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1 Technical details and a notion based
on Arzela—Ascoli

Convention: the notions A C B and A C B are equivalent. The latter one will be avoided
below.

1.1 Topological and metrical definitions

In the following let M be any set. A set of subsets 7 C 2™ is called a topology if
@, M € 2M 7 is closed under finite intersections and closed under arbitrary unions, i.e.
if U; € 7 for some index set I then U;NU; € 7 for 4,5 € I and U;je;U; € 7. An element of
7 will be called open and its complement closed. A set A C M is called a neighborhood
of x € M if there is an open set U C A with x € U. The topology 7 is called Hausdorff
if for all distinct &,y € M there are open neighborhoods U, and Uy of x and resp. y such
that ¢ Uy and y ¢ U,.

For an arbitrary set A we define the closure cl A of A and its interior int A as follows

clA= ﬂ C
ACC closed
int A= U U,

ADU open

i.e. cl A is the smallest closed set containing A and int A is the largest open set contained
in A. It is easy to show that cl A is closed and int A is open.

The tuple (M, 1) will be called a topological space. With the help of a topology we can
define the notion of convergence of sequences': Let (x,)nen be a sequence in M. We say
(Tn)nen converges to x, written x,, — x, if for all open set U there is an N > 0 such that
r, € U for alln > N.

A function f: (M,7) — (M, 7") between two topological spaces is called continuous if
for all open set U’ € 7/ if f~1(U’) € 7.

Let A C B be two subsets of M. We say A is dense in B if for all neighborhoods U of
x € Bit holds UN A # &. Call M separable if there is a countable subset A = {x;, }nen
which is dense in M.

A family {U; }ier is called open cover of a set A C M if

AclJu

il

"Without countability properties the closure of a subset A may be larger than the set of all accumulation
points of sequences in A. Extending the notion of convergences to nets this is indeed true.
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A subset K is compact if every open cover {U,};c; of K admits a finite subcover, i.e.
there is a finite subset I’ C I with

K C U Ui;.
el
From the definition it follows that any compact subset is closed. An arbitrary subset
A C M is called precompact if its closure is compact. A topological space (M, 7) is called
locally compact if every x € M admits a compact neighborhood.
If A is a subset of M then the topology 7 induces a topology 74 on A as follows

Ta={UNA|U € 7}.

This allows us to use topological notions relative to A4, e.g. 2 C A is called open/closed /compact
in A if it holds for the topological space (A, T4).

A function d : M x M — [0,00) (resp. d: M x M — [0,00]) is called metric (extended
metric) if for all x,y,z € M it holds

e (DEFINITENESS) d(z,y) =0 <= z=y
e (SYMMETRY) d(z,y) = d(y,x)
e (TRIANGLE INEQUALITY) d(z,2) < d(z,y) + d(y, 2).

Remark. It is possible to drop the symmetry assumption. However, the notions of
(open/closed) balls and Cauchy sequence as well as topology might depend on the order,
i.e. whether d(z,z¢) < € or d(xp,z) < €.

The tuple (M, d) will be called metric space. Every metric spaces induces a topology 74
on M as follows
q={Ac2M|Vz € M3r>0:B.(z) C A}

where B,.(x), the open ball at = of radius r, is defined as follows
B(z) = {y € M|d(z,y) < r}.

Similarly the closed? ball B,(x) at x of radius r is defined as
By(z) ={y € M|d(z,y) <r}.

It is easy to see that every open ball of positive radius is an open set (w.r.t. 74) and
every closed ball is a closed set. Note, however, that the closure of an open ball might
not be the closed ball of the same radius. We observe that any topology induced by a
metric space is necessarily Hausdorff.
Using the metric it is possible to show that a sequence (zy,)nen converges to x (w.r.t.
74) if and only if
lim d(zy,z) = 0.

n—N
By definiteness this shows that the limit of a converging sequence is unique. In partic-
ular, any metric induces a Hausdorff topology. Furthermore, the usual € — d-notion of
convergence is equivalent to either of the two convergences as well.
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Lemma 1.1. A subset A C M 1is closed if and only if for all x,, — x with x©, € A it
holds x € A.

Proof. Note that it suffices to show that A = cl A. Indeed, if x,, = x with x,, € A then
automatically = € cl A.
Let z € cl A\ A. Assume by contradiction that there is an ng € Nwith B1 (z)NA = 2.

Then A C cl A\B L (x) and cl A\B L (x) is closed. This, however, is a deﬁonition of clA
as being the smallest closed subset contalnlng A.

Hence we have shown that for all n € N the sets B1 (x)N A are non-empty. Now choose
a sequence =, € B1(z) N A and observe that z, — z. In particular, any = € cl A\A is a
limit point of a coﬂlverging sequence in A. O

A sequence (zp)nen is called Cauchy sequence if for all € > 0 there is an N, > 0 such
that for all n,m > N,
d(xp, xm) < €.
A metric space (M, d) is called complete if every Cauchy sequence is convergent.
In a metric space compactness can be characterized as follows:

Proposition 1.2. Let (M,d) be complete and C C M be a closed subset. Then the
following are equivalent:

e (COVERING COMPACT) C' is compact, i.e. every open covering of C admits a finite
subcover.

e (SEQUENTIALLY COMPACT) Every sequence in C' admits a converging subsequence
with limit in C'.

e (TOTALLY BOUNDED - externally) For every € > 0 there are finitely many 1, ..., x, €
M with
n
C C | JBe(x:)
i=1
e (TOTALLY BOUNDED - internally) For every e > 0 there are finitely many x1,...,x, €

C with .
C c | Be(i).
i=1
Furthermore, (M, d) is locally compact if and only if for every x € M there is an r > 0
such that B,.(x) is compact.

The definition of total boundedness immediately implies that every totally bounded
set as well as its closure is separable. Also note that the proposition may be applied to
precompact sets.

Corollary 1.3. Let (M,d) be complete and A C M be any subset. Then the following
are equivalent:
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e (COVERING PRECOMPACT) A is precompact, i.e. every open covering of cl A admits
a finite subcover.
e (SEQUENTIALLY COMPACT) Every sequence in A admits a converging subsequence
(with limit in cl A).
e (TOTALLY BOUNDED - externally) For every € > 0 there are finitely many x1, ..., x, €
M with
n
Ac | Be(x)
i=1
e (TOTALLY BOUNDED - internally) For every e > 0 there are finitely many x1,...,x, €

C with .
AC U Bg(aﬁz)

i=1

We also observe the following corollary which might turn out to be useful later on.
Using the metric it is possible to strengthen the notion of continuity as follows:

Definition 1.4 (uniformly continuous). A function f : (X,dx) — (Y,dy) is called
uniformly continuous if for all € > 0 there is a 6 = d(e) > 0 such that

d(w.y) <5 = d(f(2), f)) < e.

The function is called locally uniformly continuous every point p € M admits a neigh-
borhood U > p such that f ’U is uniformly continuous.

The following lemma is left as an exercise.
Lemma 1.5. If X is compact then any continuous function is uniformly continuous.

In order to describe uniform continuity it often helps to quantify the ¢ — é-notion as
follows:

Lemma 1.6. A function [ is uniformly continuous if and only if there is an non-
decreasing function w : (0,00) — [0,00) with w(t) — 0 as t — 0 such that for all
x,y € M it holds

d(f(x), f(y)) < wld(z,y))-

In this case we say f is w-uniformly continuous or f has modulus of uniform continuity
equal to w.

Proof. If for some €p,t > 0 it holdsd(e) > ¢ for all € < ¢y then it is possible to show that
f is constant on all balls By(x), i.e. f islocally constant. I Similarly, if f is w-uniformly
continuous with w(t) = 0 for some ¢ > 0 then it is locally constant. In either of such
a case the equivalence holds trivially. Thus w.l.o.g. we may assume f is not locally
constant.
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Let f be uniformly continuous and define
w(t) = inf{e|t < o(e)}.

It is easy to see that w is non-decreasing and we have w(t) > 0 for all ¢ > 0 as f is not
locally constant.
From the definition of we have for all n there is an € > w(t) with

1
<w(d - =
€= w( X(xv y)) n
with d(x,y) < d(€). Then uniform continuity of f shows

dy (f(z), f(y)) < e <w(dx(z,y)).

It remains to show that w(t) — 0 as t — 0. Assume this is not the case. Then for some
€0 > 0 it holds w(1) > € for all +. However, this implies d(ep) < L which is not possible
from the definition of uniform continuity.

Assume now f is not locally constant and w-uniformly continuous and let € > 0. Since
w is positive and non-decreasing and w(t) — 0 as t — 0 there is a ¢ > 0 such that

w(t) € (0,€). Choosing d =t we obtain

dy (f(x), f(y)) < wldx(z,y)) <w(t) <e

which proves the claim and thus the lemma. ]

Example 1.7. If w = Ct® for some « € (0, 1] then f is called Holder continuous (with
modulus (C,«)). If @ = 1 then it is called Lipschitz continuous. The smallest possible
C in the definition of Lipschitz continuity will be called the Lipschitz constant.

Definition 1.8 (Uniform/biHélder /biLipschitz equivalence). Two metric spaces (X, dx)
and (Y, dy) will be called uniformly equivalent if there is a bijective map ¢ : X — Y such
that ¢ and its inverse ¢! are uniformly continuous. If both are Hélder or resp. Lipschitz
continuous then we call the two metric spaces biHolder (resp. biLipschitz) equivalent.
Either of the notion may holds locally if there are bijective maps such that ¢ and ¢!
are locally uniformly continuous.

We say (X,dx) and (Y, dy) are isometric if ¢ and ¢~
constant 1. In that case ¢ is bijective and

I are Lipschitz continuous with

dx(z,y) = dy(e(x), 0(y))
for all z,y € X.

Proposition 1.9 (Extension Lemma). Assume A is dense in a metric space (X,dy)
and (Y,dy) is complete. If f: A — Y is an w-continuous map then there is a unique
w-continuous map f: X — Y with f|A = f.
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Proof. Let x € X. Since clA = X by Lemma 1.1 there is a sequence z,, — = with
xn € A. Set yn, = f(xy,). Since (zp)nen is Cauchy and w(t) — 0 as ¢ — 0 we have

n,}rlz,r—r}oo d(yn7 ym> = n,rlrlLr—r>loo w(d(mn, l’m)) =0
we see that (yn)nen is also Cauchy. By completeness there is a y with y, — y. If y is
unique then setting f (z) = y gives a unique value at y. We leave it to the reader to show
that f is w-uniformly continuous.
To see that y is unique let (Z,)nen be another sequence with Z,, — 0. Then there is a
gy € Y with f(Z,) = g — §. Since d(xy, Tn) — 0 we see that

d(yna gn) < W(d(xnajn)) —0
implying that y = g. O

Definition 1.10 (proper metric space). A metric space (M, d) is called proper or bound-
edly compact if every bounded closed subset is compact.

By Corollary 1.3 we see that a variant of the classical Heine-Borel Theorem applies to
any proper metric space, i.e. any bounded sequence has a convergent subsequence. Fur-
thermore, a proper metric space is separable and complete. Indeed, completeness follows
as such spaces are locally compact. To see separability observe that M = U, enBn(70)
and that By (o) is compact and thus separable.

A proof of the following using ultralimits can be found in the next chapter.

Theorem 1.11 (Arzela—Ascoli). Assume (fy, : (X,dx) — (Y,dy))nen is a sequence of
w-uniformly continuous functions between a separable metric space (X,dx) and a proper
metric space (Y,dy) such that for some xq the sequence (fn(x0))nen is bounded. Then
there is a subsequence (fy,,) such that for all x € X the sequences (fn,(x))n,en are
convergent to points f(x) such that f : (X,dx) — (Y,dy) is w-uniformly continuous.
If (X,d) is compact then this pointwise convergence is uniform, i.e. Supgens|fn, () —
f@)] =0 as k — co.

1.2 Quantifying compactness

Definition 1.12 (e-net). A subset A C M is an e-net of the metric space (M, d) if for all
y € M there is an z € A with d(x,y) < e. A e-net A is minimal if for all x € A the net
A\{z} is no an e-net. Define NM:D(¢) € NU {oc} to be the minimal number of points
needed to form an e-net.

We often use the notation A C B is an e-net if A is an e-net of (B,d|,. ).

Definition 1.13 (e-separated sets). A subset B C M is an e-separated set of the metric
space (M,d) if for x,y € B it holds d(z,y) > €. An e-separated set B is maximal for
x € M\B the set B U {z} is not an e-separated set. Define M (¢) € NU {oo} to be
the maximal number of points that can form an e-separared set.
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It is easy to see that N4 and M4 are non-increasing

Lemma 1.14. FEvery maximal e-separated set B is an e-net. In particular, N(M’d)(e) <

MMM (),
Proof. 1f this was wrong then there is an x € M with d(x,y) > € for all y € B. But then
B U {z} forms an e-separated set which is not possible by maximality of B. O

Lemma 1.15. Any 2¢-separated set has at most N(M’d)(e) number of points. In partic-
ular, MM (2¢) < NMA) (¢),

Proof. Let B is an 2e-separated set and A an e-net with #4 = NMd(e) ie. Ais a
minimal e-net. Let a € A and b, b’ € B be such that d(a,b’),d(a,b) < e. Then d(b,b') < 2¢
implying b = '. In particular, for all b € B there is a unique a(b) € B. Thus #B < #A
proving the claim. O

The following observation follows from the fact that total boundedness is equivalent
to being precompact.

Corollary 1.16. The completion of a metric space (M,d) is compact if and only if
NMA) (or MMA)) gre finite-valued.

1.3 Product and Quotient spaces, and limits of spaces via
Arzela—Ascoli

Given finitely many metric spaces (M,,d,), n =1,..., N, we may define product metric
on the product x_; M, as follows: Let F' : RY — [0,00) be a norm on N. Then for
(#n); (yn) € X0y My

dr((zn), (Yn)) = F(d(zn, yn))
defines a metric on x_; M,, such that the natural “coordinate” projections 7y, : () — Ty,
are Lipschitz continuous with constant F'(e;,). Since any two norms on RV are biLipschitz
equivalent? we see that any two metric products are biLipschitz equivalent. In particular,
the notion of uniform continuity of on two such products only differs up to a constant.
As an abbreviation we use My x, My = (M x M,dy,) where |[(z,y)|l¢, = ¢/2P + yP and
resp. ||(z,y)loo = max{|z|, |y[}.
Lemma 1.17. If (M,d) is a metric space then d : M x M — [0,00) is 1-Lipschitz on
M X1 M.

Proof. Assume w.l.o.g. d(z1,y1) > d(x2,y2). Then applying the triangle inequality twice

we get
ld(z1,y1) — d(22,y2)| = d(z1,y1) — d(22, y2)
< A{d(x1,22) + d(w2,y2) + d(y2,y1)} — d(z2,y2)
< d(z1,72) +d(y1,y2) = d((z1,y1), (12, 42))-
This proves the claim. O

3Usually it is just called “any two norms are equivalent”.
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A pseudo metric is a function § : M x M — [0,00) on a set M that is symmetric and
satisfies the triangle inequality. As for a metric any pseudo metric ¢ induces a topology
on M. However, this topology is Hausdorff if and only if § is a metric.

The following lemma is left as an exercise.

Lemma 1.18. Let (M, T) be a topological space and {Cy}qen C 2M\7 be a closed parti-
tion for an index set N, i.e Cy is closed Cy N C, = @ for ¢ #r and

UQ:M

geEN

Then the following set
w={QcN||JC e}
qeN
is a topology on N and the natural projection w : M — N is continuous where 7 is defined
by m(x) = q whenever x € Cj.
Corollary 1.19. If 6 : M x M — [0,00) is a continuous pseudo metric on (M, T) then
is a metric space (N, d) and a continuous projection w: M — N such that

6(z,y) = d(w(x), 7(y)).
Furthermore, if (M, T) is compact then (N, d) is a compact metric space.

Proof. By symmetry x ~g y defines an equivalence relation. Since d is continuous we see
that the sets of equivalence classes [z] is closed. Hence the index set N of the equivalence
classes can be made into a topological space (N, 7y).

Assume z ~g5 2’ and y ~;5 3. Since d(z,2’) = d(y,y’) = 0 we see

8(z,y) <oz, a") +6(a",y") + (¢, v)
=4(",y)
< (@', x) + 02, y) +(y,y') = 6(z, y)

implying that d(x,y) = d(a’,y’). Thus there is a uniquely define function d : N X
N — [0,00) with §(z,y) = d(n(z),7(y)). This function is symmetric and satisfies the
triangle inequality. To see that it is definite observe that whenever d(w(x),m(y)) = 0
then §(z,y) = 0 so that m(z) = m(y). Here we used the fact that 7 is onto. O

In the following we will denote by (Ns,ds) the metric space obtained from a pseudo
metric on (M, 7).
Given a modulus of continuity w and a metric space (M, d) define the following space

X, = {[(Ns,ds)] | dis an w-uniformly continuous pseudo metric on M x M}

where [(IV, d)] denotes the equivalence class of all metric spaces isometric to (V, d).

On X, we define the following notion of convergences: We say [Ny, d,] — [Noo, doo] if
for some [Nj, ,ds, | = [Nn,dy] for n € NU {oo} and §,, — § pointwise. Observe that the
pointwise limit of a sequence of pseudo metrics is itself a pseudo metric.

We first need the following lemma whose proof relies on the Gromov—Hausdorff con-
vergence which will be introduced later on.

10



1 Technical details and a notion based on Arzela—Ascoli

Lemma 1.20. Assume (M,d) is compact,6,, — 0, 0y, is w-uniformly continuous and
[N,d] = [Ns,,ds,]. Then [N,d] = [Ns,ds).

Proof. Let {xk}éézl be an e-dense set in M. Then {[mk]gn}é;l and {[z4]s} =< | are y-dense
in their corresponding spaces where v = w(e). Choose n large enough so that sup |6, —d| <
. Thus whenever 0, (g, x;) = 0 then 6(xg, ;) < . So for each k € {1,..., L} we may
choose ¢y, (k) among 1, ..., Ne such that ¢, (k) = ¢, (k') and [21]s, = [, )]s, Whenever
[s, = [z1]s,.-

For each [z]s, # [7ks, choose k([z]s,) such k([zk]s,) = [7k]s, and 0n (2, Tp(a))) < -
Now define a map @, : [z]s, = [y, (k(a]s,)))s and observe that @, ({[z)s, }r=,) (and
hence ®,,(Nj,)) is an 2y-net of Nj. Indeed, if [z] € N;s then there is an z; with 0(z, z;) <
~. From the triangle inequality we obtain

5(:B,.le¢,n(l)) < (5(1’,.%[) + 5(xlv$<pn(l)) < 27.
Also observe for k = k([z]s,) and | = k([y]s,) we have

|d(®r([2]s,); Prl([¥ls,)) — ds([z]s, [W]s)] = |0n (e, (k)> T, @) — O, y)
<Y 10T, (k) T ) — (2, 9)]
<Y+ 0@y, k), ) + 0Ty, q),y) < 5.

Hence ®,, : N5, — N is a 2y-approximation.

A similar argument gives a 2y-approximation ¥, : N5y — N;, . Since v will be arbi-
trary small as n — oo we see that dgg((Ns,,ds,), (Nsds)) — 0. But by assumption
dau((Ns, ,ds, ), (Ns,,ds,)) = 0 so that dgg((Ns,ds), (Ns,,ds,)) = 0 which by complete-
ness of the spaces proves that (s, ds) and (N, ,ds,) are isometric. O

Proposition 1.21. Assume (M,d) is compact. Then the notion of convergence described
above is induced by a metric ¥(,y making (X,,0,) into a compact metric space.

Proof. Define 0, as follows:

0, ([N, d], [N, d]) = inf{f;e% 0(z,y) = &'(z,y)| [ [N,d] = [N5,ds], [N",d'] = [Ny, dy]}.

It is easy to see that ?,, is symmetric and satisfies the triangle inequality. By Arzela—Ascoli
the infimum is actually attained by pseudo metrics 6 and ¢’. Indeed, if the tuples (dy, (5;)
form a minimizing sequences then by Arzela—Ascoli a subsequences converges to a tu-
ple of pseudo metrics (§,0") and by the previous lemma [N,d] = [Ns,ds] as well as
[N',d] = [Ng,ds]. The same argument also yields that any sequence in X, has a
convergent subsequence.

From this we conclude definiteness of ?,, as follows: If 9, ([N, d],[N’,d']) = 0 then for
some § = ¢’ it holds [N, d] = [Ny, ds] = [N',d'], i.e. (N,d) and (N',d’) are isometric. [J

The following lemma helps to verify whether a given pseudo metric is w-uniformly
continuous.

11
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Lemma 1.22. Assume § is a pseudo metric and for all x € M the functions §, =
d(z,:) : M — [0,00) are w-uniformly continuous. Then ¢ is (2w )-uniformly continuous
on M Xo M.

Proof. Choose points x1,x2,y1,y2 € M. Adding é(x1,y2) — 6(x1,y2) we obtain

6(z1,91) — d(w2,y2)| = [0(21,y1) — (21, y2) + 6(21,y2) — d(72,y2)|
< w(d(y1,y2)) + w(d(z1,72))
< 2w(max{d(z1,x2),d(y1,Y2)})-

1.4 Basics on length and geodesic spaces

Let (M, d) be alength space and v : [a,b] — M be a (continuous) curve. A reparametriza-
tion ~v¥of a curve 7 : [a,b] — M is a a surjective monotone function ¢ : [a,b] — [c,d]
such that ¥ = v o ¢ is a continuous curve in M. If not specified otherwise we usually
assume ¢(a) = ¢ and p(b) = d.

Given two curves 7' : [0,1] — M, i = 1,2, with 7{ = ~2 we define the glueing
n=~"U~%:[0,1] — M of the two curves as follows

y {7 te0,3]
-1 t€ (31
We say that v is rectifiable if £(y) < oo where
n
()= sup Y d(y_, )
(0, stn)€L[ap) j—1

where
I[a,b] = {(t()v oo 7tn) ‘ n e N;tl < ti+17t0 = aatn — b}

The following two facts are easy to verify
t(y*) = £(v)
Uyt un?) =Ly + 0077,

Lemma 1.23. If v : [0,1] — M is a rectifiable curve then for decreasing sequence of
closed connected sets I, C [0, 1] with diam I, — 0 it holds E(’y‘l ) — 0.

Proof. We leave it to the reader to show that for a rectifiable curve £() = H(v([0,1]))
where H! is the one-dimensional Hausdorff measures (see below for definition of the
Hausdorff measures). By the property of being a measure it holds

1 . 1 . 1 .
0= ({to}) = inf H'(In) = lim H'(Ip) = lim £(y], ).

12
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Proposition 1.24. Assume 7 : [0,1] — M is rectifiable. Then there is a constant
speed reparametrization of v, i.e. there is a continuous surjective and monotone function
¢ :[0,1] — [0,1] such that

U7 1) = ).

Proof. Note that the function L : ¢ — E(ﬂ [o,t]) is non-decreasing. By the previous lemma
we have
limsup L(s) — L(t) = limsupﬁ(y’[t s]) =0
s\t s\t ’
and
liminf L(t) — L(r) = llgl}?ff('y}[m]) =0

r,'t
so that L is also continuous.
Note that L is constant on [t, s] if and only if 7 is constant on [¢, s]. Thus we can find
a non-decreasing, possibly discontinuous function ¢ : [0,1] — [0, 1] such that L o ¢(s) =
sf(7y). To finish the proof it remains to show that +¥ is continuous. Observe that
whenever ¢ is not continuous to the left at a point s then there is a tg < ¢ such that L is
constant on [tg, ¢(s)]. In this case y(tp) = v(¢(s)). Choosing the minimal ¢y and setting
©min($) = to. Do this for all points of left-discontinuity and set the function outside of
those points equal to ¢ to find a non-decreasing function @i, that is left-continuous
at all points and satisfies L o pmin(s) = sl(v) for s € [0,1]. This shows, in particular,
that 7¥min(s) = 4%(s) for all s € [0,1] and that ¥min is left-continuous. Doing this
for points of right discontinuity we also obtain a function @,y such that y¥Pmax = ~¥
is right-continuous at all points t. Thus we have shown that % is both rigth and left
continuous and satisfies

s =+ 77| g,g) = LE(®) = st(7)

We now define the induced length metric dy, of a metric spaces as follows:
dr(z,y) = inf{l(v) |~ :[0,1] — M is a curve with 79 = z and v; = y}.
A metric space (M, d) such that d;, = d is called a length space.
Lemma 1.25. For any curve v it holds lq(7y) = £q, (7).

Proof. We always have d;, > d so that {43, > {;. In particular, we may assume 7 is
(d-)rectifiable. Thus for ¢, s € [0,1] it holds

dr (e, 7s) < La(Ve,s))-
But then for all (fo,...,tn) € Zjg ) it holds

Z dr (V1) < gd(’}’[o,u)'
i=1

Taking the supremum on the left hand side we obtain 44, () < £4(7). O

13



1 Technical details and a notion based on Arzela—Ascoli

Corollary 1.26. It holds (d)r = dy..

Proposition 1.27. The space (M,dy) is an extended metric space. Furthermore, (M, dr,)
1s a length space if and only if every two points can be connected by a rectifiable curve.

Proof. Since dy, > d we see that dy, must be definite. Symmetry is also obvious. Choose
x,y,z € M and observe that if there are no rectifiable curve v or 1 between = and y or
resp. y and z then the triangle inequality holds trivially. In the other case v U7 is a
rectifiable curve between = and z. Taking the infimum over all such curves we see that
the triangle inequality holds for dy,.

The last claim follows from the definition of dj, together with the previous corollary. [J

Note that the topologies of (M, d) and (M,dr) can be quite different.

Definition 1.28 (geodesics). A curve v : [0,1] — M is called a geodesic between z and
y if

d(ye,7s) = |t — s|d(v0,71) for all s,t € [0, 1].
A metric space is called a geodesic space if every two points can be connected by a
geodesic.

We also say a curve v : [a,b] — M is a [a,b]-parametrized geodesic if t = Y_a)i1q
is a geodesic. Similar definitions exist for curves of open or half open intervals. We say
v : [a,b] — M has unit speed if d(~y:,7s) = |s — t| for t, s € [a,b]. A unit speed geodesic
v :10,00) = M will be called a (geodesic) ray and a unit speed v : R — M will be called
a (geodesic) line.

A curve n : I — M over an open interval is a local geodesic if for all ¢t € I there is a
neighborhood [a, b;] C I of ¢ such that n‘[at’bt] is an [a¢, by]-parametrized geodesic.

Proposition 1.29. If v is a geodesic between x and y then {(y) = d(z,y) = dr(x,y).
In particular, a geodesic space is a length space.

We leave the following three statements as an exercise to the reader.

Lemma 1.30. A complete metric space (M,d) is a length space if and only if it admits
approzimate midpoints, i.e. for all x,y € M and € > 0 there is an m = m(x,y,e) € M
such that

d(z,m) +d(m,y) < d(z,y) + €.
Y)|

|d(z, m) — d(m

Lemma 1.31 (Menger convexity). A complete metric space is a geodesic space if for all
distinct x,y € M there is an m € M\{x,y} such that

<
<e

d(z,m) +d(m,y) = d(z,y).

Proposition 1.32 (Hopf-Rinow). A metric space is a proper length space if and only if
it 15 a locally compact geodesic space.

14



1 Technical details and a notion based on Arzela—Ascoli

1.5 Manifolds and their length structure

TO COME

Fact 1.33 (Blackbox Theorem - geodesic extendability). Assume (M, F) is a Finsler
manifold. Then any point x € M admits a neighrborhood U such that for all K CC
U there is an € > 0 such that any (minimizing) geodesic v : [0,1] — K there is a
(minimizing) geodesic n: 0,1+ €] — U such that v = 17‘[071}.

Corollary 1.34. If (M,dp) complete then it is geodesically complete, i.e. any geodesic
v :[0,1] = M can be extended to a local geodesic vy : R — M.

15



2 Ultralimits

2.1 Ultrafilters

A non-empty subset F C 2% of a set X is called a filter if
s J¢F
o if Ac Fand AC B then Be F
o if A, Bec Fthen ANBc F.

We say F is a principle filter if {x} € F.
A filter that is maximal w.r.t. to inclusion is called an ultrafilter.

Proposition 2.1. Let F be the filter. The following properties are equivalent to being
an ultrafilter

1. If F C F' for some filter F' then F = F'.
2. If AU B € F then either A€ F or Be F.
3. For all A C X either A€ F or X\A € F.

4. There is a non-trivial finitely additive measure o : 2% — {0,1} with a(A) = 1 iff
AeF.

Before we prove this proposition the reader may verify that the following lemma is
true.

Lemma 2.2. Let F be a filter and A C M such that for oll B € F it holds AN B # @.
Then the following defines a filter containing A:

Fa={CND|ACC and D € F}.

In particular, F C Fa and A € F4.

Proof of the proposition. Assume first F satisfies the first property, i.e. F is an ultrafilter
and assume AU B € F for two sets A, B C X. We claim that either AN D # @ for all
D e For BND # @ for all D € F. Indeed, by renaming we may assume AND = &
for some D € F. Since AUB € F and @ ¢ F we must have BN D # & by the third
property of being a filter. Assume now by contradiction B N D’ = & for some D' € F
then D' N D € F. However, this leads to the contradiciton @ = DN D' N(AUB) € F.

16



2 Ultralimits

Since BN D # @ for all D € F we see that Fp is a filter which is larger than F and
contains B. But this means Fp = F implying the claim,.

If the second property holds then the third one follows since X € F holds since filters
are always non-empty. Thus assume the third property holds for F. Assume F C F' for
some filter 7. Assume by contradiction there is an A € F'\F. Then the third property
implies X\ A € F C F'. But this leads to the contradiction @ = AN (X\A) € F.

It remains to show that the third and fourth properties are equivalent. First note
that any non-trivial finitely additive measure o : 2% — {0,1} induces a subset F C
2% satisfying the third property. The properties of being a measure and the fact that
a(@) =0 and 1 < a(A) < a(B) < 1 for some A € 2% shows that F is non-empty, @
and the second property of a filter holds. Being fintiely additive then implies the last
property of a filter.

Now let F be an ultrafilter and define a(A) =1 if A € F and otherwise 0. Let A, B
be disjoint non-empty sets. If neither A, B ¢ F then (X\A),(X\B) € F as well as
(X\A) N (X\B) € F so that 0 = «(AUB) = a(A) = «(B) which is obviously additive.
If A€ F then AUB € F and B¢ F as BC X\A ¢ F. Thus 1 = a(AUB) = a(A) and
a(B) = 0 which implies additivity. A similar argument holds for B € F. O

Proposition 2.3 (Ultrafilter Lemma). For any filter F there is a ultrafilter F' O F.

Proof. Let P be the set of ultrafilters ordered by inclusion. The statement follows from
Zorn’s Lemma. Let I be a totally ordered set and {F;}icr a chain, i.e. F; C Fj whenever
1 < j. We claim that

F=~x

el
defines filter which we can use to apply Zorn’s Lemma which would yield the claim.
Obviously F is non-empty and @ ¢ F. If A, B € F then A € F; and B € F;. W.lo.g.
assume ¢ < j. If C D A then C € F; C F. Also since i < j we have A € Fj so that
AN B € F; C F which proves that F is a filter. O

Corollary 2.4. On any infinite set X there are non-principle ultrafilters.
Proof. We define the following set
Feo ={A C X | X\A is finite, i.e. A is cofinite}

and claim that this defines a filter. The previous proposition then implies the claim of
the corollary.

First observe that @ ¢ F., as X is infinite. Also if A and B are cofinite then X\ (AN
B) ¢ (X\A) U (X\B) is also finite, i.e. AN B € Fg. Similarly, if C D A then
X\C C X\A is finite so that C' € F,. O

2.2 Ultralimits

In this section we regard ultrafilters on N as both subsets of 2V as well as finitely additive
measures, i.e. A € w is equivalent to w(A) = 1.

17



2 Ultralimits

A number a € N will be called an ultralimit of a sequence (ay, )nen W.r.t. anon-principle
ultrafilter if for all € > 0 it holds

{n e N|lan, — ay| < €} € w.
If a sequence admits an ultralimit ¢ we use the notationlim,, a,, := a.

Theorem 2.5. For any non-principle ultrafilter w on N and any bounded sequence
(an)nen admits a unique ultralimit a,. Furthermore, there is a subsequence (ny)ken
such that an, — a,.

Proof. M = sup,,cy |an|. By induction we define sets I,, and A,, satisfying w(/l,) = 1,
I+ C I, and A, C A, as well as diam A, =2-27"- M and w(I,) = 1: Iy = N and
Ag = [-M, M]. Note that w(ly) = 1.

Assume I, and A,, are defined. Let m,, = w and define two sets

Al = [inf Ay, my)
A = (my,sup Ay
and two index sets
LF={nel,|a, € AT}

Note that those sets define disjoint partitions of A,, and resp. I,,. Thus
1 =w(lp) =w(]) +w(ly).

Since w has values in {0,1} we set I,41 = I} and A,y = Af, if w(I7) = 1 and
Loy = 7;+1 and A, = A;Hrl if w(I,j) =1.

Note that any sequence b, € A, will be Cauchy and converging to the unique point
Gy € Npencl A,.

Now pick € > 0 and choose n large such that 4-27" - M < € then

I,c{neNlla, —ay| <4-27"-M} C {n € N||a, — an| < €}

implying {n € N||a, — ay,| < €} € w. To see that a,, must be unique, assume there is a
b # a then {n € N||a, —a|] < V’;QM}, {n eNlla, —b| < @} € w. However, this would
imply

b— b—
{n eN|lan —a <‘2“|}m{neN|\an—b\ <’2“'}—@¢w.
To conclude note I, is infinite since w is non-principle. Thus let n; = inf I N [k, 00)
will define a sequence a,, € I} converging to a,. O

Corollary 2.6. If (ap)nen then either (a,) admits an ultralimit or one of the following
holds

18



2 Ultralimits

e forall M >0
{neNla, >M} cw

for all M >0
{neN|a, < -M} € w.
In the first case we write limg, a,, = oo and in the second case lim,, a, = —o0.

Remark. Using a transformation b, = arctana, we see that lim, b, = £7 if and only
lim,, a,, = +00. Hence the values oo may still be called ultralimits if lim,, a,, = +oc.

Proposition 2.7. If w is a non-principle ultrafilter and (M, d) is a proper metric space
then for any bounded sequence (xy,)nen there is a unique z, € X such that lim,, d(x, z,) =
0. We call x the ultralimit of (xy) and write lim,, x,, = x.

Proof. Assume z,, € Br(zo) for some R > 0. Pick a countable dense subset {y}ren.
We construct numbers N;, a disjoint partition {Au}i\ﬁlof Bp(z) with diam 4;; < 2R
and index sets I;11 C I; with [; € w as follows: No = 1, A1 = Bg(wo) and Iy = N.
Assume the sets are constructed for [ — 1. Define N; the infimum among all N such that

N
Bg(z) C | By-ig(y).
i=1
and define
Aii = By-ip(yi)\ U By-1r(y;)-
j=1

There is a unique index 7; such that
{nel_i|xz, € Ay} € w.

Weset [ ={nel_4|x, € Ail,l}-

Now pick n; = inf I; N [I,00) and observe that d(zy,,z,,) < 27'R whenever a,b > I.
Thus (zp,)1en is Cauchy and converging to some z.

We claim lim,, d(x,,2) = 0. Let ¢ > 0 and choose [ large such that 4-27'R < e. If
n € I; then

d(zp,x) < d(zp, xzn,) + d(zn,, )
N

< d(zn,Tn,) + Z d(mnmekH) + d(zny, x)
k=l

(oo}
<27'R+> 27'R
k=l

<4.-27'R <.

Therefore, I; C {n € N||d(zy,x) — 0] < €} € w which yields the claim. O
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2 Ultralimits

Proof of Arzela—Ascoli via ultralimit. Let f, : (M,d) — (N, d) be w-uniformly continu-
ous maps such that (N,d) is proper and (fy,(z0))nen is bounded for some fixed xg, i.e.
d(fn(x0),90) < R for some yp € N and R > 0.

For z € M observe that

d(fn(x)ayo) < d(fn($)v fn(ﬂﬁo)) + d(fn(xo)a yO) < w(d(l’,xo)) + R.

Thus for any fixed z € M the sequence (f,,(x))nen is bounded. Define

f(x) :=lim f, ().

Then
d(f(x), f(y)) < d(f (@), fa(x)) + d(fu(2), fn(y)) + d(fa(y), [ (y))
< d(f(@), fu(@)) +d(fu(y), [ () + w(d(z,y).
Taking the ultralimit of the right hand side shows f is w-uniformly continuous. O

Proof of Hopf-Rinow via ultralimits. A proper length space (M, d) has approxmate mid-
points. Let m, be an approximate midpoint such that

1 1

This implies (my, )nen is bounded so that by properness it has an ultralimit m = lim,, m,,
where w is some non-principle ultrafilter on N. Furthermore, m satisfies

max{2d(xz,m),2d(m,y),d(x,m) + d(m,y)} < d(x,y) < d(x,m)+ d(y,m)

which shows d(z,m) = d(m,y) = id(z,y), i.e. m is a midpoint showing (M,d) is a
proper geodesic space and in particular a locally compact geodesic space.
Assume (M, d) is a locally compact geodesic space. Define

r(x) = sup{r > 0| B,/(x) is compact for all v’ € [0,7]}.

By local compactness r(x) > 0 for all x € M. If r(x) = co then (M, d) is proper.
Assume B, (z) is compact. Then dB,.(z) is compact so that it can be covered by finitely
many balls B, (y;) with r; < %, i=1,...,N. In particular, minr; > 0.
Let € € (0,min7;) and observe that for all y € B, .(z)\B,(x) there is a point § €

OB,.(x) on the geodesic connecting z and y such that d(y,9) = d(y,z) —r < e. Since

UiBr, (yi) is a cover there is an i with y € By, (v:)

2r(yi) _

d(yi,y) < d(yi, ) +d(y,9) <ri+e< 3

Which implies

N
Brie(x) C By(z) U U Boriyy (yi)-
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2 Ultralimits

Since the right hand side is a union of finitely many compact set we are done. This shows
that B,(;)(«) must be non-compact if r(z) < co.

Assume now by contradiction R = r(xz) < oo for some z € M. Let (yn)nen be a
sequence in B,(z) and (7"),en be a sequence of geodesics connecting = and %,. Note
that for all ¢ € [0, 1) it holds

’Y;L S BtR(I).

Since Bigr(z) is compact for t < oo the ultralimits of (v')uen for ¢t € [0,1) are well-
defined, i.e. vy := lim,, ~{" is well-defined. We may also verify that v : [0,1) — M defines
a geodesic in Br(x) starting from z. By assumption v can be extended to a geodesic .
Set y = 1. We claim y = lim, y,. Indeed, it holds

d(Yn,y) < d(Yn, ') + A7) + d(v,y)
<d(v' ) 21 -t)R.

Thus for all € > 0 and ¢ € [0,1) with 2(1 —¢)R < € we get
{n e N|d(yn,y) < e} D{n e N|d(}',n) <e—2(1 —t)R} € w.

By the properties of being a filter we see that {n € N|d(yn,,y) < oo} € w which implies
y is an ultralimit of y,. From this we obtain a subsequence y,, — y which implies
compactness of Br(x). O

2.3 Ultralimits of metric spaces
Let (X,,d,) be a sequence of metric spaces. Set
Xoo = {(zn)nen | Tn € Xn}
and define a function d,, : Xoo X X5 — [0, 0] by
o ((Zn)nen; (Yn)nen) = 11511 dn(Tn; Yn)-

It is not difficult to see that d, is an extended pseudo-metric, i.e. it is symmetric and
satisfies the triangle inequality. Now defined equivalence classes on X, as follows

[Znlnen = {(Un)nen | du((Tn)nen, (Yn)nen) = 0}.
and set
Xoo = {[Tn]nen | Tn € Xn}
and
dw([xn]nEN7 [yn]neN) = dw((xn)nEN7 (yn)neN)-

Then d,, defines an extended metric on Xo. We say (X, d,,) is the ultralimit of the
sequence (X, dp)nen. One can show that lim,, diam (X, dy,) < oo if and only if (Xo, dy,)
is a metric space.
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2 Ultralimits

In general we need to exclude the case dy,([zn]nen, [Un]nen) = oo. For this pick a
sequence of “origins” p, € X,, and define

X&) = {[zn]nen | du([Znlnen, [Ynlnen) < o0}

Then (Xég"), dy,) is a metric space and will be called the pointed ultralimit of the sequence
of pointed metric spaces (Xy,, dn, Pn)-

Lemma 2.8. Any ultralimit space is complete.
Proof. Let ([2F],en)ren be a Cauchy sequence. We may replace the sequence by a
subsequence such that d,([zF], [zF~1]) < 2% Thus

Sy ={neN|d(z}, 2" < = 1<k} ew.

21’

Note if n € Soo = NSk then d,, (x, 251) = 0. Thus if Se € w then dy, ([25]en, [#4]nen) =
0 so that there is nothing to prove.

In the other case we S = Sk\ S~ € w so that NeSk = @. Set k(—1) =0 and Sp =N
Let k(n) be the largest k such that n € Sk(n)- Since Sj\Skt1 ¢ w one may readily verify
that lim,, k(n) = co.

k(”)]

We claim [z, ’]nen is the limit point of the Cauchy sequence: Pick kg and observe
that for ko < k < k(n) we have n € Sjy) so that

dn(zf, b)) < > d(z 9~ ko,

l=ko+1

Thus for k > kg it holds

{n e N|d,(zF, 5™y < 275} 5 {n e N|k(n) > k > ko} N S € w

TL7 n -
which implies lim,, d,, (¥, xﬁ(n)) < 27k0_ This proves the claim. O

Lemma 2.9. If (X,,dy,) are length spaces then any points of finite distance in the ul-
tralimit space can be connected by a geodesic. In particular, a pointed ultralimit of length
spaces is geodesic.

Proof. It suffices to look at the sequence of %—approximate midpoints m,, of x,, and y,
. . 2
huI}l’l dn(xnn yn) = 115)11 dn(xny mn) + dn(mn7 yn) + E
= 2limd(zy,, my) = 2limd(my,, yn)
w w

implying that [m,] is a midpoint of [x,] and [y,] whenever d,([z,], [yn]) < oo. By
completeness we obtain the claim. O

Proposition 2.10. Let (X,d) be a metric space. If (Xoo, doo, (P)nen) = limy, (X, d, p)nen
is proper then (Xoo, dy,) is isometric to the completion(X,d) of (X,d).
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2 Ultralimits

Remark. The proof shows that whenever the completion of a metric space is compact
then it equals the ultralimit of the constant sequence of this space.

Proof. The map = — [z],en defines a natural isometric embedding i of (X,d) into
(Xoo,dy). Thus if (zg)ren is a bounded sequence in (X, d) then there is a subsequence
([k,Jnen)ien which is Cauchy in (Xo,dy). But then already (z,)en is Cauchy in X
which means it converges to a point # € X. This proves X is proper. This shows that
the embedding extends naturally! to i.

Now choose [Z]nen € Xoo and let z,, be the ultralimit of (z,,)nen in X. Then

dw([ffw]neN, [$n]n€N) = h:)n d(l‘wa l'n) =0

proving that = + [7],cy is also onto, i.e. the embedding defines an isometry of X onto
Xoo- O

Lemma 2.11. There is an uncountable set I € NN such that
{neN|a, #b,} ew
for all (ay), (by) € 1.

Proof. For each r > 0 let a] = [n"|. Then lim, ,~ al, —a? > 0 for all » > s. Thus
I = {(a])nen}r>0 defines the required set. O

Proposition 2.12. The ultralimit (X, d,,) of the constant sequence (X, d) is not sep-
arable if and only if (X,d) is contains a bounded set that is not totally bounded. In
particular, (Xoo,dy) is separable if and only if it is proper if and only if the completion
of (X,d) is proper.

Proof. If A is a bounded set that is not totally bounded then there is a countable infinite
subset {xy, }nen with inf, 4, d(xy,, ) > € for some € > 0.

Let be as in the previous lemma and define for (ax) € I a sequence yﬁlak) = Zg,. Then

{neN|dy™, y®))>e} D{neNla, #b,} ew

we see that lim,, d(yﬁlak),ygb’“)) > €. Since I is uncountable, we see no countable set

can approximate the uncountable set {[ygak)]néN}(ak)E 7. In particular, X, cannot be
separable.

On the other hand if each bounded set in X is totally bounded then the completion of
X must be proper. But the previous proposition shows that (X, d,,) = (X, d) is proper
and thus separable. O

The following corollary is left as an exercise to the reader.

Corollary 2.13. If (X,,d,) are complete length spaces that are not geodesic then the ul-
tralimit cannot be uniquely geodesic. Even worse (Xoo,d,,) contains two points (), (yn)
admitting uncountably many midpoints.

'The embedding extend without requiring X to be proper.
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3 Spaces with curvature bounds

3.1 Non-positive and non-negative curvature bounds

Definition 3.1. A geodesic space (M, d) is said to be locally non-negatively curved if
any point € M admits a neighrbohood U, such that for all geodesics v,n : [0,1] — U
with 9 = np it holds

d(ve,me) > td(y1,m)-

Similarly, it is said locally non-positively curved if any any point z € M admits a
neighrbohood U, such that for all geodesics v, 7 : [0,1] — U with vy = 79 it holds

d(ye,me) < td(y1,m)-

Lemma 3.2. A locally non-negatively curved geodesic space is non-branching.

Proof. Let v and 1 be two points with 7‘[0,t] = 77‘[0,75] for some ¢t € [0,1]. Assume ¢ is
maximal in [0,1]. If £ =1 then v = 7. Assume t € (0,1). Choose U = U,, and observe
there is an e such that « and 7 restricted to [t — €,¢ + €] has image in U. Let 4 and 7
the [0, 1]-reparametrized geodesics 7‘[t—e,t+e] and n’[tie’t%]. However, we arrive at the
following contradiction

O]

Lemma 3.3. A locally non-positively curved geodesic spaces has positive injectivity radius
and sufficiently small balls are conver.

3.2 Curvature on manifolds

Fact 3.4 (Blackbox Theorem - Rauch I). Assume (M, g) is a geodesically complete Rie-
mannian manifold with sectional curvature bounded above by k (bounded below by k).
Then for all x € M there is a neighborhood U such that for all geodesics ~* : [0,a] — U
with 5 = 70 for all s € (—e¢,€) that vary smoothly in s, i.e. s+ § is smooth for all
s € (—e¢,€) the function

be
t— —
by
is non-decreasing (non-increasing) where
d
be=—| d(77,
t= s o (%)
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3 Spaces with curvature bounds

and bf is obtained by a geodesic variation starting at a fired point in the 2-dimensional
model space of constant curvature k such that

by

—k%l ast — 0.
b;

Observe if k£ = 0 then bf = ct for some t depending only on b;. Thus for ¢ < ¢’
b b

ct — ct

and in particular
/

t
bt/ < ?bt

Theorem 3.5. If (M, g) has non-negative sectional curvature then it is locally non-
negatively curved.

Proof. Choose a ball U = B,(z) such that geodesic starting at = can be extended to a
(minimizing) geodesic in B, (z). Let v,7n: [0,1] — U be two geodesics starting at z. Let
¢t be geodesics connecting v; and 7;.

Fix t € (0,1) and € € (0,t — 1) and define a family of geodesics £° : [0,1] — M such
that & = x and & = ¢!. Observe that this variation is smooth.

Let sp < s1 <...<sy =1 then for all s € (0,1) and ¢’ € (0,1) it holds

N
d(ye,me) < Zd( 7hE.
i=1

Since the geodesic variation is smooth, for all € > 0 there isa d > 0 such that |s;—s;_1]| < &
it holds!

d(&7,607") < |si — si—1|by + €6

where b}, = % S,:sd(ff,/,gf,). Observe that b; = d(y¢,m)-
Then by the remark after Rauch I and for ¢’ € (¢, 1] we get

/

. . . t )
d( ts,l, :,Z_l) < ‘SZ' — Si_l‘bff +e< ?’82 — Si_1|b§Z + €d.

'Note if (fi)ser are uniformly differentiable at 0 then fi(t) = fu(t) + tfi(s) + Rs(t) with
sup, ¢y lim; 0 R, (t) = 0.
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3 Spaces with curvature bounds

Assume now |s; — s;—1| = % we get

d(ysme) < Zd( AN

Letting € — 0 gives the claim for ¢t <t < 1. O
Choosing in the proof ¢ € (0,t) then Rauch I gives also the following;:

Theorem 3.6. If (M,g) has non-positive sectional curvature then it is locally non-
positively curved.

Before we continue we need the following fact about Riemannian manifolds.

Lemma 3.7. If (M,g) is a Riemannian manifold such that x — g, is continuous then
limg, (M, 3-dg, m) = (R, || - = - ||,,) for all ty — 0.

Proof. Let ¢ : U — V C R"™ be a chart at m. W.lLo.g. assume ¢(m) = 0. We will
identify x — g, with a locally defined map = + g¥ defined on R". We also assume d is
defined on V' C R™. Note that the set of scalar product on R™ can be metrized by the
following

dsear(9,9) = inf{log L| Yo € R™ : L™ g(v,v) < §(v,v) < Lg(v,v)}.

Since x + g, is continuous we see that for all € > 0 there is an § such that such that for
all z € Bs(m)
(146790 < gm < (14 €)gs-

In particular, for all curves v : [0,1] — Bs(m) it holds
(1467 (7) < Ly (v) < (14 )ly(v)-
Choosing ¢ even small this shows
L+ o) td(w,y) < llz = yllg,, < (1+e)d(x,y)

for all z,y € Bs(z).
We need to show

(B r(m), tlkd, m) = (BE (1), |- = - lgm: 0).
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3 Spaces with curvature bounds

To see this observe that define on Vj, = iBth(m) C R™ a metric dg (v, w) = id(tkv, tpw)

R
and note this gives a natural isometry ¢y : (Vi, dr) — (Bt r(m),d;) and it holds
(L +e) " o —wllg, < di(tyv, tyw) < (1+ e)||v —wlg,,

for some € — 0.

Let BY™(0) denote the ball of radius r around 0 w.r.t. || - — - ||, and observe that
B(gf;ek),lR(o) C Vi C B‘E’I’lek)R(O)-
We also observe that for k — oo we may assume ¢ — 0. This implies for vg, wy € Vi C
B{{’;e) »(0).

lim dy.((vg ), (w)) = [[og = wi]| = 0.

Thus dy,((vg), (wg)) = ||v — w|| where v and w are the ultralimits of (vg) and (wy). Here

we used properness of (R",[|- — ||, ). Note we may choose v;g, w;g € B(gf;ek)—lR(O) such
that dy,(vg, vy, ), di(wg,w,) < (1 — (1 + e) )R, Then (vy) = (v),) and (wy) = (wy)
showing that (Vj,dy) converges to (BEF", [l — - llg.)- O

Definition 3.8. We say a geodesic space (M, d) has curvature locally bounded below
by 0, abbreviated (CBB);,.(0), if all g € M admits a neighborhood U such that for all
x,y,z €U

1 1 1
d*(x,m) > §d2(l’,y) + §d2(l’az) - 1d2(yaz)
for any midpoint m of y and y. Similarly, it has local curvature curvature locally bounded
below by 0, abbreviated (CBA);,:(0),
1 1 1
P(a,m) < L (ry) + 5 (w,2) — 1, 2).
Remark. One may easily verify that (CBB);,. implies
d*(z,7) 2 (1 = t)d* (2, 70) + td*(z,m) — (1 = t)td*(v0,71)
for any x € U and any geodesic v : [0,1] — U.

Lemma 3.9. The condition (CBB);,. implies local non-negative curvature. Similarly,
(CBA) o implies local non-negative curvature.

Proof. Let v,n : [0,1] — U be two geodesics where U is given by the definition of
(CBB)jge- Then

d*(y1,me) = (1= t)d* (1, mo) + td*(vi,m) — (1 — t)td* (no, m)
= td*(y1,m) + (1 — t) (d*(70,m) — td*(no, m))

so that
(e, ) > (1 —t)d® (e, o) + td* (e, 1) — (1 — £)td* (70, 71)
=td*(ne, 1) + (1 —t) (td*(no,m) — td*(v0,71))
Z t2d2(’717 771)
Replacing > by < gives the second claim. O

27



3 Spaces with curvature bounds

Proposition 3.10. A Riemannian manifold of non-negative sectional curvature satisfies
(CBB)joe. Similarly, a Riemannian manifold of non-positive sectional curvature satisfies

(CBA)oc-

Proof. The induced geodesic space has non-negative curvature. Choose x,y, z € Be(xg) C
Bge(zp) € U where U is given by the definition of non-negative curvature. Choose a
geodesic ¢ connecting y and z and set m = C%. Define y; = C%_%t and z; = C%(2—t)' Let
~v be a geodesic connecting m and x and and set x; = ;. Also set

1

ay = zd(xt,yt)
1

by = Ed(xt,yt)
1

Ct = Ed(ytyzt)
1

dt = Ed(xt,m)

Then a; > aq, by > by and ¢; = ¢ and dy = d for all ¢ € (0, 1].
For t, = %, let es be the ultralimits of (e, )nen for e € {a,b,c,d}. Note all those
numbers are finite. Since (M, nd),en converges to a Euclidean space we have

1 1 1
1 1 1

= 115)11 §a?n + §bt2n - dfn — ZC?”
1 1 1

which proves the first claim. The second claim follows again by replacing > by <. O

Corollary 3.11. If (M,d) has non-negative (non-positive) curvature and for each point
m in the interior of a geodesic either admits a neighborhood satisfying (CBB) (resp.
(CBA)) or any blow-up lim,, (M, nd, m) satisfies (CBB) (resp. (CBA)) then (M,d) satis-
fies (CBB) (resp. (CBA)).

Remark. Let (M, F) is a Finsler manifold having (local) non-negative curvature. Then
a minor adaptation shows that if F' is 2-uniformly smooth with constant C' > 1, i.e.

v+ w

2

P> PP+ S Fw) — S P —u)?

F
( 2 4

then a similar inequality holds for the distance dp. The corresponding non-positive
version is called 2-uniformly convex with constant D < 1.

Note, however, by a result of Ivanov—Lytchak if (M, F) is smooth then (M,dF) is
Berwald, i.e. there is a Riemannian structure g such that dg(v¢,vs) = |t — s|dg(70,71)
for all geodesics 7 of (M, dp).
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3 Spaces with curvature bounds

3.3 Non-positive curvature

Proposition 3.12. Assume (M,d) has local non-positive curvature. Then for all x € M
there is an €; > 0 such that (Be,(x),d) is a geodesic space with non-positive curvature.

Proof. Let U be the neighborhood given by the definition of non-positive curvature.
Choose € such that Be(z) C Bsc(z) C U. Let v and n be two geodesics in B¢(z) and find
a geodesic ( connecting vy and n;. Then 7 is a geodesic in Bs.(z). Thus

< d(y,Gt) + d(Cesme)
< td(y1,¢1) + (1 —t)d(Co,m0)
= (1 = t)d(v0,m0) + td(v1,m)-

d(%a 77t)

Choosing 71 be the constant geodesic we see that t — ~; stays in Be(x) wheneveryg,y1 €
B(z). This proves the claim. O

Remark. Note that x — ¢, is continuous in x.

Proposition 3.13. Assume (M,d) is proper, has local non-positive curvature and its
injectivity radius ig = ig(M) = infeprins(x) is bounded from below. Then Bi, (z) is a
geodesically convexr set. One may replace properness by the assumption of cothmuously
varying geodesics in Biy (z).

2

Proof. By properness we see that geodesics in B = Bi, (x) are unique and vary continu-
2

ously.
Let v and 7 be two geodesics in B. Let € > 0 be a lower bound of ¢  €,,. Assume first
that sup d(y:,m¢) < €. Then there is a ¢ > 0 such that for all ¢ € [§,1 — J] the functions

t" = d(ye, )

restricted to [t — d,t + d] stay in B(~y;). Hence they are convex in [t — §,t + d]. But then
the function is already convex in [0, 1].

To finish, let { and £ be geodesics connecting vy and 19 and resp. 1 and 7;. Define
geodesics v* connecting (s and &s. Then ~® is a unique continuous variation between
vy=~%andn =4 Let 0 =59 < s; < ... < sy =1with s, —s,.1 < e. Then
t e d(ypm, ;") is convex so that

N
d(ye,me) <> d(ym )
n=1

N
1_t Z ’YO a’an ! +tZd’71 77?1 !

=(1-1t)d (’70,770) + td(y1,m)-
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3 Spaces with curvature bounds

Corollary 3.14. If (M,d) satisfies (CBA)joc and ig = ig(M) > 0 then (Bi, (x),d) satis-
2
fies (CBA).

Proposition 3.15. Assume (M, dy, pn)nen are proper and satisfy (CBA)joe and ig =
lim,, ig(M,) > 0. Then the pointed ultralimit (Mso,d,,, (pn)) satisfies (CBA)j. and
'LO(Moo) > 1g.

Proof. Let (g,) be arbitrary. Choose (), (yn), (2n) €Let (my,) be a sequence of mid-
points yn, zn, € Big (¢n). Then (my) € By (¢n) and it is a midpoint of (y,) and (z,).
2 2
Assume by contradiction there is another midpoint () of (y,) and (z,). If k,, denotes
midpoints of m,, and m,,. From the (CBA)-inequality and the fact that d,((my), (m,)) >
0 we get

dw((Yn), (2n)) < dw((yn), (kn)) + d((2n), (kn)) < dw((Yn), (Mn)) + dw((mn), (21))
= dw((yn), (2n))

which is a contradiction.
The argument shows that any geodesic/midpoint in M, is given as a limit of geodesic/midpoint.
In particular, the the (CBA)-inequality will hold in io(My). O

Corollary 3.16. If, in addition, (My,dy) is geodesically complete then so is the ultra-
limat.
Remark. Non-branching is not preserved by taking ultralimits: blowing down the hyper-

bolic plane one obtains a metric tree with uncountably many edges issuing from a fixed
vertex.

Proposition 3.17. Assume (M,d) is non-positively curved and s — d(vs,ms) is an
affine function for geodesics v,n : I — M and some closed connected set I C R. Let
¢*:[0,1] = M be geodesics connecting s and ns. Then there is a normed space (R2,||-|)
with strictly conver norm and an isometric embedding ¢ : GG+ ©((F) into R?, i.e. the
convex hull of v and 1 will be isometric to a convex subset of R?.

Proof. We first claim that for s,§ € I the curve ¢t — Ct(l—t)S-Hg

~vs and nz: Let & be the geodesic connecting v5 and nz. Then

is a geodesic connecting

A(Y(1=t)s+t5 N1—t)s+t5) < A(V(1=t)s4t3> §t) + A&, N(1—t)s415)
< td(ys,m5) + (1 = 1)d(ys, ns)
= d(’Y(lft)sﬂféa n(lft)sﬁ‘/é)

implying that & is a t-midpoint of v(1_¢)s145 and 7(1_¢)s1¢5- By uniqueness of geodesic

1—t)s+t5
we must have & = Ct( J+ts,
r)s+rs

) 3 : s s
Prf 188 geodesic between ¢ and (7 for

By a similar argument we see that r — C((ll:

all 5,5 € I and t,f € [0,1].

This implies that the convex hull of v and 7 is homeomorphic to a convex subset of
R2.

TO BE CONTINUED! O
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3 Spaces with curvature bounds

3.4 Non-negative curvature
Let v : [0,00) — M be a geodesic ray. Note for ¢, s > 0 it holds

(t+8) = d(,vets) = (E+s) = (d@,7) + d(e; Vers))
=t—d(x,v).

Hence t — t — d(z,~;) is monotone non-decreasing so that the following function

by(z) = lim t — d(x, v)

—00

is well-defined. We call b, the Busemann function associated to the ray ~.

Given a point z € M we say v*) is a co-ray associated to ~ if for some t,, — oo the
sequence of unit speed geodesics ¥ connecting z and v, converges locally to A& A
geodesic line v(*) is called a co-line associated to a geodesic line ~ if for all s € R the

rays t — vft)Jrs are co-rays associated to t — 4.

Lemma 3.18. Ifv(%) is a co-ray associated to v then by(’yt(x)) =by(z) +1t fort >0.

Proof. Let (™ be given by the definition of 4(*) being a co-ray.
Since by is a pointwise limit of 1-Lipschitz functions = + (¢t — d(x,~;)) it must be
1-Lipschitz itself, i.e.

by(1) = by () <t
Note also that for ¢ > 0

= lim t, — d(+\", )

n—oo
> lim t, — d(vt(”),%n) - d(’)’t(x)’ gn))

n—00
(z) (1)

> 7}1_>H;Otn —d(x,v,) —d(v v )+t
=by(x)+1t.

This proves bw(’yt(x)) =by(z) + t. O

Corollary 3.19. Assume (M,d) is non-branching and %) 4 co-ray associated to ~.

Then for all s > 0 the ray t — 'YE-T-)S is the unique co-ray associated to v which issues

from y =2,

Proof. Assume %) is a co-ray associated to v which issues from y. Then
by(11") = by (@) < d(x”), )

<d(y",y) + d(y, z)
=t+s

— b, (V) = by (y) + by (y) — by (2)
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3 Spaces with curvature bounds

proving the following 7 : [0,00) — M is a geodesic ray

5= %@ t<s
! mgy) t>s.

which agrees with the ray v(*). But non-branching implies 7(*) = 5 proving the claim of
the corollary. O

Proposition 3.20. Assume (M, d) is non-negatively curved and proper. If v is a geodesic
line then for all x € M there is a unique co-line ¥%) associated to v and issuing from x.
Furthermore, it holds

t = d(3, A9

is constant for all s,s' € R. In particular, (M,d) admits a 1-parameter group t — @ of
tsometries such that

d(z,oi(x)) = t.

Proof. Fix € M and let 4 : [0,d(z,7;,)] = M, n € Z be unit speed geodesics
connecting x and v_;, . Via a diagonal argument using Arzela-Ascoli it is possible to
prove that there are rays %) issuing from z in the direction Y,, n — *oo. Via
ultralimits this construction is particularly simple: Fix a non-principle ultrafilter w on N
and define

(x) lim,, ’ygn) t>0
Mt lim,, 7(__tn) t <O0.

It is easy to verify that (*) restricted to [0, 00) and to (—o0, 0] are co-ray associated to
~ issuing from zx.

In order to prove that v(*) is a geodesic line it suffices to prove d(vgx),’y(_zs) ) = 2s

whenever s > 0. Let a,, = d(z,7,) and b, = d(x,,). Using the triangle inequality we
have
{aTH bn} sn+ d(l‘, 70) < {anv bn} + 2d($7 ’70)'

Thus each of the following sequence will converge to 1: 3=, ‘Z—: and I;—Z.

Choosing n sufficiently large we may assume > < 1. Now define

In = ’VC(L:)GL = 7£n)
Yn = 'Vé;:i)-

Since r — fyézzn and r — ’yé;n) are [0, 1]-parametrized geodesics so that the definition of
non-negative curvature with r = ai

n

2ty
d(Tn; Yyn) = 7d(Vn, Y—n) = o - S.

n
Note that b
A y) = sl — 2] =0
a.

S
n
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3 Spaces with curvature bounds

so that
’7§I) = 11511 Yn-

But then
d(v®, ")) = Tim d(2n, yn)-

>2=d(y{"), ) + d(z.4")
> d(v{",7)

proving that ’y(x) is a geodesic line.
We claim that the above construction neither depends on ¢, nor on the ultrafiliter
w: Indeed, if 7(*) is obtain by a similar procedure as above but with either different

t, or different ultrafilter then for s > 0 the rays t — nf()t s

t — v+¢. By Corollary 3.19 we must have fy(x)‘[ o) = n(z)‘[s 00) and resp. 7(5’5)‘(

s, —00,— ]

) are co-rays associated to

n(x)‘ (—c0,—s] proving that the geodesic lines are unique co-lines associated to 7.

Now let 4™ and 5™ be geodesic connecting = and 7;, and resp. y and -, . Let
ay = d(z,y,) and by = d(y, ).

A ) = limd(v, 72 )

> lim(1 — - )d(z,y) = d(z,y).

Qn

Because the line t — ’st) ¢ 1s the unique co-line issuing from ’yéw) we also get

CI NI z
d(z,y) = dlvys s ) > d(E), )
we see that the last claim of the proposition holds. ]

Corollary 3.21. For all z,y € M the lines %) and vY) are co-line w.r.t. each other.
In particular, the co-line relation is an equivalence relation.

Proof. Use the 1-parameter group of isometries we have for z,y € M the following

bf(x) = lim ¢t — d(x,v+¢)

t—ro0
= lim ¢ — d(+7,70) = b, (0)-

Similarly, for all t € R it holds
b::/_(z) (7s) = by (x) +s=s

if b (z) = 0.
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3 Spaces with curvature bounds

Let ¢ be the co-line associated to () with ¢y = 4o. Then for ¢ > 0 and b~ () =0 it
holds

d(v—¢,x) +d(z,§) =2t = b,JYr(m) (y—t) + b:::(x) (Gt)
< d(y-+,G) < d(y—t, ) + d(, G)

so that by non-branching ¢ = . Therefore, the notion of co-line is symmetric.
Let ¢®) be the co-line associated to 4(*). Since () = ~ we have

4+ _ .
by (y) = lim (£ £ ) — d(y, V1 (1+s)
_ _ (v)
= Jim ¢ —d(CZ,7s) £ 5

= sz(y) (7s) £ s.

Thus béc(y) (vs) = bgi(w (70) & 5. This shows that « is a co-line to ¢¥). Thus by symmetry
¢® must be also a co-line to 4. But the unique co-line to ~ passing y is given by v

implying () = ~®), 0

Corollary 3.22. If, in addition, (M,d) has Euclidean tangent spaces then it splits iso-
metrically, i.e. there is an isometry

O :(M,d) — (M x5 R)
where M' C M is a closed geodesically convex subset of M.

Proof. Let by be the Busemann function associated to ¢t +— ~;. For z,y € M choose a
midpoint m and observe

bi(m) = lim ¢t — d(m, y+¢)

t—o00

d 2
— lim ¢ — (m7’7it)
t—o00

< lim # — %d(liafyit)z + %d(yvvit)Q - id(ﬂf,y)Q

t—o00 t

= S0 (@) + b )

2

proving that b* is geodesically convex. Also note
bt (z) + b (z) = 1tlim 2t — d(z,v) — d(z,v—4¢)
—00
< lim 2t — d(’)/_t,’)/t) = 0.

t—o0

Furthermore,
f e d(%%)2

satisfies f” < 2 and thus
fO) <t*+at+b
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for some a,b € R. But then

b (z) + b () = lm 2t —\/f(t) =/ f (1)

/ a b
> i — h —
thm2t 2t 1+t+t2_0

proving bT = —b~. But then bT are affine functions, i.e. b(n;) = (1 —)b(no) + tb(n;) for
all geodesics 7 : [0,1] — M. In particular, M’ := b=%(0) is a closed geodesically convex
subset of M. Note that the 1-parameter group of isometries shows that M’ is isometric
to b=1(r) for all r € R.

We claim that for all z € M with b, (x) = 0 it holds

Ay AN = d(z,y)? + |r — 5|

Observe that
d(v) W) = d(z,7Y))

so that it suffices to show
d(:v,’yt(y))2 =d(z,y)® +1°.
Set y; = %(y) and observe that
fo it = t* —d(z,y)?

is a convex function. If f, is constant then d(x,y;)? = t* + d(x,y)? and we are done. In
the other case there is an a # 0 and b € R such that

fo(t) > at+b

However,
: t2 B d(l’, yt)
0= b»y(y) (l’) - tlgl:noo |t|
t
lim @& _ +a
t—+o0 |t|

which is not possible if a # 0.
Pick a geodesic 7, connecting y and x with bv(y) () = 0. Since b" is affine and

bj(y) (x) = bj(z)(y) it holds b::(ns)(ns/) =0 for all s,s’ € [0,1]. Therefore,

Usepoeer ™}

will span a two-dimensional Euclidean strip.
Let x,y € (bi)_l(()) = M. Then for all t € R it holds

d(y,7*) < d(z, 7).
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Since z, y and 'yt(y) and the geodesic connecting x and y lie in a Eucldean strip it holds

d(z,y) < d(z,+").

This shows that
ts 2 — d(m,%gy))2

has a minimum at ¢ = 0. Thus b, ) (y) = 0. Using the fact that b (%(y)) = b;r(m) (y) +1

we see bf = biz) for all x € M. But then

Ay A2 = d(x,y)? + |t — s]?

proving that (z,t) — vt(w) is an isometry of M x5 R onto M. O
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4.1 Non-branching spaces

Definition 4.1. A non-branching geodesic space (M, d) is not 1-dimensional if for unit
speed geodesics 7 : [0,a] — M and € > 0 there is a y € By (7a) N Be(y0) with y ¢ ([0, a]).

Lemma 4.2. If (M,d) is a geodesic space such that for each point x € M there is a
d > 0 such that Bs(x) is isometric to (—9,0) or [0,0) then M is isometric to one of the
following:

I. R

2. [0, 00)

3 diam M st

T

4. [0, diam M].

Proof. The assumption imply that M is locally uniquely geodesic and non-branching.
Indeed, if y € Bs(x) then y = Yd(z,y) OF V—d( where v is the geodesic representing
either (—6,0) or [0,9).

Now let v : I — M be a maximal unit speed local geodesic with v9 = z, i.e. for all
local geodesics i : I' — M with I C I’ and 77‘1 =it holds I = I’ and n = .

Let z € M and n be a unit speed geodesic connecting g and z. But then Bs(xz) N
n([0,9)) C y(I) implying that z is on v as M is non-branching. In particular, v is onto.

There are now three cases for I: I = [a,b], I = [0,00) and I = R. If v was not
injective then for some ¢; # to € I it holds ¢, = 74,. But then v can be extended to a
geodesic on R. Thus the first and second case imply that « is injective and M isometric
to [0,diam M] or resp. [0, 00).

Assume I = R and + is not-injective such that vy = 74, for tp > 0. One may easily
verify that ¢ : %Sl — M defined by

z,y)

p(a) = 7a

defines an isometry between %’Sl and M.
Finally, if I = R and = is injective then « defines an isometry covering the last case. [

Proposition 4.3. A 1-dimensional non-branching space (M,d) is isometric to the fol-
lowing:

1. R
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2. [0, 00)

3. diar:rlM .St

4. [0, diam M]

Proof. Let v and € be given by the converse of the definition of being not 1-dimensional.
Then

Ba(')’a) N Be('YO) = ’7((07 6))

Since (M, d) is geodesic this also shows

Ba('}'a) N Be(’YO) - 7([07 6])

Let 2,y € M\~([0,€]) with d(z,y) < § and by reversing v and/or exchanging  and y
we may assume d(y,7) < d(x,7) < d(x,7.). Choose unit geodesics n and £ connecting
7¢ and x and resp. vg and z. Then ([0, 5]) = £([0, 5]) = ([0, 5]). By non-branching
we see that

implying that

€
Bg (x) n ([0, d(z,75)) = n(ld(z, v5) — 5, d(@, 75)))-

Thus if a point z lies in the interior of a geodesic then Bj(z) is isometric the interval
(—0,0) if § is sufficiently small. For all other cases we have a § such that Bs(z) is isometric

to [0,9). By the previous lemma we obtain the claim. ]

4.2 Uniquely geodesic spaces

Definition 4.4. A uniquely geodesic space (M, d) is 1-dimensional if for all z,y € M
and € € (0, 3d(z,y)) any geodesic connecting 2’ € Bc(z) and y' € Bc(y) intersects the
geodesic connecting x and y.

Definition 4.5. A uniquely geodesic space (M, d) is a metric tree if for points z,y, z € M
there is a point m such that

Lemma 4.6. Assume (M,d) is a uniquely 1-dimensional geodesic space. Then for all
x € M and all geodesics n with x ¢ n([0,1]) there is 6 > 0 and an y € M such that
y € ) ([6,1]) where 4%)is the geodesic connecting x and ;.
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4 One dimensional spaces

Proof. Let 3¢ > infd(x,ns) and set Ct(flz = %Ss) where d, = d(z,ns), i.e. let () be the
unit speed geodesics connecting = and 7. Choose € € (0,inf ds) and observe that ¢

and ¢") intersect whenever d(ns,ms) < €. However, (M, d) is uniquely geodesics so that
there must be an r € (0,inf{ds, dy }] such that C(S)‘[O q= C(5)|[0 e Since {ns}sefo,1] 18

compact we may choose r € (0,inf dy] such that C(S)‘[O q= C(S)’[O " for all s,s" € [0,1].

Choose y = Q(S) and § = indes we obtain the claim. O

Proposition 4.7. A uniquely 1-dimensional geodesic space is a metric tree.

Proof. Choose a triple x,y, z € M and let ) be the geodesic connecting = and y. Set ()
to be the geodesics connecting z and 7;.

The previous either z = 7, for some sg € [0, 1] so that choosing m = z will satisfy the
definition of metric tree for x,y, 2.

Otherwise infyc 1) d(2,ms) > 0 so that the previous lemma shows all geodesics ()
intersect in a common point Z # z. Choose Z to be as far away as possible from z. Then
z,y, 2 will be a triple and we get geodesics 77 and () as above. Note n = 7 and 7 agrees
with the end part of 4. The choice of Z shows that the geodesics 7(*) cannot intersect in
a point unequal from Z. However, this only possible if Z will lie on the geodesic 1. Now
choosing m = Z will suffices to shows that the triple x,y, z satisfies the requirement for

(M,d) to be a tree. O
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5 Hausdorff and Gromov—Hausdorff
distance

5.1 Hausdorff distance of subsets

Definition 5.1 (Hausdorff distance). Let A, B C M be two subset be two subsets of a
(pseudo)metric space (M, d). We define the Hausdorff distance dy = dgw’d) of A and B
as follows:
du(A,B) =inf{e > 0[AC | | B(y), B C | Be(2)}.
yeB T€EA

We leave the following two lemmas as an exercise for the reader.

Lemma 5.2. For all A,B C M of a (pseudo)metric space (M,d) it holds

(AUB,d )
I ‘(AUB)X(AUB) (A, B)

dMD(A,B)=d

Lemma 5.3. Let (M, d) be a pseudometric space and (]\;[,a?) the induced metric space,
i.e. M ={[zla|z € M} and d([z]q, [yla) = d(z,y) where [z]a = {y € M |d(z,y) = 0}.
Then o

dii"(A4,B) = dif" (4, B)

where A = {[x]y|z € A} and B = {[ylq|y € B}.
Proposition 5.4. The following holds:
o forall A,B,CCM

dp(A,C) < dp(A, B) +du (B, C).

e forallA,BC M
d(A,B) =0 < cl(A) = cl(B).

Proof. Observe for all x,y € M and €, > 0 whenever y € Be(x) then Bs(y) C Bets(x).
Hence for dy (A, B) < € and dy(B,C) < 0 we get

AcC U Be(y) C U Beis(2)

yeB zeC

and similarly

C c | Bs(y) € | Bers(a).

yeB z€EA
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5 Hausdorff and Gromov—Hausdorff distance

In particular, dg (A, C) < e+ §. Taking the infimum over all €,§ > 0 with dg(A, B) < €
and dy(B,(C) < § we obtain the triangle inequality for dp.
Assuming dy (A, B) = 0 this yields

U Be(z) C U Bsie(y) C U Byets()

z€A yeB z€A

for all ,e¢ > 0. Hence

N (U Be<x>> =N U B

e>0 \z€A e>0 \yeB

We finish the proof by observing that the left-hand side equals cl(A) and the right-hand
side equals cl(B). O

Corollary 5.5. If (M,d) is a metric space then the Hausdorff distance is a metric on
the set of bounded closed subsets of (M, d).

5.2 Gromov—Hausdorff distance
We define the disjoint union M; IT Ms of those two sets My and My as follows
My I My = {(x,,z) ’Z S {1, 2},%1‘ S Ml}

By identifiying M; with the set {(z,i) |z € M;} we frequently regard M; as a subset of
My 1T Ms.

Definition 5.6 (Gromov-Hausdorff distance). For two metric spaces (M;,d;), i = 1,2,
we define the Gromov—Hausdorff distance dgg of (M, d;) and (Mo, ds) as follows:

. A0 (o1 (M), pa(My)) |
dau((My,dy), (Ms,dy)) =inf { “H ) '
GH(( 1, 1)1 ( 25 2)) m { Qi : (Mla dz) — (M’ d) is an isometric embedding

We also define a distance via pseudometrics on the disjoint union of M7 and Ma:

M;1IMs,d <. .
dan((My,dy), (M, d2)) = inf{ A"V (0, 1) | d i pseudomeic } .

on Mi I My with J‘M-va =d;

Lemma 5.7. Given isometric embeddings ¢; : (M;,d;) — (M,d) we obtain a pseudo-
metric d as follows

d((wi, 1), (x5, 7)) = d(pi(x), 05 (x;))-
In particular, )
d D (M, My) = dit P (01(M), 92(Mo)).
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5 Hausdorff and Gromov—Hausdorff distance

Proof. Symmetry follows directly from the definition. Also note that

d((zi,1), (yi, 1)) = d(pi(xi), pi(yi) = di(zi, yi)

and

d((xi, 1), (2k, k)

(pi(:), pr(zr))
(pi(i), 05(y5)) +d(i(y5): pr(2x))
J((x’m i)? (y]hy)) + d((yﬁj)? (Zkv k))

which proves the triangle inequality.

To see that the last inequality holds just observe that the induced metric space (M , CZ)
of (My II My, d) is isometric to (o1(M;) U @a(Ms),d) where d is the restriction of d to
©1(M1) U pa(Ma). O

d
d

IN

Lemma 5.8. If d is a metric on My I1 My then there are naturally defined isometric
embeddings @; of M; into the induced metric space (M,d) of (My 11 My, d) such that

dig "M (M1, M) = dig D (o1 (M), 02 (My)).

Proof. Denote the projection of (Mj II Ma, d) onto (M, (i) by ¢ and note that ¢; = qoi;
where 4; is the inclusion of M; into M; II My satisfies the requirements of the lemma:
Indeed, for z,y € M; we have

The last claim is now readily verified. O
Corollary 5.9. It holds day = dey.

Proposition 5.10. Given two pseudometrics dio and dag on M1II Mo and resp. Moll Mg

there is a pseudometric diaz on My 11 Myl M3 with dmg}(M-HM)x(M—HM-) =d;; fori <j.
i 7 i J

Proof. We use the notation x,Z,... € My, y,9,... € My and 2, Z,... € Mj3. Define

and
di23(x, 2) := dy23(2,2) := inf di2(x,y) + dos(y, 2).
yEMa

One may readily verify that dyo3 is a pseudometric on M II Ms IT Mj. O
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5 Hausdorff and Gromov—Hausdorff distance

Corollary 5.11. The Gromov-Hausdorff metric satisfies the triangle inequality, i.e. for
(MZ', dl), 1= 1, 2, 3, it holds

dau((Mi,d1), (Ms,ds)) < deu((M,d1), (M, d2)) + dgu (M2, dz), (M3, d3)).

Lemma 5.12. Let (M;,d;), i = 1,2, be two complete metric spaces. If p; : (M;, d;) —
(M,d) are isometric embedding into a common metric space (M,d) such that ¢1(M;) U
@0a(My) = M then p;(M;) are closed subsets of M. In particular, (M,d) is complete.

Proof. Just note if (o;(2%))pen is convergent to & € M then it is Cauchy. Since ¢; is
an isometric embedding also (¢ ),cny Cauchy and by completeness it converges to some
2" € M;. Using again ; we see that & = ¢;(z;) which proves that ¢;(M;) is closed. We
leave the proof of completeness to the interested reader. O

Theorem 5.13. The Gromov—Hausdorff distance induces a metric on the isometry class
of complete metric spaces.

Proof. Let (M;,d;) be two complete metric spaces. It suffices to show that

daup((My,dy), (M, ds)) =0

if and only if they are isoemtric. The only-if part is easy as any isometry ¢ : (My,d;) —
(Ma, do) we get di™>®) (p(My), Ma) = 0 which implies dgs((Mi, dv), (Ma, da)) = 0.

So assume dgpg((Mi,dy),(Ma,ds)) = 0. Then there is a (d,)neny be a sequence of
pseudometrics with 6n| MM, = d; and

dOEIMdn) (v Y 0,

Setting § = lim,, §,, for some non-principle ultrafilter w on N we obtain a pseudometric §
with 5|M,XM_ = d; and

diy "M (M, M) = 0.

Let (M,d) be the induced ‘metric space of (M Il My, §). Then there are isometric
embeddings ¢; : (M;,d;) — (M,d) such that @;(M;) are closed subsets of M and

d(M )(801(M1) pa(Mz)) = 0.

But ;(M;) are closed subsets so that o1 (M;) = @a(My). This shows that o * is well-
defined on ¢1(Mj). In particular, 9051 oy : (My,dy) — (Ms,ds) defines an isometry
between the two spaces.

O]

Proposition 5.14. Let be the set X, of isometry class of compact metric spaces is closed
w.r.t. dgg. In particular, for all complete non-compact bounded metric spaces (M,d)

there is an € > 0
dGH((Ma d))(N75)) > €

for all [N, ] € X¢
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5 Hausdorff and Gromov—Hausdorff distance

Lemma 5.15. If dgu((M,d),(N,d)) < € and (N,d) admits a finite e-net then (M,d)

admits a finite 4e-net.

Proof. Let d be a metric realizing dgg (M, d), (N,8)) < € and A C N be a finite e-net.
Observe that } §
M C BY(N) C BS.(A)

Now for each a € A choose z(a) € M with d(a,z) < 2¢. Let B = {z(a)}qea. Then we
have

AC BQG(B)

so that
M C By(B).
O
Proof of the proposition. Assume for a given complete metric spaces and all each € > 0
there is a compact metric space (N,d) with dgr((M,d),(N,d)) < e. Since (N,d) is
compact it admits a finite e-net. The lemma implies (M, d) also admits a finite 4e-net.

However, this implies (M, d) is totally bounded. Then completeness implies it must be
compact. This proves the claim. O

5.3 e-Approximations

Definition 5.16 (e-approximation). A map ® : (M,d) — (NN, 9) is called an e-approzimation
if ¥(M) is an e-net of N and for all z,y € M
|d(z,y) = 6(®(x), (y))| < e.
We say (M, dy) and (My, d2) are e-approximations of each other if there are e-approximations
i 1 (M;, d;) = (Mj,dy), i,j =1,2. This will give us a notion of distance
dar((My, dy), (My, dy)) = inf{e > 0] (M, d;) and (Ms, dy) are e-approximations of each other}.
Lemma 5.17. For every e-net A of a metric space (M, d) it holds dgp (M, d), (A, daxa)) <
2e.

Proof. Define ¥ : A — M as the identity and ®(x), x € M, as any point a € A with
d(z,a) < e with ®(a) = a for all a € A. The map V¥ satisfies the required properties.
Since @ is the identity on A we also see that ®(M) is a d-net of A for all §. Now let
xz,y € M and observe
d(®(x), (y)) < d(®(z),z) +d(z,y) + d(y, 2(y))
< 2e+d(z,y)

and

d(z,y) < d(z, ®(x)) + d(P(z), 2(y)) + d(P(y),y)
< 2e+d(P(x), P(y)).
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5 Hausdorff and Gromov—Hausdorff distance

Lemma 5.18. If thre is an e-approzimation ® : (My,d1) — (Ma,ds) then there is a
pseudometric d on My 11 My with d|M~xM' =d; and

dMIMD (ALY < 2.

In particular, dgg((My,dy), (Ma,ds2)) < 2¢

Proof. We use the following notation: =, #,2',... € M; and y,3,9,... € M2. On M;
define d by d; and for x € My and y € M> set

d(yvx) = d(x7y) = jler}\gll dl(xvj) +e+ dg(@(l‘),y).

Then
J(xa y) = jnf dl(x’ i‘) +e+ dQ(q)(x)a y)
TeM;
< _inf di(z,2') +di(2),7) + € + do(D(2),9)
xeMy
=d(z,2') +d(z', )
and
d(z,y) = inf di(z,%)+ e+ da(®(z),y)
TeEM
< inf di(z, ') e+ da(P(2), ') +d(y', )
zeM
=d(z,y) +dy,7)
as well as
ci(x,x') < 1n§w di(z,Z) + dy (2, 2) + di (2, 2)
T, xeMy
< _inf - di(2,2) +2¢ + di(2(2), B(2)) + du(, ')
T, xeMq
< it di(@,8) + 26+ dy(B(@), ) + dly, (@) + i (3,2)
T,z 1
= d(z,y) + d(y, )
and

dy.y') < _inf da(y, (7)) + d2(®(2), D(2)) + dao(®(2), B(%)) + d2(P(2), y')

T,2€M
< it oy, B(F) + 2+ dy(E.2) £ da(,8) + (@ (). )
z,% 1

=d(y,z)+d(z,y).

Because d(x,®(x)) = € and ®(M;) is an enet in My we have By (M1) D My and
B¢(M3) D M; proving the claim. O
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5 Hausdorff and Gromov—Hausdorff distance
Lemma 5.19. If dGH((Ml,dl),(AJg,dg)) < € then there is an e-approximation @ :
(My,dy) — (Ms,ds). In particular, dgy((My,dy), (Ma,ds)) < 2e.

Proof. Let d be a pseudometric realizing dgg((Mi,d1), (Ma,ds)) < § < €. Define for
x € My the sets .
Ay ={y € Ma|d(z,y) < d}.

Using the triangle inequality we see d1(y,y") < 20 for all y,3/ € A,. Similarly, fory’ € A,
and y € A, we have

d(z,2") —d(y, )| < d(z,y) +d(z',y) < 26

Now choose ® : My — My with ®(x) € A,. Since Bgz(Ml) D My we see that

U 4. =M.
€My
Thus ®(M;) is an d-net of My proving it is a 2d-approximation. O

Corollary 5.20. [t holds ) R
doa < 2dgy < 4dgh.

Proposition 5.21. If di and do are two metrics on M then the identity induces an
a-approzimation for all a > ||di — da||ec. In particular, uniform convergence of metrics
is stronger than the Gromov—Hausdorff convergence.

5.4 Finite metric spaces and Gromov—Hausdorff convergence

5.5 Gromov Precompactness Theorem

Definition 5.22. A set A of (isometry classes of) compact metric spaces is called uni-
formly totally bounded if there is a function M : (0,¢) — N such that for all (M,d) € A
it holds M4 < M.

Theorem 5.23. A set A (of isometry classes of ) compact metric spaces is precompact
w.r.t. dag if and only if A is uniformly totally bounded.

We first prove the theorem in a series for lemmas:
Lemma 5.24. The set Xy p = {[M,d]||M| < N,diam(M,d) < D} is compact w.r.t.
daH-

Proof. Tt suffices to prove that a sequence of finite metric spaces with exactly k <
N points has a convergent subsequence. Since we talk about isometry class we may
parametrize all those spaces by M = {x1,...,2zx} and assume d,, are metrics on M.
Since the diameter is bounded we also see that {(d, (x;, xj))ﬁj}neN is precompact in RF*F
equipped with the maximum norm. Note that this also shows that {d,, : M x M — R} is
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5 Hausdorff and Gromov—Hausdorff distance

precompact in the uniform topology on Co(M x M). Thus we may replace the sequence
and assume ||d,, — ]| < L where § is a pseudonorm on M. Let g : (M, ) — (M, d)

We claim @, : (M,d,) — (M,d) defined by z; — q(z;) are 1 approximations: By
definition ®,,(M) = M and

|d(®n (), Pr(2))) — dn(2i, z5)| = |d(zi, 2) — dn(2i, 75)] <

S|

proving the claim.
We conclude using Lemma 5.18. O

Lemma 5.25. Let A, C An+1 be a non-decreasing sequence of sets and d a metric on
A = U,en An such that Ay, is an ey-net of (A,d) with e, — 0. Then (Ap,

d‘AnxAn)
G H -converges to the completion of (A,d).

Proof of the theorem. Let [M,,,d,] € A be a sequence of isometry class of compact metric
spaces in A. For each k£ € N let M, ;, be a maximal %—separated set of M. Define

k
Mn,k = U Mn,k-
k'=1
Then [M,, x| < 36 _ M(%) = M(k) < oc.
Now construct inductively strictly increasing functions ¢ : N x N — N such that
p(0,n) =n
¢(k+1,N) C ¢(k,N)
and for k£ > 1 the sequence ([Myk n) k> dp(k,n),k)Jnen converges to a finite metric space
(M®) gk,
Since My, 1, C My, 11 we may assume M*) ¢ M*+D) and dk) = qlk+1

there is a metric doo on ey M*.
Also note that for [ > k it holds

)‘kaMk' Thus

| =

sup inf dy(z,y) <
TEM,,,; YEMn,k e

Thus we have

1
sup inf dp(z,y) < —.
ceM M) yeM® k

But then M will be an (3 + 0)-net for all § > 0 implying the completion (M,d) of
(Ureny M™ . d) is a compact metric space. To conclude we define (k) € ¢(k, N) such
that dar ((Myk)k dpk)k); (M®, d®))) < 1 and (k) < ¥ (k + 1) and observe

+ dam (My k) g D) k) (M) dy )

<

> w

where we used the fact that the distance of an e-net to the full space is less that e. [
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5.6 Gromov—Hausdorff and ultralimits

Proposition 5.26. Suppose (M,,d,)nen is a sequence of compact metric spaces GH -
converging to (M, d). Then any ultralimit of (My,,d,) is isometric to (M,d).

Lemma 5.27. If (M, dy) € Xn,p GH-converges to (M, d) then for any non-principle ul-
trafilter w on N there is an index set I C N, a pseudometric space (M, cf) and parametriza-
tion of My, = M for n € I such that lim,, ||d,, — d||ec = 0 and the metric space (M, d) is
isometric to the one obtained from (M, CZ) In particular the statement of the proposition
is true for finite metric space of order at most L.

Proof. Let L, = #M,, and L,, = lim,, L,,. Then I = {n € N|L,, = L,} € w and we may
assume M := {x1,...,2r,} = M,. Since {(dn(xi,xj))nen|i,j € {1,..., Ly }} is a finite
set of bounded sequences we see that

lim||dy, —dljec = sup  lim|d,(x;,x;) — d(x;,2;)] = 0.
w i,5€{1,...Lo} ¢

This implies (M, d) is isometric to the metric spaces obtained from (M, d).

To prove the last statement we claim for each (z,,)neny € My, thereis k € {1,..., Loo}
with dy,((Zn)nen, (g )nen) = limy, dy (2, z;) where M, = {(xy,) |2, € M,}. Indeed, if
this was true then the metric spaces obtained from (M, d,) and (M, d) are isometric.

To prove the claim just observe that {I; = {x, = k|n € N}}}¢, forms a partition of
N so that for exactly one I; € w. But then

lim d,, (xy, zx) = lim d,, (27, 27)
w w

proving the claim. ]
Remark. If inf,, ; j dy (24, 2;) > 0 then d will be a true metric on M.

Proof of the proposition. Let M, ;, be maximal %—separated sets of (M, d,,). Then for all
we may assume (M, i, d~), df = d”’M o, Wil converge to a metric space (M., d*)

which can be seen as a %—separated set of (M,d) such that d* = Note that

d‘Mk XMy *
any of those sets is also a %—net.

By Gromov Precompactness we know that {(M,,d%), (Mj,d*)} are finite metric
spaces of bounded order. Thus any ultralimit of (M, s,d,) will agree with (M, d).
By the previous remark we may assume limy, ||d, — d|| =0, i.e. for all z,,y, € M, we
have lim,, dn(xna yn) = d(((xn)nENy (yn>n€N)-

Now let (zy)nen and (yn)nen be sequences with z,, y, € M,,. Then for all n there are
Tnn, Ynn € Mn,n and dn(wna xn,n), dn(yn, yn,n) < % Therefore,

‘dn(xna yn) - dn(xn,nv yn,n))’ < hQI)Il dn(xny xn,n) + dn(yrw yn,n)

implying that the metric space obtained from My = {(xn)nen | zn € My} equipped
with the pseudometric dy,((zy), (yn)) = limy, dy(2y, ypn) is isometric to the ultralimit of
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(My,,dp)nen. Now observe that the ultralimits (Mg, dg) of (M, k,d¥),en are isometric
to %—nets of the ultralimit. This shows that the ultralimit is compact. But then it agrees
with the completion of the dense subset UkeN M, where we treated M}, as subsets of the

ultralimit. This proves the proposition. O

Corollary 5.28. If (M,,dy)nen is a sequence of metric spaces such that for some non-
principle ultrafilter w its ultralimit is a compact metric space (M,d) then there is a
subsequence of (M, dy)nen GH -converging to (M, d).

Proof. Let Mj, be a maximal +-separated set of (M, d). Then Mj, is also a %—net of M.

k
We claim that there are index sets I, € w such that M,, admits a %—net of cardinatility

at most My Set My, x = {xni|i =1,..., | M|} where My = {[zn1]neN, - - - [Tn |01, | Inen )
We claim

| M|

w3 I = U Ik,i

i=1

where 5
Ii ={n e N|dy(xn,; ) < %}

Indeed, for each [z,],en € M there is a i with
1
du([2n], [Tn,]) < P

implying I, ; € w. But then I} € w because w is a filter.
We conclude by observing because |Mj| < oo we have

hUIJn |dn($n,i, »Tn,j) - d([xn,i]a [xn,Jm = | hogn dn(xn,ia l‘n,j) - d([xn,i]v [xnum =0

Hence

—_

w3 Jp:=1N {n eN | dGH((Mn,kadn)a (Mk,d)) < E}
We conclude by observing for n € Jy,

dGH(<Mn7 dn)a (M7 d)) S dGH(<Mn7 dn)a (Mn,ka dn)) + dGH((Mn,ka dn)a (Mlm d))
+ deu (M, di), (M, d))

<

> W

Picking an increasing sequence ng € Ji we see
dGH((Mnka dnk)a (M7 d)) —0
as k — oc. O

Remark. Without compactness on the limiting space the claim is in general wrong: Take
any complete, separable, non-compact and bounded metric space (M,d). Then the ul-
tralimit of the constant sequence (M, d),en is not separable by Proposition 2.12. Thus
the ultralimit not isometric to (M, d). But the constant sequence G H-converges to itself
showing that it cannot converge to the ultralimit.
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