ ∂cpϕ be such
that for some t0 ∈ (0, 1) it holds xt0 = yt0 , where xt and yt are t-midpoints of
(x0, x1) and (y0, y1) respectively. Then (x0, y1), (y0, x1) ∈ ∂cpϕ.

Proof. Choose geodesics s 7→ xs and s 7→ ys between x0 and x1 and resp. y0 and
y1 and define

µs =
1

2
(δxs

+ δys) .

Note that (ϕ,ϕcp) is a dual solution for the measures µ0 and µ1.
We write ϕt = tp−1ϕ and note that the function ϕt is cp-concave and (ϕt, ϕ

cp
t ) a

dual solution for the measure µ0 and µt ([Kel17, 2.9 and Remark after 2.1]). Denote
the cp-duals of ϕ and ϕt by ψ and ψt respectively.

Since ∂cpϕ is cp-cyclically monotone, Lemma 2.9 shows that

d(x0, x1) = d(y0, y1) = d(x0, y1) = d(y0, x1).

Furthermore, (x0, xt), (y0, yt) ∈ ∂cpϕt by the choice of geodesics s 7→ xs and s 7→ ys.
Hence

ϕt(x0) + ψt(xt) = dp(x0, xt) = dp(y0, yt) = ϕt(y0) + ψt(yt).

For t = 1 we obtain
ϕ(x0) + ψ(x1) = ϕ(y0) + ψ(y1),

and because xt0 = yt0 for some t0 ∈ (0, 1), we also have

ϕt0(x0) + ψt0(xt) = ϕt0(y0) + ψt0(xt)

implying
ϕ(x0) = t1−p0 ϕt0(x0) = t1−p0 ϕt0(y0) = ϕ(y0).

Therefore,
ϕ(x0) + ψ(y1) = dp(x0, x1) = dp(x0, y1)

which shows (x0, y1) ∈ ∂cpϕ. Similarly, it holds (y0, x1) ∈ ∂cpϕ. �

The following is a direct application of the previous lemma.
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Proposition 3.6. Assume (M,d,m) has (GTB)p and let µ0, µ1 ∈ Pp(M) with
µ0 � m. Then there is a unique p-optimal dynamical plan σ ∈ OptGeop(µ0, µ1)
and a measurable set L with σ(L) = 1 which is non-branching to the right. In
particular, a metric measure space with (GTB)p is p-essentially non-branching.

Proof. Let µ0, µ1, and π be as above and T be a p-optimal transport map between
µ0 and µ1. Assume T : M ×M → Geo(M,d) is a measurable selection such that
T (x, y)0 = x and T (x, y)0 = y and define a measurable map S : M → Geo(M,d)
by

S(x) = T (x, T (x)).

Note that if ϕ is a dual solution then suppπ ⊂ ∂cpϕ.
By Lemma 3.4 there is a Borel set A of full µ0-measure such that

(A×M) ∩ ∂cpϕ = (A×M) ∩ graphT

and for all x ∈ A the geodesic S(x) is the unique geodesic connecting x and T (x).
This implies immediately that the dynamical coupling σ = S∗µ0 is the unique
p-optimal dynamical coupling between µ0 and µ1.

It suffices to show that L = S(A) is non-branching to the right. For this let
γ, η ∈ L be two geodesics with restr0,tγ = restr0,tη for some t ∈ (0, 1). Lemma 3.5
implies that (γ0, η1) ∈ ∂cpϕ. However, since γ0 = η0 ∈ A this means γ1 = η1 =
T (γ0) and S(γ0) = γ = η. As γ and η are arbitrary we see that L is non-branching
to the right. �

Remark. The conclusion in the first part of Proposition 3.6 above is stronger than
the ordinary p-essentially non-branching property as it takes into account arbitrary
final measures rather than just absolutely continuous ones.

Corollary 3.7. Assume (M,d,m) has good transport behavior (GTB)p and is strongly
non-degenerate (sND)p (see Definition 4.4 below). Then for any µ0, µ1 ∈ Pp(M)
with µ0 � m there is a unique p-optimal dynamical coupling σ between µ0 and µ1

and this coupling is concentrated on a set of non-branching geodesics. Furthermore,
(et)∗σ � m for all t ∈ (0, 1). In particular, m has the strong interpolation property
(sIP)p.

Example of essentially non-branching spaces with bad geometric behav-
ior. In this section we construct a measure on the tripod that is essentially non-
branching and for any two absolutely continuous measures there is a unique trans-
port map. However, the obvious branching in the tripod shows that there is no
measure that makes the tripod into a space with good transport behavior.

Definition 3.8. A metric measure space (M,d,m) has the weak good transport
behavior (GTB)w,p for p ∈ (1,∞), if for all µ0, µ1 ∈ Pp(M) with µ0, µ1 � m any
optimal transport plan between µ0 and µ1 is induced by a map.

Let (T, d) be the tripod, i.e. T is obtained by gluing together three intervals
Ii = [0i, 1i], i = 1, 2, 3 at 0 = 01 = 02 = 03 and d is the corresponding length
metric. Denote by Ti the natural inclusions [0, 1]→ Ii ⊂ T.

Example. There is continuum of measures m of full support on T such that
(T, d,m) is p-essentially non-branching and has the weak good transport behav-
ior (GTB)w,p for all p ∈ (1,∞).
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Sketch of the construction. Let ν0, ν1, ν2 be three non-atomic probability measures
on [0, 1] with full support and Ωi three disjoint sets such that νi(Ωj) = δij . Define
a measure m on T by

m
∣∣
Ii

= (Ti)∗νi

and a set Ω = ∪Ti(Ωi). Note that m(M\Ω) = 0.
If x, y ∈ Ω satisfy d(0, x) = d(0, y) then x, y ∈ Ωi for exactly one i = 1, 2, 3

and x = y. Thus since branching can only happen at 0, any two geodesics with
endpoints in a cp-cyclically monotone set Γ ⊂ Ω × Ω which intersect at a point
t ∈ (0, 1) must be equal. In particular, any such Γ is already non-branching. Note
that whenever µ0, µ1 � m and π is a p-optimal coupling then

π(Ω× Ω) = 1

so that π is concentrated on the non-branching set suppπ ∩ (Ω× Ω).
To obtain transport maps it is sufficient to assume µ0 � m

∣∣
Ii
. In that case let

Si : T→ [−1, 1] be the map that collapses Ij and Ik for i 6= k, j where we assume Ii
corresponds to [−1, 0]. Note also that Si restricted to Ω is invertible hence (Si)∗m
is a non-atomic measure. This can be used to show that the (unique) p-optimal
transport map between (Si)∗µ0 and (Si)∗µ1 can be pulled back to a p-optimal
transport map.

This construction works more generally for all cost functions h(d(·, ·)) with h
strictly convex and increasing. �

4. Existence of absolutely continuous interpolations for
non-degenerate measures

In this section we prove the existence of absolutely continuous interpolation
measures if the initial measure is absolutely continuous and the background measure
satisfies certain non-degeneracy conditions. In order to avoid proving very similar
results for final measures supported on finite sets and then on general sets, we
generalize the construction to optimal couplings concentrated on so called non-
degenerate sets.

Non-degenerate measures and sets. The following condition was introduced
in [CM16] and is based on stronger variant called qualitative non-degenericty (see
below) introduced earlier in [CH15].

Definition 4.1 (non-degenerate measure). A metric measure space (M,d,m) is
called non-degenerate if for all Borel sets A with m(A) > 0 it holds m(At,x) > 0 for
t ∈ (0, 1).

Our main goal is to prove existence of absolutely continuous interpolations. We
formalize the general a priori existence by the following condition.

Definition 4.2 (interpolation property). A metric measure space (M,d,m) is said
to have the interpolation property (IP)p for some p ∈ (1,∞) if for all µ0, µ1 ∈ Pp(M)

with µ0 � m, all p-optimal couplings π ∈ Optp(µ0, µ1) and all t ∈ (0, 1) there is
a p-optimal dynamical coupling σ between µ0 and µ1 with (e0, e1)∗σ = π and
(et)∗σ � m.

It has the strong interpolation property (sIP)p if for all p-optimal dynamical
couplings σ between µ0 and µ1 and all t ∈ (0, 1) it holds (et)∗σ � m whenever
µ0 � m.
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In order to show that the interpolation property (IP)p holds we will study the
supports of optimal couplings and need a non-degeneracy condition of sets Γ ⊂
M ×M .

The following notation will be used: Given a set A ⊂M and s ∈ [0, 1] define the
set ΓA,s by

((e0, e1)e−1
s (A)) ∩ Γ,

i.e. we throw out all endpoints which cannot be reached via geodesics having an
s-midpoint in A. As above ΓA,st equals et(ΓA,s) whenever t ∈ [0, 1]. Observe that
if A is analytic then ΓA,st is analytic for all s, t ∈ [0, 1]. Also in case s = t = 0 this
simplifies to ΓA,00 = Γ0 ∩A.

Definition 4.3 (non-degenerate set). A Borel set Γ ⊂ M ×M is non-degenerate
(with respect to m) if for all Borel sets A with m(Γ0 ∩A) > 0 it holds m(ΓA,0t ) > 0
whenever t ∈ (0, 1).

It is easy to see that B × {x} is non-degenerate for all x ∈M and all Borel sets
B ⊂M whenever m is non-degenerate.

Definition 4.4 (strongly non-degenerate measure). Ametric measure space (M,d,m)
is strongly non-degenerate (sND)p for some p ∈ (1,∞) if every cp-cyclically mono-
tone Borel set Γ is non-degenerate.

Remark. By abuse of notation we say m is (strongly) non-degenerate or has the
(strong) interpolation property if (M,d,m) is (resp. has) the corresponding prop-
erty.

It is easy to see that any strongly non-degenerate measurem is also non-degenerate.
Furthermore, a measure with strong interpolation property (sIP)p is necessarily
strongly non-degenerate (sND)p. The converse is true if the p-optimal dynamical
coupling σ is unique. In general the converse is false as can be seen by the met-
ric measure space (Rn, ‖ · − · ‖∞, λn) which has many non-absolutely continuous
interpolations from the Lebesgue measures restricted to the unit ball to the delta
measure at the origin, see also Remark after the proof of Lemma 5.7.

However, the interpolation property is sufficient to show that the space is strongly
non-degenerate. Via the existence of absolutely continuous interpolations in the
next section one can show that both properties are actually equivalent.

Lemma 4.5. Assume (M,d,m) is a metric measure space having the interpolation
property (IP)p. Then (M,d,m) is strongly non-degenerate (sND)p.

Proof. Let A be a Borel set and Γ be a cp-cyclically monotone Borel set with
m(p1(Γ) ∩ A) > 0. Without loss of generality A ⊂ p1(Γ) = Γ0. Let µ0 = 1

m(A)m
∣∣
A

and choose a measurable selection T of Γ ∩ (A × M). Then π = (id×T )∗µ0

is a p-optimal coupling. Let σ be given by the interpolation property. Then
(et)∗σ(ΓA,0t ) = 1 and (et)∗σ � m implying m(ΓA,0t ) > 0. Because A and Γ are
arbitrary we conclude that (M,d,m) is strongly non-degenerate (sND)p. �

The GKS-Construction. In this section we construct an absolutely continuous
interpolation µt given a p-optimal coupling π which is concentrated (in a consistent
way) on a non-degenerate set Γ and its first marginal (p1)∗π is absolutely continu-
ous. Furthermore, we find a Borel set Γ̃ ⊂ Γ of full π-measure, such that µt “sees”
all sets in Γ̃t of positive m-measure. The last property turns out to be crucial in
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order to apply the idea of Cavalletti–Huesmann [CH15] in the setting of essentially
non-branching spaces, see proof of Lemma 5.4 and Theorem 5.8.

The proof of Theorem 4.10 below is based on the following generalized form of
the Lebesgue decomposition which can be found in [Rud08, Section 9.4]. One part
of the result was proven by Glicksberg and the other by König and Sievers owing
the name GKS-Decomposition, see [Rud08, 9.4.1].

Lemma 4.6 (GKS-Decomposition [Rud08, 9.4.4]). Let (M,d) be a locally compact
complete separable metric space and B ⊂ P(M) be a weakly compact and linearly
convex subset of probability measures. Then every non-negative finite measure m̃
has a unique decomposition

m̃ = m̃a + m̃s

such that m̃a � µ for some µ ∈ B and there is a Borel set F which is a countable
union of closed subsets such that m̃s is concentrated on F and, in addition, F is
B-null, i.e. it holds m̃s(M\F ) = 0 and ν(F ) = 0 for all ν ∈ B.

Remark. (1) Linear convexity of B means that whenever µ, ν ∈ B then also (1 −
λ)µ+ λν ∈ B for all λ ∈ [0, 1].

(2) The lemma is usually stated for compact Hausdorff spaces. However, one
can embed M into the one-point compactification M∗ = {∗} ∪M such that B is
still compact in P(M∗). Note that M∗ is a compact Hausdorff space. Since each
of the involved measures gives zero measure to the set {∗}, we see that the lemma
also holds for general locally compact Hausdorff spaces. In particular, it holds for
proper metric spaces.

(3) Recall that m is a locally bounded measure if (M,d,m) is a proper metric
measure space. In that case there is a continuous function ϕ : [0,∞)→ (0, 1] such
that m̃ = ϕ(d(x0, ·))m is a finite measure. Then the unique decomposition of m
with respect to B is given by m = (ϕ(d(x0, ·))−1m̃a + (ϕ(d(x0, ·))−1m̃s.

Before stating the main theorem of this section we need the following technical
lemmas.

Lemma 4.7. If A ⊂M is an analytic set and π is a coupling concentrated on ΓA,t

then there is a dynamical coupling σ concentrated on e−1
t (A) ∩ Γ̂. In particular,

(et)∗σ(A) = 1.

Proof. Since A is analytic, the set

Λ = {(γ0, γ1, γ) ∈ Γ× Geo[0,1](M,d) | γ ∈ e−1
t (A) ∩ Γ̂}

= (e0, e1, id)
(
e−1
t (A) ∩ (e0, e1)−1(Γ)

)
is also analytic. Thus by von Neumann’s Measurable Selection Theorem there is
a measurable selection S : Γ → Geo[0,1](M,d) such that (x, y, S(x, y)) ∈ Λ for all
(x, y) ∈ Γ. In particular, S(x, y)t ∈ A . To conclude just observe that σ = S∗π is
concentrated on e−1

t (A) ∩ Γ̂. �

Lemma 4.8. Assume (M,d) is a proper geodesic space. Then for all measures
µ0, µ1 ∈ Pp(M) and every p-optimal coupling π the following set of t-midpoints

B = {(et)∗σ |σ ∈ OptGeo(µ0, µ1), (e0, e1)∗σ = π}

is linearly convex, compact in Pp(M) and weakly compact in P(M).
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Remark. Similar arguments also show that for finitely many {s1, . . . , sn} ⊂ [0, 1]
and a measure π ∈ P(Mn) the set

C = {(et)∗σ |σ ∈ OptGeo(µ0, µ1), (es1 , . . . esn)∗σ = π}
is linearly convex, compact in Pp(M) and weakly compact in P(M).

Note that the result shows that the GKS-Decomposition can be applied to the
set B. The proof of Lemma 4.8 is given at the end of this section.

In order to make the main theorem more readable we introduce the following
condition. It won’t be used anywhere else but here.

Definition 4.9. A coupling π ∈ P(M ×M) is strongly consistent if for all π̃ � π
and every measurable set Γ′ with π̃(Γ′) = 1 there is a non-degenerate, cp-cyclically
monotone Borel set Γ ⊂ Γ′ with π̃(Γ) = 1.

Note that whenever π is strongly consistent then any coupling π′ with π′ � π is
strongly consistent as well.

Theorem 4.10 (GKS-Construction). Let (M,d,m) be a proper metric measure
space. Assume π is a strongly consistent, p-optimal coupling between µ0 � m and
µ1. Then for every t ∈ (0, 1) there is a p-optimal dynamical coupling σ such that
(e0, e1)∗σ = π and

µt = (et)∗σ � m.

Furthermore, µt is maximal in the following sense: Let Γ be a Borel set of full
π-measure and

m
∣∣
Γt

= gµt + m
∣∣
F

be the Lebesgue decomposition of m
∣∣
Γt

with respect to µt where F ⊂ Γt is a Borel
with µt(F ) = 0. Then π is concentrated on a Borel set Γ̃ ⊂ Γ\ΓF,t and it holds

m
∣∣
Γ̃t
� µt.

Remark. Absolute continuity and maximality imply m
∣∣
Γ̃t
� µt � m

∣∣
Γ̃t

as π is
concentrated on Γ̃.

Corollary 4.11. Suppose µt � m and Γ̃ are constructed from π as above. If there
is a strongly consistent coupling πt,1 of µt and µ1 then for each s ∈ (t, 1) there
is a p-optimal dynamical coupling σ̂ such that (e0, e1)∗σ̂ = π, (et)∗σ̂ = µt and
(es)∗σ̂ � m.

Proof of Theorem 4.10. Let B be defined as in Lemma 4.8 above. We split the
proof into two steps.

Step 1: There is a µt ∈ B which is maximal in the sense of the theorem
and ρt 6= 0 where µt = ρtm+µst is the Lebesgue decomposition of µt with
respect to m.

Let Γ ⊂ suppπ be a non-degenerate, cp-cyclically monotone Borel set with
π(Γ) = 1. Since B is weakly compact and linearly convex we can apply the GKS-
Decomposition to m

∣∣
Γt

and obtain a measure µt ∈ B such that

m
∣∣
Γt

= gµt + ms

and there is a Borel set F ⊂ Γt such that µ̃t(F ) = 0 for all µ̃t ∈ B and ms(M\F ) =
0. Thus ms = m

∣∣
F
and g(x) > 0 for µt-almost all x ∈M .
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We claim that π is concentrated on Γ\ΓF,t. Assume, by contradiction, that

λ = π(ΓF,t) > 0.

Let σ ∈ OptGeop(µ0, µ1) with (et)∗σ = µt and (e0, e1)∗π. Then for f = χΓF,t the
coupling σf is a p-optimal dynamical coupling between (e0)∗σf and (e1)∗σf , and
πF = (e0, e1)∗σf is concentrated on ΓF,t. Also note that π = λπF + (1−λ)π̌ where
π̌ = (e0, e1)∗σ1−f .

By Lemma 4.7 there is a p-optimal dynamical coupling σ̃f induced by πF which
concentrated on Γ̂F,t such that (et)∗σ̃f (F ) = 1. However, by Lemma 2.6 the dy-
namical coupling

σ̃ = λσ̃f + (1− λ)σ1−f

is also p-optimal with

(e0, e1)∗σ̃ = λπF + (1− λ)π̃ = π.

Thus µ̃t = (et)∗σ̃ ∈ B with

µ̃t(F ) ≥ λµft (F ) = λ > 0

contradicting the properties of GKS-Decomposition. Hence π(Γ\ΓF,t) = 1.
Let

µt = ρtm + µst

be the Lebesgue decomposition of µt with respect to m with µst ⊥ m. Note that
ρt(x) > 0 for m-almost all x ∈ At = (Γ\ΓF,t)t. By assumption π is concentrated on
a non-degenerate cp-cyclically monotone Borel set Γ̃ ⊂ Γ\ΓF,t. Since µ0(Γ̃0) = 1

and µ0 � m it holds m(Γ̃0) > 0 and thus m(Γ̃t) > 0 by non-degeneracy of Γ̃
implying ρt 6= 0, i.e. the absolutely continuous part of µt is non-trivial. Finally
observe that ρt(x) > 0 for m-almost all x ∈ At shows that m(At\Γ̃t) = 0 hence
m
∣∣
Γ̃t
� µt yields maximality of µt.

Step 2: Given µt = ρtm + µst and Γ̃ as in Step 1, there is a µ∗t ∈ B
with µ∗t = ρ∗tm and ρt ≤ ρ∗t , and µ∗t is maximal in the sense of the theorem.

We define a partial ordering on subsets of B and show that maximal elements
exist and are absolutely continuous: For ρ ∈ L1

≥0(m) with
∫
ρdm ∈ [0, 1] set

Bρ = {µ ∈ B |µ = ρm + µs}

where µ = ρm + µs is the Lebesgue decomposition of µ with respect to m. Note
that we identify two L1(m)-functions which agree m-almost everywhere.

Let

K = {ρ ∈ L1
≥0(m) |

∫
ρdm ∈ [0, 1],Bρ 6= ∅}

and write
ρ′ � ρ :⇐⇒ ρ′ ≥ ρ, ρ′ 6= ρ.

This is a partial ordering of K. Also note that⋃
ρ∈K
Bρ

is a partition of B. Hence the partial order � induces one on this partition.
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Assume µ ∈ Bρ is not absolutely continuous with respect to m and let σ ∈
OptGeop(µ0, µ1) be a p-optimal dynamical coupling with (e0, e1)∗σ = π and (et)∗σ =
µ. Then the decomposition µ = ρm + µs induces a decomposition of σ as follows

σ = (1− λ)σa + λσs

where σa and σs are uniquely defined measures in P(Geo[0,1](M,d)) with

(et)∗(1− λ)σa = ρm

and
(et)∗λσs = µs 6= 0.

Let
µ̃i = (ei)∗σs i = 0, 1

and
πs = (e0, e1)∗σs.

Since πs � π, we see that πs is a strongly consistent p-optimal coupling between
µ̃0 � m and µ̃1. Thus Step 1 above is applicable to (µ̃0, µ̃1) and there is a t-
midpoint µ̃t

µ̃t = ρ̃m + µ̃s

with ρ̃ 6= 0 such that
µ
′

t = (ρ+ λρ̃)m + λµ̃s

is still in B. Hence ρ + λρ̃ ∈ K and ρ + λρ̃ � ρ. In particular, any ρ ∈ K with∫
ρdm 6= 1 is not maximal with respect to the partial order �. Also note that any

element ρ ∈ K satisfying
∫
ρdm = 1 is automatically maximal. To finish the proof

it suffices to show that there are maximal elements above any ρ ∈ K.
For this we want to apply Zorn’s Lemma: Let {ρi}i∈I be a totally ordered chain

where I is a totally ordered index set. Then choose µi ∈ Bρi and observe by
compactness of B there is a subnet I ′ ⊂ I such that limi∈I′ µi = µ ∈ B. Then
the net (ρi)i∈I′ is an increasing family of non-negative L1(m)-function so that by
monotone convergence there is a ρ ∈ L1(m) such that

ρ = lim
i∈I′

ρi = lim
i∈I

ρi

and
∫
ρdm ∈ [0, 1]. Since

ρim ≤ µj
whenever i ≤ j, it holds ρim ≤ µ and thus ρm ≤ µ where µ ≤ ν means µ(A) ≤ ν(A)
for all Borel sets A. In particular, the Lebesgue decomposition of µ is given by

µ = ρ̂m + µs

for some ρ̂ ∈ K with ρ̂ � ρ � ρi, i.e. the chain {ρi}i∈I has a maximal element
in K. Therefore, Zorn’s Lemma applied to (K,�) gives the existence of at least
one maximal element ρ∗t ∈ K with ρ∗t ≥ ρt. Choosing µ∗t = ρ∗tm gives a measure
satisfying the statements of the theorem.

Finally, the properties of µt and Γ̃ imply m
∣∣
Γ̃t
� ρtm � µ∗t � m

∣∣
Γ̃t
. Thus for

any other Borel set Γ with π(Γ) = 1 there is a Borel set Γ
′ ⊂ Γ∩ Γ̃ with π(Γ

′
) = 1.

But then m
∣∣
Γ̃t
� µ∗t � m

∣∣
Γ
′
t
implying m(Γ̃t\Γ

′

t) = 0. This yields immediately
m
∣∣
Γ̄t
� µ∗t and thus maximality of µ∗t . �

In order to apply Theorem 4.10 we need to prove that we find p-optimal couplings
satisfying the assumptions of the theorem.
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Lemma 4.12. Assume (M,d,m) is non-degenerate. Then any cp-cyclically mono-
tone set Γ such that Γ1 = p2(Γ) is finite is non-degenerate. In particular, if π is a
p-optimal coupling with (p1)∗π � m and (p2)∗π =

∑n
i=1 aiδxi then any measurable

set Γ of full π-measure contains a non-degenerate, cp-cyclically monotone Borel set
Γ̃ ⊂ suppπ ∩ Γ of full π-measure.

Proof. Observe that

Γ =

n⋃
i=1

Bi × {xi}

for measurable subsets Bi ⊂ M . Since Γ1 = m(∪ni=1B
i) the condition m(ΓA0 ) > 0

implies that there is at least one i ∈ {1, . . . , n} with m(Bi ∩A) > 0. But then

m(ΓAt ) ≥ m(Bit,xi
) > 0

showing that Γ is non-degenerate.
For the last statement note that if π(Γ′) = 1 then π(Γ′ ∩ suppπ) = 1 so that

there is a Borel set Γ̃ ⊂ Γ′ ∩ suppπ with π(Γ̃) = 1. Since

p2(Γ̃) ⊂ p2(suppπ) = {xi}ni=1

is finite, the result follows. �

The same argument also holds more generally if the background measure is
strongly non-degenerate.

Lemma 4.13. If (M,d,m) is strongly non-degenerate (sND)p then for any p-
optimal coupling π with (p1)∗π � m the following holds: Whenever π(Γ′) = 1
for a π-measurable set Γ′ then there is a cp-cyclically monotone, non-degenerate
Borel subset Γ ⊂ Γ′ of full π-measure.

Proof. Just note that π is concentrated on Γ′ ∩ suppπ which is measurable, non-
degenerate and cp-cyclically monotone. Hence there is a Borel subset Γ ⊂ Γ′∩suppπ
with π(Γ) = 1. By strong non-degeneracy Γ is non-degenerate. �

The two lemmas allow us to apply Theorem 4.10 and Corollary 4.11.

Corollary 4.14. Let (M,d,m) be a proper metric measure space and µ0, µ1 ∈
Pp(M) with µ0 � m. Assume either (M,d,m) is non-degenerate and µ1 =

∑n
i=1 λiδxi

or that (M,d,m) is strongly non-degenerate (sND)p. Then for any 0 < t < s < 1

there is a p-optimal dynamical coupling σ between µ0 and µ1 with (et)∗σ, (es)∗σ � m
and (et)∗σ is maximal in the sense of Theorem 4.10. In particular, (M,d,m) is
strongly non-degenerate (sND)p if and only if it has the interpolation property (IP)p.

Proof. For strongly non-degenerate measures the result follows immediately from
the previous lemma.

For the case of m being non-degenerate and µ1 =
∑n
i=1 λiδxi just observe that

any p-optimal coupling πt,1 between µt � m and µ1 is strongly consistent. Indeed,
if π̃ � πt,1 then the set p2(supp π̃ ∩ Γ′) is finite hence contains a cp-cyclically
monotone Borel set Γ with π̃(Γ) = 1. �

Proof of Lemma 4.8. Since (M,d) is geodesic B is non-empty and closed in Pp(M).
Furthermore, properness of M together with B being bounded implies that B is
weakly precompact. If µ0

t and µ1
t are measures in B then there are two p-optimal

dynamical couplings σ0 and σ1 such that (et)∗σ
i = µit and (e0, e1)∗σ

i = π, i = 0, 1.



TRANSPORT MAPS, NON-BRANCHING AND MEASURE RIGIDITY 22

It holds

µλt = (et)∗σ
λ

for

µλt = (1− λ)µ0
t + λµ1

t

σλ = (1− λ)σ0 + λσ1

so that

W p
p (µλt , µ1) ≤

∫
d(γt, γ1)pdσλ(γ)

= (1− λ)

∫
tpd(γ0, γ1)pdσ0(γ) + λ

∫
tpd(γ0, γ1)pdσ1(γ)

= tpW p
p (µ0, µ1)

and similarly W p
p (µ0, µ

λ
t ) ≤ (1 − t)pW p

p (µ0, µ1). Thus Wp(µ0, µ
λ
t ) + Wp(µ

λ
t , µ1) ≤

Wp(µ0, µ1) which implies that µλt is a t-midpoint. Since (e0, e1)∗σ
λ = π we have

µλt ∈ B implying linear convexity of B.
Now let (µnt )n∈N be a sequence in B. By weak compactness we can assume

after picking a subsequence and relabeling that (µnt )n∈N converges weakly to some
µ ∈ P(M). Since

Wp(µ0, µ) ≤ lim inf
n→∞

Wp(µ0, µ
n
t ) = tWp(µ0, µ1)

Wp(µ, µ1) ≤ lim inf
n→∞

Wp(µ
n
t , µ1) = (1− t)Wp(µ0, µ1)

we get
Wp(µ0, µ1) ≤Wp(µ0, µ) +Wp(µ, µ1) ≤Wp(µ0, µ1)

so that µ is a t-midpoint as well. Hence Wp(µ0, µ
n
t )→Wp(µ0, µ) and the sequence

(µnt )n∈N also converges in the p-th moment. This shows that µnt → µ in Pp(M)
(see [Vil08, Definition 6.8]). Thus any sequence in B has a subsequence converging
in Pp(M). In particular, B is compact in Pp(M). �

5. Existence of transport maps

In this section we want to prove the existence of transport maps using a combined
approach of [CH15] and [CM17].

Qualitatively non-degenerate measures. Non-degeneracy and the GKS-Con-
struction in the previous section imply that there are absolutely continuous interpo-
lations between µ0 � m and µ1 =

∑
λiδxi

. However, the non-degeneracy condition
is too weak to use approximation arguments for general µ1. For this we need the
following uniform variant which was introduced by Cavalletti–Huesmann [CH15]
and represents a weak form of the measure contraction condition MCP(K,N), see
e.g. [Stu06a, Oht07, CM17] and references therein.

Definition 5.1. The measure m is said to be qualitatively non-degenerate if for all
R > 0 and x0 ∈M there is a function fR,x0 : (0, 1)→ (0,∞) with

lim sup
t→0

fR,x0
(t) >

1

2
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such that for every measurable A ⊂ BR(x0) and all x ∈ BR(x0) and t ∈ (0, 1) it
holds

m(At,x) ≥ fR,x0
(t)m(A).

Corollary 5.2. Any qualitatively non-degenerate measure is non-degenerate.

The following proposition shows that qualitatively non-degenerate spaces are
proper and make it possible to use GKS-Construction of the previous section.

Proposition 5.3. A qualitatively non-degenerate measure m is locally doubling,
i.e. for each R > 0 and x0 ∈M there is a constant CR,x0 > 0 such that

m(B2r(x)) ≤ CR,x0 ·m(Br(x))

whenever B2r(x) ⊂ BR(x0). In particular, (M,d) is a proper metric space.

Proof. Just note that Br(x) ⊂ (B2r(x)) 1
2 ,x

for all x ∈M and r > 0. Thus qualita-
tive non-degeneracy implies for B2r(x) ⊂ BR(x0)

m(B2r(x)) ≤ 1

fR,x0
( 1

2 )
m(Br).

Finally, properness follows from m being locally doubling (see e.g. [Hei01]). �

Lemma 5.4. Assume (M,d,m) is p-essentially non-branching for some p ∈ (1,∞)
and m is qualitatively non-degenerate. If for a Borel set A, the set A × {x, y} is
cp′-cyclically monotone for x 6= y ∈M and p′ ∈ (1,∞) then m(A) = 0.

Remark. One may replace the qualitative non-degeneracy by the following pointwise
variant

lim inf
t→0

m(At,x) >
1

2
m(A).

This condition is, however, too weak to do approximations of general cp-cyclically
monotone sets as in Lemma 5.7.

Proof. By inner regularity we can assume A is compact and {x, y} ∪ A ⊂ BR(x0)
for some R > 0. By compactness of A we find t close to 0 and s close to 1 such
that fR,x0(t) ≥ 1

2 + ε,

m(Aδ) ≤ (1 + ε)m(A),

At,x ∪At,y ⊂ Aδ
and

(As,x)ε ∩ (As,y)ε = ∅
for some ε, δ > 0.

Decompose A into two Borel sets

Aeq = {z ∈ A | d(z, x) = d(z, y)}

and
Ane = A\Aeq = {z ∈ A | d(z, x) 6= d(z, y)}.

It suffices to show that the claim is true for the cases A = Aeq and A = Ane.
First assume A = Ane and observe that by cp′ -cyclic monotonicity and the fact

that d(z, x) 6= d(z, y) for all z ∈ A it holds

At,y ∩At,x = ∅ for all t ∈ (0, 1).
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Hence

(1 + ε)m(A) ≥ m(Aδ)

≥ m(At,x ∪At,y)

= m(At,x) + m(At,y)

≥ 2fR,x0
(t)m(A) = (1 + 2ε)m(A)

which implies that m(A) = 0.
For the case A = Aeq assume by contradiction m(A) > 0. Set

µ0 =
1

m(A)
m
∣∣
A

and observe that A = Aeq implies that A× {x, y} is cp”-cyclically monotone for all
p” ∈ [1,∞). In particular, A× {x, y} is cp-cyclically monotone.

Apply Corollary 4.14 to (µ0, δx) and (µ0, δy) to get two dynamical couplings σx
and σy whose interpolations at times s and t are absolutely continuous. The choice
of s shows that µxs = (es)∗σ

x and µys = (es)∗σ
y have disjoint support. Furthermore,

the measures µxt = (et)∗σ
x and µyt = (et)∗σ

y are maximal with respect to Ã× {x}
and resp. Ã×{y} for some Ã ⊂ A with m(A\Ã) = 0. Since the set Ã×{x, y} is still
cp-cyclically monotone, the dynamical coupling 1

2 (σx+σy) is p-optimal between µ0

and 1
2 (δx+ δy). Because µs = 1

2 (µxs +µys) is a decomposition into mutually singular
measures, Theorem 2.11 shows

µxt ⊥ µ
y
t .

By maximality of µxt and µyt it holds m
∣∣
Ãt,x
� µxt and m

∣∣
Ãt,y
� µyt so that m(Ãt,x∩

Ãt,y) = 0. In particular, since m is qualitatively non-degenerate

m(Ãt,x ∪ Ãt,y) = m(Ãt,x) + m(Ãt,y)

≥ 2f(t)m(A) ≥ (1 + 2ε)m(A).

Combining those facts we obtain

(1 + ε)m(A) ≥ m(Aδ)

≥ m(Ãt,x ∪ Ãt,y)

≥ (1 + 2ε)m(A)

which is a contradiction. This shows that m(A) = 0. �

Corollary 5.5. Assume (M,d,m) is p-essentially non-branching and m qualita-
tively non-degenerate. If for some p′ ∈ (1,∞) the set Γ is a cp′-cyclically monotone
set in BR(x0)×BR(x0) and Γ1 is finite then

m(Γt) ≥ fR,x0
(t)m(Γ0).

Proof. Let {xi}ni=1 = Γ1 with xi 6= xj whenever i 6= j and set Γi = Γ∩ (M ×{xi}).
Then the previous theorem shows

m(Γi0 ∩ Γj0) = 0

for i 6= j. Thus there are disjoint sets Ai ⊂ Γi0, i = 1, . . . , n, such that

m(Γ0\ ∪Ai) = 0.
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Similarly one may replace Ai by a possibly smaller set which has full m-measure in
Ai satisfying the condition above and, in addition, it holds

m(Ait,xi
∩Ajt,xj

) = 0

for i 6= j. Setting

Γ′ =

n⋃
i=1

Ai × {xi}

we conclude

m(Γt) ≥ m(Γ
′

t) =

n∑
i=1

m(Ait,xi
)

≥
n∑
i=1

fR,x0(t)m(Ai) = fR(t)m(Γ0).

�

A similar argument also shows the following. As the result is not used below we
leave the proof to the interested reader.

Corollary 5.6. Assume (M,d) is p-essentially non-branching and m is qualitatively
non-degenerate. Then for any p′ ∈ (1,∞) and any p′-optimal coupling π with
(p1)∗π � m and (p2)∗π =

∑
aiδxi is induced by a transport map.

Via an approximation argument of Cavalletti–Huesmann [CH15, Proposition 4.3]
qualitative non-degeneracy implies strong non-degeneracy.

Lemma 5.7. Assume (M,d,m) is p-essentially non-branching and m is qual-
itatively non-degenerate. Then for any cp′-cyclically monotone Borel set Γ in
BR(x0)×BR(x0) it holds

m(Γt) ≥ fR,x0
(t)m(Γ0).

In particular, (M,d,m) is strongly non-degenerate (sND)p′ for all p′ ∈ (1,∞).

Proof. For compact Γ the argument is as in [CH15, Proposition 4.3]. For com-
pleteness, we present the argument: Let (Γ(n))n∈N be a sequence of cp-cyclically
monotone sets such that Γ

(n)
0 = Γ0 and Γ

(n)
1 ⊂ Γ1 is finite. More precisely, choose

a countable dense sequence yn ∈ Γ1 and define

E
(n)
i = {x ∈ Γ0 | d(x, yi)

p − ϕcp(yi) ≤ d(x, yj)
p − ϕcp(yj), j = 1, . . . , n}

and

Γ(n) =

n⋃
i=1

E
(n)
i × {yi}.

From the definition of E(n)
i it follows that Γ(n) is cp′ -cyclically monotone. Further-

more, compactness of Γ shows that for all ε > 0 there is an Nε such that for all
n ≥ Nε it holds

Γ
(n)
t ⊂ (Γt)ε =

⋃
x∈Γt

Bε(x)
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This yields immediately the result for compact Γ as follows

m(Γt) = lim
ε→0

m((Γt)ε)

≥ lim sup
n→∞

m(Γ
(n)
t )

≥ fR,x0
(t)m(Γ0).

For arbitrary cp-monotone Borel sets Γ in BR(x0) × BR(x0) we can use the
Measurable Selection Theorem and Lusin’s Theorem to reduce the result to compact
set. If m(Γ0) = 0 then there is nothing to prove. So assume m(Γ0) > 0. Choose a
measurable selection T of Γ. As m is locally bounded and Γ0 ⊂ BR(x0) we obtain
by Lusin’s Theorem a family of compact sets K1 ⊂ K2 ⊂ . . . ⊂ Γ0 with m(Ki) →
m(Γ0) such that T restricted to Ki is continuous. Define Γi = graphKi T ⊂ Γ and
note that Γi is compact with Γi0 = Ki so that

m(Γt) ≥ lim sup
i→∞

m(Γit)

≥ lim sup
i→∞

fR,x0(t)m(Ki) = fR,x0(t)m(Γ0).

It remains to show that m is strongly non-degenerate (sND)p. First observe⋃
R>0

ΓR = Γ

where ΓR = Γ ∩ (BR(x0)×BR(x0)). As ΓR is bounded we have

m(Γt) ≥ m(ΓRt ) ≥ fR,x0
(T )m(ΓR0 ).

Assume now m(Γ0) > 0 then m(ΓR0 ) ∈ (0,∞) for all large R > 0 so that

m(Γt) ≥ m(ΓRt ) > 0.

Non-degeneracy of Γ follows by observing that for all Borel sets A the set ΓA,0 =

Γ ∩ (A×M) is still a cp-cyclically monotone Borel set. Thus m(ΓA,00 ) > 0 implies
m(ΓA,0t ) > 0. �

Remark. The proof of the results above relies only on the qualitative non-degeneracy
of m and that

m({z ∈M | d(z, x) = d(z, y)}) = 0

for all x 6= y. In particular, it holds for (Rn, ‖·−·‖∞, λn) which is highly branching.

By combining the previous lemma and the idea of the proof of Lemma 5.4 we
obtain the main theorem of this section.

Theorem 5.8. Assume (M,d,m) is p-essentially non-branching and m is qual-
itatively non-degenerate. Then any p-optimal coupling π ∈ Pp(M × M) with
(p1)∗π � m is induced by a transport map. In particular, any such space has
good transport behavior (GTB)p.

Combined with Proposition 3.6 and the existence of absolutely continuous inter-
polations (Corollary 4.14) we get the following two corollaries.

Corollary 5.9. If (M,d,m) is p-essentially non-branching and m qualitatively non-
degenerate then between any two measure µ0, µ1 ∈ Pp(M) with µ0 � m there is a
unique p-optimal dynamical coupling σ and this coupling satisfies (et)∗σ � m for
all t ∈ [0, 1). In particular, it has the strong interpolation property (sIP)p.
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Corollary 5.10. Assume m is qualitatively non-degenerate. Then m is p-essentially
non-branching if and only if it has good transport behavior (GTB)p .

Proof of Theorem 5.8. Note by Proposition 5.3, (M,d) is proper so that we can
apply the GKS-Construction of the previous section.

Let Γ = suppπ and note that m(p1(Γ)) = m(supp((p1)∗π)) > 0. It suffices to
show that Γ(x) is single-valued for m-almost all x ∈M . This holds, if for all R > 0,
ΓR(x) is single-valued for m-almost all x ∈M where ΓR = Γ ∩ (B̄R(x0)× B̄r(x0)).
Note that for large R > 0 it holds m(p1(ΓR)) ∈ (0,∞).

Assume, by contradiction, that for some R > 0 there is a Borel set A with
m(A) > 0 and the set ΓR(x) is non-empty and not single-valued for all x ∈ A.
Then by the Selection Dichotomy of Sets (Theorem 2.1), there is a compact set
K ⊂ A of positive m-measure, and two continuous maps T1, T2 : M → M with
T1(K) ∩ T2(K) = ∅ and

(x, T1(x)), (x, T2(x)) ∈ ΓR ⊂ suppπ ∩ (B̄R(x0)× B̄R(x0)).

Restricting K further, we can also assume supp(m
∣∣
K

) = K ⊂ B̄R(x0).
Define now µ0 = 1

m(K)m
∣∣
K
, πi = (id×Ti)∗µ0 and µi1 = (p2)∗πi for i = 1, 2. Let

Γ(i) = suppπi, i = 1, 2, and note that Γ
(i)
0 = K and both Γ(1) and Γ(2) are compact

and cp-cyclically monotone.
Choose δ > 0, t close to 0 and s close to 1 such that fR,x0(t) ≥ 1

2 + ε,

m(Kδ) ≤ (1 + ε)m(K),

Γ
(1)
t ∪ Γ

(2)
t ⊂ Kδ

and
(Γ(1)
s )ε ∩ (Γ(2)

s )ε = ∅.
Corollary 4.14 applied to (µ0, µ

1
1) and (µ0, µ

2
1) gives two p-optimal dynamical

couplings σ(1) and σ(2) such that (es)∗σ
(1) and (es)∗σ

(2) are absolutely continuous
with respect to m and have disjoint support. The choice of Γ(1) and Γ(2) implies
that 1

2 (π1 +π2) is supported on Γ(1)∪Γ(2) ⊂ suppπ. Hence (restr0,s)∗
1
2 (σ(1) +σ(2))

is a p-optimal dynamical coupling between µ0 and 1
2 (µ1

s+µ2
s) so that Theorem 2.11

shows
µ

(1)
t = (et)∗σ

(1)⊥(et)∗σ
(2) = µ

(2)
t .

Maximality at time t shows that for i = 1, 2 there are measurable subsets Γ̃(i) ⊂ Γ(i)

with m(K\Γ̃(i)
0 ) = 0 and m

∣∣
Γ̃

(i)
t
� µ

(i)
t � m

∣∣
Γ̃

(i)
t
. Since µ(1)

t ⊥µ
(2)
t we must have

m(Γ̃
(1
t ∩ Γ̃

(2)
t ) = 0. In combination with Lemma 5.7 this yields

m(Γ̃
(1)
t ∪ Γ̃

(2)
t ) = m(Γ̃

(1)
t ) + m(Γ̃

(2)
t ) ≥ 2fR(t)m(K).

This, however, leads to the following contradiction

(1 + ε)m(K) ≥ m(Kδ)

≥ m(Γ̃
(1)
t ∪ Γ̃

(2)
t )

= m(Γ̃
(1)
t ) + m(Γ̃

(2)
t )

≥ 2fR,x0
(t)m(K) = (1 + 2ε)m(K).

Thus we have proved that the ΓR(x) is at most single-valued for m-almost all x ∈M
proving that π is induced by a transport map. �
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The proof relies heavily on the p-essentially non-branching property of dynamical
couplings between absolutely continuous measures. In contrast to the case of a
discrete target measures we cannot show that that general p′-optimal couplings with
absolutely continuous first marginals are induced by transport maps. Nevertheless,
p-essentially non-branching and the idea of Lemma 5.4 still exclude a too general
behavior of the support of p′-optimal couplings.

Theorem 5.11. Assume (M,d,m) is p-essentially non-branching for some p ∈
(1,∞), m is qualitatively non-degenerate and p′ ∈ (1,∞). Then for any p′-optimal
π ∈ P(M ×M) with µ0 = (p1)∗π � m and for µ0-almost every x ∈M it holds

d(x, y1) = d(x, y2) whenever (x, y1), (x, y2) ∈ suppπ.

Corollary 5.12. The cp′-superdifferential ∂cp′ϕ of a cp′-concave function ϕ satis-
fies for m-almost every x ∈M

d(x, y1) = d(x, y2) for all y1, y2 ∈ ∂cp′ϕ(x).

Remark. The property p-essentially non-branching is used only to show that cp′ -
cyclically monotone sets are non-degenerate. As mentioned above, this holds if we
replace p-essentially non-branching by the assumption

m({z ∈M | d(z, x) = d(z, y)}) = 0

for all y 6= z,

Proof. If the claim was false then π is not induced by a transport map and as above
we get a compact set K of positive m-measure and measurable selections T1 and
T2 as above which, in addition, satisfy

sup
(x,y1)∈K×T1(K)

d(x, y1) < inf
(x,y2)∈K×T2(K)

d(x, y2).

Let µ0 = 1
m(K)m

∣∣
K

and for i = 1, 2 define πi = (id×Ti)∗µ̃0 and Γ(i) = suppπi.
Again Γ(i) is cp-cyclically monotone, but satisfies, in addition, the following

Γ
(1)
t ∩ Γ

(1)
t = ∅ for all t ∈ (0, 1)

Choosing ε, δ and t as in the previous proof, we arrive at the following contradiction

(1 + ε)m(K) > m(Kδ)

≥ m(Γ
(1)
t ∪ Γ

(2)
t )

= m(Γ
(1)
t ) + m(Γ

(2)
t )

≥ 2fR,x0(t)m(K) = (1 + 2ε)m(K).

�

Density bounds of qualitatively non-degenerate measures. In [CM17] Cav-
alletti–Mondino showed that the measure contraction property MCP(K,N) as de-
fined in [Stu06b, Definition 5.1] (see also [CM17, Definition 2.5]) implies the exis-
tence of absolutely continuous interpolations with controlled L∞-bounds on their
density. This was then used to prove the general existence of transport maps.

A version of the measure contraction property, which we denote here byMCPOhta(K,N),
was introduced by Ohta [Oht07, Definition 2.1]. This conditions requires that for
any set A of bounded and positive m-measure and any x0 ∈ M there is an abso-
lutely continuous interpolation µt of µ0 = 1

m(A)m
∣∣
A
and µ1 = δx0

whose density is
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bounded in a controlled way depending on m(A) and the distance of y ∈ A and x0.
For K = 0 and N the property says that

ft ≤ tN
1

m(A)
≡ tNf0

where ft and f0 are the densities of µt and resp. µ0. We may weaken this property
as follows.

Definition 5.13. The measure m has bounded density property if for all R > 0 and
x0 ∈M there is a function gR,x0

: (0, 1)→ (0,∞] with

lim sup
t→0

gR,x0(t) < 2

such that for some p ∈ (1,∞) and for every µ0 = f0m ∈ Pp(M) with ‖f0‖∞ <∞,
suppµ0 ⊂ BR(x0) and x ∈ BR(x0) there is a geodesic t 7→ µt = ftm between µ0

and δx in Pp(M) such that

‖ft‖∞ ≤ gR,x0(t)‖f0‖∞.

It is easy to see that the definition does not depend on p ∈ (1,∞). In addition,
one may readily verify that the MCPOhta(K,N)-condition implies the bounded
density property.

In [Raj12b, Theorem 1.4] Rajala showed that CD(K,N)-spaces satisfy theMCPOhta(K,N)-
condition. Note Rajala’s proof also works for the MCP(K,N)-condition which was
shown by Cavalletti–Mondino in [CM17, Theorem 3.1].

In the general setting observe that the bounded density property is stronger than
qualitative non-degeneracy.

Lemma 5.14. Every measure m with bounded density property is qualitatively non-
degenerate.

Proof. Let µ0 = 1
m(A0)m

∣∣
A0

and note that

suppµt ⊂ At,x
and

‖f0‖∞ =
1

m(A0)

we obtain

1 =

∫
At,x

ftm ≤ gR,x0
(t)

1

m(A0)
m(At,x).

Choosing fR,x0 = g−1
R,x0

we obtain the result. �

Assuming m is p-essentially non-branching, the following result implies that the
bounded density property is equivalent to qualitative non-degeneracy and, in addi-
tion, a pointwise density bound is obtained.

Proposition 5.15. Assume (M,d,m) is p-essentially non-branching, m is quali-
tatively non-degenerate and µ0, µ1 ∈ Pp(M) with µ0 = f0m and suppµ0, suppµ1 ⊂
BR(x0). Then for the unique p-optimal dynamical coupling σ ∈ OptGeop(µ0, µ1) it
holds

ft(γt) ≤
1

fR,x0(t)
f0(γ0) for σ-almost all γ ∈ Geo(M,d)
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where (et)∗σ = ftm. In particular, it holds

‖ft‖∞ ≤
1

fR,x0
(t)
‖f0‖∞

so that m has the bounded density property.

Corollary 5.16. In a p-essentially non-branching metric measure space (M,d,m)
the following are equivalent:

• The measure m is qualitatively non-degenerate.
• The measure m has the bounded density property.

Proof of Proposition 5.15. We first assume f0 ≡ 1
m(A0) . If the claim was wrong

then there is a compact set L ⊂ Geo(M,d) with σ(L) > 0 such that

1

fR,x0(t)

1

m(A0)
≤ (1− ε)ft(γt) for all γ ∈ L.

In particular, by restricting σ to L we see that for Ã0 = e0(L) ⊂ A0 it holds

1

fR,x0
(t)

1

m(Ã0)
≤ (1− ε)f̃t(γt) for σ-almost all γ ∈ L

where f̃tm = (et)∗σL. The qualitative non-degeneracy yields

m(et(L)) ≥ fR,x0
(t)m(Ã0).

Note that we always have

ess infm|et(L) f̃t ≤
1

m(et(L))
.

This, however, leads to the following contradiction

ess infm|et(L) f̃t ≤
1

fR,x0
(t)

1

m(Ã0)
≤ (1− ε)f̃t(γt) for σ-almost all γ ∈ L.

For general µ0 we may assume that the set {f0 > 0} has finite measure. Then

t 7→ µ̃t =
1

m({f0 > 0})

∫
{f0>0}

1

f0(x)
δTt(x)dµ0(x)

is a geodesic in Pp(M) such that µ̃0 has constant density, i.e. µ̃0 = 1
m({f0>0})m

∣∣
{f0>0}.

Note that σ̃ = 1
f0◦e0·m({f0>0})σ is the unique p-optimal dynamical coupling between

µ̃0 and µ̃1, and f̃t satisfies

f̃t(γt) =
ft(γt)

f0(γ0)
f̃0(γ0) for σ̃-almost every γ ∈ Geo[0,1](M,d)

Since f̃0(γ0) = 1
m({f0>0}) for σ̃-almost all γ ∈ Geo[0,1](M,d) we obtain

ft(γt)

f0(γ0)

1

m({f0 > 0})
= f̃t(γt) ≤

1

fR,x0
(t)
f̃0(γ0) =

1

fR,x0
(t)

1

m({f0 > 0})

for σ̃-almost every γ ∈ Geo[0,1](M,d). This proves the claim as σ and σ̃ are mutually
absolutely continuous. �
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Recall that the MCP(0, N)-condition holds if for all µ0 = ρ0m ∈ P2(M) and all
x ∈M there is geodesic t 7→ µt = ρtm + µst between µ0 and δx such that∫

ρ
1− 1

N
t ≥ (1− t)

∫
ρ

1− 1
N

0 dm.

Cavalletti–Mondino showed that MCP(0, N)-spaces have the bounded density prop-
erty with gR,x0

(t) = (1− t)−N , see [CM17, Theorem 3.1]. Thus we obtain the fol-
lowing equivalent characterization of essentially non-branching MCP(0, N)-spaces.

Corollary 5.17. A p-essentially non-branching metric measure space satisfies the
measure contraction property MCP(0, N) if and only if it is qualitatively non-degenerate
with fR,x0

(t) = (1− t)N , i.e. m(At,x) ≥ (1− t)Nm(A) for all x ∈M and all Borel
set A ⊂M of finite m-measure.

There are similar versions for the general measure contraction propertyMCP(K,N),
K ∈ R and N ∈ [1,∞). This actually shows that one can regard the measure con-
traction property as a directional version of Bishop–Gromov volume comparison
condition which for K = 0 says that m(Br(x)) ≥ (1− t)Nm(B(1−t)r(x)).

Remark (Removing essentially non-branching I). Using a construction of good ge-
odesics as in Rajala [Raj12b] and Cavalletti–Mondino [CM17] combined with the
GKS-Construction (Theorem 4.10) it might be possible to show that a measure m
that is not necessarily essentially non-branching is qualitatively non-degenerate if
and if it has the bounded density property. We leave the details to a future work.

Along the lines of [Raj12a] we also obtain local versions of the Poincaré inequality
with constant

CR,x0 = sup
t∈(0,1)

min{ 1

fR,x0(t)
,

1

fR,x0(1− t)
},

i.e. for all Lipschitz functions f : M → R and Br(x) ⊂ BR(x0) it holds∫
Br(x)

|f − f̄Br(x)|dm ≤ 4rCR,x0

∫
B2r(x)

Lip fdm

where
f̄A =

1

m(A)

∫
A

fdm

and
Lip f(x) = lim sup

y→x

|f(y)− f(x)|
d(x, y)

.

Note that if the m satisfies the bounded density property then the metric mea-
sure space (M,d,m) satisfies the connectedness assumptions of Eriksson-Bique, see
[EB16, Section 4]. In particular, it will satisfy a local (1, p)-Poincaré inequality
in BR(x0) for some p > 1 depending only on the distortion function gx0,R. If
the distortion function is independent of x0 and R this would even yield a global
(1, p)-Poincaré inequality.

Remark (Removing essentially non-branching II). Similar to Lemma 5.7 it is pos-
sible to show that under the condition

m({z ∈M | d(z, x) = d(z, y)}) = 0

for all x 6= y the bounded density property holds between every µ0, µ1 ∈ Pp(M)
whenever suppµ0, suppµ1 ⊂ BR(x0) and the function gR,x0

is upper semi-continuous
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in (0, 1). In particular, if the density bounds are sufficiently nice then a local dou-
bling condition and local Poincaré inequality holds.

We quickly sketch the argument: Note first that Lemma 5.4 holds for those
spaces so that one obtains for µ1 =

∑n
i=1 λiδxi

a geodesic in Pp(M) between µ0

and µ1 which has uniform density bounds only depending on the density of µ0.
Now let µn1 ⇀ µ1. At a fixed time t ∈ (0, 1) there is a µnt = ρnt m with

∫
ρnt m = 1

and ‖ρnt ‖∞ ≤ gR,x0
(t)‖ρ0‖∞ implying that (ρnt )n∈N is precompact in L1(m). Hence

up to extracting a subsequence ρnt → ρt in L1(m), ‖ρt‖∞ ≤ Ct‖ρ0‖∞ and µt =
ρtm being a t-midpoint of µ0 and µ1. The same argument then gives a geodesic
t 7→ µt which is absolutely continuous with uniform density bounds at all points
t ∈ Q ∩ (0, 1). By upper semi-continuity of gR,x0

and the same argument, this
time applied to µtn ⇀ µt with tn ∈ Q ∩ (0, 1) and tn → t ∈ (0, 1), shows that µt
is absolutely continuous with uniform density bound, compare also with [CM17,
Proof of Theorem 4.1].

Generalizations to N =∞. As it turns out the idea of the proof of existence of
transport maps can be easily generalized to a more general situation. Compare the
results of this section with [Gig12, Theorem 3.3(ii)] where non-branching spaces
were treated. Recall that the CDp(K,∞)-condition (see [LV09, Stu06b, Kel17])
requires that for µ0, µ1 ∈ Pp(M) with µi � m there is a geodesic t 7→ µt � m such
that∫

ft log ftdm ≤ (1− t)
∫
f0 log f0dm + t

∫
f1 log f1dm−Kt(1− t)Wp(µ0, µ1)2

where ft is the density of µt.
If we choose µ0 = 1

m(A0)m
∣∣
A0

and apply Jensen’s inequality on the left-hand side,
then it holds

logm(Γt) ≥ (1− t) logm(A0)− t
∫
f1 log f1dm +Kt(1− t)W2(µ0, µ1)2

where Γt = suppµt. Thus
lim
t→0

m(Γt) = m(A0)

whenever
∫
f1 log f1dm <∞ and A0 is compact.

Remark. We can replace the CDp(K,∞)-condition by the CD∗p(K,N)-condition
with N < 0 as defined by Ohta in [Oht16]. Indeed, following the proof of [Oht16,
Theorem 4.8] gives a stronger variant of the Brunn–Minkowski inequality (replace
At by Γt) which for K = 0 and r = − 1

N > 0 says

m(Γt)
−r ≤ (1− t)m(A0)−r − t

∫
f1+r

1 dm.

implying again limt→0 m(Γt) = m(A0).

Lemma 5.18. Let A be a bounded Borel set and µ1 ∈ Pp(M) with µ1 � m. Assume
(M,d,m) is p-essentially non-branching and satisfies the CDp(K,∞)-condition. If
the geodesic connecting µ0 = 1

m(A)m
∣∣
A
and µ1 is unique then the (unique) p-optimal

coupling π of µ0 and µ1 is induced by a transport map.

Remark. Strictly speaking the assumptions imply that the strong CDp(K,∞)-
condition holds between µ0 and µ1 thus the argument of the proof of [RS14, Corol-
lary 1.4] can be used. For completeness we present the arguments based on the
ideas above.
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Proof. Assume by contradiction that the claim is false for µ0 = 1
m(A)m

∣∣
A

and
µ1 � m. Then by the Selection Dichotomy (Theorem 2.4) there are a compact set
K ⊂ A and two disjoint bounded closed set A1 and A2 such that π(K × A1) > 0
and

µ0 = (p1)∗πi =
1

m(K)
m
∣∣
K
.

µi1 = (p2)∗πi � µ1 � m

where πi = 1
π(K×Ai)

π
∣∣
K×Ai

and i = 1, 2. Denote the density of µi1 by f i1 and note
that for large n ∈ N

µ1
1({f1

1 ≤ n}), µ2
1({f2

1 ≤ n}) > 0.

Thus we may restrict K further (and obtain new Ai, πi, and µi1) and assume that
for i = 1, 2, f i1(y) is bounded by n for µi1-almost all y ∈M . Since each Ai1, i = 1, 2,
is bounded we obtain ∫

f̃ i1 log f̃ i1dm ∈ R.

Corollary 2.7 implies that the p-optimal dynamical coupling between µ0 and µi1 is
still unique so that the interpolation inequality implies

logm(Γ
(i)
t ) ≥ (1− t) logm(K)− t

∫
f i1 log f i1dm +KWp(µ0, µ

i
1)2

where Γ(i) = suppπi is the support of the unique p-optimal dynamical coupling of
µ0 and µi0. In particular, it holds

lim
t→0

m(Γ
(i)
t ) = m(K) for i = 1, 2.

Also note that Γ(1) ∪ Γ(2) is cp-cyclically monotone, so that (M,d,m) being p-
essential non-branching shows for a sequence tn → 0 we may replace Γ(1) and Γ(2)

by smaller sets Γ̃(1) ⊂ Γ(1) and Γ̃(2) ⊂ Γ(2) such that π1(Γ̃(1)) = π2(Γ̃(2)) = 1 and
m(Γ

(1)
tn ∩ Γ

(2)
tn ) = 0 for all large n ∈ N. Note that still limt→0 m(Γ̃

(i)
t ) = m(K). But

then

m(K) ≥ lim
δ→0

m(Kδ)

≥ lim
t→0

m(Γ̃
(1)
t ∪ Γ̃

(2)
t )

= lim
t→0

[
m(Γ̃

(1)
t ) + m(Γ̃

(2)
t )
]

= 2m(K)

which is a contradiction. �

Theorem 5.19. Assume (M,d,m) is p-essentially non-branching and satisfies the
CDp(K,∞)-condition. If µ0, µ1 ∈ Pp(M) are such that there is a p-optimal dynam-
ical coupling σ ∈ OptGeop(µ0, µ1) with µ0, (et0)∗σ, µ1 � m for some t0 ∈ M then
the p-optimal coupling (e0, e1)∗σ is induced by a transport map T .

Proof. We reduce the general case to Lemma 5.18 above. Let t 7→ µt = (et)∗σ
be a geodesic between µ0 � m and µ1 � m with µt0 � m. By Corollary 2.12
we see that s 7→ µst0 is the unique geodesic connecting µ0 and µt0 and there is
a unique p-optimal transport map Tt0,1 between µt0 and µ1. Hence, it suffices to
show that (e0, et0)∗σ is induced by a transport map. Since s 7→ µst0 is unique
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between its absolutely continuous endpoints it suffices to show the claim for µ0 and
µ1 connected by a unique geodesic t 7→ µt.

Let σ be the unique p-optimal dynamical coupling induced by t 7→ µt and π =
(e0, e1)∗σ. Denote the densities of µ0 and µ1 with respect to m by f0 and f1

respectively. Since
π(
⋃
n∈N

Cn) = 1

where Cn = ({f0 ≥ 1
n} ∩ Bn(x0))×M for a fixed x0 ∈ M , it suffices to show that

the claim holds for π restricted to Cn. Note that by Corollary 2.7 the geodesic
connecting the marginals of 1

π(Cn)π
∣∣
Cn

is still unique.
Thus we can assume µ0 = f0m has bounded support and there is a Borel set

A ⊂ M of full µ0-measure such that f0 is bounded below by an ε > 0. Let σ be
the unique p-optimal dynamical coupling between µ0 and µ1 and define a function
f : M ×M → [0,∞) by

f(x, y) = χA(x)
1

f0(x)
.

Corollary 2.7 shows that σf is still unique between µf0 = 1
m(A)m

∣∣
A

and µf1 . It is
easy to see that (e0, e1)∗σf is induced by a transport map if and only if (e0, e1)∗σ

is induced by a transport map. We conclude by noticing that A = suppµf0 and µf1
satisfy the conditions of the previous lemma and hence (e0, e1)∗σf is induced by a
p-optimal transport map. �

Since by Rajala–Sturm [RS14] strong CDp(K,∞)-spaces are p-essentially non-
branching, we recover their result on the existence of transport maps [RS14, Corol-
lary 1.4].

Corollary 5.20. If (M,dm) satisfies the strong CDp(K,∞)-condition between ev-
ery µ0, µ1 ∈ Pp(M) with µ0, µ1 � m there is a p-optimal dynamical coupling σ and
(e0, e1)∗σ is induced by a transport map.

If, instead, we know that between an absolutely continuous initial measure and
an arbitrary measure every interpolation is absolutely continuous then we can show
general existence of transport maps.

Corollary 5.21. Assume (M,dm) has the strong interpolation property (sIP)p.
Then (M,d,m) is p-essentially non-branching and satisfies the (weak) CDp(K,∞)-
condition if and only if it satisfies the strong CDp(K,∞)-condition. Furthermore, if
either of the cases hold then (M,d,m) has good transport behavior (GTB)p as well.

In the more general setting there could be more than one geodesic connecting two
absolutely continuous measures. However, it is possible to show that the absolutely
continuous part of a geodesic connecting measures with finite entropy is just a
restriction of a geodesic given by the interpolation inequality. Hence this geodesic
is unique.

Corollary 5.22. Assume (M,d,m) is p-essentially non-branching and satisfies
the CDp(K,∞)-condition. Then for all µ0, µ1 ∈ Pp(M) with µ0, µ1 � m and∫
f0 log f0dm,

∫
f1 log f1dm < ∞ there is a unique p-optimal dynamical coupling

σ ∈ OptGeop(µ0, µ1) along which the CDp(K,∞)-interpolation inequality holds and
for this dynamical coupling the p-optimal coupling (e0, e1)∗σ is induced by a trans-
port map.
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Furthermore, for any other p-optimal dynamical coupling σ̃ ∈ OptGeop(µ0, µ1)
such that for some t ∈ (0, 1) the t-midpoint µt = ρtm + m with ρt 6≡ 0, there are a
function f : M → [0,∞) which is positive m-almost everywhere on {ρt > 0} and a
Borel set At ⊂M such that

σf = σ̃f̃

where f̃(γ) = χAt
(γt), i.e. the absolutely continuous part of σ̃ is obtained via a

restriction of σ.

Proof. Let σ be a p-optimal dynamical coupling along which the CDp(K,∞)-inter-
polation inequality holds and σ̃ be another p-optimal dynamical coupling such that
at time t ∈ (0, 1) the interpolation µ̃t = (et)∗σ̃ has density with respect to m, i.e.

µ̃t := µ̃at + µ̃st

with µ̃st⊥m, µ̃at � m and µ̃at (M) > 0 . Let At be a Borel set such that µ̃at (M\At) =
0 and µ̃st (At) = 0.

Set f̃(γ) = χAt
(γt), then by Theorem 5.19 the p-optimal coupling (e0, et0)∗σ̃f̃

between µ̃f̃0 and µ̃f̃0 which is induced by a transport map T̃ . Similarly, (e0, et)∗σ is
induced by a transport map T .

We claim that T = T̃ on A0 = T̃−1(At). Indeed, this would imply the result
because µ̃f̃0 ≤ µ0

∣∣
A0

.

The claim follows by observing that between µ̂0 = 1
2 (µ0+µ̃f̃0 ) and µ̂0 = 1

2 (µt+µ̃
a
t )

there is a unique p-optimal coupling which is induced by a transport map. �

Remark. The corollary allows us to do localization so that we can show the follow-
ing: between any two measure µ0 = f0m and µ1 = f1m with finite entropy there is
an interpolation µt = ftdm such that

log ft(γt) ≤ (1− t) log f0(γ0) + t log f1(γ1)−Kd(γ0, γ1)2.

This can be used to obtain density bounds of ft and thus a weak Poincaré inequality.

6. Measure rigidity

In this section we prove the measure rigidity theorem, i.e. we will show that two
qualitatively non-degenerate measures on a p-essentially non-branching space are
mutually absolutely continuous.

For convenience of the reader we recall the main properties of p-essentially non-
branching, qualitatively non-degenerate measures m which are implied by Theorem
5.8 and Corollary 5.9.

Theorem. Let (M,d,m) be p-essentially non-branching and qualitatively non-degenerate.
Then (M,d,m) satisfies the good transport behavior (GTB)p and has the strong in-
terpolation property (sIP)p. In particular, for every µ0, µ1 ∈ Pp(M) with µ0 � m

there is a unique p-optimal dynamical coupling σ ∈ OptGeop(µ0, µ1) and this dy-
namical coupling satisfies (et)∗σ � m for t ∈ [0, 1).

Define
Rt(x) := et

(
(e0, et)

−1({x} ×M)
)

to be the set of t-midpoints of geodesics starting at x. This set is analytic and
hence measurable. Furthermore, for 0 < t ≤ s ≤ 1 it holds

Rt(x) ⊂ Rs(x).
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Thus the following set

R(0,t)(x) :=
⋃

0<s<t

Rs(x) =
⋃

s<t,s∈Q
Rs(x)

is also analytic and measurable. We also write R(0,t](x) = Rt(x). Finally define
the set of strict t-midpoints by

R∗t (x) := Rt(x)\R(0,t)(x).

Recall that the measure m is non-degenerate if for all measurable sets A ⊂ M ,
x ∈ M and t ∈ (0, 1) it holds m(At,x) > 0 whenever m(A) > 0 where At,x =
et((e0, e1)−1(A× {x})).

Lemma 6.1. Assume m is non-degenerate. Then m(R∗t (x)) = 0 for all t ∈ (0, 1].

Proof. First note that
f(t) = m(R(0,t](x) ∩BR(x))

is a non-decreasing function and finite for fixed R > 0 so that for some set Ω ⊂ [0, 1],
whose complement is at most countable, it holds

m(R∗t (x) ∩BR(x)) = lim
ε→0

f(t+ ε)− f(t) = 0 for all t ∈ Ω.

Assume by contradiction Ω 6= (0, 1]. Then there is a t /∈ Ω with m(R∗t (x)∩BR(x)) >
0. It always holds

(R∗t (x) ∩BR(x))s,x ⊂ R∗st(x) ∩BR(x) for all s ∈ (0, 1).

Also note that every t ∈ (0, 1]\Ω there is an s ∈ (0, 1) with st ∈ Ω. In combination
with the non-degeneracy of m this leads to the following contradiction

0 = m(R∗st(x) ∩BR(x)) ≥ m(R∗t (x) ∩BR(x))s,x > 0.

�

Proposition 6.2. Assume m is a non-degenerate measure. For every measurable
A ⊂ M of finite measure and every ε > 0 there is a compact subset K ⊂ A with
m(A\K) < ε and t ∈ (0, 1) such that

K ⊂ Rt(x).

Furthermore, there is an m-measurable map T : K →M such that

d(x, T (y)) =
d(x, y)

t
= d(x, y) + d(y, T (y)).

In particular, there is a dynamical coupling σ which is p-optimal for all p ∈ [1,∞)
such that (e0)∗σ = δx, (et)∗σ = 1

m(K)m
∣∣
K

and (e1)∗σ = T∗((et)∗σ).

Proof. Just note that because m(R∗1(x)) = 0 and t 7→ Rt(x) is monotone we have

m(A) = m(A ∩R1(x)) = m(A ∩ ∪t<1Rt(x)) = lim
t→1

m(A ∩Rt(x)).

Now for all ε > 0 there is a t ∈ (0, 1) close to 1 and a compact set K ⊂ A ∩ Rt(x)
such that m(A\K) < ε. Since K ⊂ Rt(x) there is a measurable map T : K → M
such that

(e0, et, e1)−1(x, y, T (y)) 6= ∅ for all y ∈ K
proving the first part of the claim. For the second just note that µt = 1

m(K)m
∣∣
K

is
a t-midpoint of δx and T∗µt. �
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Theorem 6.3. Assume mi, i = 1, 2, are both p-essentially non-branching and
qualitatively non-degenerate measures on (M,d). Then m1 and m2 are mutually
absolutely continuous.

Proof. Assume first m1 and m2 are mutually singular. Then we immediately arrive
at a contradiction: For measures µ0 � m1 and µ1 � m2 the interpolations must
be absolutely continuous with respect to both m1 and m2 which is not possible.

If m1 and m2 are not mutually singular then there is a non-trivial, non-negative
function f ∈ L1

loc(m2) such that

m1 = fm2 + ms
1

where m2 and ms
1 are mutually singular. As both measures are finite on bounded

sets, there is a measurable set Ω such that m2(Ω) = 0 and ms
1(A ∩ Ω) = ms

1(A) for
all measurable sets A.

Assume by contradiction ms
1 6≡ 0. Let A ⊂ Ω be a compact set with ms

1(A) > 0.
We claim that m2(At,x) = 0 for all x and t ∈ (0, 1). Indeed, if this was not the
case then for some x ∈M and t ∈ (0, 1) there is a compact K ⊂ A and σ as in the
previous proposition such that m2(Ks,x) > 0 and ms

1(Ks,x) = 0 for s ∈ (0, 1). In
that case it holds (et)∗σ = 1

ms
1(K)m

s
1

∣∣
K
, (est)∗σ⊥ms

1 and (est)∗σ � m2.
However, by the strong interpolation property (sIP)p between the measures

(est)∗σ and (e1)∗σ this would imply that (et)∗σ � m2 which is a contradiction
as m2 and ms

1 are mutually singular.
This shows that

ms
1(At,x) = m1(At,x) ≥ f(t)m1(A) = f(t)ms

1(A).

Because A ⊂ Ω is arbitrary and Ω is a set of full ms
1-measure, we see that ms

1 is
qualitatively non-degenerate and p-essentially non-branching.

We arrive at a contradiction by observing that ms
1 and m2 are mutually singular

and both are qualitatively non-degenerate and p-essentially non-branching. This
shows that ms

1 must be trivial and hence m1 � m2. Similarly, exchanging the roles
of m1 and m2 shows m2 � m1 which proves the theorem. �

Since any RCD∗(K,N)-space with N ∈ [1,∞) is 2-essentially non-branching and
qualitatively non-branching, we see that any two measures m1 and m2 on a metric
space (M,d) must be mutually absolutely continuous if the metric measure spaces
(M,d,mi), i = 1, 2, are RCD∗(K,N)-spaces.

Using the strong interpolation property in combination of bounds on the density
of interpolation measures obtained from the CDp(K,∞)-condition we will give an
alternative proof of the measure rigidity theorem. The following technical lemma
can be extracted from the work of Cavalletti–Huesmann [CH14]. For convenience
of the reader we include its short proof.

Lemma 6.4 (Self-Intersection Lemma). Assume t 7→ µt = ftm is a geodesic in
Pp(M) such that µ0 = 1

m(K)m
∣∣
K

for some compact set K, suppµ1 having bounded
support and it holds C := supt∈[0,δ] ‖ft‖∞ < ∞ for δ ∈ (0, 1) then there is a
t0 ∈ (0, δ) such that for all t ∈ [0, t0) it holds µt(K) > 0. In particular, µt and µ0

cannot be mutually singular.

Proof. Assume this is not the case. Then there is a sequence tn → 0 such that
µtn⊥µ0. In particular, there are Borel sets A0 ⊂ K and An ⊂ suppµtn with
An ∩A0 = ∅ and µtn(An) = µ0(A0) = 1. Note that this shows m(A0) = m(K).
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Since the support of µ0 and µt are bounded for all ε > 0 there is a tε ∈ (0, δ)
such that all tn ≤ tε

An ⊂ suppµtn ⊂ Kε.

Also note that

m(An) ≥ 1

C
µtn(An) =

1

C
But then

m(K) = lim
ε→0

m(Kε)

≥ lim sup
n→∞

m(A0 ∪An)

≥ m(K) + lim sup
n→∞

m(An) ≥ m(K) +
1

C

which is a contradiction. �

Theorem 6.5. Assume (M,d,m1) and (M,d,m2) have the strong interpolation
property (sIP)p and satisfy the CDp(K,∞)-condition. Then m1 and m2 are mutually
absolutely continuous.

Remark. The proof below also works in the setting of p-essentially non-branching,
qualitatively non-degenerate measures. Indeed, Corollary 5.9 implies the strong
interpolation property (sIP)p and by Proposition 5.15 the density ft of the t-
interpolation µt is uniformly bounded by the density of f0 if t is close to 1, compare
this also to [Raj12b, Theorem 4.2] and [CM17, Theorem 4.1].

However, the strong interpolation property (sIP)p, which follows from qualitative
non-degeneracy, is essential in order to combine the singular part of one of the
measures with the bounded density property. It is unclear whether without this
property there could be two CDp(K,∞)-measures which are not mutually absolutely
continuous.

Proof. As above two such measures m1 and m2 cannot be mutually singular and
there is a non-trivial, non-negative function f ∈ L1

loc(m2) such that

m1 = fm2 + ms
1

where m2 and ms
1 are mutually singular. As both measures are finite on bounded

sets, there is a measurable set Ω such that m2(Ω) = 0 and ms
1(A ∩ Ω) = ms

1(A) for
all measurable sets A.

Assume by contradiction ms
1 6≡ 0 and let A ⊂ Ω and B ⊂ {f > 0} be compact

sets with ms
1(A) > 0, m2(A) = 0, ms

1(B) = 0 and m1(B) =
∫
B
fdm2 > 0. Let

µ0 =
1

ms
1(A)

ms
1

∣∣
A
� m1

and

µ1 =
1

m1(B)
m1

∣∣
B
� m2.

Then there is a unique geodesic t 7→ µt connecting µ0 and µ1. The strong interpo-
lation property of m1 and m2 shows that for t ∈ (0, 1) the interpolation measures
µt must be absolutely continuous with respect to both m1 and m2. In particular,
µt(A) = 0 for all t ∈ (0, 1].
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Now the CDp(K,∞)-condition implies

‖ft‖∞ ≤ C(K,diamA,diamB) ·max{‖f0‖∞, ‖f1‖∞}.

= C(K,diamA,diamB) ·max{ 1

ms
1(A)

,
1

m1(B)
}

where µt = ftm1.
We arrive at a contradiction by observing that µt(A) > 0 by the Self-Intersection

Lemma above. Thus ms
1 must be trivial showing m1 � m2. Exchanging the roles

of m1 and m2 also shows m2 � m1 proving the theorem. �

Appendix A. Proof of Theorem 2.11 and Corollary 2.12

Before we prove the theorem we need the following technical lemmas.

Lemma A.1. Let σ be a p-optimal dynamical coupling of µ0 and µ1 such that
(et)∗σ = δxt

for some t ∈ (0, 1) and xt ∈ M then µ0 ⊗ µ1 is a p-optimal coupling
and d(·, ·) is constant on suppµ0 × suppµ1. In particular, if µ0 ⊗ µ1 is not a delta
measure then there is a p-optimal dynamical coupling σ̃ such that σ̃(L) < 1 for all
measurable non-branching L ⊂ Geo[0,1](M,d) .

Proof. First note that the trivial coupling µ0⊗µ1 is a p-optimal coupling of µ0 and
µ1 for all p ∈ [1,∞). Indeed, the assumptions imply that for each γ, η ∈ suppσ it
holds γt = ηt = xt and hence `(γ) = `(η). But then `(restr0,tγ) = Wp(µ0, δxt) and
`(restrt,1γ) = Wp(δxt , µ1) and thus for all x0 ∈ suppµ0 and x1 ∈ suppµ1

d(x0, x1) =
d(x0, xt)

t
=
Wp(µ0, δxt

)

t
= Wp(µ0, µ1).

=
d(xt, x1)

1− t
=
Wp(δxt

, x1)

1− t
= Wp(µ0, µ1)

implying that suppµ0 × suppµ1 is cp-cyclically monotone.
Let T0,t : M → Geo[0,1](M,d) be a measurable map such that T0,t(x0) is a

geodesic between x0 and xt. Then σ0,t := (T0,t)∗µ0 is a p-optimal dynamical
coupling between µ0 and δxt

. Similarly, let Tt,1 : M → Geo[0,1](M,d) be a Borel map
such that Tt,1(x1) is a geodesic between xt and x1. Note that for each x0 ∈ suppµ0

and x1 ∈ suppµ1

γx0,x1
s =

{
T0,t(x0)

(
s
t

)
s ∈ [0, t]

Tt,1(x1)
(
s−t
1−t

)
s ∈ [t, 1]

is a geodesic between x0 and x1. Since T0,t and Tt,1 are Borel maps, so is T xt
0,1 :

(x0, x1) 7→ γx0,x1 . In particular, σ̃ = (T xt
0,1)∗µ0 ⊗ µ1 is a p-optimal dynamical

coupling of µ0 and µ1.
If µ0 ⊗ µ1 is not a delta measure then either µ0 or µ1 (or both) is not a delta

measure. Assume µ1 is not a delta measure. Then for each set L with σ̃(Γ) = 1 and
for µ0-almost all x0 ∈ e0(Γ) there are at least two distinct geodesics γ, η ∈ Γ with

restr0,tγ = restr0,tη = T0,t(x0).

In particular, µ0 ⊗ µ1 is not concentrated on a non-branching set. �

Remark. Assume x 7→ (µx0 , µ
x
1) is a measurable map such that δx is the t-midpoint

of µx0 and µx1 . Then x 7→ (T x0,1)∗(µ
x
0 ⊗ µx1) is also measurable.
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Lemma A.2. Let µ0 and µ1 be probability measures such that any p-optimal dy-
namical coupling between µ0 and µ1 is concentrated on a set of non-branching geo-
desics. Then for any t-midpoint µt of µ0 and µ1, any p-optimal dynamical coupling
between µ and µt is concentrated on a set of non-branching geodesics.

Proof. It is easy to see that any p-optimal dynamical coupling σ ∈ OptGeop(µ, µt)
is obtained by restricting a p-optimal dynamical coupling σ̃ ∈ OptGeop(µ, ν), i.e.

(restr0,t)∗σ̃ = σ

and hence
(restr0,t)∗OptGeop(µ0, µ1) = OptGeop(µ0, µt).

Furthermore, if L is non-branching and measurable then restr0,t(L) is also non-
branching and measurable. In particular, choosing L such that σ̃(L) = 1 implies
σ(restr0,t(L)) = 1. �

Proposition A.3. Let µ0 and µ1 be probability measures such that any p-optimal
dynamical coupling between µ0 and µ1 is concentrated on a set of non-branching
geodesics. Then for any p-optimal dynamical coupling σ ∈ OptGeop(µ0, µ1) and any
t ∈ (0, 1) and s ∈ [0, 1] the p-optimal coupling (et, es)∗σ is induced by a transport
map.

Proof. Let µs = (es)∗σ, πt,0 = (et, e0)∗σ and πt,1 = (et, e1)∗σ. It suffices to show
that πt,0 is induced by a transport map T , i.e. (id×T )∗µt = πt,0. By disintegrating
πt,0 and πt,1 over (et, e0) and resp. (et, e1) we get

π0,t =

∫
µx ⊗ δxdµt(x)

πt,1 =

∫
δx ⊗ νxdµt(x).

Let σ =
∫
σxdµt(x) denote the disintegration of σ over et and define a new dynam-

ical coupling

σ̃ =

∫
(T x0,1)∗(µx ⊗ νx)dµt(x)

where T x0,1 is defined as in the proof of the previous lemma. Note that (x0, x1, xt) 7→
T xt

0 (x0, x1) is measurable on (e0, e1, et)(Geo[0,1](M,d)) and hence x 7→ (T x0,1)∗(µx⊗
νx) measurable on suppµt.

We claim σ̃ is p-optimal. Indeed, by the previous lemma it holds∫
d(γ0, γ1)pdσ̃(γ) =

∫ ∫ ∫
d(y, z)pdµx(y)dνx(z)dµt(x)

=

∫
1

tp
d(y, x)pdµx(y)dµt(x)

=
1

tp

∫
d(y, x)pdπ0,t(y, x) = Wp(µ, ν)p.

If π0,t is not induced by a transport map then there is a Borel set B ⊂ M
of positive µt-measure such that for all x ∈ B the measure µx ⊗ νx is not a delta
measure. This, however, implies that for all x ∈ B the measure σ̃x = (T x0,1)∗(µx⊗νx)
is not concentrated on a set of non-branching geodesics. The assumption shows that
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there is a non-branching measurable set L ⊂ Geo[0,1](M,d) with σ̃(L) = 1. But this
is a contradiction since σx(L) < 1 for µt-almost all x ∈ B implies

σ̃(L) =

∫
σ̃x(L)dµt(x) < 1.

�

Corollary A.4. Let µ0 and µ1 be probability measures such that any p-optimal
dynamical coupling between µ0 and µ1 is concentrated on a set of non-branching
geodesics. Then for any p-optimal dynamical coupling σ ∈ OptGeop(µ0, µ1) and
any t ∈ (0, 1) there is a Borel map Tt : M → Geo[0,1](M,d) such that

σ =

∫
δTt(x)dµt(x)

where µt = (et)∗σ. In particular, whenever σ̃ ∈ OptGeop(µ0, µ1) with µt = (et)∗σ̃
then σ ≡ σ̃.

Proof. Let σ =
∫
σxdµt(x) be the disintegration of σ over et. The proof above

shows that σ is unique among all dynamical couplings σ̃ ∈ OptGeop(µ0, µ1) with
µt = (et)∗σ̃. For fixed s ∈ [0, 1] there is a transport map Tt,s such that

(et, es)∗σ =

∫
(et, es)∗σxdµt(x) =

∫
δx ⊗ δTt,s(x)dµt(x).

In particular, there is a Borel set Ωs ⊂M with µt(Ωs) = 1 and

(et, es)∗σx = δx ⊗ δTt,s(x)

for all x ∈ Ωs. Let (sn)n∈N be dense in (0, 1) and note µt(Ω) = 1 where Ω =
∩n∈NΩsn . Define γxs = Tt,s(x)and observe that γx ∈ Geo[0,1](M,d) and

(et, esn)∗σx = (et, esn)δγx .

This shows that σx = δγx on Ω and thus

σ =

∫
δTt(x)dµt(x)

where Tt : M → Geo[0,1](M,d) is any measurable map with Tt(x) = γx on Ω. �

Proof of Theorem 2.11. By the p-essentially non-branching property we see that
the second statement follows directly from the previous corollary. Furthermore, for
Ω as in the previous proof we can choose

L = suppσ ∩ e−1
t (Ω) ⊂ Geo[0,1](M,d).

Then σ is concentrated on L and whenever γ, η ∈ L with γt = ηt then γt, ηt ∈ Ω so
that Tt(γt) ≡ γ ≡ η. �

Proof of Corollary 2.12. Assume t 7→ µ̃0,t
s and t 7→ µ̃t,1s are geodesics connecting µ0

and µt and resp. µt and µ1. Then

t 7→ µ̂s =

µ̃
0,t
s
t

s ∈ [0, t]

µ̃t,1s−t
1−t

s ∈ [t, 1]
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is also a geodesic connecting µ0 and µ1. Denote the induced p-optimal dynamical
coupling by σ̂ and note that σ̊ = 1

2 (σ + σ̂) is also a p-optimal dynamical coupling
between (e0)∗σ and (e1)∗σ. Thus it holds

σ̊ =

∫
δT̊t(x)dµt(x) =

1

2

∫
δTt(x) + δT̃t(x)dµt(x)

where Tt, T̃t and T̊t are the maps given by Theorem 2.11. This, however, shows
that the three maps agree µt-almost everywhere implying σ̂ = σ and thus µs = µ̂s
for s ∈ [0, 1]. In particular, t 7→ µts and t 7→ µs+(1−s)t are the unique geodesics
between µ0 and µt and resp. µt and µ1. �
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